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Abstract

In this work we show that the flexibility of the discontinuous Galerkin (dG) dis-
cretization can be fruitfully exploited to implement numerical solution strategies
based on the use of arbitrarily shaped elements. Specifically, we propose and in-
vestigate a new h-adaptive technique based on agglomeration coarsening of a fine
mesh.

The main building block of our dG method consists of defining discrete polyno-
mial spaces on arbitrarily shaped elements. For this purpose we orthonormalize with
respect to the L2-product a set of monomials relocated in a specific element frame.
This procedure provides high-order hierarchical physical space basis functions that
are also optimal from the point of view of conservation property. To complete the
dG formulation for second order problems, two extensions of the BRMPS scheme to
arbitrary polyhedral grids, including a sharp estimate of the stabilization parameter
ensuring the coercivity property, are here proposed.

The freedom in defining the mesh topology leads to a new, agglomeration-based,
mesh adaptivity approach, which is validated on a Poisson problem. The possibility
to enhance the error distribution over the computational domain is investigated with
the goal of obtaining a mesh independent discretization. The grid is considered as a
degree of freedom of the computation and the nodes connectivity is decided on the
fly as is usually done in mesh-free implementations.

Finally, we propose an easy way to reduce the cost related to numerical integra-
tion on agglomerated meshes.

Key words: Diffusion equation, Laplacian discretization, Discontinuous Galerkin
methods, Polyhedral elements, Orthonormal hierarchical basis functions, Reduced
numerical integration, Meshfree, h-adaptivity
PACS: 02.70.Dh, 02.60.Lj, 41.20.Cv

✝Corresponding author
Email addresses: francesco.bassi@unibg.it (F. Bassi), lorenzo.botti@unibg.it (L.

Preprint submitted to Elsevier February 2, 2011



1. Introduction

In recent years, there has been a growing interest in developing CFD solvers ca-
pable of working on unstructured polyhedral grids. Among the reasons for this inter-
est are better achievable grid quality and improved accuracy of numerical solutions.
Also geometric h-multigrid techniques for unstructured grids naturally demand for
discretization methods on agglomerated meshes. We remark that usefulness of CFD
solvers for polyhedral grids has been essentially demonstrated in the framework of
Finite Volume (FV) methods.

Unlike standard FV methods, dG methods are pretty insensitive to the shape
of mesh elements, and apparently there would be no special reason to extend the
method to element shapes other that those usually employed in unstructured grids
(triangles and quadrilaterals in 2D, tetrahedra, prisms, pyramids and hexahedrals in
3D). Instead, just the flexibility offered by the high-order dG discretization suggests
and makes it straightforward to implement the method on elements of any shape
in order to fully exploit numerical strategies that already proved successful, and
new ones. The geometric h-multigrid method is an example of the former while an
agglomeration-based h-adaptivity is an example of the latter.

In this context, three are the main objectives of this work. First, we propose
a dG implementation capable of computing high-order numerical solutions of sec-
ond order PDEs on meshes resulting from the agglomeration of elements belonging
to an underlying (possibly very) fine mesh. In this approach the high-order poly-
nomial approximation is defined on each agglomerated element, while volume and
surface integrals are computed by means of quadrature rules on the elements of the
underlying fine mesh. Second, we propose a simple and effective approach to the
approximation of complex (possibly curved) domain boundaries based on the use of
agglomerated faces. As for agglomerated elements, such faces are simply treated as
the union of the underlying fine mesh faces, each with its own geometrical approxi-
mation. We will show that this alternative to high-order mesh generation techniques
is sufficient to get a geometrical approximation of the domain which does not im-
pair the accuracy of high-order solutions. Third, we investigate the possibility of
driving agglomeration to obtain a new approach to h-adaptivity, hopefully leading
to potentially mesh independent discretizations, a salient feature typically ascribed
to meshfree methods.

The agglomeration process relies on standard tools originally developed in the
context of geometric multigrid methods [20]; as a result, coarse meshes can feature
arbitrarily shaped elements. Here the notion of reference element fails to exist and,
therefore, the classical approach based on polynomial basis functions defined in the
reference frame does not apply. Also, since arbitrary geometrical order is assumed
for the fine mesh, the coarse elements are not necessarily polyhedra, rather the
bounding surface may include curved faces. We hence adopt a different point of
view, proposed by Tesini [24], where discrete polynomial spaces defined in physical
coordinates are proposed as the key ingredient to handle general meshes; see also Di
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Pietro and Ern [7, 8]. Polynomial approximations in physical coordinates are not
new in the context of dG methods, [6, 5, 2, 3, 9, 11], but for standard elements shapes
polynomial approximations in the reference frame have been generally favoured in
the literature. A crucial point of interest in our approach is that element agglomer-
ation may lead to a peculiar form of h-adaptivity. The interest in mesh adaptivity
in the context of finite element discretizations has been strong since the pioneering
work of Kelly, Gago, Zienkiewicz and Babuška [17]. The flexibility associated to dG
methods allows to rely on mesh modification strategies based on element subdivision,
see e.g. Hartmann and Leicht [15], or conforming grid modification, see e.g. Dolejší
[10]. However, an h-adaptivity strategy based on agglomeration coarsening of a fine
mesh may be preferable from the implementation viewpoint as the underling mesh
does not change, no nodes nor elements need to be dynamically added, moved or
removed, and no hierarchic structures are required to track refinement levels.

For the sake of simplicity, the focus is here on the two-dimensional case, although
the technique readily extends to higher space dimensions. In what follows we denote
by R the (fixed) fine mesh of the domain Ω ⑨ Rd, d ✏ 2, and by Th a coarsening of
R obtained by agglomeration. We consider dG approximations based on the spaces

Pk
d♣Thq

def
✏

✥
vh P L2♣Ωq ⑤ vh⑤T P Pk

d♣T q, ❅T P Th

✭
, (1)

where k is a non-negative integer and Pk
d♣T q denotes the restriction to T of the poly-

nomial functions of two variables and total degree ↕ k. When dealing with general
meshes a primary issue to address is the construction of a computationally efficient
and satisfactory basis for the space Pk

d♣Thq. The choice of the basis has a major
impact on the conditioning of the resulting discrete problems and, therefore, on the
quality of the numerical results. Straightforward implementations based on simple
monomial basis functions quickly become unsuitable for high-degree polynomial ap-
proximations on highly stretched or distorted elements. The procedure employed
in this work consists in starting from an arbitrary basis for each elementary space
Pk

d♣T q, T P Th, and in applying a modified Gram-Schmidt orthogonalization proce-
dure to infer a new orthonormal set of basis functions. Although the choice of the
inner product might be driven by the problem at hand, we focus here on the gen-
eral L2-product. As a result, the elementary mass matrices associated to the newly
constructed basis are unit diagonal. An important point is that, working in finite
precision, the orthogonalization procedure may suffer from an awkward choice for
the starting set of basis function. The practical remedy is to select the starting set
of basis functions in accordance with the salient geometric features of the element.

Other approaches to deal with non-standard meshes exist and deserve to be
mentioned. A standard (continuous) Galerkin discretization on arbitrary polyhe-
dral elements has been proposed by Rashid and Selimotic [22] in the context of
elastostatics and elastic-plastic problems of solid mechanics. In [22], the definition
of the Lagrangian basis functions in the physical frame is strictly related to the num-
ber of nodes defining the geometry of the element. The approach has been extended
to dG methods by Gassner, Lörcher, Munz and Hesthaven [12] in order to obtain a
quadrature free approach.

After having introduced the discrete tools we consider the dG discretization of
the Poisson equation on arbitrarily shaped elements. For this purpose we employ the
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BRMPS method introduced in [6]. In particular, we provide two estimates of the
stabilization parameter, suitable for two different implementations of the method
in general meshes, which generalize the result of Arnold, Brezzi, Cockburn and
Marini [1] for simplicial meshes.

Disposing of a dG discretization of the Poisson enjoying optimal convergence
properties on general meshes we consider the application of our agglomeration based
h-adaptive strategy. Although a posteriori analysis in the context of the diffusion
equation is a well-established subject, we avoid any bias by relying on exact error
estimators. Herein adaptivity is driven by the error in L2-norm with respect to ana-
lytical solutions of the Poisson problem. The effectiveness of the h-adaptive strategy
based on cells agglomeration is challenged comparing the resulting convergence rate
with the one obtained on uniformly refined meshes.

Finally, an important issue to address when dealing with very general elements
is numerical integration. Since, in our case, the computational mesh is obtained
by agglomeration of standard elements, a straightforward solution is to deploy this
decomposition in conjunction with standard quadrature rules on the elements of
the fine mesh R. However, this approach turns out to be expensive for high-order
approximations, as the number of quadrature points may become very large and the
basis functions have to be evaluated in each physical element separately. To mitigate
the computational cost, we propose to replace exact quadratures with reduced ones
while ensuring that the error remains within a prescribed tolerance. This procedure
is numerically validated on a set of examples, and it proves effective to reduce the
computational cost.

The following of the paper is organized as follows. In §2 we present the key tools
to build discrete dG spaces on general meshes (1). In § 3 the Poisson equation
is used as a model problem allowing to discuss the important issue of the stability
of the BRMPS method on general meshes. The major result of this section is to
show that optimal convergence properties are maintained for the discrete polynomial
spaces of §2. Moreover, a new h-adaptive strategy relying on mesh agglomeration is
introduced and its performance with respect to uniform h-refinement is discussed.
In §4 we present a quadrature reduction procedure able to significantly reduce the
cost of exact numerical integration on general meshes. Numerical validation and
profiling is provided for a representative set of test cases.

2. Discrete dG spaces on general meshes

2.1. Coarsening by agglomeration

Let Ω ⑨ Rd, d ✏ 2, be a bounded connected open domain, and let R denote
a (possibly non conforming) mesh of Ω composed of elements E P R such that
(i) there exists a finite set of reference elements Rref and, for all E P R, there
exists a unique Eref P Rref and a polynomial mapping ΨE : Eref Ñ E such that
Ψ P Pm

d ♣E
refq for some m ➙ 1 and E ✏ ΨE♣E

refq; (ii) quadrature rules of arbitrary
order are available on every Eref P Rref . Most often, the fine mesh R is obtained via
standard mesh generators, and is typically composed of (possibly curved) triangular
and quadrangular elements, so that Rref simply contains the unit simplex and the
unit square. Notice that in the latter case the space Qm

d ♣Erefq replaces Pm
d in the

4



definition of ΨE. Starting from R we can define a coarsened mesh Th ✏ tT ✉ by
agglomeration. More precisely, we suppose that (i) Th is a partition of Ω; (ii) every
T P Th is an open bounded connected subset of Ω and there exists RT ⑨ R such
that

T ✏
↕

EPRT

E.

We consider in this work broken polynomial spaces Pk
d♣Thq, k ➙ 0, of the form (1)

based on the coarsened mesh Th. In the rest of this section we describe our approach
to construct a basis for Pk

d♣Thq with convenient numerical properties.

2.2. Orthonormal hierarchical polynomial bases in the physical frame

For a given polynomial degree k ➙ 0, let, for the sake of conciseness,

Vh
def
✏ Pk

d♣Thq.

For all T P Th, we denote by NT
dof

the cardinality of the local polynomial space Pk
d♣T q

and set DT
def
✏ t1, . . . , NT

dof
✉. For a given T P Th, let Φk

T ✏ tϕT
i ✉iPDT

denote a basis
for Pk

d♣T q. The functions ϕT
i , i P DT , can be extended to Ω by simply setting ϕT

i ✏ 0

on Ω③T . A basis for the space Vh is then given by

Φ
k def
✏ tΦk

T ✉TPTh
. (2)

By construction, the support of each basis function in Φk is contained in exactly one
element. As a plain example, for all T P Th one could simply take Φk

T equal to the
set of monomials in the physical space variable x ✏ ♣xiq1↕i↕d of total degree ↕ k

Φ
k
T ✏ tMα

d ♣xq✉αPN2, ⑥α⑥1↕k , Mα

d ♣xq
def
✏

d➵
i✏1

xαi

i . (3)

It is convenient to define the coordinates x with respect to a translated, element-
specific, physical frame whose center coincides with the barycenter of T . Following
this approach, local bases tΦk

T ✉TPTh
for any k ➙ 0 can be obtained irrespectively

of both the shape of the elements and the quadrature rule. However, this choice
is only acceptable for polynomials of moderate-degree on almost isotropic elements,
whereas it presents severe drawbacks when high-degree polynomials and/or stretched
elements with curved faces are considered. In such a case, the condition number of
the elementary mass matrices may become unacceptably large; see Figure 1(b).
We show in this work that a better solution consists in constructing a set of basis
functions which are orthonormal and hierarchical within arbitrarily shaped elements
by applying a standard orthonormalization procedure to a suitable initial guess.

For all T P Th, let ♣Φk
T ✏ t♣ϕT

i ✉iPDT
denote an initial set of linearly independent

basis functions. Choices for this set will be discussed in §2.3. In order to obtain a
new set of orthonormal basis functions we apply the modified Gram-Schmidt (MGS)
orthogonalization algorithm. The sole requirement to apply this procedure is the
capability to compute the integrals of polynomial functions on an arbitrarily shaped
element T , which is here achieved by exploiting the partition RT into standard-
shaped sub-elements. The MGS algorithm with re-orthogonalization is setup as
follows: For all T P Th,
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1: for i ✏ 1 to NT
dof

do

2: for j ✏ 1 to i✁ 1 do

3: rT
ij Ð

�♣ϕT
i , ϕT

j

✟
T

4: ♣ϕT
i Ð ♣ϕT

i ✁ rT
ijϕ

T
j {Remove the projection of ♣ϕT

i onto ϕT
j }

5: end for

6: rT
ii Ð

❛
♣♣ϕT

i , ♣ϕT
i qT

7: ♣ϕT
i Ð ♣ϕT

i ④r
T
ii {Normalize}

8: ϕT
i Ð ♣ϕT

i

9: end for

where ♣☎, ☎qT denotes an inner product on T . In all the numerical examples the

L2-product is used, i.e., ♣v, wqT
def
✏
➩
T

vw for all v, w P L2♣T q. In practice, the
orthonormalization procedure can be applied more than once to get rid of numerical
round-off errors. Repeating the procedure twice is generally sufficient to obtain a
basis which is orthonormal up to machine precision. This result is in accordance with
what reported in [13]. For all T P Th, it can be shown that the set of elementary
basis functions tϕT

i ✉iPDT
resulting from the MGS algorithm solves

❅i P DT , ϕT
i ✏

i✁1➳
j✏1

aT
ijϕ

T
j � aT

ii ♣ϕT
i , (4)

where the coefficients aT
ij are determined by enforcing each new ϕT

i to be orthogonal
to the ♣i✁ 1q basis functions already orthonormalized, whereas the coefficient aT

ii is
the normalizing factor for the L2-norm of the newly created ϕT

i . For all i P DT there
holds

aT
ij

aT
ii

✏ ✁♣♣ϕi, ϕjqT , j P t1, . . . , i✁ 1✉,

1

aT
ii

✏

❝
♣♣ϕi, ♣ϕiqT ✁

➳i✁1

j✏1
♣♣ϕi, ϕjq

2

T
,

and the above coefficients are related to rT
ij and rT

ii in the MGS algorithm by:

rT
ij ✏ ✁

aT
ij

aT
ii

, rT
ii ✏

1

aT
ii

.

Besides being orthonormal, the bases tΦk✉k➙0 defined by (2) with local bases tΦk
T ✉TPTh

obtained according to the above procedure are also hierarchical, i.e.,

❅k ➙ 1, Φ
k✁1 ⑨ Φ

k.

In fact, adding basis functions to increase the polynomial degree leaves unaltered
the equations of the form (4) corresponding to lower degrees.

An important remark is that the actual outputs of the MGS algorithm are the
coefficients rT

ii and rT
ij, which can be used to evaluate the orthonormal basis functions

and their derivatives at any point in the supporting element T . Indeed, it is a simple
matter to check that the spatial derivatives ❇kϕ

T
i , k P t1, 2✉, can be evaluated as

follows: For all T P Th,
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1: for i ✏ 1 to NT
dof

do

2: for j ✏ 1 to i ✁ 1 do

3: ❇k ♣ϕT
i Ð ❇k ♣ϕT

i ✁ rT
ij❇kϕ

T
j

4: end for

5: ❇k ♣ϕT
i Ð ❇k ♣ϕT

i ④r
T
ii

6: ❇kϕ
T
i Ð ❇k ♣ϕT

i

7: end for

The evaluation based on the trivial definition (4) is not recommended in practice,
because the computation of the coefficient aT

ii and aT
ij is ordinarily affected by round-

off errors.

2.3. Initialization of the MGS algorithm

In this section we investigate how, for a given element T P Th, the initial choice♣Φk
T affects the quality of the basis Φk

T resulting from the MGS algorithm. As the
final local mass matrix MT ✏

✏
♣ϕT

i , ϕT
j qL2♣T q

✘
is expected to be unit diagonal up

to round-off errors, we use the condition number of the initial local mass matrix①MT ✏
✏
♣♣ϕi, ♣ϕjqL2♣T q

✘
to measure the distance of the initial guess from the target.

The quality of the final basis is then measured by the following quantity:

E∇☎ϕ
def
✏ max

iPDT

⑤ei⑤, ei ✏

➺
T

∇ϕi ✁

➺
❇T

ϕinT , (5)

where nT denotes the outward normal to T . The integrals over T and ❇T are
computed numerically by means of quadrature rules on the elements of RT and on
their faces that are exact for the required polynomial degree. For all i P DT , ⑤ei⑤ is a
measure of the numerical conservation with respect to the (exact) integration rules,
and should be zero in infinite precision by virtue of (a corollary of) the divergence
theorem. This indicator can be related to the quality of the basis with respect to
the conservation property, a highly appreciated feature of dG discretizations applied
to PDEs in divergence from.

To evaluate the impact of round-off errors on the output of the MGS algorithm,
we consider two choices for the initial basis ♣Φk

T . In what follows, we denote by xT

the frame associated to an element T P Th whose axes are aligned with the principal
axis of inertia of T , and whose center coincides with the barycenter of the element;
see Figure 1(a) for an example. We compare the following choices for the initial
local basis:

Choice 1: ♣Φk
T ✏

✧
Mα

d ♣xq

⑥Mα

d ♣xq⑥L2♣T q

✯
αPNd, ⑥α⑥1↕k

, (6a)

Choice 2: ♣Φk
T ✏

✧
Mα

d ♣xT q

⑥Mα

d ♣xT q⑥L2♣T q

✯
αPNd, ⑥α⑥1↕k

. (6b)

In both cases the initial guess is a basis of monomials, but in (6a) the variables are the
coordinates of the physical frame x aligned with the global frame and whose origin
coincides with the barycenter of T , while in (6b) the variables are the coordinates of
the local element frame xT which is additionally rotated to account for the geometric
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anisotropy of the cell. The normalization with respect to the L2-product enhances
the scaling of the monomials. Other choices are possible but will not be considered
herein.

The advantages of the choice (6b) with respect to the choice (6a) are numerically
verified by considering a rectangular element stretched along the bisector of the
first quadrant; see Figure 1(a). As expected, Figure 1(b) shows that the condition

number of the elementary mass matrix ①MT is not affected by the element aspect
ratio ρ for the choice (6b), whereas it rapidly increases for the choice (6a). As
shown in Figure 1(c), for the choice (6a) the error E∇☎ϕ for the orthonormal set
of basis functions resulting from the MGS procedure grows unacceptably large as
ρ increases. Conversely, the choice (6b) yields an error E∇☎ϕ that is independent

of ρ. Albeit simple, this test indicates that the bad quality of the initial guess ♣Φk
T

(measured by the ill-conditioning of elementary mass matrices ①MT ) is eliminated
by the MGS process, but the resulting orthonormalized set Φk

T is affected by larger
numerical errors.

2.4. Numerical examples

Overview of basis functions. In this section we present a qualitative overview and
description of the orthonormal physical space basis function obtained by means of
the procedure outlined in §2.2. The orthonormal basis functions composing the
local basis Φ4

T on the element T ✏ ♣✁1, 1q2 are shown in Figure 2. Up to machine
precision they coincide with those generated by means of the Jacobi polynomials;
see, e.g., [16]. We stress that, unlike the latter approach, our procedure yields a
diagonal unit mass matrix on arbitrarily shaped curved elements, independently
of the nature of the reference to physical space mapping. The generality of this
result is of some importance, as it simplifies both the matrix assembly stage and
the computation of the lifting operators defined by (9). For further details on the
computation of lifting operators we refer to [3, §3.2].

In order to appreciate the geometrical flexibility of basis functions defined in the
physical space, we present in Figure 3 the elements of Φ4

T for an L-shaped polygonal
element T ✏ ♣✁1, 1q2③♣✁0.2, 1q✂ ♣0, 1q. It is interesting to remark that the slopes of
the linear modes are aligned with the principal axes of inertia of the element. The
quadrilateral sub-cells composing the L-shaped element considered in Figure 3 are
shown in Figure 4(a).

In the context of complex domains with curved boundaries, the generation of
meshes suitable for high-order and spectral element discretizations is a non-trivial
task that has often limited the application of such methods in real-life computations;
see, e.g. [16, §4.3.5]. The possibility to obtain coarse agglomerated grids on top of
fine meshes may reduce the need for high-order boundary discretizations, see § 3.4.
Indeed, R can be chosen so as to obtain a suitable geometrical representation of the
boundary of Ω since the density of the fine mesh R does not affect the number of
degrees of freedom of the final discretization (but only the number of sub-elements
required for numerical integration). An example of agglomerated element obtained
from a curved mesh R is shown in Figure 4(b).
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Figure 1: Comparison of the results obtained with the choices listed in (6) for k ✏ 4
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Figure 2: Elements of the orthonormal basis Φ4

T with T reference square ♣✁1, 1q2.
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Figure 3: Elements of the orthonormal basis Φ4

T with T L-shaped polygonal element.

(a) Affine fine mesh R (b) Curved fine mesh R

Figure 4: Examples of general elements T and of basis functions obtained from the method outlined
in §2. The elements of RT are represented in thin line.
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3. Grid agglomeration and h-adaptivity

3.1. Adaptive coarsening

As we have mentioned in the introduction, general meshes can be obtained by
means of standard agglomeration algorithms originally developed in the framework
of geometric multigrid. We rely, in particular, on the multilevel agglomeration li-
brary MGridGen [20] developed by Moulitsas and Karypis. The coarse grid creation
is divided in two conceptually distinct phases: first, a sequence of coarse graphs is
created; second, starting from the coarse graphs, the refinement process takes place
in order to optimize the quality of the final mesh. Several optimization parameters
are provided to the user [20]. In all the numerical tests we use the default settings of
the library that is, the coarse graphs are obtained by means of a globular agglomera-
tion algorithm, while the uncoarsening/refinement phase minimizes a dual objective
function. As described in [21], the weighted sum of aspect ratios and the maximum
aspect ratio are considered in order to optimize the quality and the cardinality of
the resulting mesh.

To drive the algorithm towards h-adaptivity, we modified the MGridGen library
introducing the possibility to locally drive the agglomeration factor. In practice the
number of elements of the starting mesh R that concur in forming an element of Th is
specified for each E P R providing an indication of card♣RT q. We point out that, in
practice, the above requirement cannot be satisfied exactly for every element T P Th,
and the agglomeration indication should be rather considered as an upper bound
for card♣RT q. Although a lower bound for card♣RT q can also be enforced, this may
result in poor mesh quality for Th, and this option is therefore not considered in this
work.

3.2. The BRMPS method on general meshes

To test the performance of dG discretizations on general meshes we consider the
BRMPS method of [6] for the model problem★

✁△u ✏ f in Ω,

u ✏ 0 on ❇Ω.
(7)

For an integer k ➙ 1, we look for a discrete solution in the discrete space

Vh ✏ Pk
d♣Thq.

We consider hereafter two different implementations of the method corresponding to
different definitions of faces for general meshes. In both cases the resulting method
is coercive, but the amount of stabilization (and the accuracy of the solution) vary.

Definition 1 (Facet). We define a facet σ of an agglomerated element T P Th as
a portion of ❇T such that there exist E P RT and a (hyperplanar) face σref of the
corresponding reference element Eref such that σ is the image of σref through the
mapping ΨE. Facets are collected in the set Fσ

h .
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Definition 2 (Mesh face). We define a mesh face Σ of an agglomerated element
T P Th as a portion of ❇T such that either Σ ✏ ❇T ❳ ❇Ω or there exists T ✶ P Th,
T ✶ ✘ T , such that Σ ✏ ❇T ❳ ❇T ✶. Mesh faces are collected in the set FΣ

h . Moreover,
for every face Σ we introduce the set σΣ

h ⑨ Fσ
h collecting the facets partitioning Σ,

i.e.,
Σ ✏

↕
σPσΣ

h

σ,

Example 1 (Mesh faces and facets). Consider the case in Figure 3.3. The number
of mesh faces of the elements A, B, C is 4, 6 and 4, respectively; see Figure 5(b).
On the other hand, as depicted in Figure 5(a), the number of facets is 26, 20 and
22 respectively.

In what follows we discuss the impact of each definition on the BRMPS method.
For the sake of brevity we let Fh be such that

Choice 1: Fh ✏ F
Σ

h , (8a)

Choice 2: Fh ✏ F
σ
h , (8b)

and denote by F the generic element of Fh (a face). We introduce the set of boundary

faces F P Fb

h such that F ⑨ ❇Ω and let F i

h

def
✏ Fh③F

b

h denote the set of internal faces.
For all F P Fb

h , nF denotes the unit outward normal to Ω, whereas, for all F P F i

h

such that F ⑨ ❇T1 ❳ ❇T2, nF is defined as the unit normal pointing out of T1 (the
order of the elements sharing F is arbitrary but fixed). For all F P F i

h and all vh P Vh

we introduce the jump and average operators defined as follows:

rrvhss
def
✏ vh⑤T1

✁ vh⑤T2
, tvh✉

def
✏

1

2
♣vh⑤T1

� vh⑤T2
q.

On boundary faces, we conventionally set rrvhss ✏ tvh✉ ✏ vh (other definitions may
be considered to account for different boundary conditions). When applied to vector
functions, the jump and average operators act componentwise.

For all F P Fh we define the (local) lifting operator r
l
F : L2♣F q Ñ rPl

d♣Thqs
d,

l ➙ 0, such that, for all φ P L2♣F q,➺
Ω

r
l
F ♣φq☎τ h ✏

➺
F

φtτ h✉☎nF ❅τ h P rP
l
d♣Thqs

d. (9)

We also introduce the global lifting

R
l
h♣φq

def
✏

➳
FPFh

r
l
F ♣rrφssq. (10)

For l P tk✁ 1, k✉, the bilinear form associated with the BRMPS method is given by

ah♣uh, vhq
def
✏

➺
Ω

�
∇huh ✁R

l
h♣uhq

✟
☎
�
∇hvh ✁R

l
h♣vhq

✟
✁

➺
Ω

R
l
h♣uhq☎R

l
h♣vhq�sh♣uh, vhq,

(11)
with

sh♣uh, vhq
def
✏

➳
FPFh

ηF

➺
Ω

r
l
F ♣rruhssq☎r

l
F ♣rrvhssq.
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We consider the following discretization of (7):

Find uh P Vh s.t. ah♣uh, vhq ✏

➺
Ω

fvh for all vh P Vh. (12)

We observe that the global lifting is independent of the choice (8). Indeed, for all
vh P Vh, there holds

R
l
h♣vhq ✏

➳
ΣPFΣ

h

r
l
Σ
♣rrvhssq ✏

➳
ΣPFΣ

h

➳
σPσΣ

h

r
l
σ♣rrvhssq ✏

➳
σPFσ

h

r
l
σ♣rrvhssq.

As a result, the BRMPS bilinear forms defined according to (8a) or (8b) uniquely
differ for stabilization term sh. When dealing with general polyhedral meshes, it
is important to accurately tune the stabilization parameters ηF , F P Fh. As a
matter of fact, over-penalization may result in ill-conditioned linear systems and
therefore spoil the efficiency and the accuracy of the numerical solution [3]. In the
next section we propose a lower bound for the stabilization parameter ηF accounting
for the differences arising from the different choices listed in (8).

3.3. Stability on general meshes

For all F P Fh we introduce the set of elements in whose boundary F is contained,
i.e.

TF
def
✏ tT P Th ⑤F ⑨ ❇T ✉ ,

which contains exactly two elements if F P F i

h and exactly one if F P Fb

h . Symmet-
rically, for all T P Th, the set

FT
def
✏ tF P Fh ⑤F ⑨ ❇T ✉ (13)

collects the faces composing the boundary of T . Finally, for all F P Fh, we define

FF
def
✏
↕

TPTF

FT ,

that is to say, the set of faces of the elements whose boundary contains F . We have
the following result, whose proof is given in A.

Theorem 1 (Coercivity on general meshes). Assume that

❅F P Fh, ηF → 1 �
1

2
card♣FF ③tF ✉q. (14)

Then, there exists C → 0 independent of the meshsize such that

❅vh, ah♣vh, vhq ➙ C⑦vh⑦
2,

with ah defined by (11), and, for l P tk ✁ 1, k✉,

⑦vh⑦
2 def
✏ ⑥∇hvh⑥

2

rL2♣Ωqsd �
➳

FPFh

⑥rl
F ♣rrvhssq⑥

2

rL2♣Ωqsd . (15)
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(a) Facets and values of ησ

(b) Mesh faces and values of ηΣ

Figure 5: Example of polygonal mesh with mesh faces and facets defined according to Definition (1)
and (2) respectively. The neighbors of the element A are shaded.
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Whether we are working with mesh faces as in (8a) or with facets as in (8b),
Theorem 1 states that coercivity with respect to the ⑦☎⑦-norm is attained provided,
for all F P Fh, ηF is larger than the average number of faces of the elements sharing
F . Values of the lower bound in the agglomerated mesh of Figure 3.3 are provided
for both cases. Clearly, on a general mesh, card♣FF ③tF ✉q is larger for the choice (8b),
resulting in larger values of the stabilization parameters ηF , F P Fh. When using
facets as in (8b) the stabilization term reads

sh♣uh, vhq ✏
➳

σPFσ

h

ησ

➺
Ω

r
l
σ♣rruhssq☎r

l
σ♣rrvhssq ✏

➳
σPFσ

h

ησ

➺
σ

trl
σ♣rruhssq✉☎nσrrvhss. (16)

On the other hand, when working with mesh faces as in (8a), we have

sh♣uh, vhq ✏
➳

ΣPFΣ

h

ηΣ

➺
Ω

r
l
Σ
♣rruhssq☎r

l
Σ
♣rrvhssq ✏

➳
ΣPFΣ

h

ηΣ

➺
Σ

trl
Σ
♣rruhssq✉☎nΣrrvhss

✏
➳

ΣPFΣ

h

ηΣ

➺
Σ

t
➳

σPσΣ

h

r
l
σ♣rruhssq✉☎nΣrrvhss ✏

➳
ΣPFΣ

h

➳
σPσΣ

h

ηΣ

➺
Σ

trl
σ♣rruhssq✉☎nΣrrvhss

✏
➳

σPFσ

h

ηΣ

➺
Σ

trl
σ♣rruhssq✉☎nΣrrvhss,

(17)
where for all σ P Fσ

h we have denoted by Σ P FΣ

h the unique mesh face such that σ ⑨
Σ. Comparing the right-hand side of Eq. (16) and the last line of Eq. (17) we notice
that the integral inside the sum over facets is over a facet in the former case and over
a mesh face in the latter. Hence, the larger value of the stabilization parameter in
the former case compensates for the smaller contribution to the stabilization term of
the integral over facets with respect to the integral over mesh faces. The numerical
results shown in Figure §3.4 indicate that the two choices provide very similar results
and thus both forms of the stabilization term can be used with confidence. Choosing
one of the two forms of the stabilization parameter is just a matter of implementation
convenience.

3.4. Numerical examples

Approximation properties. We now consider polygonal grids obtained by means of
an agglomeration process performed on a very fine 200 ✂ 200 uniform quadrilateral
grid of a square r✁1, 1s2. We use the library MGridGen [20] as if we were to obtain a
sequence of coarse meshes for a multigrid algorithm and we tune the agglomeration
parameters so to recover a sequence of h-refined grid of 64, 255, 1028, and 4122
polygonal elements, see Figure 6. This behavior tries to replicate the 4-fold mesh
density increase typical of h-refined uniform quadrilateral grids.

The polygonal grids are used to assess the h-convergence rates of the L2-orthogonal
projection and of the BRMPS dG discretization introduced in §3.2 and to compare
the errors in L2-norm with these obtained on a sequence of uniform quadrilateral
grids. In all the tests here performed orthonormal physical space basis function are
obtained by means of the MGS procedure outlined in §2.2. We use the exact solution
to problem (7) proposed by Karniadakis and Sherwin [16],

u ✏ e✁2.5r♣x✁1q2�♣y✁1q2s. (18)
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(a) 64 elements (b) 255 elements

Figure 6: Polyhedral meshes obtained by agglomeration of a 200✂ 200 uniform quadrilateral grid.

(a) k ✏ 6, 64 elements (b) Error distribution, 4096 elements
Cartesian grid

Figure 7: BRMPS solution for the test case of Karniadakis and Sherwin [16].
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Figure 8: Left. Convergence of the L2-orthogonal projection on uniform quadrilateral grids (solid
lines) and polygonal grids obtained by agglomeration (dashed lines), k P t1, . . . , 6✉. Right. Maxi-
mum and average mesh size h on uniform grids and polygonal grids.
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Figure 9: BRMPS solution for the test case of Karniadakis and Sherwin [16]. Left. Convergence
rates on uniform quadrilateral grids (solid lines) and polygonal grids obtained by agglomeration
(dashed lines) Right. Convergence rates on polygonal grids obtained by agglomeration when mesh
faces or, alternatively, facets are used for penalization.
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The results are summarized in Figures 8 and 9. Although the error computed on
uniform quadrilateral grids is almost invariably smaller than the error computed in
the case of polygonal grids, the theoretical convergence rates are maintained. The
better approximation properties of uniform grids are well known, and this result was
somehow to be expected. We remark, however, that the possibility to devise dG dis-
cretizations on coarse grids obtained by agglomeration is remarkable in the context
of solution strategies based on multigrid algorithms. Moreover, in the context of
adaptive mesh refinement, the ability to locally modify the mesh size is of primary
importance, as we discuss in the following section.

Decoupling geometry discretization from solution approximation. Former papers,
[4, 19], have emphasized the importance of an accurate geometrical approxima-
tion of curved boundaries in dG methods, and it is now generally accepted that
curved boundaries representations should be accurate enough so as not to impair
the accuracy of high-degree solution approximations.

We consider the general case where Th is a tessellation of an approximation

Ωh of the domain Ω, rather than of Ω itself. More specifically, letting ❇Ωh
def
✏➈

FPFb

h

F , there holds ❇Ωh ✘ ❇Ω. In this case, setting the boundary conditions of

❇Ω on ❇Ωh results in a lack of (strong) consistency with respect to the unknown
exact solution. In order to preserve optimal convergence properties for high-order
approximations, the consistency error related to the geometrical representation of ❇Ω
must not overwhelm the approximation error. While h-refinement near the boundary
can be a practical solution when dealing with low-order approximations, a better
approach when using high-degree polynomials on relatively coarser meshes is to
improve the quality of the geometrical representation (at least) in the elements
adjacent to the boundary. However, the generation of high-order meshes is by no
means a trivial task, especially for highly stretched meshes like those employed in
CFD problems.

Instead of directly working with increasingly higher-order approximations of
curved boundaries, here we show that agglomeration suggests an alternative ap-
proach based on the geometrical approximation of the underlying fine mesh R. In
practice we propose to represent each boundary mesh face Σ as the collection of the
(possibly) low-order representations of the facets composing Σ. In this framework,
the boundary representation can be improved by refining R while keeping the same
number of agglomerated elements in Th. In this case, there is an additional cost
for numerical integration, since the cardinality of the set RT for an element T P Th

next to the boundary will increase, and so the number of quadrature nodes. Clearly,
refining R will improve not only the location of ❇Ωh, but also the accuracy of the
computed boundary normals and curvature. The former and the latter aspects being
important in case of Dirichlet and Neumann boundary conditions, respectively.

To validate our approach we consider the test case of Gobbert and Yang [14] and
possibly overturn their conclusions. To assess the k-convergence rate of the BRMPS
method when dealing with curved boundaries, we consider a second-order fine mesh
R approximating the unit annulus Ω ✏ t0.5 ➔ x2 � y2 ➔ 1.5✉ and we test against
the following exact solution of the Poisson equation:

u ✏ cos♣π
❛

x2 � y2q, (19)
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Figure 10: Test case proposed by Gobbert and Yang [14]. Left, Solution on a 32✂32 grid (thick lines)
agglomerated on top of a 128✂ 32 quadratic quadrilateral mesh (thin lines), k ✏ 6 approximation
(half of the domain is sketched). Right, k-convergence of the BRMPS discretization using a 32✂32

agglomerated grid and various underlying fine meshes and boundary conditions, see text for details.

with suitable forcing term f ; see Figure 10. The solution (19) vanishes on the
exact boundary ❇Ω. We consider the following discretizations of the homogeneous
boundary condition:

Choice 1: u⑤❇Ωh
✏ cos♣π

❛
x2 � y2q, (20a)

Choice 2: u⑤❇Ωh
✏ 0. (20b)

The choice (20a) neglects any influence of the domain discretization as we are using
the exact solution on ❇Ωh; instead, the choice (20b) introduces a consistency error
since, in our case, ❇Ωh ✘ ❇Ω. For i P t0, . . . , 3✉, we construct an agglomerated
mesh Th,i composed of 32 ✂ 32 elements starting from a fine mesh Ri composed of
♣32 ☎ 2iq ✂ 32 eight-nodes quadrilateral elements (circumferential ✂ radial number of
elements). In this case, for all i P t0, . . . , 3✉ and all T P Th,i, card♣RT q ✏ 2i. As
a result, the number of agglomerated elements does not change, but ❇Ωh approxi-
mates ❇Ω more closely by increasing i. The convergence results shown in Figure 10
demonstrate the ability of the boundary condition in (20b) (which is the one used
in practice) to provide, increasing i, convergence results closer to the exponential
convergence resulting from choice (20a). Instead, the lack of consistency for i ✏ 0

is clearly appreciable as the discretization is unable to provide an error in L2 norm
lower that 10✁5 using the boundary condition in (20b).

Application of h-adaptivity to the Poisson equation. We present here some conver-
gence results for the BRMPS method outlined in §3.2 using the exact solution (18)
and performing agglomeration-based adaptive mesh refinement (AMR). We consid-
ered here approximations based on the space of piecewise affine functions, i.e. we
let Vh ✏ P1

d♣Thq. Thanks to the possibility to define discrete polynomial spaces over
arbitrarily shaped cells the grid can be easily adapted to the solution behavior. To
this end, we define for each element E P R an indication of the agglomeration rate
card♣RT q representing a strict upper bound for the number of sub-elements in an
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aggregate element. The resulting grid is then such that, for all T P Th, there holds

card ♣RT q ↕ card♣RT q.

Starting from a constant value over R, the agglomeration rate is modified during
the refinement process according to the local error in the L2-norm with respect to
the analytical solution. We let

❅T P Th, eT
def
✏ ⑥u✁ uh⑥L2♣T q

❅T P Th, ❅E P RT , eE
def
✏ ⑥u✁ uh⑥L2♣Eq � eT .

The definition of eE is intended to increase the probability that the element E P R

with the largest error lies inside the aggregate element T P Th with the largest error.
The actual error metric is obtained by normalizing the above quantities, i.e. we let

❅E P R, ǫE ✏
eE ✁minEPR eE

maxEPR eE ✁minEPR eE

,

❅T P Th, ǫT ✏
eT ✁minTPTh

eT

maxTPTh
eT ✁minTPTh

eT

,

so that ǫE and ǫT are both contained in the interval r0, 1s. Two different adaptation
strategies borrowed from the open source library libMesh [18] are considered. The
first one is best suited to optimize the discretization error while maintaining fixed
computation requirements in terms of memory and execution time, while the second
one can be used in place of global h-refinement in order to perform convergence
studies and evaluate the discretization accuracy.

Example 2 (First strategy). Refinement and coarsening instructions are identified
comparing the normalized cell errors with user defined parameters, say %ref and
%coar, corresponding to the relative errors triggering refinement and coarsening re-
spectively. At each adaptation the agglomeration rates card♣RT q, T P Th, are mod-
ified according to the following procedure:

1: {Refinement}
2: for T P Th do

3: if ǫT ➙ ♣1✁%refq then

4: for E P RT do

5: if ǫE ➙ ♣1✁%refq then

6: card♣RT q ✏
card♣RT q

2

7: end if

8: end for

9: end if

10: end for

1: {Coarsening}
2: for T P Th do

3: if ǫT ↕ %coar then

4: for E P RT do

5: if ǫE ↕ %coar then

6: if card♣RT q④card♣RT q ↕ 2 then

7: card♣RT q ✏ 2 card♣RT q
8: end if

9: end if

10: end for

11: end if

12: end for

In the coarsening step, line 6 accounts for the potential inability of the agglomeration
process to saturate the agglomeration rate, possibly resulting in card♣RT q ✦ card♣RT q.

21



Example 3 (Second strategy). The number of elements to be refined is chosen as a
percentage %ref of card♣Thq. The elements are sorted in increasing order according
to ǫT and numbered starting from zero to reflect the element position PosT in the
sorted elements vector. At each iteration of the adaptation strategy refinement is
obtained modifying the agglomeration rates card♣RT q, T P Th, as follows:

1: for T P Th do

2: if PosT ➙ ♣1✁%refq card♣Thq then

3: card♣RT q ✏
card♣RT q

2

4: end if

5: end for

It is interesting to notice that, in both cases, coarsening and refinement act on the
real number of elements of the starting mesh R that concur in forming an element
of Th and not on the agglomeration rate card♣RT q.

In practice, the above strategies can be applied by replacing the quantities ǫT ,
T P Th, and ǫE, E P R, by a posteriori error estimates.

The results obtained applying the strategy of Example 2 with %ref ✏ 0.1 and
%coar ✏ 0.15 to the 64, 255 and 1028 polygonal elements grids in Figure 6 are
collected in Figure 11. It is interesting to note that both card♣Thq and the L2-norm
of the error decrease in the first place thanks to the combined action of coarsening
and refinement; then, once the error over the domain is redistributed, the AMR
process maintain a second order convergence rate. Independently from the initial
mesh, the strategy is able to guide the discretization towards analogue error values
as the lines associated to different starting grids are perfectly overlapping once the
same card♣Thq is reached. The global L2-norm of the error is always smaller on the
grids resulting from adaptive h-refinement. On the right panel of Figure 11 we sketch
the values of maxTPTh

eT and minTPTh
eT that would have been obtained arresting the

refinement process as soon as card♣Thq is comparable with the number of elements
in the starting mesh. The resulting h-adapted grids as well as the polygonal grids
considered as starting point are shown in Figure 12. A comparison between uniform
and adaptive meshes featuring the same number of elements shows the difference
in the maximum and minimum error values, their location as well as the better
distribution of the error over the domain in the adaptive case.

The results obtained applying the strategy of Example 3 with %iref ✏ 0.17 to the
64 polygonal element grid in Figure 6 are reported in Figure 11. The number of ele-
ments increases with a constant ratio allowing to quickly increase the discretization
accuracy. Up to card♣Thq ✏ 300, in the error redistribution phase, the first order
discretization shows a third order convergence rate and, afterwards, second order
convergence is maintained. Although the error in L2-norm as well as the maximum
element error are higher than the ones obtained with strategy of Example 2, the
benefits of h-adaptivity are still present in this raw and fast refinement algorithm.

4. Reduced quadratures on general meshes

4.1. The reduction algorithm
Integration on general shape elements is an open field of research and, to our

knowledge, only few papers have been published on this topic. The recent works of
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(a) Strategy of Example 2
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(b) Strategy of Example 3

Figure 11: BRMPS solution for the test case of Karniadakis and Sherwin [16], k ✏ 1. Comparison
of the convergence rates using uniform Cartesian meshes, uniform polygonal meshes, and adaptively
refined polygonal meshes. Top row. Three distinct adaptive processes are considered starting from
64, 255, and 1028 polygonal elements. Bottom row. Single adaptive process starting from 64

polygonal elements. Left. Error in L2-norm. Right. Maximum and minimum error in L2-norm
computed over the mesh elements. The arrows indicate the action of AMR from starting polygonal
grids to adapted grids with the same card♣Thq.
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(a) card♣Thq ✏ 64, uniform (b) card♣Thq ✏ 63, adaptive

(c) card♣Thq ✏ 255, uniform (d) card♣Thq ✏ 249, adaptive

(e) card♣Thq ✏ 1028, uniform (f) card♣Thq ✏ 1018, adaptive

Figure 12: Polygonal grids on top of a 200✂200 uniform quadrilateral grid, first degree polynomial
approximation and distribution of the error in the L2-norm
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(a) k ✏ 1, 255 elements, uniform (b) k ✏ 1, 249 elements, adaptive

Figure 13: BRMPS solution for the test case of Karniadakis and Sherwin [16].

Mousavi, Xiao and Sukumar [23] and Xiao and Gimbutas [25], propose an interest-
ing technique and certainly deserves more attention. Study and implementation of
this approach will be left for future work. In the following we describe the simple
approach that has been employed for numerical integration on the agglomerated ele-
ments considered in this work. This procedure consists of (i) computation of integrals
on agglomerated elements as the sum of integrals on the composing sub-elements,
(ii) integration on each sub-element performed by means of Gaussian quadrature
defined on reference space elements. This procedure can be very expensive and a
simple strategy to reduce the integration cost will be presented hereafter.

The integral of any polynomial function v P Pk
d♣Thq over an element T P Th can

be computed as follows:➺
T

v♣xq dx ✏
➳

EPRT

➺
E

v♣xq dx ✏
➳

EPRT , E✏ΨE♣Eref q

➺
Eref

♣v ✆ ΨEq♣ξq⑤JΨE
♣ξq⑤ dξ, (21)

where x and ξ are physical and reference space coordinates respectively, and JΨE
is

the Jacobian of the mapping function ΨE. From (21) it is clear that the polynomial
degree q of the integrand in the last term of (21) results from the product of the
polynomial degrees of v and ΨE plus the polynomial degree j of ⑤JΨE

⑤ according to
the equation

q ✏ km � j. (22)

The value of q rapidly increases when considering high order polynomials on curved
elements, and so does the number of quadrature nodes required to compute the
integral exactly. However, the numerical experiments of this section indicate that
exact integration is only required for very stretched and curved elements. In other,
more common, situations it is possible to reduce the exactness of the quadrature rule
without compromising the accuracy. In order to make sure that a desired precision is
achieved, we introduce the following measure for the integration error on the element
E:

❅T P Th, ❅E P RT , ǫi,E
def
✏ ⑤m✝

ii ✁ mex
ii ⑤
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where m✝
ii denotes the value of the ith diagonal entry of the local mass matrix

computed with the reduced quadrature rule, whereas mex
ii its the expected value as

a result of exact integration. Then we use on the elements of RT an integration rule
with the minimum degree of exactness needed to satisfy the condition:

max
iPDT

ǫi,E ↕ tol, ❅T P Th, (23)

where tol is the maximum error accepted in the diagonal entries of the mass matrix.
As will be pointed out in §4.2, the reduction algorithm can also benefit from the
imposition of a minimum admissible degree of exactness defined as a function of the
degree of the polynomial expansion to be integrated.

The effectiveness of the above procedure is assessed in a parametric study on a
conventional element. We consider the set of basis functions for the P10

d ♣T q space on
the quadrangle T whose sides are defined by cubic polynomials. According to (22),
the exact integration of the terms in the mass matrix requires a degree of exactness
of 2 ✂ 10 ✂ 3 � 5 ✏ 65 for a tensor product quadrature rule. However, Figure 14
shows that exact integration is not required. Even setting tol ✏ 10✁10 the degree of
exactness can be significantly reduced also for highly stretched or curved elements.

4.2. Numerical examples

To numerically assess the benefits of using the reduced quadrature procedure
introduced in §4.1 we consider the dG discretization of the Poisson equation (12)
imposing Dirichlet boundary conditions and the forcing term according to the ana-
lytical solution in Equation (18). The accuracy obtained with polynomial expansion
up to k ✏ 6 are evaluated with exact and reduced numerical integration on the 255
polygonal elements grid reported in Figure 6. The grid has been built on top of
a fine 40000 quadrilaterals elements grid so that the mean number of sub-elements
composing the polygons is 156, in order to stress the quadrature reduction capabil-
ities of the algorithm. Two different reduction strategies are considered. First the
tolerance on the mass matrix error, see Definition (23), is varied according to the
exact error in L2-norm (the order of magnitude of tol is computed as the smaller
integer number obtained halving the order of magnitude of the error in L2-norm),
see Table 2. Second we select a fixed tolerance tol ✏ 10✁1 and limit the minimum
degree of exactness of the quadrature rule to the order k of the polynomial expan-
sion. The former strategy provides the best reduction capabilities while the latter
is best suited to be applied in real-life computations. In this context the tolerance
must be chosen according to the accuracy prescribed for the problem at hand as
the accuracy associated to the discretization is not know a priori. The limit on the
minimum degree of exactness is safely chosen to avoid undue under integration and
induces a speed up of the reduction procedure as the number of quadrature rules to
be evaluated decreases.

The results regarding the pre-processing phase of the computation, reported
in Table 1, show that the reduction in the number of quadrature points is bigger
when high-order expansions are considered. In this configuration a wider range of
quadrature formulas can be considered in order to match the prescribed tolerance on
the mass matrix integration error. Moreover, while a first order expansion is linear
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Shape function Evaluation, Exact and Reduced numerical integration

Red. Int., tol ✏ f♣⑥u ✁ uh⑥L2♣Ωqq Red. Int., tol ✏ 10✁1

k tol QptsR④QptsE tSE_R④tSE_E QptsR④QptsE tSE_R④tSE_E

1 10✁1 0.4776 1.4692 0.4776 1.4194
2 10✁2 0.4613 1.5759 0.4595 1.2083
3 10✁2 0.2885 1.8680 0.2638 1.0111
4 10✁3 0.3623 2.1977 0.3701 1.0704
5 10✁4 0.3526 2.6995 0.2593 0.9681
6 10✁4 0.3033 2.9440 0.3382 1.0162

Table 1: Reduced numerical integration with tol ✏ f♣⑥u ✁ uh⑥L2♣Ωqq and tol ✏ 10✁1 setting to k

the minimum degree of exactness of the quadrature formula, see §4.1 for details. 255 polygonal
elements mesh obtained on top of a 40000 quadrilateral elements mesh, see Figure 6. From left to
right, in each block. Ratio between the time required for the procedure of numerical integration
reduction plus shape function evaluation, tSE_R, and for shape function evaluation in case of exact
integration, tSE_E . Ratio between the number of quadrature points Qpts when reduced and exact
numerical integration is considered.

Poisson Eq. dG discretization, Exact and Reduced numerical integration

Ex. Int. Red. Int., tol ✏ f♣⑥u ✁ uh⑥L2♣Ωqq Red. Int., tol ✏ 10✁1

k tE/tT ⑥u ✁ uh⑥L2♣Ωq tR/tT tR④tE ⑥u ✁ uh⑥L2♣Ωq tR/tT tR④tE ⑥u ✁ uh⑥L2♣Ωq

1 0.425 4.15716e✁3 0.243 0.484 4.15584e✁3 0.272 0.484 4.15584e✁3

2 0.675 2.06750e✁4 0.516 0.455 2.06794e✁4 0.509 0.450 2.06750e✁4

3 0.776 1.64974e✁5 0.553 0.275 1.65020e✁5 0.528 0.251 1.64978e✁5

4 0.838 6.46491e✁7 0.693 0.353 6.46284e✁7 0.696 0.361 6.46492e✁7

5 0.833 4.90059e✁8 0.703 0.368 4.90059e✁8 0.628 0.252 4.90024e✁8

6 0.831 1.46782e✁9 0.660 0.295 1.47149e✁9 0.679 0.328 1.46782e✁9

Table 2: Reduced numerical integration with tol ✏ f♣⑥u✁uh⑥L2♣Ωqq and tol ✏ 10✁1 setting to k the
minimum degree of exactness of the quadrature formula, see §4.1 for details. BRMPS discretization
of the Poisson equation, see §3.2, on the 255 polygonal elements mesh obtained on top of a 40000
quadrilateral elements mesh, see Figure 6. From left to right, in each block. Ratio between the
time required for exact, tE , or reduced integration, tR, and total execution time, tT . The exact
L2-norm of the error is computed with exact numerical integration.
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all over an element T P Th, the ability to integrate higher order expansion varies
locally inside each sub-element composing T .

For both the strategies here considered the difference in the error in L2-norm is
negligible and does not affect the theoretical convergence of the scheme, see Table 2,
where the discretization specific performance parameters are reported. It is remark-
able that the quadrature reduction procedure furnishes a 3-fold decrease compared
to the time required for exact numerical integration of high-order dG discretization
of the Poisson equation. However, the time required for numerical integration is still
more than 50% of the total computation time when high order discretization are per-
formed. We remark that the pre-processing phase devoted to quadrature reduction
is not included in the computation time consisting of shape function evaluations,
numerical integration of the bilinear forms, global matrix assembly and numerical
solution (performed with a direct solver). This indicates that more efficient numer-
ical integration should lead to larger savings and quadrature rules independent of
the number of sub-cells should be considered.

A. Proof of Theorem 1

It follows from (11) that, for all vh P Pk
d♣Thq,

ah♣vh, vhq ➙
ǫ

1 � ǫ
⑥∇hvh⑥

2

rL2♣Ωqsd ✁♣1� ǫq⑥Rl
h♣vhq⑥

2

rL2♣Ωqsd �
➳

FPFh

ηF ⑥r
l
F ♣rrvhssq⑥

2

rL2♣Ωqsd .

(24)
For each F P Fh, the support of the corresponding lifting operator r

l
F is the union

of the elements sharing F . As a consequence,

⑥Rl
h♣vhq⑥

2

rL2♣Ωqsd ✏

➺
Ω

R
l
h♣vhq☎R

l
h♣vhq ✏

➳
FPFh

➺
Ω

r
l
F ♣rrvhssq☎

✄ ➳
F ✶PFF

r
l
F ✶♣rrvhssq

☛

↕
➳

FPFh

➺
Ω

☎✆⑤rl
F ♣rrvhssq⑤

2 �
1

2

➳
F ✶PFF ③tF ✉

⑤rl
F ✶♣rrvhssq⑤

2

☞✌. (25)

For η1, η2 → 0 we rewrite the stabilization term as follows: For all uh, vh P Pk
d♣Thq,

sh♣uh, vhq ✏
➳

FPFh

ηF

➺
Ω

r
l
F ♣rruhssq☎r

l
F ♣rrvhssq

✏
➳

FPFh

➺
Ω

✩✫✪η1r
l
F ♣rruhssq☎r

l
F ♣rrvhssq � η2

➳
F ✶PFF ③tF ✉

r
l
F ✶♣rruhssq☎r

l
F ✶♣rrvhssq

✱✳✲ . (26)

Comparing equations (25) and (26), it is inferred coercivity with respect to the
⑦☎⑦-norm defined by (15) holds provided

η1 → 1 and η2 →
1

2
. (27)

Rearranging the sums, condition (14) is readily inferred from (27).
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