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Introduction

Classification And Regression Trees (CART; [START_REF] Breiman | Classification and regression trees[END_REF] [START_REF] Breiman | Classification and regression trees[END_REF]) have proven to be very useful in various applied contexts mainly because models can include numerical as well as nominal explanatory variables and because models can be easily represented (see for example [START_REF] Zhang | Recursive Partitioning and Applications, 2 𝑛𝑑 edition[END_REF] [START_REF] Zhang | Recursive Partitioning and Applications, 2 𝑛𝑑 edition[END_REF], or [START_REF] Bel | CART algorithm for spatial data: application to environmental and ecological data[END_REF] [START_REF] Bel | CART algorithm for spatial data: application to environmental and ecological data[END_REF]). Because CART is a nonparametric method as well as it provides data partitioning into distinct groups, such tree models have several additional advantages over other techniques: for example input data do not need to be normally distributed, predictor variables are not supposed to be independent, and non linear relationships between predictor variables and observed data can be handled. It is well known that CART appears to be sensitive to perturbations of the learning set. This drawback is even a key property to make resampling and ensemble-based methods (as bagging and boosting) effective (see [START_REF] Gey | Boosting and instability for regression trees[END_REF] [START_REF] Gey | Boosting and instability for regression trees[END_REF]). To preserve interpretability of the obtained model, it is important in many practical situations to try to restrict to a single tree. The stability of decision trees is then clearly an important issue and then it is important to be able to evaluate the sensitivity of the data on the results. Recently [START_REF] Briand | A similarity measure to assess the stability of classification trees[END_REF] [START_REF] Briand | A similarity measure to assess the stability of classification trees[END_REF] propose a similarity measure between trees to quantify it and use it from an optimization perspective to build a less sensitive variant of CART. This view of instability related to bootstrap ideas can be also examined from a local perspective. Following this line, [START_REF] Bousquet | Stability and generalization[END_REF] [START_REF] Bousquet | Stability and generalization[END_REF] studied the stability of a given method by replacing one observation in the learning sample with another one coming from the same model. Classically, robustness is mainly devoted to model stability, considered globally, rather than focusing on individuals or using local stability tools (see [START_REF] Rousseeuw | Robust Regression and Outlier Detection[END_REF] [START_REF] Rousseeuw | Robust Regression and Outlier Detection[END_REF] or Verboven and Huber (2005) [START_REF] Verboven | LIBRA: a MATLAB library for robust analysis[END_REF] in the parametric context and [START_REF] Chèze | Outlier detection by boosting regression trees[END_REF] [START_REF] Chèze | Outlier detection by boosting regression trees[END_REF] for nonparametric context).

The aim of this paper is to focus on individual observations diagnosis issues rather than model properties or variable selection problems. The use of an influence function is a classical diagnostic method to measure the perturbation induced by a single element, in other terms we examine stability issue through jackknife. We use decision trees to perform diagnosis on observations. [START_REF] Huber | Robust Statistics[END_REF] [START_REF] Huber | Robust Statistics[END_REF] used influence curve theory to define different classes of robust estimators and to define a measure of sensitivity for usual estimators.

The outline is the following. Section 2 recalls first some general background on the so-called CART method and some basic ideas about influence functions. Then it introduces some influence functions for CART based on predictions, or on partitions, and finally an influence function more deeply related to CART method involving sequences of pruned trees. Section 3 contains an illustrative numerical applica-tion on the spam dataset (see Hastie, Tibshirani and Friedman (2009) [START_REF] Hastie | The elements of statistical learning: data mining, inference and prediction[END_REF]). Section 4 explores an original dataset relating the administrative classification of cities surrounding Paris, France, to the characteristics of their tax revenues distribution, by using the new influence-based tools. Finally Section 5 opens some perspectives.

Methods and Notations

CART

Let us briefly recall, following Bel et al. [START_REF] Bel | CART algorithm for spatial data: application to environmental and ecological data[END_REF], some general background on Classification And Regression Trees (CART). For more detailed presentation see Breiman et al. [START_REF] Breiman | Classification and regression trees[END_REF] or, for a simple introduction, see [START_REF] Venables | Modern Applied Statistics with S. Fourth Edition[END_REF] [START_REF] Venables | Modern Applied Statistics with S. Fourth Edition[END_REF]. The data are considered as an independent sample of the random variables (𝑋 1 , . . . , 𝑋 𝑝 , 𝑌 ), where the 𝑋 𝑘 s are the explanatory variables and 𝑌 is the categorical variable to be explained. CART is a rule-based method that generates a binary tree through recursive partitioning that splits a subset (called a node) of the data set into two subsets (called sub-nodes) according to the minimization of a heterogeneity criterion computed on the resulting sub-nodes. Each split is based on a single variable; some variables may be used several times while others may not be used at all. Each sub-node is then split further based on independent rules. Let us consider a decision tree 𝑇 . When 𝑌 is a categorical variable a class label is assigned to each terminal node (or leaf) of 𝑇 . Hence 𝑇 can be viewed as a mapping to assign a value Ŷ𝑖 = 𝑇 (𝑋 1 𝑖 , . . . , 𝑋 𝑝 𝑖 ) to each sample. The growing step leading to a deep maximal tree is obtained by recursive partitioning of the training sample by selecting the best split at each node according to some heterogeneity index, such that it is equal to 0 when there is only one class represented in the node to be split, and is maximum when all classes are equally frequent. The two most popular heterogeneity criteria are the Shannon entropy and the Gini index. Among all partitions of the explanatory variables at a node 𝑡, the principle of CART is to split 𝑡 into two sub-nodes 𝑡 - and 𝑡 + according to a threshold on one of the variables, such that the reduction of heterogeneity between a node and the two sub-nodes is maximized. The growing procedure is stopped when there is no more admissible splitting. Each leaf is assigned to the most frequent class of its observations. Of course, such a maximal tree (denoted by 𝑇 𝑚𝑎𝑥 ) generally overfits the training data and the associated prediction error 𝑅(𝑇 𝑚𝑎𝑥 ), with

𝑅(𝑇 ) = ℙ{𝕋(𝕏 ⊮ , . . . , 𝕏 | ) ∕ = 𝕐}, (1) 
is typically large. Since the goal is to build from the available data a tree 𝑇 whose prediction error is as small as possible, in a second stage the tree 𝑇 𝑚𝑎𝑥 is pruned to produce a subtree 𝑇 ′ whose expected performance is close to the minimum of 𝑅(𝑇 ′ ) over all binary subtrees 𝑇 ′ of 𝑇 𝑚𝑎𝑥 . Since the joint distribution ℙ of (𝑋 1 , . . . , 𝑋 𝑝 , 𝑌 ) is unknown, the pruning is based on the penalized empirical risk R𝑝𝑒𝑛 (𝑇 ) to balance optimistic estimates of empirical risk by adding a complexity term that penalizes larger subtrees. More precisely the empirical risk is penalized by a complexity term, which is linear in the number of leaves of the tree:

R𝑝𝑒𝑛 (𝑇 ) = 1 𝑛 𝑛 ∑ 𝑖=1 1l 𝑇 (𝑋 1 𝑖 ,...,𝑋 𝑝 𝑖 )∕ =𝑌 𝑖 + 𝛼|𝑇 | ( 2 
)
where 1l is the indicator function, 𝑛 the total number of samples and |𝑇 | denotes the number of leaves of the tree 𝑇 . The R package rpart provides both the sequence of subtrees pruned from a deep maximal tree and a final tree selected from this sequence by using the 1-SE rule (see [START_REF] Breiman | Classification and regression trees[END_REF]). The maximal tree is constructed by using the Gini index (default) and stops when the minimum number of observations in a leaf is reached, or if the misclassification rate of the branch provided by splitting a node is too small. 

Influence function

We briefly recall some basics about influence functions. Let 𝑋 1 , . . . , 𝑋 𝑛 be random variables with common distribution function (df) 𝐹 on ℝ 𝑑 (𝑑 ≥ 1). Suppose that the parameter of interest is a statistic 𝑇 (𝐹 ) of the generating df, 𝑇 being defined at least on the space of df's. The natural estimator is 𝑇 (𝐹 𝑛 ) where 𝐹 𝑛 is the empirical df, defined by

𝐹 𝑛 = 1 𝑛 𝑛 ∑ 𝑖=1 𝛿 𝑋 𝑖
with 𝛿 𝑋 𝑖 the point mass 1 at 𝑋 𝑖 .

To evaluate the importance of an additional observation 𝑥 ∈ ℝ 𝑑 , we can define, under conditions of existence, the quantity

𝐼𝐶 𝑇,𝐹 (𝑥) = lim 𝜖→0 𝑇 ( (1 -𝜖)𝐹 + 𝜖 𝛿 𝑥 ) -𝑇 ( 𝐹 ) 𝜖 (3)
which measures the influence of an infinitesimal perturbation along the direction 𝛿 𝑥 (see [START_REF] Hampel | The influence curve and its role in robust estimation[END_REF] [START_REF] Hampel | The influence curve and its role in robust estimation[END_REF]). The influence function (or influence curve) 𝐼𝐶 𝑇,𝐹 (⋅) is defined pointwise by (3), if the limit exists for every 𝑥.

There is strong connection between influence function and jackknife (see [START_REF] Miller | The jackknife -a review[END_REF] [START_REF] Miller | The jackknife -a review[END_REF]). Indeed, let 𝐹 (𝑖)

𝑛-1 = 1 𝑛-1 ∑ 𝑗∕ =𝑖 𝛿 𝑥 𝑗 , then 𝐹 𝑛 = 𝑛-1 𝑛 𝐹 (𝑖) 𝑛-1 + 1 𝑛 𝛿 𝑥 𝑖 . If 𝜖 = -1 𝑛-1
, we have:

𝐼𝐶 𝑇,𝐹𝑛 (𝑥 𝑖 ) ≈ 𝑇 ( (1 -𝜖)𝐹 𝑛 + 𝜖 𝛿𝑥 𝑖 ) -𝑇 ( 𝐹 𝑛 ) 𝜖 (4) = (𝑛 -1)(𝑇 (𝐹 𝑛 ) -𝑇 (𝐹 (𝑖) 𝑛-1 )) = 𝑇 * 𝑛,𝑖 -𝑇 (𝐹 𝑛 ) (5) 
where ≈ stands for asymptotic approximation, and the 𝑇 * 𝑛,𝑖 are the pseudo-values of the jackknife (i.e. values computed on 𝑛 -1 observations) [START_REF] Miller | The jackknife -a review[END_REF]. Influence analysis for discriminant analysis has been studied by [START_REF] Campbell | The influence function as an aid in outlier detection in discriminant analysis[END_REF] [START_REF] Campbell | The influence function as an aid in outlier detection in discriminant analysis[END_REF], [START_REF] Critchley | The influence of observations on misclassification probability estimates in linear discriminant analysis[END_REF] [START_REF] Critchley | The influence of observations on misclassification probability estimates in linear discriminant analysis[END_REF] for the linear case and Croux and Joossens (2005) [START_REF] Croux | Influence of observations on the misclassification probability in quadratic discriminant analysis[END_REF] for the quadratic one. Extension to nonparametric supervised classification in not easy since it is difficult to obtain an exact form for 𝑇 (𝐹 ). In this article we will use jackknife as an estimate of the influence function.

Influence functions for CART

In this section, we present different influence functions for CART. Let 𝑋 = (𝑋 1 , . . . , 𝑋 𝑝 ) ∈ 𝒳 be the explanatory variable, and consider that the data are some independent realization ℒ = {(𝑋 1 , 𝑌 1 ); . . . ; (𝑋 𝑛 , 𝑌 𝑛 )} of (𝑋, 𝑌 ) ∈ 𝒳 × {1; . . . ; 𝐽}. For a given tree 𝑇 = 𝑇 (ℒ), we denote any node of 𝑇 by 𝑡. Hence, we use the following notations:

• T the set of leaves of 𝑇 , and |𝑇 | the number of leaves of 𝑇 ,

• the empirical distribution p 𝑥,𝑇 of 𝑌 conditionally to 𝑋 = 𝑥 and 𝑇 , is defined by: for 𝑗 = 1, . . . , 𝐽, p 𝑥,𝑇 (𝑗) = 𝑝(𝑗|𝑡) the proportion of the class 𝑗 in the leaf of 𝑇 in which 𝑥 falls.

We denote by 𝑇 the tree obtained from the complete sample ℒ, while

( 𝑇 (-𝑖) ) 1⩽𝑖⩽𝑛 denote jackknife trees obtained from (ℒ ∖ {(𝑋 𝑖 , 𝑌 𝑖 )}) 1⩽𝑖⩽𝑛 .
For a given tree 𝑇 , two different main aspects are of interest: the predictions delivered by the tree or the partition associated with the tree, the second highlights the tree structure while the first focuses on its predictive performance. This distinction is classical and already examined for example by [START_REF] Miglio | The comparison between classification trees through proximity measures[END_REF] [START_REF] Miglio | The comparison between classification trees through proximity measures[END_REF] recalling some proximity measures between classification trees and promoting the use of a new one mixing the two aspects. We then derive two kinds of influence functions for CART based on jackknife trees: influence on predictions and influence on partitions. In addition, the analysis is extended to the pruned sequences of CART trees to produce a CART specific notion of influence.

Influence on predictions

We propose three influence functions based on predictions. The first, closely related to the resubstitution estimate of the prediction error, evaluates the impact of a single change on all the predictions, is defined by: for 𝑖 = 1, . . . , 𝑛

𝐼 1 (𝑥 𝑖 ) = 𝑛 ∑ 𝑘=1 1l 𝑇 (𝑥 𝑘 )∕ =𝑇 (-𝑖) (𝑥 𝑘 ) , (6) 
i.e. 𝐼 1 (𝑥 𝑖 ) is the number of observations for which the predicted label changes using the jackknife tree 𝑇 (-𝑖) instead of the reference tree 𝑇 .

The second, closely related to the leave-one-out estimate of the prediction error, is:

for 𝑖 = 1, . . . , 𝑛 𝐼 2 (𝑥 𝑖 ) = 1l 𝑇 (𝑥 𝑖 )∕ =𝑇 (-𝑖) (𝑥 𝑖 ) , (7) 
i.e. 𝐼 2 (𝑥 𝑖 ) indicates if 𝑥 𝑖 is classified in the same way by 𝑇 and 𝑇 (-𝑖) . The third one measures the distance between the distribution of the label in the nodes where 𝑥 𝑖 falls: for 𝑖 = 1, . . . , 𝑛

𝐼 3 (𝑥 𝑖 ) = 𝑑 ( p 𝑥 𝑖 ,𝑇 , p 𝑥 𝑖 ,𝑇 (-𝑖) ) , ( 8 
)
where 𝑑 is a distance (or a divergence) between probability distributions. 𝐼 1 and 𝐼 2 are based on the predictions only while 𝐼 3 is based on the distribution of the labels in each leaf.

To compute 𝐼 3 , several distances or divergences can be used. In this paper, we use the total variation distance: for 𝑝 and 𝑞 two distributions on {1; . . . ; 𝐽},

𝑑(𝑝, 𝑞) = max 𝐴⊂{1;...;𝐽} |𝑝(𝐴) -𝑞(𝐴)| = 2 -1 𝐽 ∑ 𝑗=1 |𝑝(𝑗) -𝑞(𝑗)| Remark 1.
The Kullback-Leibler divergence (relied to the Shannon entropy index) and the Hellinger distance (relied to the Gini index) can also be used instead of the total variation distance.

Influence on partitions

We propose two influence functions based on partitions: 𝐼 4 measuring the variations on the number of clusters in each partition, and 𝐼 5 based on the quantification of the difference between the two partitions. These indices are computed in the following way: for 𝑖 = 1, . . . , 𝑛

𝐼 4 (𝑥 𝑖 ) = |𝑇 (-𝑖) | -|𝑇 |, ( 9 
)
𝐼 5 (𝑥 𝑖 ) = 1 -𝐽 ( T , T (-𝑖) ) , ( 10 
)
where

𝐽 ( T , T (-𝑖) )
is the Jaccard dissimilarity between the partitions of ℒ respectively defined by T (-𝑖) and T .

Recall that, for two partitions 𝐶 1 and 𝐶 2 of ℒ, the Jaccard coefficient

𝐽(𝐶 1 , 𝐶 2 ) is computed as 𝐽(𝐶 1 , 𝐶 2 ) = 𝑎 𝑎 + 𝑏 + 𝑐 ,
where 𝑎 counts the number of pairwise points of ℒ belonging to the same cluster in both partitioning, 𝑏 the number of pairwise points belonging to the same cluster in 𝐶 1 , but not in 𝐶 2 , and 𝑐 the number of pairwise points belonging to the same cluster in 𝐶 2 , but not in 𝐶 1 .

The more similar 𝐶 1 and 𝐶 2 , the closer 𝐽(𝐶 1 , 𝐶 2 ) to 1.

Remark 2. Such influence index can be generated using different dissimilarities between partitions. For a detailed analysis and comparisons, see [START_REF] Youness | Comparing partitions of two sets of units based on the same variables[END_REF].

Influence based on subtrees sequences

Another way to inspect the dataset is to consider the complexity cost constant, penalizing bigger trees in the pruning step of the CART tree design, as a tuning parameter. It allows to scan the data and sort them with respect to their influence on the CART tree. Let us consider on the one hand the sequence of subtrees based on the complete dataset, denoted by 𝑇 , and on the other hand the 𝑛 jackknife sequences of subtrees based on the jackknife subsamples ℒ∖{(𝑋 𝑖 , 𝑌 𝑖 )}, denoted by 𝑇 (-𝑖) (𝑖 = 1, . . . , 𝑛). Suppose that the sequence 𝑇 contains 𝐾 𝑇 elements, and that each sequence 𝑇 (-𝑖) contains 𝐾 𝑇 (-𝑖) elements (𝑖 = 1, . . . , 𝑛). This leads to a total of 𝑁 𝑐𝑝 ⩽ 𝐾 𝑇 + ∑ 1⩽𝑖⩽𝑛 𝐾 𝑇 (-𝑖) distinct values {𝑐𝑝 1 ; . . . ; 𝑐𝑝 𝑁𝑐𝑝 } of the cost complexity parameter in increasing order from 𝑐𝑝 1 = 0.01 (the default value in rpart) to 𝑐𝑝 𝑁𝑐𝑝 = max 1⩽𝑗⩽𝑁𝑐𝑝 𝑐𝑝 𝑗 .

Then, for each value 𝑐𝑝 𝑗 of the complexity and each observation 𝑥 𝑖 , we compute the binary variable 1l 𝑇𝑐𝑝 𝑗 (𝑥 𝑖 )∕ =𝑇 (-𝑖)

𝑐𝑝 𝑗 (𝑥 𝑖 ) that tells us if the reference and jackknife subtrees corresponding to the same complexity 𝑐𝑝 𝑗 provide different predicted labels for the removed observation 𝑥 𝑖 . Thus we define influence function 𝐼 6 as the number of complexities for which these predicted labels differ: for 𝑖 = 1, . . . , 𝑛

𝐼 6 (𝑥 𝑖 ) = 𝑁𝑐𝑝 ∑ 𝑗=1 1l 𝑇𝑐𝑝 𝑗 (𝑥 𝑖 )∕ =𝑇 (-𝑖) 𝑐𝑝 𝑗 (𝑥 𝑖 ) . ( 11 
)
Remark 3. Since the jackknife sequences of subtrees do not change for many observations, usually we obtain that

𝑁 𝑐𝑝 << 𝐾 𝑇 + ∑ 1⩽𝑖⩽𝑛 𝐾 𝑇 (-𝑖) .
3 Illustration on Spam Dataset

Spam dataset

The spam data (The data are publicly available at ftp.ics.uci.edu. consists of information from 4601 email messages, in a study to screen email for "spam" (i.e. junk email). The data are presented in details in [12, p. 301]. The response variable is binary, with values nonspam or spam, and there are 57 predictors: 54 given by the percentage of words in the email that match a given word or a given character, and three related to uninterrupted sequences of capital letters: the average length, the length of the longest one and the sum of the lengths of uninterrupted sequences. The objective was to design an automatic spam detector that could filter out spam before clogging the users' mailboxes. This is a supervised learning problem.

Reference tree and jackknife trees

The reference tree is obtained using the R package rpart (see [START_REF] Development | A Language and Environment for Statistical Computing[END_REF], [START_REF] Venables | Modern Applied Statistics with S. Fourth Edition[END_REF]) and accepting the default values for all the parameters (mainly the Gini heterogeneity function to grow the maximal tree and pruning thanks to 10-fold cross-validation).

The reference tree based on all observations, namely 𝑇 , is given in Figure 1. This tree has 7 leaves, obtained from splits involving the variables 𝑐ℎ𝑎𝑟𝐷𝑜𝑙𝑙𝑎𝑟, 𝑟𝑒𝑚𝑜𝑣𝑒, ℎ𝑝, 𝑐ℎ𝑎𝑟𝐸𝑥𝑐𝑙𝑎𝑚𝑎𝑡𝑖𝑜𝑛, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑇 𝑜𝑡𝑎𝑙, and 𝑓 𝑟𝑒𝑒 (in order of appearance in the tree). Each leaf is labeled by the prediction of 𝑌 (spam or nonspam) and the distribution of 𝑌 inside the node (for example, the third leaf is almost pure: it contains 1 nonspam and 20 spams). These make the tree easy to interpret and to describe: indeed, from the direct interpretation of the path from the root to the third leaf, an email containing many occurrences of "$", "!", "remove", capital letters and "free" is almost always a spam.

To compute the influence of one observation we compute 𝑇 (-𝑖) the tree based on all observations except the observation 𝑖 (𝑖 = 1, . . . , 4601).

We then obtain a collection of 4601 trees, which can be described with respect to the reference tree 𝑇 in many different ways. This description is carried out according to various filters, namely: the retained variables, the number of leaves of the final tree, the observations involved in the differences. (-𝑖) , and by DNF the set of indices 𝑖 for which 𝑇 (-𝑖) has one less leaf than 𝑇 , let us emphasize that the cardinality of DC∪DNF is equal to 162, which means that two observations are classified differently, but lead to jackknife trees having the same number of leaves as 𝑇 . A careful examination of the highlighted observations leads to a spam and a nonspam mails that define the second split of the reference tree: the threshold on the variable remove is the middle of their corresponding values.

Influence functions

The influence functions 𝐼 1 , 𝐼 2 , 𝐼 3 , 𝐼 4 , 𝐼 5 and 𝐼 6 respectively defined by ( 6), ( 7), ( 8), ( 9), ( 10) and ( 11) are computed on the spam dataset by using the jackknife trees computed in paragraph 3.2. The results are summarized in the following paragraphs.

Influence on predictions

Indices 𝐼 1 and 𝐼 3 computed on the 163 observations of the spam dataset for which 𝐼 1 is nonzero are given in Figure 2. There are 77 observations for which 𝐼 2 = 1, that is for which 𝑥 𝑖 is classified differently by 𝑇 and the corresponding jackknife tree 𝑇 (-𝑖) , while 163 jackknife trees lead to a nonzero number of observations for which the predicted label changes. These observations correspond to observations leading to jackknife trees sufficiently perturbed from 𝑇 to have a different shape. The 77 aforesaid observations lead to a total variation distance between p 𝑥 𝑖 ,𝑇 and p 𝑥 𝑖 ,𝑇 (-𝑖) larger than 0.6. The others lead to a total variation distance smaller than 0.1. The 86 remaining jackknife trees for which the number of observations differently labeled is nonzero provide total variation distances from 0.016 to 0.1. 𝐼 1 and 𝐼 2 are based on the predictions only while 𝐼 3 takes into account the distribution of the labels in each leaf. For example, the contribution of 𝐼 3 with respect to 𝐼 2 is that some observations are classified similarly by 𝑇 and 𝑇 (-𝑖) , but actually lead to conditional probability distributions p 𝑥 𝑖 ,𝑇 (-𝑖) largely different from p 𝑥 𝑖 ,𝑇 . These observations are not sufficiently important in the construction of 𝑇 to perturb the classification, but play some role in the tree instability.

Influence on partitions

Influence index 𝐼 5 on the 160 observations of the spam dataset for which the jackknife tree has one leaf less than 𝑇 is given in Figure 3.

There are 160 jackknife trees having one less leaf than 𝑇 , and 163 leading to a partition T (-𝑖) different from T . Among the 160 afore- said trees, 139 lead to a partition T (-𝑖) of dissimilarity larger than 0.05. Hence there are 21 trees with one less leaf than 𝑇 , but leading to a partition T (-𝑖) not far from T . The others perturb sufficiently 𝑇 to change the partition consequently. Let us note that all jackknife trees partitions are of dissimilarity smaller than 0.06 from T . This is due to the very local perturbations around 𝑥 𝑖 .

Let us emphasize that the 163 trees leading to a partition T (-𝑖) different from T correspond exactly to the 163 trees leading to a nonzero number of mails classified differently. This shows an unexpected behavior of CART on this dataset: different partitions lead to predictors assigning different labels on the training sample.

Influence based on subtrees sequences

The pruned subtrees sequences contain around six elements and they represent 𝑁 𝑐𝑝 = 27 distinct values {𝑐𝑝 1 ; . . . ; 𝑐𝑝 27 } of the cost complexity parameter (from 0.01 to 0.48). The distribution of influence index 𝐼 6 is given in Table 1. The number of actual values of 𝐼 6 is small. These values organize the data as nested level sets in decreasing order of influence. For 60% of the observations, predictions are the same all along the pruned subtrees sequences, making these observations not influential for 𝐼 6 . There are 123 observations leading to different predictions for at least half of the pruned subtrees, and only 2 observations lead to 77.8% of the complexity values for which predicting labels change. Let us remark that these two most influential mails for 𝐼 6 are the same mails influential for 𝐼 2 and 𝐼 4 given in Table 5. Index 𝐼 6 can be examined in a structural way by locating the observation on the topology of the reference tree. Of course, graphical software tools based on such idea can be useful to screen a given data set.

𝐼

Remark 4.

Let us recall that the influence is measured with respect to a reference model and of course more instable reference tree automatically increases the number of individuals that can be categorized as influential. In fact, even if it is implicit, influence functions are relative to a given model. Typically, increasing the number of leaves of the reference tree automatically promotes new observations as influential.

Exploring the Paris Tax Revenues dataset 4.1 Dataset and reference tree

Dataset

We apply the tools presented in the previous section on tax revenues of households in 2007 from the 143 cities surrounding Paris. Cities are grouped into four counties (corresponding to the french administrative "département"). The PATARE data (PAris TAx REvenues) are freely available on http://www.data-publica.com/data. For confidentiality reason we do not have access to the tax revenues of the individual households but we have characteristics of the distribution of the tax revenues per city. Paris has 20 "arrondissements" (corresponding to districts), Seine-Saint-Denis is located at the north of Paris and has 40 cities, Hauts-de-Seine is located at the west of Paris and has 36 cities, and Val-de-Marne is located at the south of Paris and has 48 cities. For each city, we have the first and the 9th deciles (named respectively D1 and D9), the quartiles (named respectively Q1, Q2 and Q3), the mean, and the percentage of the tax revenues coming from the salaries and treatments (named PtSal). Figure 4 gives the summary statistics for each variable per county. Basically we tried to predict the county of the city with the characteristics of the tax revenues distribution. This is a supervised classification problem where the explained variable is quaternary.

We emphasize that this information cannot be easily retrieved from the explanatory variables considered without the county information. Indeed, the map (see Figure 5) of the cities drawn according to a 𝑘-means (𝑘=4) clustering (each symbol is associated with a cluster) superimposed with the borders of the counties, exhibits a poor recovery of counties through clusters. 

Reference tree

Figure 6 shows the reference tree. Each leaf is labelled by two informations: the predicted county and the distribution of the cities over the 4 counties. For example the second leaf gives 0/17/1/3 meaning that it contains 0 districts from Paris, 17 cities from Hauts-de-Seine, 1 from Seine-Saint-Denis and 3 from Val-de-Marne.

All the 5 terminal nodes located on the left subtree below the root are homogeneous since the distributions are almost pure, while half the nodes of the right subtree are highly heterogeneous. The first split involves the last decile of the income distribution and then discriminates the rich cities concentrated in the left part from the others. According to this first split, the labels distinguish Paris and Hauts-de-Seine on the left from Seine-Saint-Denis on the right, while Val-de-Marne appears in both sides.

The extreme quantiles are sufficient to separate richest from poorest counties while more global predictors are useful to further discriminate between intermediate cities. Indeed the splits on the left part are mainly based on the deciles D1, D9 and PtSal is only used to separate Hauts-de-Seine from Val-de-Marne. The splits on the right part are based on all the dependent variables but involve PtSal and mean variables to separate Seine-Saint-Denis from Val-de-Marne. Surprisingly, the predictions given by the reference tree are generally correct (the resubstitution misclassification rate calculated from the confusion matrix given in Table 2, is equal to 24.3%). Since the cities within each county are very heterogeneous, we look for the cities which perturb the reference tree. . Table 2: Confusion matrix: actual versus predicted county, using the CART reference tree.

Actual

Influential observations

Presentation

There are 45 cities classified differently by 𝑇 and the corresponding jackknife tree 𝑇 (-𝑖) , and 44 jackknife trees having a different number of leaves than 𝑇 . The frequency distribution of the difference in the number of leaves, summarized by the influence index 𝐼 4 , is given in Table 3. The aforesaid cities are given in Table 6 of the appendix, classified by their respective labels in the dataset. DC denotes the set of cities classified differently by 𝑇 and 𝑇 (-𝑖) , and DNF denotes the set of cities for which 𝑇 (-𝑖) has not the same number of leaves as 𝑇 . Let us emphasize that the cardinality of DC∪DNF is equal to 63: 19 cities are classified differently by trees having the same number of leaves, while 18 cities lead to jackknife trees having different number of leaves, but classifying the corresponding cities in the same way.

𝐼 4 -3 -2 -1 0 1 Nb. Obs. 1 8 25 99 10 Table 3: Frequency distribution of the influence index 𝐼 4 over the 143 cities.

Indices 𝐼 1 and 𝐼 3 computed on the 75 observations of the PATARE dataset for which 𝐼 1 is nonzero are given in Figure 7. There are 44 observations classified differently by 𝑇 and 𝑇 (-𝑖) , while 75 jackknife trees lead to a nonzero number of observations for which predicted labels change. These 75 jackknife trees contain the 63 trees for which the number of leaves changes or classifying the corresponding city differently. There are 13 cities for which the total variation distance between the distributions defined by 𝑇 and 𝑇 - (𝑖) respectively is larger than 0.5. Among these 13 cities, 2 lead to jackknife trees at distance 1 from 𝑇 : Asnieres sur Seine (from "Hauts-de-Seine") and Paris 13eme (from "Paris"). The value of 𝐼 1 and 𝐼 2 at these 2 points is equal to 1, meaning that each city provides a jackknife tree sufficiently close to 𝑇 to unchange the classification, except for the removed city. In fact, if we compare the 2 jackknife trees with 𝑇 , we can notice that the thresholds in the second split for Asnieres sur Seine, and in the first split for Paris 13eme, are slightly moved. It suffices to classify on the one hand Asnieres sur Seine in the pure leaf "Paris", and on the other hand to remove Paris 13eme from this leaf to classify it in "Seine-Saint-Denis". This explains the astonishing value of 1 for the corresponding total variation distances.

Influence index 𝐼 5 on the 45 observations of the PATARE dataset for which 𝐼 4 is nonzero is given in Figure 8. There are 45 observations leading to jackknife trees having number of leaves different from 𝑇 . Two cities lead to jackknife trees providing partitions at distance larger than 0.5 from 𝑇 : Neuilly Plaisance and Villemomble (both from "Seine-Saint-Denis"). When removed, these 2 cities change drastically the value of the threshold in the first split, what implies also drastic changes in the rest of the tree. Moreover, the corresponding jackknife trees have 2 less leaves than 𝑇 , what obviously increases the Jaccard distance between 𝑇 and each jackknife tree.

The frequency distribution of influence index 𝐼 6 over the 143 cities of the PATARE dataset is given in Table 4. There are 29 different values of complexities in the reference and jaccknife trees sequences. Two cities change prediction labels of trees for 26 complexities: Asnieres-sur-Seine and Villemomble. In the decreasing order of influence, one city changes labels of trees for 24 complexities, and 2 cities for 21 complexities: Paris 13eme, and Brysur-Marne (from "Val-de-Marne"), Rueil-Malmaison (from "Hautsde-Seine"). These 5 observations change labels for more than 72.4% of the complexities. 61 observations change labels of trees for less than 6.9% of the complexities.

Let us notice that Asnieres-sur-Seine and Paris 13eme have already been selected as influential for 𝐼 3 , and Villemomble for 𝐼 5 . Nevertheless, the behaviours of 𝐼 1 , 𝐼 2 and 𝐼 3 at points Bry-sur-Marne and Rueil-Malmaison are comparable to behaviours at points Asnieressur-Seine and Paris 13eme: 𝐼 1 and 𝐼 2 are equal to 1, and 𝐼 3 is equal to 0.66, meaning that these 2 cities belong to the 13 cities for which 𝐼 3 is larger than 0.5. Let us also remark that only Montreuil (from "Seine-Saint-Denis") is among the 13 aforesaid cities, but not in the 26 cities listed above and selected as influential for 𝐼 4 and 𝐼 6 . The value of 𝐼 3 at this point is equal to 0.52.

Interpretation

One can find in Figure 9 the influential cities, with respect to the two indices 𝐼 4 and 𝐼 6 , located in the reference tree. Let us notice that most of the selected cities have also been selected by influence indices 𝐼 1 , 𝐼 2 , 𝐼 3 and 𝐼 5 , so we refer only to 𝐼 4 and 𝐼 6 in what follows. Let us emphasize that only three cities among the 26 influential cities quoted in Figure 9 are misclassified when using the reference tree.

Index 𝐼 4 highlights cities (Noisy-le-Grand, Bagneux, Le Blanc Mesnil, Le Bourget, Neuilly-Plaisance, Noisy-le-Sec, Sevran, Vaujours and Villemomble) far from Paris and of middle or low social level. All the cities having an index of -3 or -2 are located in nodes of the right part of the reference tree whereas the rich cities are concentrated in the left part. Index 𝐼 6 highlights cities for which two parts of the city can be distinguished: a popular one with a low social level and a rich one of high social level. They are located in the right part of the reference tree (for the higher values of 𝐼 6 = 26, 24 and 21: Asnieres sur Seine, Villemomble, Paris 13eme, Bry-sur-Marne and Rueil-Malmaison) as well as in the left part (for moderate values of 𝐼 6 = 16 and 17: Chatenay-Malabry, Clamart, Fontenay aux Roses, Gagny, Livry-Gargan, Vanves, Chevilly-Larue, Gentilly, Le Perreux sur Marne, Le Pre-Saint-Gervais, Maisons-Alfort, Villeneuve-le-Roi, Vincennes and the particularly interesting city Villemomble for 𝐼 6 = 26). Indeed, we can notice that only Villemomble is highlighted both by 𝐼 4 and 𝐼 6 . To explore the converse, we inspect now the list of the 51 cities associated with lowest values of 𝐼 6 (0 and 1) which can be considered as the less influential, the more stable. It can be easily seen that it corresponds to the 16 rich district of Paris downtown (Paris 1er to 12eme and Paris 14eme to Paris 16eme) and mainly cities near Paris or directly connected by the RER line transportation.

It should be noted that the influence indices cannot be easily explained neither by central descriptors like the mean or the median Q2 nor by dispersion descriptors as Q3-Q1 and D9-D1. Bimodality seems the key property to explain high values of the influence indices.

In addition, coming back to the non supervised analysis, one may notice that influential observations for PCA are not related to influential cities detected using 𝐼 6 index. Indeed, Figure 10 contains the two first principal components capturing more than 95% of the total variance. Each city is represented in this plane by a symbol of size proportional to the 𝐼 6 index. Hence one can see that the points influential for PCA (those far from the origin) are generally of small influence for influence index 𝐼 6 .

Spatial interpretation

To end this study, a map is useful to capture the spatial interpretation and complement the previous comments which need some prior knowledge about the sociology of the Paris area. In Figure 11, the 143 cities are represented by a circle proportional to the influence index 𝐼 6 and a spatial interpolation is performed using 4 grey levels. This map shows that Paris is stable, and that each surrounding county contains a stable area: the richest or the poorest cities. What is remarkable is that the white as well as the gray areas are clustered.

Perspectives

Two directions for future work can be sketched.

First, the tools developed in this paper for the classification case can be generalized for the regression case. The instability is smoother in the regression case since the data are adjusted thanks to a surface rather than a frontier. Then the number of false classifications is replaced with the sum of square residuals typically which is more sensitive to perturbations but the differences between the full tree and the jackknife ones are more stringent in the classification case. Some classical problems, like outlier detection has been intensively studied in the regression case and a lot of solutions have been developed around the ideas of robust regression (see [START_REF] Rousseeuw | Least median of squares regression[END_REF] [START_REF] Rousseeuw | Least median of squares regression[END_REF]). A complete scheme for comparison can be retrieved from Chèze and Poggi [START_REF] Chèze | Outlier detection by boosting regression trees[END_REF], where a tree-based algorithm has been developed and compared 5: DNF : indices 𝑖 of observations from the spam dataset for which the corresponding jackknife tree 𝑇 (-𝑖) has one less leaf than CART reference tree 𝑇 . DC : indices 𝑖 for which 𝑥 𝑖 is classified differently by 𝑇 and 𝑇 (-𝑖) .

intensively to well known competitive methods including robust regression.

Another direction is to focus on model stability and robustness rather than centering the analysis around individuals. A first idea could be, following [START_REF] Bar-Hen | Influence Function for Robust Phylogenetic Reconstructions[END_REF] [START_REF] Bar-Hen | Influence Function for Robust Phylogenetic Reconstructions[END_REF], to build the most robust tree by iteratively remove the most influential observation until stabilisation between reference and jakknife trees. A second one is to consider, starting from the 𝐼 6 index but summing on the observations instead of the complexities, the percentage of observations differently classified by the reference and jakknife subtrees at fixed complexity. This is out of the scope of this article.

Appendix

In Table 5 one can find three sets of indices for the spam dataset observations for which the jackknife tree differs from the reference tree. 
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 2 Figure 2: Influence indices based on predictions for the spam dataset.
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 3 Figure 3: Influence index based on partitions for the spam dataset.
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 4 Figure 4: PATARE dataset: boxplots of the variables per county ("département" in France) and zip codes for counties.
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 5 Figure 5: Spatial representation of 𝑘-means (𝑘=4) clustering of the PATARE dataset cities (each symbol is associated with a cluster).
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 7 Figure 7: Influence indices based on predictions for PATARE dataset cities.
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 8 Figure 8: Influence index based on partitions for PATARE dataset cities.
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 9 Figure 9: Influential cities located on the CART reference tree.
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 1011 Figure 10: Plane of the two first principal components: Cities are represented by symbols proportional to influence index 𝐼 6 .

  The variables charDollar, charExclamation, Figure 1: CART reference tree for the spam dataset.hp and remove are always present. The variable capitalLong is present in 88 trees, the variable capitalTotal is present in 4513 trees and the variable free is present in 4441 trees. This indicates instable clades within 𝑇 . In addition variables free and capitalLong as well as capi-talLong and capitalTotal never appear simultaneously, while the 4441 trees containing free also contain capitalTotal. This highlights the variability among the 4601 trees. All the differences are explained by the presence (or not) of the variable free. Indeed, removing one observation from node 8 is enough to remove the split generated from variable free and to merge the two nodes leading to misclassification. There are 77 observations 𝑥 𝑖 classified differently by 𝑇 and the corresponding jackknife tree 𝑇(-𝑖) , and 160 jackknife trees with one less leaf than 𝑇 . All the other jackknife trees have the same number of leaves as 𝑇 . The indices of the aforesaid observations are given in Table5of the appendix. Denoting by DC the set of indices 𝑖 for which 𝑥 𝑖 is classified differently by 𝑇 and 𝑇

			| charDollar< 0.0555
		remove< 0.055	hp>=0.4
	charExclamation< 0.378	spam	nonspam	spam
			30/300	63/7	70/990
	nonspam	capitalTotal< 55.5	
	2462/275			
	free< 0.845	spam	
			33/189	
	nonspam	spam		
	129/32	1/20		

Table 1 :

 1 Frequency distribution of the influence index 𝐼 6 over the 4601 emails.

	6	0	1	2	3 4 7 12 13 14 17 18 21
	Nb. Obs. 2768 208 1359 79 62 1 1 66 30 2 23 2

Table 4 :

 4 Frequency distribution of influence index 𝐼 6 over the 143 cities.

Table

  

	DNF∩DC	DNF∖DC	DC∖DNF
	17 23 32 37 42 43 83 84 108 145	486 1275 1823 1830 1841 1853 1862	1019 2987
	155 256 348 424 465 653 760	1863 1866 1888 1942 1950 2069 2086	
	831 892 920 1071 1083 1114	2114 2239 2340 2347 2365 2367 2434	
	1147 1151 1193 1195 1202 1207	2496 2615 2622 2645 2681 2696 2723	
	1208 1213 1228 1231 1232 1258	2792 2868 2880 2884 2885 3073 3085	
	1291 1292 1293 1389 1395 1401	3386 3420 3447 3460 3470 3701 3704	
	1413 1458 1463 1466 1582 1602	3807 3964 3967 3980 4038 4046 4061	
	1603 1631 1634 2158 2221 2303	4062 4067 4078 4083 4085 4093 4101	
	2354 2356 2387 2711 2909 3090	4102 4110 4112 4115 4124 4186 4224	
	3092 3272 3298 3453 3554 4068	4227 4232 4246 4247 4337 4341 4349	
	4197 4211 4222 4230 4245 4392	4366 4384 4391 4394 4396 4400 4401	
	4460 4462 4465 4492	4403 4454 4464 4473 4478 4502 4505	
		4594	

After this quick inspection of the reference tree avoiding careful inspection of the cities inside the leaves, let us focus on the influential cities highlighted by the previously defined indices. In the sequel the cities (which are the individuals) are written in italics to be clearly distinguished from counties which are written between quotation marks.

 6: DNF: for the 4 counties, cities from the PATARE dataset for which the corresponding jackknife tree 𝑇 (-𝑖) has not the same number of leaves as CART reference tree 𝑇 . DC: cities classified differently by 𝑇 and 𝑇 (-𝑖) .