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Abstract. The increasingly popular web 2.0 sites provide the largest social 
network ever analyzed - users are now considered as plain web resources. Some 
researchers apply classical methods of social network analysis to such 
networks; others provide models to leverage the semantics of their 
representation. We present a state of the art of these two approaches and 
propose an architecture to merge and exploit the best features of each. 

Keywords: social network analysis, semantic web. 

1   Introduction 

Research conducted on large social networks has principally concerned interviews, 
enterprise human resources mining, or scientific publications references [17] [39] [51] 
[53]. However, since its birth in 1992, the web has provided many ways of interaction 
between people [9], revealing social network structures [54], a phenomenon amplified 
by the emergence of the web 2.0 [28]. Social networks have been extracted from 
email communications [52], hyperlink structure of home pages [1], co-occurrence of 
names [31] [39] [37] [30], and from web 2.0 applications [39]. Dedicated online 
platforms such as Facebook and Myspace now provide huge amounts of structured 
social network data to exploit.  

In the first part of this paper we recall some classical work from Social Network 
Analysis (SNA), in particular we detail the popular models used by researchers for 
representing and visualizing social networks. Definitions of the features that 
characterize these networks will be presented as well as the corresponding algorithms. 
In a second part, we discuss the use of semantic web languages and technologies to 
represent social networks. Finally, we will show that these enhanced representations 
are a step forward to what we call the “semantic social network analysis” of online 
interactions. 



2   Social Network Analysis 

The first representations of social network were sociograms [38] where people are 
represented by points and relationships by lines connecting them. Much research has 
been conducted on SNA based on this graph-based view using graph theory [51] [53]. 
Among important results is the identification of sociometric features that characterize 
a network. The density indicates the cohesion of the network. The centrality 
highlights the most important actors of the network and three definitions have been 
proposed [19]. The degree centrality considers nodes with the higher degrees 
(number of adjacent edges). The closeness centrality is based on the average length 
of the paths (number of edges) linking a node to others and reveals the capacity of a 
node to be reached. The betweenness centrality focuses on the capacity of a node to 
be an intermediary between any two other nodes. A network is highly dependent on 
actors with high betweenness centrality and these actors have a strategic advantage 
due to their position as intermediaries and brokers [10] [29] [12]. Its exact 
computation is time consuming, several algorithms tackle this problem [20] [42] [35] 
[7] with a minimum time complexity of O(n.m) - n is the number of vertices and m 
the number of edges. To deal with large networks, approximating algorithms [49] [8] 
[5] [22] and parallel algorithms [4] [50] have been proposed. 

Community detection helps understanding the global structure of a network and 
the distribution of actors and activities [51]. Moreover, the community structure 
influences the way information is shared and the way actors behave [10] [11] [12]. 
Scott [51] gives three graph patterns that correspond to cohesive subgroups of actors 
playing an important role in community detection: components (isolated connected 
subgraphs), cliques (complete subgraphs), and cycles (paths returning to their point of 
departure). Alternative definitions have also been proposed such as n-clique, n-clan 
and k-plex that extend these initial concepts. Community detection algorithms are 
decomposed into two categories, either hierarchical or based on heuristics [44] [24] 
[15]. Two strategies are used in hierarchical algorithms: the divisive algorithms 
consider the whole network and divide it iteratively into sub communities [23] [56] 
[21] [49] and the agglomerative algorithms group nodes into larger and larger 
communities [16] [58]. Other algorithms are based on heuristics such as random walk, 
analogies to electrical networks or formula optimization [45] [57] [48].  

Social network graphs hold specific patterns that can be used to characterize them 
[43] and accelerate algorithms. According to the small world effect [40], the order of 
the shortest path between two actors in a social network of size n is log(n). Social 
networks have an important clustering tendency and a community structure, 
furthermore, the degree distribution follows a power law [43]. 

These graph-based representations are only concerned with syntax – they all lack 
semantics, and have an especially poor exploitation of the types of relations. We will 
now see how recently online social networks started to be represented with rich 
structured data incorporating semantics. 



3   Semantic Web Representation of Online Social Networks 

Semantic web frameworks provide a graph model (RDF1), a query language 
(SPARQL1) and type and definition systems (RDFS1 and OWL1) to represent and 
exchange knowledge online. These frameworks provide a whole new way of 
capturing social networks in much richer structures than raw graphs. 

Several ontologies can be used to represent social networks. The most popular is 
FOAF2, used for describing people, their relationships and their activity. A large set 
of properties is dedicated to the definition of a user profile: "family name", "nick", 
"interest", etc. The “knows” property is used to connect people and to build a social 
network. Other properties are available to describe web usages: online account, 
weblog, memberships, etc. The properties defined in the RELATIONSHIP3 ontology 
specialize the “knows” property of FOAF to type relationships in a social network 
more precisely (familial, friendship or professional relationships). For instance the 
relation “livesWith” specializes the relation “knows”. The primitives of the SIOC4 
ontology specialize “OnlineAccount” and “HasOnlineAccount” from FOAF in order 
to model the interactions and resources manipulated by social web applications; SIOC 
defines concepts such as posts in forums, blogs, etc. Researchers [6] have shown that 
SIOC and the other ontologies presented can be used and extended for linking reuse 
scenarios and data from web 2.0 community sites. 

In parallel, web 2.0 applications made social tagging popular: users tag resources 
of the web (pictures, video, blog posts etc.) The set of tags forms a folksonomy that 
can be seen as a shared vocabulary that is both originated by, and familiar to, its 
primary users [39]. Ontologies have been designed to capture and exploit the 
activities of social tagging [27] [33] [46] while researchers have attempted to bridge 
folksonomies and ontologies to leverage the semantics of tags (see overview in [36]). 
Once they are typed and structured, the relations between the tags and between the 
tags and the users are also a new source of social networks. 

A lighter way to add semantics to the representation of persons and usages of the 
web is to use microformats5 [2] [32]. Some microformats can be used for describing 
user profiles, including resources and social networks. For example, hCard and 
hResume microformats describe a person (name, email, address, personal resume etc.) 
and XFN (XTML Friends Network) is useful for describing relationships. 

Millions of FOAF profiles [26] are now published on the web, due to the adoption 
of this ontology by web 2.0 platforms with large audiences (www.livejournal.net, 
www.tribe.net). The acquaintance and expertise networks respectively formed by the 
properties "foaf:knows" and "foaf:interest" reflect real social networks [18]. As a 
consequence, researchers have applied classical SNA methods to FOAF [47] [25] 
[26]. Much as today there is only one community of email users (anyone can mail 
anyone), the adoption of standardized ontologies for non-specialist online social 
networks will lead to increasing interoperability between them and to the need for 
uniform tools to analyse and manage them. 

                                                           
1 Semantic Web, W3C, http://www.w3.org/2001/sw/  4 http://sioc-project.org/  
2 http://www.foaf-project.org/        5 http://microformats.org/  
3 http://vocab.org/relationship/  



4   Toward a Semantic Social Network Analysis 

The online availability of social network data in different formats, the availability 
of associated semantic models and the graph structure of the RDF language are 
leading to a new way of analysing social networks. Current algorithms that are 
applied to SNA are based on graph pattern detection and use very little semantics. The 
semantics of sociometric patterns that are measured are never taken into account due 
to the lack of semantics of the representation of the analysed networks. As an 
example, community detection algorithms are based on graph structure characteristics 
of social networks but none is based on a sociological definition of community [55] 
and types of relations are under-exploited. Ontologies were designed to describe 
particular communities [41] and can be an interesting way to extend community 
detection among semantically described social networks. 

 

Fig 1: A semantic social network analysis architecture 

We are designing an architecture (fig. 1) for a new tool to analyse online social 
networks. This tool explores RDF-based annotations describing profiles and 
interactions of users through social applications, using the conceptual vocabulary of 
previously mentioned ontologies and domain specific ontologies. An ontology, called 
OntoSNA (Ontology of Social Network Analysis), describes general sociometric 
features and their links to social RDF data. Recently, SPARQL extensions have been 
proposed for enhancing the RDF graph queries [3] [34] and have been implemented in 
the search engine CORESE [13] [14]. These extensions enable us to extract paths in 
RDF graphs by specifying multiple criteria such as the type of the properties involved 
in the path with regular expressions, or edge directions or constraints on the vertices 
that paths go through. We reuse these extensions and propose new ones dedicated to 
SNA in order to make easier the analysis of RDF-based representations of social 
networks. With such a tool, we can focus or parameterize the analysis specifying 
types of resources or properties to be considered, and extend classical algorithms with 
semantic features expressed in SPARQL and based on sociological definitions.  

select count(?y) as ?cdegree 
{ 
  {?y foaf:knows ?x} 
  UNION    
  {?x foaf:knows ?y} 
} 
group by ?x 

select count(?y) as ?cdegree 
{ 
  {?y relationship:worksWith ?x} 
  UNION    
  {?x relationship:worksWith ?y} 
} 

group by ?x 

Table 1: SPARQL queries that extract the degree centrality of actors linked 
by the property foaf:knows and its specialization "relationship:worksWith". 

SPARQL and extensions 

OntoSNA: Ontology for Social Networks Analysis 

FOAF, RELATIONSHIP, SIOC, DC, SCOT, SKOS, MOAT  Domain ontologies  

RDF, RDFS, RDFa, OWL 
Web 2.0 

GRDDL1 



5   Conclusion 

We presented a state of the art on SNA and showed that while this research domain 
has been exploited for a long time, its application to the web opened new 
perspectives. The web is now a major medium of communication in our society and, 
as a consequence, an element of our socialization. The huge number of human 
interactions through web 2.0 platforms reveal real social networks, and understanding 
their life cycles is one of the challenges of knowledge sciences. Semantic models of 
these interactions are well developed and some are now massively integrated into 
online social applications. The semantic leverage of social data in a machine readable 
format opens a new way for SNA and the enhancement of online social experiences. 
We proposed an approach to go toward semantic-aware social network analysis. 
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