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A Variational Approach for Optimal Diffusivity Identificat ion in Firns

Emmanuel WITRANT1 and Patricia MARTINERIE2, April 30, 2010∗

Abstract

Trace gas measurements in interstitial air from po-
lar firn allow to reconstruct their atmospheric concen-
tration time trends over the last 50 to 100 years. This
provides a unique way to reconstruct the recent an-
thropogenic impact on atmospheric composition. Con-
verting depth- concentration profiles in firn into at-
mospheric concentration histories requires models of
trace gas transport in firn. A fundamental parame-
ter of these models is firn diffusivity. Here we pro-
pose a new method to evaluate the diffusivity of polar
firns using automatic control analysis techniques. More
precisely, the diffusivity identification is formulated as
an optimization problem in terms of partial differential
equations (PDE). The proposed theorems generally ap-
ply to transport phenomena in non-homogeneous media
(space-dependent coefficients), a variational approach
is proposed and the optimization problem is solved with
an adjoint-based gradient-descent algorithm.

1. Introduction

Polar ice cores provide a unique archive of atmo-
spheric composition at time scales covering glacial-
interglacial cycles (the last 800 000 years) to the rise of
anthropogenic pollution (since about 1850 A.D.), as de-
scribed in [1, 2] and references therein. Firn air pump-
ing campaigns multiplied over the last decade for to ma-
jor reasons: (1) large amounts of air can be retrieved,
providing the opportunity to measure numerous trace
gases [3], (2) direct observation of air trapping in ice
provide information about the age difference between
the air bubbles and the surounding ice, which should
be well constrained in order to finely interpret ice core
signals [4].

In polar regions where no melting occurs, snow
transforms into ice through the effect of its own
weight. The transition between an open-porosity ma-
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terial (snow/firn) into an airtight material (ice) then oc-
curs at about 50-100 meters depth, as depicted in Fig-
ure 1. Within snow and firn (i.e. compacted snow),
atmospheric trace gases are mostly transported by dif-
fusion through air channels. Air trapping in bubbles
also generates an advection flux which is most impor-
tant at sites undergoing high snow accumulation rates.
Finally gravitational fractionation occurs, transporting
heavy molecules downward more efficiently. This slight
fractionation needs to be taken into account at least for
isotopic ratios, measured at the per-mil precision level.
Such phenomena lead to the modeling of firns as non-
homogeneous media where the trace gases move ac-
cording to transport equations with space-dependent co-
efficients.

Figure 1. Polar firn structure as a function of
depth and density. Scheme adapted from [5, 6].

The non-homogeneous transport of trace gases in
firns can be modeled using the dynamic equations pro-



posed in [7, 8], where a first approach for model vali-
dation and diffusion profiles identification based on firn
air measurements is described. This approach was suc-
cessfully used to describe the firn diffusion property for
specific geographical locations, where the diffusivity
profiles are sufficiently smooth, but cannot be general-
ized due to numerical instabilities in the identification
process. Our aim is then to revise the modeling and
identification algorithms using modern automatic con-
trol methodologies.

The transport model assumes a perfect gas, hydro-
static (pressure computation), isothermal firn, station-
ary flow (constant accumulation rate, temperature etc.),
no thermal diffusion, no interaction (chemical, particles
collision, gas transfer) between the gas and the pore
walls. The following PDE model is then established
(e.g. for a single gas) to describe the trace gas quantity
in open poresq(z, t) [7]:















∂tq= D(z)∂zzq+α(z)∂zq+β (z)q
q(0, t) = f (0)cs(t)

.
= q0(t)

k1∂zq(zf , t)+ k2q(zf , t) = 0
q(z,0) = qI (z)

(1)

with the compact notation∂xy
.
= ∂y/∂x and:

α(z)
.
= ∂zD(z)−D(z)χ(z)−w(x)

β (z) .
= −D(z)∂zχ(z)− ∂zD(z)χ(z)−λ

+
v(x)ε(z)

f (z)
∂z

[

f (z)
ε(z)

]

− ∂zw(z)

where χ(z) .
= Mg/RT+ fz/ f , q(z, t) is the trace gas

quantity in open porosity,D(z) is the diffusivity,λ is the
radioactive decrease,M is the molar mass,ε(z) the total
porosity, f (z) the open porosity,v(z) the sinking speed
of the layers,w(z) the airflow speed in open porosity.
The depth in the firn is determined by 0≤ z≤ zf and
cs(t) is the atmospheric concentration of the trace gas.
The mentioned physical variables are summarized in
Table 1.

The model (1) writes in the compact form:

∂tq = ∂z[D∂zq− (Dχ +w)q]

+

[

−λ + v

(

∂z f
f

−
∂zε
ε

)]

q

= ∂z[D(z)∂zq−V(z)q]+S(z)q

which generally describes non-homogeneous transport
in a variable-porosity medium, characterized by its dif-
fusivity D(z), an advection termV(z) and a source term
S(z). It is related to (1) asα(z) = Dz(z)−V(z) and
β (z) =−Vz(z)+S(z).

In order to formulate the modeling and identifica-
tion problems properly, we can distinguish between the

Notation Physical variable
αaccu site accumulation rate (meq water/yr)

αg closed porosity
∆z depth increment between model layers (m)

ε(z) total porosity (pores vs. firn layer vol.)
εco total porosity at close-off density level

ρ(z) firn density versus depth (g/cm3)
ρice density of pure ice (kg/m3)
ρco close-off density (f /ε = 0.37,g/cm3)
cair air concentration
f (z) open porosity (open pores vs. firn layer vol.)
g acceleration of gravity (m·s−2)

Mair molar mass of air (kg/mol)
qair air quantity in open pores
R perfect gas constant (J ·mol−1 ·K−1)
T temperature (K)

v(z) firn sinking speed due to snow accumulation
w(z) advection speed compensating the air

trapping in bubbles (m/yr)
zf total depth of the firn (m)
zco depth level at which there is no remaining

open porosity (m)

Table 1. Main physical variables and notations

chemical and physical parameters. The chemical vari-
ables (M, cs, λ ) depend on the gas considered while
the physical parameters (f , w, v, ε, D) depend on the
geographical locations and are measured or calculated
for each firn. The atmospheric time-trend historycs(t)
is reasonably well known for specific gas such asCO2,
CH4, SF6 and some halocarbons such asCH3CCl3. Such
gases can then be used to determine the diffusive prop-
erty of a firnD provided that some distributed (depth-
dependent) measurementq(z, t f ) is available. The sim-
ulations illustrating the different theoretical results cor-
respond to the transport ofCH4 in Dome C(Dome Con-
cordia or Dome Charlie, located in Antarctica at an al-
titude of 3,233 m above sea level), and presented in [3].

2. Optimal diffusivity identification

The diffusivity identification objective can be for-
mulated as an optimization problem, where the diffu-
sivity profile has to minimize the squared difference be-
tween the final concentration provided by the model and
the measured one. The proposed approach is based on
variational analysis applied to PDE optimization as de-
scribed in [9]. More precisely, we extend some results
presented in [10] for conservation laws to transport in a
variable-porosity medium, following the proposed for-
malism. A detailed bibliography, convective conserva-
tion laws, shock waves and state nonlinearities are con-
sidered in [10].



2.1. Problem formulation

Our aim is to find the diffusivity profileD∗ that
minimizes the difference between the model output and
the measurements. This corresponds to a final-cost op-
timization problem with dynamics (transport equations)
and inequality constraints that writes as:

min
D

J (D) = Jmeas+Jreg

under the constraints

{

C (q,D) = 0
I (D)< 0

whereJmeasdenotes the cost associated with the mea-
surements,Jreg is a regularization function,C (q,D)
sets the dynamical constraint associated with the non-
homogeneous transport model andI (D) corresponds
to the inequality constraints determined from the
physics on the optimized variableD. More specifically,
the measurements cost is chosen as a weighted least-
squares criterion and the equality constraints are in-
cluded into the cost functionJ (D) by introducing the
Lagrangeor Kühn and Türkerparametersλi . The in-
equality constraints can be introduced thanks toValen-
tine’s method or the barrier function proposed in [11]
(chosen here). In the problem considered, the constraint
J (D) is set on the diffusivity gradient, which necessi-
tates a specific care that will be detailed later on. Con-
sidering the measurements ofN gas, the resulting opti-
mization problem is:

min
D

J (D)
.
=

N

∑
i=1

[Jmeas(qi , qmeas)

+Jtrans(C (qi ,D))]+Jineq(D)+Jreg(D) (2)

with:






























Jmeas =
1
2

∫ zf

0
r i(qmeas−qi|t=t f )

2δzdz

Jtrans =
∫ t f

0

∫ zf

0
λiC (qi ,D)dzdt

Jreg =
1
2

∫ zf

0
s(z)D2 dz

wherezf and t f are the final depth and time, respec-
tively, r i(z) ≥ 0 ands(z) > 0 are user-defined tuning
functions,δz(z) denotes the measurements location and
Jineq describes the inequality constraint. Our aim is to
find the set of parameters{D, qi , λi} that minimizes the
cost functionJ . Note that the dependence of the cost
in qi could be removed from the fact thatqi depends on
D throughC .

2.2. Linearized dynamics

In order to solve the previous optimization prob-
lem, the first step is to linearize the distributed dynam-

ics and define an appropriate transport model. Consider
the general transport equation






∂ty+ f1(z, t)y+ f2(z, t)∂zy= ∂z[g(y, ∂zy, u)]
y(0, t) = y0(t), k1∂zy(L, t)+ k2y(L, t) = 0
y(z,0) = yI (z)

(3)

Its linearized dynamics along the reference trajectory
(ȳ, ū, ȳI ) with perturbations(ỹ, ũ, ỹI ) is given by















∂t ỹ+ f1(z, t)ỹ+ f2(z, t)∂zỹ
= ∂z

[

∂yḡ ỹ+ ∂∂zyḡ ∂zỹ+ ∂uḡ ũ
]

ỹ(0, t) = 0, k1∂zỹ(L, t)+ k2ỹ(L, t) = 0
ỹ(z,0) = ỹI (z)

(4)

whereḡ
.
= g(ȳ, ∂zȳ, ū).

Note that the particular choice of ¯y(z,0) = yI (z) di-
rectly implies that ˜yI (z) = 0, which may be a convenient
condition in some applications. We can directly verify
thatũ= 0 implies that ˜y= 0.

The previous theorem applies directly to the gen-
eral porosity model:










∂tq= ∂z[D(z)(∂zq− χ(z)q)−w(z)q]+S(z)q

q(0, t) = qx=0(t), k1∂zq(zf , t)+ k2q(zf , t) = 0

q(x,0) = qI (x)

(5)

by considering the reference concentration ¯q(x, t) satis-
fying (5). The linearized state ˜q resulting from a varia-
tion in the diffusivity profileD̃ then writes as:

ΣLin :



















∂t q̃= ∂z [D̄(∂zq̃− χ q̃)−wq̃]

+∂z
[

(∂zq̄− χ q̄)D̃
]

+Sq̃

q̃(0, t) = 0, k1∂zq̃(zf , t)+ k2q̃(zf , t) = 0

q̃(x,0) = q̃I (x)

(6)

The linearized system is compared with the cou-
pled dynamics on the test case as follows. A 5% vari-
ation onyI induces a variation of the order of 4.5% on
the normalized concentration profile but a negligible er-
ror (of the order 10−13%, which corresponds to numer-
ical noise) with the linearized model. This is related to
the fact that the linear model obeys the same conserva-
tion law as the initial one. A 5% variation onD varies
the normalized concentration profile by 1% (terminal
value) while the normalized error associated with the
linear model is less than 0.04%, as depicted in Figure 2.
It can be noticed that the concentration error tends to ac-
cumulate at the bottom of the firn over time.

3. Adjoint state and gradient computation

3.1. Adjoint state

The proposed gradient computation implies to
compute the adjoint state when the diffusivity variation



Figure 2. Linearization error for D̃ = 0.05D.

is zero, e.g.D̃ = 0. Such adjoint is given by the follow-
ing theorem.

Theorem 3.1 Consider the linearized transport equa-
tion without input:






∂t ỹ= ∂z[ f1(z, t)∂zỹ+ f2(z, t)ỹ]+ f3(z, t)ỹ
ỹ(0, t) = 0, k1∂zỹ(L, t)+ k2ỹ(L, t) = 0
ỹ(z,0) = 0

The corresponding adjoint state is given as:














∂tλ =− f3λ +( f2− ∂z f1)∂zλ − f1∂zzλ
λ (0, t) = 0,
f1 ∂zλ +[ f1k2/k1− f2]λ |z=L = 0
λ (z,T) = 0

(7)

Proof 1 The adjoint state equation is obtained as (inte-
gration by parts):

∫ T

0

∫ L

0
λ (∂t ỹ− ∂z[ f1∂zỹ+ f2ỹ]− f3ỹ)dzdt

=
∫ T

0

∫ L

0
ỹ[−∂tλ − f3λ +( f2− ∂z f1)∂zλ − f1∂zzλ ]dzdt

+

∫ L

0
λ ỹ|T0 dz−

∫ T

0
([ f1∂zỹ+ f2ỹ]λ − f1ỹ ∂zλ ) |L0dt

All the components in the previous integrals are directly
set to zero from (7) and by noticing that at z= L:

[ f1∂zỹ+ f2ỹ]λ − f1ỹ ∂zλ
= [(− f1k2/k1+ f2)λ − f1 ∂zλ ]ỹ

The adjoint state corresponding to the linearized
system (6) without diffusivity variation is obtained
thanks to the previous theorem by setting:

f1 = D̄, f2 =−(D̄χ +w), f3 = S,

and the adjoint state is:














∂tλ =−Sλ +(−w− D̄χ − ∂zD̄)∂zλ − D̄∂zzλ
λ (0, t) = 0,
D̄ ∂zλ +[D̄k2/k1+(D̄χ +w)]λ |z=zf = 0
λ (z, t f ) = 0

(8)
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Figure 3. Adjoint state with λ (z, t f ) = 1.

The time and space evolution of the adjoint state
for a unitary terminal condition (λ (z, t f ) = 1) is pre-
sented in Figure 3. We can note the impact of the depth
on the step dispersion in the adjoint model. This is di-
rectly related to the depth dependency of the gas diffu-
sion speed.

3.2. Inequality constraint

The fact that the inequality constraint applies on the
diffusivity gradient as∂zD < 0 motivates the change of
variables∂zyIC = u andD = yIC with yIC(zf ) = 0 and
whereu is the new variable used for the optimization
process. Introducing the associatedLagrangeparame-
tersλIC(z, t) and a barrier functionR(u), the cost is set
with:

Jineq =

∫ L

0
λIC(∂zyIC −u)+R(u)dz

=

∫ L

0
−yIC∂zλIC −uλIC +R(u)dz+λICyIC|

zf
0

The fact that there is no dynamics involved is directly
related to the algebraic nature of the constraint. The
barrier function can be set as a log involving upper
and lower bounds [11], or with the augmented La-
grangian [12].

3.3. Adjoint-based gradient

The last step to set the optimal diffusivity profile
identification algorithm is to propose an adjoint-based
gradient computation, based on the variational analysis.
This is done thanks to the following theorem.



Theorem 3.2 Consider the optimization problem (ter-
minal cost, uncoupled states, input derivative con-
straint):

min
u(z)

J
.
=

N

∑
i=1

[

∫ L

0
P(yi(z,T))dz

+

∫ T

0

∫ L

0
λiCi(yi ,yIC,u)dzdt

]

+
∫ L

0
λICCIC(yIC,u)+R(u)dz

(9)

whereCi(yi ,yIC,u) can be linearized as:














∂t ỹi = ∂z[ f1(z, t)∂zỹi + f2(z, t)ỹi ]
+ f3(z, t)ỹi + ∂z[ f4(z, t)ỹIC]

ỹi(0, t) = 0, k1∂zỹi(L, t)+ k2ỹi(L, t) = 0
ỹi(z,0) = ỹIi (z)

andCIC(yIC,u) = ∂yIC −u with yIC(zf ) = 0.
The gradients ofJ with respect to the deci-

sion variables u and yIi along the reference trajectory
(ū,y(ū)) are given by:

∇uJ = R ′(ū)−
∫ T

0
λIC dt (10)

∇yIi J = −λi(z,0) (11)

whereλi are the solutions of:














∂tλi =− f3λi +( f2− ∂z f1)∂zλi − f1∂zzλi

λi(0, t) = 0,
k1 f1 ∂zλi +[k2 f1− k1 f2]λi |z=L = 0
λi(z,T) =−P ′(ȳi(T))

(12)

andλIC is obtained from:
{

∂zλIC = ∑N
i=1 f4∂zλi

λIC(0, t) = 0,
(13)

Proof 2 As we are interested in the gradient computa-
tion, achieved with asufficiently smallstep, the analy-
sis is established on the first order variation of the cost
function around the reference trajectory(ȳ, ū) (defining
y as the set{yi, yIC}), denoted asJ̃. Considering the
perturbation(ỹ, ũ), we have:

J̃ (ỹ, ũ)
.
=

N

∑
i=1

{

∫ L

0
P ′(ȳi(z,T)) ỹi(z,T)dz

+

∫ T

0

∫ L

0
λ [∂yC (ȳ, ū) ỹ+ ∂uC (ȳ, ū) ũ]dzdt

}

+

∫ L

0
R ′(ū)ũdz

whereλ .
= {λi, λIC}, C

.
= {Ci , CIC} and ∂y involves

the partial derivatives with respect to the derivatives of

y (omitted to keep simple notations). This expression
implies the linearized version ofC (·), obtained thanks
to Section 2.2 as in (9). Applying integration by parts
as in the proof of Theorem 3.1, the double-integral term
involving yi writes as:

∫ T

0

∫ L

0
λi [∂t ỹi − ∂z[ f1∂zỹi + f2ỹi ]− f3ỹi − ∂z[ f4ỹIC]]dzdt

=

∫ L

0
λi ỹi |

T
0 dz−

∫ T

0

∫ L

0
λi∂z[ f4ỹIC]dzdt

where the last equality is obtained with (12). Introduc-
ing Jineq as defined in Section 3.2, we have:

∫ T

0

∫ L

0
λ [∂yC (ȳ, ū) ỹ+ ∂uC (ȳ, ū) ũ]dzdt−

∫ L

0
λi ỹi |

T
0 dz

=−

∫ T

0

∫ L

0
ũλIC dzdt

where the successive simplifications are a direct conse-
quence of (12)-(13) and the definition of y.

Introducing the previous equality in the expression
of J̃ and considering the solutions defined as in (12),
it follows that:

J̃ =

∫ L

0

[

−
N

∑
i=1

λi(z,0) ỹIi (z)

+

(

R ′(ū)−
∫ T

0
λIC dt

)

ũ

]

dz

where the fact that̃u does not depend on time was used
in the last equality. The gradients are finally obtained
as in (10)-(11).

The optimization problem (2) fits within the previ-
ous formalism by noticing that:

P =
1
2

r i(qmeas−qi|t=t f )
2δz

R = −
1
M

log(−∂zD)+
1
2

s(z)∂zD
2

and considering the linearized dynamics (6). The gradi-
ents are then obtained thanks to Theorem 3.2 as (setting
I (D) = ∂zD):

∇∂zDJ =
1

M∂zD
+ s∂zD−

∫ T

0
λIC dt (14)

∇qIi J = −λi(z,0) (15)

and (12) with:

f1 = D̄, f2 =−(D̄χ +w), f3 = S, f4 = ∂zq̄− χ q̄,

P ′ =−r i(qmeas−qi|t=t f )δz



Considering theCH4 experimental data, the gradi-
ent with respect to the input∇∂zDJ is obtained from
the previous results and presented in Figure 4. It can be
noticed that the algorithm converges smoothly within
about 500 steps, which is very satisfying for this prob-
lem. Nevertheless, it is highly sensitive to the design
weights and to the constraint, which will be the topic of
future work.

Figure 4. Algorithm convergence: evolution of
the gradient ∇∂zDJ .

4. Conclusions

In this work, a new identification problem related
to a challenging environmental application with high
social impact has been presented: the diffusivity pro-
file determination in firns based on trace gases measure-
ments. This problem was formulated as an optimization
problem involving distributed dynamics, a terminal cost
constraint and an inequality constraint on the diffusiv-
ity gradient. Several new analytical results that apply
generally to transport phenomena in variable-porosity
media were derived, which allowed for a variational
approach in the PDE framework. The optimal diffu-
sivity profile was obtained thanks to an adjoint-based
gradient-descent algorithm. The different results were
illustrated and discussed on the basis of experimental
measurements ofCH4 in Dome C.
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