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A Variational Approach for Optimal Diffusivity Identification in Firns

Trace gas measurements in interstitial air from polar firn allow to reconstruct their atmospheric concentration time trends over the last 50 to 100 years. This provides a unique way to reconstruct the recent anthropogenic impact on atmospheric composition. Converting depth-concentration profiles in firn into atmospheric concentration histories requires models of trace gas transport in firn. A fundamental parameter of these models is firn diffusivity. Here we propose a new method to evaluate the diffusivity of polar firns using automatic control analysis techniques. More precisely, the diffusivity identification is formulated as an optimization problem in terms of partial differential equations (PDE). The proposed theorems generally apply to transport phenomena in non-homogeneous media (space-dependent coefficients), a variational approach is proposed and the optimization problem is solved with an adjoint-based gradient-descent algorithm.

Introduction

Polar ice cores provide a unique archive of atmospheric composition at time scales covering glacialinterglacial cycles (the last 800 000 years) to the rise of anthropogenic pollution (since about 1850 A.D.), as described in [START_REF] Solomon | The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF][START_REF] Wmo | Scientific Assessment of Ozone Depletion[END_REF] and references therein. Firn air pumping campaigns multiplied over the last decade for to major reasons: (1) large amounts of air can be retrieved, providing the opportunity to measure numerous trace gases [START_REF] Martinerie | Longlived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn[END_REF], (2) direct observation of air trapping in ice provide information about the age difference between the air bubbles and the surounding ice, which should be well constrained in order to finely interpret ice core signals [START_REF] Schwander | The age of the air in the firn and ice at summit, greenland[END_REF].

In polar regions where no melting occurs, snow transforms into ice through the effect of its own weight. The transition between an open-porosity ma-terial (snow/firn) into an airtight material (ice) then occurs at about 50-100 meters depth, as depicted in Figure 1. Within snow and firn (i.e. compacted snow), atmospheric trace gases are mostly transported by diffusion through air channels. Air trapping in bubbles also generates an advection flux which is most important at sites undergoing high snow accumulation rates. Finally gravitational fractionation occurs, transporting heavy molecules downward more efficiently. This slight fractionation needs to be taken into account at least for isotopic ratios, measured at the per-mil precision level. Such phenomena lead to the modeling of firns as nonhomogeneous media where the trace gases move according to transport equations with space-dependent coefficients. The non-homogeneous transport of trace gases in firns can be modeled using the dynamic equations pro-posed in [START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF][START_REF] Rommelaere | Trois problèmes inverses en glaciologie[END_REF], where a first approach for model validation and diffusion profiles identification based on firn air measurements is described. This approach was successfully used to describe the firn diffusion property for specific geographical locations, where the diffusivity profiles are sufficiently smooth, but cannot be generalized due to numerical instabilities in the identification process. Our aim is then to revise the modeling and identification algorithms using modern automatic control methodologies.

The transport model assumes a perfect gas, hydrostatic (pressure computation), isothermal firn, stationary flow (constant accumulation rate, temperature etc.), no thermal diffusion, no interaction (chemical, particles collision, gas transfer) between the gas and the pore walls. The following PDE model is then established (e.g. for a single gas) to describe the trace gas quantity in open pores q(z,t) [START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF]:

       ∂ t q = D(z)∂ zz q + α(z)∂ z q + β (z)q q(0,t) = f (0)c s (t) . = q 0 (t) k 1 ∂ z q(z f ,t) + k 2 q(z f ,t) = 0 q(z, 0) = q I (z) (1)
with the compact notation ∂ x y . = ∂ y/∂ x and:

α(z) . = ∂ z D(z) -D(z)χ(z) -w(x) β (z) . = -D(z)∂ z χ(z) -∂ z D(z)χ(z) -λ + v(x)ε(z) f (z) ∂ z f (z) ε(z) -∂ z w(z)
where χ(z) . = Mg/RT + f z / f , q(z,t) is the trace gas quantity in open porosity, D(z) is the diffusivity, λ is the radioactive decrease, M is the molar mass, ε(z) the total porosity, f (z) the open porosity, v(z) the sinking speed of the layers, w(z) the airflow speed in open porosity. The depth in the firn is determined by 0 ≤ z ≤ z f and c s (t) is the atmospheric concentration of the trace gas. The mentioned physical variables are summarized in Table 1.

The model [START_REF] Solomon | The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] writes in the compact form:

∂ t q = ∂ z [D ∂ z q -(Dχ + w)q] + -λ + v ∂ z f f - ∂ z ε ε q = ∂ z [D(z)∂ z q -V(z)q] + S(z)q
which generally describes non-homogeneous transport in a variable-porosity medium, characterized by its diffusivity D(z), an advection term V (z) and a source term S(z). It is related to (1) as α(z

) = D z (z) -V (z) and β (z) = -V z (z) + S(z).
In order to formulate the modeling and identification problems properly, we can distinguish between the air quantity in open pores R perfect gas constant (J

• mol -1 • K -1 ) T temperature (K) v(z)
firn sinking speed due to snow accumulation w(z) advection speed compensating the air trapping in bubbles (m/yr) z f total depth of the firn (m) z co depth level at which there is no remaining open porosity (m)

Table 1. Main physical variables and notations

chemical and physical parameters. The chemical variables (M, c s , λ ) depend on the gas considered while the physical parameters ( f , w, v, ε, D) depend on the geographical locations and are measured or calculated for each firn. The atmospheric time-trend history c s (t) is reasonably well known for specific gas such as CO 2 , CH 4 , SF 6 and some halocarbons such as CH 3 CCl 3 . Such gases can then be used to determine the diffusive property of a firn D provided that some distributed (depthdependent) measurement q(z,t f ) is available. The simulations illustrating the different theoretical results correspond to the transport of CH 4 in Dome C (Dome Concordia or Dome Charlie, located in Antarctica at an altitude of 3,233 m above sea level), and presented in [START_REF] Martinerie | Longlived halocarbon trends and budgets from atmospheric chemistry modelling constrained with measurements in polar firn[END_REF].

Optimal diffusivity identification

The diffusivity identification objective can be formulated as an optimization problem, where the diffusivity profile has to minimize the squared difference between the final concentration provided by the model and the measured one. The proposed approach is based on variational analysis applied to PDE optimization as described in [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF]. More precisely, we extend some results presented in [START_REF] Jacquet | Macroscopic freeway modelling and control[END_REF] for conservation laws to transport in a variable-porosity medium, following the proposed formalism. A detailed bibliography, convective conservation laws, shock waves and state nonlinearities are considered in [START_REF] Jacquet | Macroscopic freeway modelling and control[END_REF].

Problem formulation

Our aim is to find the diffusivity profile D * that minimizes the difference between the model output and the measurements. This corresponds to a final-cost optimization problem with dynamics (transport equations) and inequality constraints that writes as:

min D J (D) = J meas + J reg under the constraints C (q, D) = 0 I (D) < 0
where J meas denotes the cost associated with the measurements, J reg is a regularization function, C (q, D) sets the dynamical constraint associated with the nonhomogeneous transport model and I (D) corresponds to the inequality constraints determined from the physics on the optimized variable D. More specifically, the measurements cost is chosen as a weighted leastsquares criterion and the equality constraints are included into the cost function J (D) by introducing the Lagrange or Kühn and Türker parameters λ i . The in- equality constraints can be introduced thanks to Valentine's method or the barrier function proposed in [START_REF] Boyd | Convex Optimization[END_REF] (chosen here). In the problem considered, the constraint J (D) is set on the diffusivity gradient, which necessitates a specific care that will be detailed later on. Considering the measurements of N gas, the optimization problem is:

min D J (D) . = N ∑ i=1 [J meas (q i , q meas ) +J trans (C (q i , D))] + J ineq (D) + J reg (D) (2) 
with:

               J meas = 1 2 z f 0 r i (q meas -q i | t=t f ) 2 δ z dz J trans = t f 0 z f 0 λ i C (q i , D) dzdt J reg = 1 2 z f 0 s(z)D 2 dz
where z f and t f are the final depth and time, respectively, r i (z) ≥ 0 and s(z) > 0 are user-defined tuning functions, δ z (z) denotes the measurements location and J ineq describes the inequality constraint. Our aim is to find the set of parameters {D, q i , λ i } that minimizes the cost function J . Note that the dependence of the cost in q i could be removed from the fact that q i depends on D through C .

Linearized dynamics

In order to solve the previous optimization problem, the first step is to linearize the distributed dynam-ics and define an appropriate transport model. Consider the general transport equation

   ∂ t y + f 1 (z,t)y + f 2 (z,t)∂ z y = ∂ z [g(y, ∂ z y, u)] y(0,t) = y 0 (t), k 1 ∂ z y(L,t) + k 2 y(L,t) = 0 y(z, 0) = y I (z) (3) 
Its linearized dynamics along the reference trajectory ( ȳ, ū, ȳI ) with perturbations ( ỹ, ũ, ỹI ) is given by

       ∂ t ỹ + f 1 (z,t) ỹ + f 2 (z,t)∂ z ỹ = ∂ z ∂ y ḡ ỹ + ∂ ∂ z y ḡ ∂ z ỹ + ∂ u ḡ ũ ỹ(0,t) = 0, k 1 ∂ z ỹ(L,t) + k 2 ỹ(L,t) = 0 ỹ(z, 0) = ỹI (z) (4) 
where ḡ .

= g( ȳ, ∂ z ȳ, ū). Note that the particular choice of ȳ(z, 0) = y I (z) directly implies that ỹI (z) = 0, which may be a convenient condition in some applications. We can directly verify that ũ = 0 implies that ỹ = 0.

The previous theorem applies directly to the general porosity model:

     ∂ t q = ∂ z [D(z)(∂ z q -χ(z)q) -w(z)q] + S(z)q q(0,t) = q x=0 (t), k 1 ∂ z q(z f ,t) + k 2 q(z f ,t) = 0 q(x, 0) = q I (x) (5) 
by considering the reference concentration q(x,t) satisfying [START_REF] Sowers | δ 15 N of N 2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice agegas age differences[END_REF]. The linearized state q resulting from a variation in the diffusivity profile D then writes as:

Σ Lin :          ∂ t q = ∂ z [ D(∂ z q -χ q) -w q] +∂ z (∂ z q -χ q) D + S q q(0,t) = 0, k 1 ∂ z q(z f ,t) + k 2 q(z f ,t) = 0 q(x, 0) = qI (x) (6) 
The linearized system is compared with the coupled dynamics on the test case as follows. A 5 % variation on y I induces a variation of the order of 4.5 % on the normalized concentration profile but a negligible error (of the order 10 -13 %, which corresponds to numerical noise) with the linearized model. This is related to the fact that the linear model obeys the same conservation law as the initial one. A 5 % variation on D varies the normalized concentration profile by 1 % (terminal value) while the normalized error associated with the linear model is less than 0.04 %, as depicted in Figure 2. It can be noticed that the concentration error tends to accumulate at the bottom of the firn over time.

Adjoint state and gradient computation

Adjoint state

The proposed gradient computation implies to compute the adjoint state when the diffusivity variation is zero, e.g. D = 0. Such adjoint is given by the following theorem.

Theorem 3.1 Consider the linearized transport equation without input:

   ∂ t ỹ = ∂ z [ f 1 (z,t)∂ z ỹ + f 2 (z,t) ỹ] + f 3 (z,t) ỹ ỹ(0,t) = 0, k 1 ∂ z ỹ(L,t) + k 2 ỹ(L,t) = 0 ỹ(z, 0) = 0
The corresponding adjoint state is given as:

       ∂ t λ = -f 3 λ + ( f 2 -∂ z f 1 ) ∂ z λ -f 1 ∂ zz λ λ (0,t) = 0, f 1 ∂ z λ + [ f 1 k 2 /k 1 -f 2 ]λ | z=L = 0 λ (z, T ) = 0 (7)

Proof 1 The adjoint state equation is obtained as (integration by parts):

T 0 L 0 λ (∂ t ỹ -∂ z [ f 1 ∂ z ỹ + f 2 ỹ] -f 3 ỹ) dzdt = T 0 L 0 ỹ [-∂ t λ -f 3 λ + ( f 2 -∂ z f 1 ) ∂ z λ -f 1 ∂ zz λ ] dzdt + L 0 λ ỹ| T 0 dz - T 0 ([ f 1 ∂ z ỹ + f 2 ỹ] λ -f 1 ỹ ∂ z λ ) | L 0 dt
All the components in the previous integrals are directly set to zero from [START_REF] Rommelaere | Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods[END_REF] and by noticing that at z = L:

[ f 1 ∂ z ỹ + f 2 ỹ]λ -f 1 ỹ ∂ z λ = [(-f 1 k 2 /k 1 + f 2 )λ -f 1 ∂ z λ ] ỹ
The adjoint state corresponding to the linearized system (6) without diffusivity variation is obtained thanks to the previous theorem by setting:

f 1 = D, f 2 = -( Dχ + w), f 3 = S,
and the adjoint state is: The time and space evolution of the adjoint state for a unitary terminal condition (λ (z,t f ) = 1) is presented in Figure 3. We can note the impact of the depth on the step dispersion in the adjoint model. This is directly related to the depth dependency of the gas diffusion speed.

       ∂ t λ = -Sλ + (-w -Dχ -∂ z D) ∂ z λ -D∂ zz λ λ (0,t) = 0, D ∂ z λ + [ Dk 2 /k 1 + ( Dχ + w)]λ | z=z f = 0 λ (z,t f ) = 0 (8)

Inequality constraint

The fact that the inequality constraint applies on the diffusivity gradient as ∂ z D < 0 motivates the change of variables ∂ z y IC = u and D = y IC with y IC (z f ) = 0 and where u is the new variable used for the optimization process. Introducing the associated Lagrange parameters λ IC (z,t) and a barrier function R(u), the cost is set with:

J ineq = L 0 λ IC (∂ z y IC -u) + R(u) dz = L 0 -y IC ∂ z λ IC -uλ IC + R(u) dz + λ IC y IC | z f 0
The fact that there is no dynamics involved is directly related to the algebraic nature of the constraint. The barrier function can be set as a log involving upper and lower bounds [START_REF] Boyd | Convex Optimization[END_REF], or with the augmented Lagrangian [START_REF] Cohen | Decomposition coordination methods in large scale optimization problems[END_REF].

Adjoint-based gradient

The last step to set the optimal diffusivity profile identification algorithm is to propose an adjoint-based gradient computation, based on the variational analysis. This is done thanks to the following theorem. 

+ L 0 λ IC C IC (y IC , u) + R(u)dz (9) 
where C i (y i , y IC , u) can be linearized as:

       ∂ t ỹi = ∂ z [ f 1 (z,t)∂ z ỹi + f 2 (z,t) ỹi ] + f 3 (z,t) ỹi + ∂ z [ f 4 (z,t) ỹIC ] ỹi (0,t) = 0, k 1 ∂ z ỹi (L,t) + k 2 ỹi (L,t) = 0 ỹi (z, 0) = ỹIi (z) and C IC (y IC , u) = ∂ y IC -u with y IC (z f ) = 0.
The gradients of J with respect to the decision variables u and y Ii along the reference trajectory ( ū, y( ū)) are given by:

∇ u J = R ( ū) - T 0 λ IC dt (10) 
∇ y Ii J = -λ i (z, 0) (11) 
where λ i are the solutions of:

       ∂ t λ i = -f 3 λ i + ( f 2 -∂ z f 1 ) ∂ z λ i -f 1 ∂ zz λ i λ i (0,t) = 0, k 1 f 1 ∂ z λ i + [k 2 f 1 -k 1 f 2 ]λ i | z=L = 0 λ i (z, T ) = -P ( ȳi (T )) (12) 
and λ IC is obtained from:

∂ z λ IC = ∑ N i=1 f 4 ∂ z λ i λ IC (0,t) = 0, (13) 
Proof 2 As we are interested in the gradient computation, achieved with a sufficiently small step, the analysis is established on the first order variation of the cost function around the reference trajectory ( ȳ, ū) (defining y as the set {y i , y IC }), denoted as J. Considering the perturbation ( ỹ, ũ), we have:

J ( ỹ, ũ) . = N ∑ i=1 L 0 P ( ȳi (z, T )) ỹi (z, T ) dz + T 0 L 0 λ [∂ y C ( ȳ, ū) ỹ + ∂ u C ( ȳ, ū) ũ] dzdt + L 0 R ( ū) ũ dz where λ . = {λ i , λ IC }, C . 
= {C i , C IC } and ∂ y involves the partial derivatives with respect to the derivatives of y (omitted to keep simple notations). This expression implies the linearized version of C (•), obtained thanks to Section 2.2 as in [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF]. Applying integration by parts as in the proof of Theorem 3.1, the double-integral term involving y i writes as:

T 0 L 0 λ i [∂ t ỹi -∂ z [ f 1 ∂ z ỹi + f 2 ỹi ] -f 3 ỹi -∂ z [ f 4 ỹIC ]] dzdt = L 0 λ i ỹi | T 0 dz - T 0 L 0 λ i ∂ z [ f 4 ỹIC ] dzdt
where the last equality is obtained with [START_REF] Cohen | Decomposition coordination methods in large scale optimization problems[END_REF]. Introducing J ineq as defined in Section 3.2, we have:

T 0 L 0 λ [∂ y C ( ȳ, ū) ỹ + ∂ u C ( ȳ, ū) ũ] dzdt - L 0 λ i ỹi | T 0 dz = - T 0 L 0 ũλ IC dzdt
where the successive simplifications are a direct consequence of ( 12)-( 13) and the definition of y.

Introducing the previous equality in the expression of J and considering the solutions defined as in [START_REF] Cohen | Decomposition coordination methods in large scale optimization problems[END_REF], it follows that:

J = L 0 - N ∑ i=1 λ i (z, 0) ỹIi (z) + R ( ū) - T 0 λ IC dt ũ dz
where the fact that ũ does not depend on time was used in the last equality. The gradients are finally obtained as in ( 10)- [START_REF] Boyd | Convex Optimization[END_REF].

The optimization problem (2) fits within the previous formalism by noticing that:

P = 1 2 r i (q meas -q i | t=t f ) 2 δ z R = - 1 M log(-∂ z D) + 1 2 s(z)∂ z D 2
and considering the linearized dynamics [START_REF] Lourantou | Contraindre l'augmentation en dioxyde de carbone (CO 2 ) lors des déglaciations basés sur son rapport isotopique stable du carbone (δ 13 CO 2 )[END_REF]. The gradients are then obtained thanks to Theorem 3.2 as (setting

I (D) = ∂ z D): ∇ ∂ z D J = 1 M∂ z D + s∂ z D - T 0 λ IC dt (14) ∇ q Ii J = -λ i (z, 0) (15) 
and [START_REF] Cohen | Decomposition coordination methods in large scale optimization problems[END_REF] with: f 1 = D, f 2 = -( Dχ + w), f 3 = S, f 4 = ∂ z q -χ q, P = -r i (q measq i | t=t f )δ z

Considering the CH 4 experimental data, the gradient with respect to the input ∇ ∂ z D J is obtained from the previous results and presented in Figure 4. It can be noticed that the algorithm converges smoothly within about 500 steps, which is very satisfying for this problem. Nevertheless, it is highly sensitive to the design weights and to the constraint, which will be the topic of future work. 

Conclusions

In this work, a new identification problem related to a challenging environmental application with high social impact has been presented: the diffusivity profile determination in firns based on trace gases measurements. This problem was formulated as an optimization problem involving distributed dynamics, a terminal cost constraint and an inequality constraint on the diffusivity gradient. Several new analytical results that apply generally to transport phenomena in variable-porosity media were derived, which allowed for a variational approach in the PDE framework. The optimal diffusivity profile was obtained thanks to an adjoint-based gradient-descent algorithm. The different results were illustrated and discussed on the basis of experimental measurements of CH 4 in Dome C.
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 1 Figure 1. Polar firn structure as a function of depth and density. Scheme adapted from [5, 6].
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 4 Figure 4. Algorithm convergence: evolution of the gradient ∇ ∂ z D J .
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