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Abstract—In this paper, we present a library of analog operators
used for the analog real-time computation of the Hodgkin–Huxley
formalism. These operators make it possible to design a silicon (Si)
neuron that is dynamically tunable, and that reproduces different
kinds of neurons. We used an original method in neuromorphic en-
gineering to characterize this Si neuron. In electrophysiology, this
method is well known as the “voltage-clamp” technique. We also
compare the features of an application-specific integrated circuit
built with this library with results obtained from software simula-
tions. We then present the complex behavior of neural membrane
voltages and the potential applications of this Si neuron.

Index Terms—AVLSI circuits, Hodgkin–Huxley (HH) for-
malism, neuromorphic engineering, silicon (Si) neuron.

I. INTRODUCTION

S INCE Carver Mead pioneered neuromorphic very-large
scale integrated (VLSI) engineering in the early 1990s [1],

[2], an ever-increasing number of research groups have adopted
his design principles of using analog signals and components
for computing primitives of neuron models. Even if the main
feature of neuromorphic engineering is its use of the analog
rules of electronic components, this discipline also merges
knowledge from neurobiology, mathematics, computer science,
and integrated-circuit (IC) design. These days, two approaches
coexist in the neuromorphic design community: 1) bioinspired
methods on the one hand and 2) neuromimetic methods on the
other hand.

Bioinspired designers develop new solutions to solve engi-
neering issues [3]. They use biological principles, taking var-
ious approximations of nature, with the view of building more
efficient systems. Their research topics concern mainly sensory
systems, such as vision sensors [4]–[6] or topics relevant to au-
dition, such as auditory scene analysis [7] or sound localization
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[8], but also signal processing in sensory systems, such as se-
lective attention for vision processes [9] and learning [10].

The second approach in the neuromorphic community con-
cerns neuromimetic systems, which imitate more precisely
the activity of biological cells. One of the first designs of this
type is the “Silicon Neuron” [11]. Some of these systems are
a follow-up of bioinspired designs for visual prosthesis [12],
[13]. However, most systems address fundamental neuroscience
questions, such as the exploration of activity patterns specific
to an identified neural network (for example, the central pattern
generator or rhythmic motor control [14]–[17]), or learning
principles [18]–[20].

Our group has been designing and exploiting neuromimetic
silicon neurons for ten years [20]–[23], in collaboration with
Prof. G. Le Masson [24]. We have developed specific ICs from
biophysical models following the Hodgkin–Huxley (HH) for-
malism, in order to address two fields of research: 1) build a
hardware simulation system for computational neuroscience to
investigate plasticity and learning phenomena in spiking neural
networks and 2) develop the hybrid technique, which connects
Si and biological neurons in real time. These ICs are designed
to provide two main features: 1) enable the construction of bio-
realistic networks and 2) offer the possibility of dynamically
tuning the model parameters. ICs are organized to form a sim-
ulation toolbox where a large variety of models can be imple-
mented in real time, as all of the HH formalism parameters can
be modified on-chip. References [25]–[27] presented VLSI im-
plementation of HH models where either few parameters were
tunable or where the tuning range was limited. Although our
choice implies a costly design (Si area, number of pads, power
consumption), it is an interesting alternative to digital compu-
tation in simulation platforms for computational neuroscience.
Moreover, conductance-based models and real-time processing
at the sample level will be helpful for the hybrid technique.

In neuromimetic design, the neural network targeted for
a given study imposes the model to be implemented. When
dealing with large networks, the chip size is limited and, there-
fore, the implemented model is simplified and not biophysically
plausible [18], [19], [28], [29] , even though the biological
behavior is preserved. These Si neurons fit a specific model, for
the study of a single class of neurons. In the case of the work
presented here, our aim was to fit a biophysical model, even if
it led to the application of limits on the network size.

The design flow for a specific analog IC consists in circuit
simulations, masks design, and fabrication. Due to the consid-
erable time needed for that, reuse is an important issue. We ad-
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dressed this requirement by designing a library of analog opera-
tors, which can participate in the HH formalism, and can be used
for the construction of a Si neuron IC. To optimize reuse, these
operators have parameters, which correspond to the widest pos-
sible range of neuron model parameters. A chip designed from
this library computes the neuron’s activity and is accessed as a
simulation tool, the model parameters of which can be tuned by
the user. The user then builds his or her proprietary neurons and
network, adapted to his specific application.

In Section II, we present the neuron models implemented on
ICs. In Section III, we describe the library of analog operators;
in Section V, we present the analog operators, which belong to
the library and are based on the basic circuits briefly presented
in Section IV. Section VI describes a neuromimetic simulator,
with details concerning the integration of its IC onto Si in Sec-
tion VII. The associated experimental platform is presented in
Section VIII. The results and comparisons with software simu-
lations are provided in Sections IX and X, respectively. In Sec-
tion XI, we show additional simulations to demonstrate the di-
versity of possible configurations, which can be produced by
using the same library. In Section XII, we address upcoming
applications.

II. IMPLEMENTED MODEL

A. HH Formalism

We used the HH formalism [30] as a design basis for our
IC. The main advantage of this formalism is that it relies on
biophysically realistic parameters and describes individual ionic
and synaptic conductances for each neuron in accordance with
the dynamics of ionic channels.

The electrical activity of a neuron is the consequence of the
diffusion of different ionic species through its membrane. This
activity results in fluctuations of the membrane potential, which
is the voltage difference between the outer and inner sides of
the cell. Ions flow through the cell membrane through ion-spe-
cific channels, modeled as specific ionic currents. A reversal po-
tential is associated with each ionic species, according to the
difference between its intracellular and extracellular concentra-
tions. The fraction of open ion-specific channels determines the
global membrane conductance of a given ion. This fraction re-
sults from the interaction between time and voltage-dependent
activation and inactivation processes.

The HH formalism provides a set of equations and an equiv-
alent electrical circuit (Fig. 1), which describes these conduc-
tance phenomena.

The current flowing across the membrane is integrated on the
membrane capacitance, according to

(1)

where is the membrane potential, is the membrane ca-
pacitance, and is a stimulation or synaptic current.

is the current for a given channel type, and its associated
equation is

(2)

Fig. 1. Equivalent electrical circuit of a neuron following the HH model.
Voltage-gated and leak ion channels are represented by nonlinear or linear
conductances (� ). The electrochemical gradients driving the flow of ions
are represented by voltage sources (� ). The membrane is represented by a
capacitance (� ).

in which is the maximum conductance, and and represent
the activation and inactivation terms, respectively. They are dy-
namic functions, which describe the permeability of membrane
channels to its specific ion. is the ion-specific reverse poten-
tial and and are integers.

According to the first-order differential (3), relaxes back
toward its associated steady-state value , which is a sigmoid
function of

(3)

(4)

The time constant for convergence is . In (4), is the ac-
tivation sigmoid offset, and is the activation sigmoid slope.
The inactivation parameter follows identical equations, except
for the sign inside the brackets, which is positive.

The HH primary equations describe sodium, potassium, and
leakage channels, with 3 and 1; 4 and 0;
0 and 0, respectively, in (2). These channels are respon-
sible for action potential generation. For more complex activity
patterns, such as bursting or the discharge of action potentials
with adaptation phenomena, additional channels, such as cal-
cium and calcium-dependent potassium have to be taken into
account.

B. Other Ionic Currents

The maximum conductance may also depend on an internal
variable, such as an ionic concentration. In this case, the calcium
channel still obeys the same equations, but with several possible
values for and in accordance with (2)[31]. To achieve our
initial objective and model various types of neural activity, we
chose and .

The potassium channel dynamic also depends on internal
variables, such as the calcium concentration. This can be
computed by using (5), and then introduced into (6) to evaluate
the steady-state activation value. For the calcium-dependent
potassium channel, we define 1 and 0.

(5)

(6)
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Fig. 2. Block diagram of the ionic current generator. Each block corresponds
to a subcircuit performing the indicated operation and parametered by tunable
parameters representing the conductance model parameters.

C. Synapses

To address neural computation at the network level, we also
integrated synaptic interactions, modeled using conductance-
based synapses [32]. The synaptic current is described by

(7)

where is the synaptic weight. If the synapse is not plastic,
then has a fixed value, whereas in the opposite case, it
follows a plasticity rule such as that defined by spike timing-
dependent plasticity (STDP).

In (7), the overall synaptic current depends on the postsy-
naptic membrane voltage, and the activation term depends
on the presynaptic membrane voltage. The terms and

then replace , respectively, in (2) and (4).

III. FROM MODEL TO SI

A. Library of Mathematical Functions and Specifications

For our design, we retained five channel types: 1) leakage,
2) sodium, 3) potassium, 4) calcium, and 5) calcium-dependent
potassium. By combining those channels, we can model a large
variety of neurons. Each channel follows the modular principle
described before, which results in the block diagram of ionic
current generators (Fig. 2).

The repetition of mathematical operators in the model, com-
bined with tunable parameters, is an advantage for systematic
development.

The specifications of the equation parameters, presented in
Table I, were set, taking into account models of cortical neu-
rons from the Neuron software database [33]. The resulting con-
straints of those specifications are strong for IC design. In some
cases, we had to split the parameter ranges to preserve inter-
esting dynamics.

B. Design Mode

Taking into account the integration constraints of the elec-
tronics, and in order to increase the dynamic range and noise
immunity, we applied an x5 gain factor to the voltages. The
gain factor for the conductance depends on the membrane ca-
pacitance of the hardware, compared with that found in the bi-
ological context. Pending the detailed results described in Sec-
tion X, due to the ratio of capacitor values between hardware

TABLE I
SPECIFICATION OF THE BIOLOGICAL PARAMETERS FOR

AN ANALOG OPERATOR LIBRARY

and model, we multiplied the conductance by 22.72, leading to
a current gain factor of 113.63.

We designed the functions in current mode [34], so that all
of the internal variables are physically represented by currents.
This design mode improves noise immunity and enables all
usual operations to be designed with simple circuits. All MOS
transistors operate above threshold. Thus, we can address the
specifications defined in Table I which have a large dynamic
range for input voltages and input/output currents.

IV. ELEMENTARY CIRCUITS

Although the elementary circuits are inspired from
well-known circuits used by electronics designers, they are
described here in detail, to provide the reader with an adequate
understanding of the computational methods used for the HH
variables.

A. Voltage–Current Converter

The model’s parameters are applied to the chip in the form
of voltages. Since we chose to use a current mode design, a
voltage-current converter ( ) is needed. The solution with
a high linear range uses one operational amplifier (Op-Amp),
one resistor, and one MOS transistor (Fig. 3). The op-amp driver
stage is not necessary since its output is connected to the MOS
gate. To ensure a linear behavior on a large range, we should
prevent the threshold voltage from depending on the bulk-sub-
strate voltage. Using the BiCMOS -well technology available
from the common resource center for VLSI prototyping, we
can have a bulk-to-source connection only with PMOS transis-
tors. We thus obtained the following equation where is the
power-supply voltage:

(8)

B. Current-Mode Multiplier

While additions and subtractions are easily implemented in
current mode, multiplications need more elaborated circuits.
Here, the input variables are the activation and inactivation
terms [see (2)], and these terms are bounded by 0 and 1, so that
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Fig. 3. Voltage-current converter using 1 op-amp, 1 PMOS transistor and 1
resistor (� is the input, � is the output).

Fig. 4. One-quadrant multiplier in current mode using the NPN transistor with
� � � � � � � , resulting in � � � � � �� .

only a one-quadrant multiplier is needed, as shown in Fig. 4
[35]. From the translinear loop principle, and with equal emitter
areas, we obtain

(9)

Using BiCMOS technology, the base current is negligible
when compared to the collector current. We then obtain

(10)

C. MOS Operational Transconductance Amplifier

When we need voltage–current conversion with a differential
input voltage, we cannot use the described before. We
therefore need to use an operational transconductance amplifier
(OTA), as shown in Fig. 5. Reference [36] provides details of
the associated equations, which lead to

(11)
where is the electron mobility, is the gate–oxide capac-
itance, is the channel width, and is the channel length.

Fig. 5. OTA, with an input � and an output � .

Fig. 6. Bipolar differential pair with predistortion stage, with a differential
input � � � and an output ��.

The MOS OTA is compact but is linear on a limited range.
Equation (12) gives the expression for , the relative error, which
characterizes the linearity of the circuit. Here, we arbitrarily
chose 5%, by setting appropriate values for and

(12)

D. Bipolar Differential Pair With Predistortion Stage

As we operate MOS above threshold, only bipolar transistors
can provide the sigmoid function, which will be detailed in the
next section as a collector current from a bipolar differential
pair. For the operating range of a standard bipolar differential
pair, we can accept linear behavior for an input voltage equal to
4 , where is the thermal voltage. To satisfy the analog
operator’s specifications where the input voltage dynamics is
up to 1 V, this range needs to be increased. This was achieved
by using the circuit diagram shown in Fig. 6 (see [37] for the
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Fig. 7. Tunable sigmoid function, with input voltage � � � and output current � or � to compute the activation or the inactivation term,
respectively.

detailed equations). Assuming the integrated resistance R to be
sufficiently high ( ), and are given by (13)
and (14), which are the two most important results

(13)

(14)

If is generated with a circuit described in Sec-
tion IV-A, we can identify the two parameters and in
(14) used in (4).

V. LIBRARY OF ANALOG OPERATORS

Using the elementary circuits described before, we designed
the analog blocks according to their specifications (Table I).
For all of the blocks, the input and output dynamics are con-
strained in the range [2 V – 3 V]. Thanks to this feature, the
blocks as mathematical operators can be freely arranged to com-
pute a complete conductance equation. In counterpart, this de-
sign mode results in high power consumption and Si area. In
order to test the analog operators, we designed a prototype chip
called Violetta, based on a 0.8- m BiCMOS technology process
from austria micro systems (AMS), under the Cadence environ-
ment. We ran Monte Carlo simulations on all analog operators.
The effect of components mismatch can be compensated by ad-
justing the model parameters in the range of Table I. We made
all measurements with a dedicated printed-circuit board (PCB)
and standard signal generators. A 5-V power supply was used
with a reference bias voltage of 2.5 V.

A. Sigmoid Function

The sigmoid block computes the steady-state value corre-
sponding to activation or inactivation. This mathematical func-
tion appears in the transfer function of a bipolar junction tran-
sistor (BJT) differential pair. To facilitate management of the
large input ranges needed for and (see Table I), we used

a predistortion stage, described in Section IV-D. Fig. 7 shows
the corresponding circuit.

The current difference is applied to the resistors , and the
resulting voltage is applied to the differential input pair (Q3-
Q4), with defined by (15). Expression (16) gives the col-
lector currents in the BJT differential pair Q3-Q4, where is
the thermal voltage and is the bias current of the differential
pair, equal to 20 A. We indicate or as the activation
or inactivation terms of the neuron model in (4)

(15)

(16)

Power consumption for this block is 2.3 mW. Fig. 8 presents
the measured values of the current applied to an external
100 k resistor (for measurements only), with various param-
eter combinations. The parameter corresponds to the
half-activation or half-inactivation voltage, and sets the
slope of the linear part of the sigmoid. It can be seen that the
circuit follows the originally specified trend, over the full range
of model parameters.

B. Integrator Function

In the design of the integrator function, for reasons of noise
immunity, we chose to use a closed-loop integrator rather than a
differentiator. The sigmoid generator output signals to the inte-
gration module are shown in Fig. 9. This generator contains two
current-mode multipliers (CMM), as shown in Section IV-B.
The sigmoid generator output and the integrator function are al-
ways positive, since they obey (3). For reasons of simplicity,
it was thus preferred to design two one-quadrant multipliers,
rather than a single two-quadrant multiplier placed after a sub-
tractor. One of the multiplier inputs is the current provided by
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Fig. 8. Measurements of � (activation term). The bias current and the output
resistor are 20 �A and 100 k�, respectively. The �-axis is the clamped voltage
� for the measurements (� � � � �, � from the biological
model). (a) Response for � equal to 10 mV (� � � � �, � from
the biological model). (b) Response for the � equal to 100 mV. For both
conditions on � , � is tuned to its extreme values (from �500 mV
to �500 mV).

the sigmoid function ( or ). The second input is a con-
trolled current supplied by a . We modify the circuit
to obtain two identical output currents thanks to a current mirror.
One can thus think of the CMM as a current amplifier, with con-
trolled gain .

The OTA in Fig. 9 has a fixed gain and the capacitor C
transfer function is , where is the Laplace variable. This
leads to (17), and by comparing this with (3), we identify the
time constant as

(17)

Since it is not feasible to perform on-chip tuning of the time
constant over 6 decades (i.e., from 0.02 ms to 1 s (Table I), we
use an external capacitor C, which allows a reduced range to
be selected on the chip. The control voltage (from 1.5 V to
4.95 V) allows fine tuning within each range. Fig. 10 illustrates
the output current from this block, with 10 nF and for two
values of . The output current is applied to an external
100-k resistor (for measurements only), and a good match is
observed with respect to the specifications. Power consumption
for this block is 1.4 mW.

C. Power Raising

This stage is a variant of the CMM presented before. We im-
plemented all possible combinations of and (respectively,
for the activation and for the inactivation power), according

Fig. 9. Circuit diagram of the integrator function. The input and output cur-
rents, respectively � and � , are amplified by the current-mode multiplier
(CMM). The second input to the CMM is current delivered by a voltage-con-
trolled current (���) source, and the gain of the CMM is	
� �. The capacitor
transfer function is ���
, and the gain of the OTA is �.

Fig. 10. Integrator current response to an input current step, for two different
values of the control voltage � corresponding, respectively, to � � 0.197 ms
and � � 11.8 ms.

Fig. 11. Circuit used for power raising, using the translinear loop principle. In
that case, � � � � � �� is used for the sodium channel � � function.

to the specifications (e.g., , , , and ). The power
is not tunable in this stage. Fig. 11 shows the circuit diagram
for the example of (corresponding to the Na current). This
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Fig. 12. Multiplier circuit generating the ionic current � , with an input bipolar differential pair � � � controlled by � and � and a predistorsion
stage � � � biased by � � � .

circuit computes this product using the translinear loop prin-
ciple. Since and for all bipolar transistors,
we can assume the following current relationships: ;

; . Ap-
plying the translinear principle to the loop, we thus obtain
the following expression for the output current:

(18)

It is important to note that for all combinations of and
according to the model, the dedicated circuits are always raised
to a power in the numerator of (18) which is 1 higher than that
in the denominator. We know that , which becomes or
here, lies between 0 and 20 A, so that with ,
always lies in the range between 0 and 20 A, for all combina-
tions of and . The average power consumption is 0.25 mW
for 4.

D. Output Multiplier

The last element of our library is the output multiplier. The
specifications presented here cover a very large range for the
value of . As already stated, we split this range into two parts,
depending on the type of ion under consideration. The multiplier
shown in Fig. 12 is based on a bipolar differential pair with a
predistorsion stage. The bias current of the bipolar pair
Q11-Q12 is replaced by , where comes from
the power raising stage and is the current supplied by a

(the parameter represents the maximum conductance
value). The collector current difference, between Q11 and Q12,
can thus be determined from (14). For the first version of the
multiplier used for the Na and channels, the width of M3
and M8 is ten times higher than that of M1 and M6. The output
current is also ten times higher, and is given by the following
expression:

(19)

Power consumption for this first version is 3.2 mW. For the
second version of the multiplier used for the other channels (i.e.,
for the weakest values), we maintain the same width for M3
and M8 as for M1 and M6. As specified in Table I, the maximum
output currents for calcium, calcium-dependent potassium, and
leakage channels are one decade smaller than those of sodium
and potassium. Power consumption for this second version is
2.5 mW.

VI. TOWARD REAL-TIME IC SIMULATIONS

Our library of tunable mathematical operators for custom
analog simulator designs was validated with a preliminary pro-
totype – the Violetta IC. We then implemented these functions
on a second prototype IC, referred to as Pamina, which allowed
us to build a real-time simulator for various sets of compu-
tational neuroscience applications. For this, we first defined
the specifications of this new chip generation, and defined the
details of the required new functions. The analog computational
core, built with various analog operators, represents a set of
ionic current generators. Digital functions are added to manage
the core topology, and analog memory cells are included in
order to store the model parameters.

A. IC Pamina Specifications

As shown in Fig. 13, this chip includes: 1) analog computa-
tional cores inspired from previous developments (Analog Core
block); 2) a set of SRAM digital memory cells defining the
connections needed between the current generators (Topology
block); 3) a set of DRAM analog memory cells, used to store the
user-defined set of model parameters (Analog Memory block).
An artificial neuron consists of synaptic currents and a set of
ionic currents, summed on a membrane capacitance. In this ver-
sion, two artificial neurons are implemented, each of them being
built with five ionic conductances according to the model de-
scribed in Section II (Na, K, Ca, K(Ca) and Leakage). For each
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Fig. 13. I/O mapping, block diagram, and inter-block connections in the
Pamina IC. The analog cores are in charge of computing the ionic and synaptic
currents. The function parameters are stored in the analog memory cells. The
conductance’s connection is controlled by the topology digital memory cells.

neuron, we added eight synaptic conductances for network ap-
plications, and one stimulation input.

The analog parameters are sent serially and periodically to the
memory cells. The digital parameters control the topology of the
analog simulation core. Some of the currents and voltages of the
Si neurons (such as membrane voltages and ionic currents) are
available in the form of analog outputs for an oscilloscope dis-
play, or inputs for voltage-clamp experiments. Neural activity
(spikes), as well as presynaptic information is available in dig-
ital form. This also provides access for the real-time manage-
ment of simulations (e.g., software learning computations that
modulate the synaptic weights in the neural network).

B. Analog Cores: Ionic Channels and Synapses

We now give further details of the architecture and I/O of the
analog cores (see Fig. 14). All current generators have two out-
puts: the first can send its output to the external capacitor
(representing the neuron membrane capacitor); the second
one is used as a display output. A current buffer authorizes the
monitoring of electrical membrane activity with an oscilloscope
probe, through a third output ( buffered). The switch
between the current buffer and the external capacitor is closed
for neuronal activity simulations and opened for voltage-clamp
experiments (this technique involves setting to predeter-
mined levels to characterize the ionic conductances). Thanks
to the external source , we can use arbitrary signals to
stimulate the neuron.

Fig. 14. Architecture of an analog core. It includes 5 ionic current genera-
tors and 8 synaptic current generators with their own pre-synaptic inputs. Cur-
rents selected by the digital topology control are applied to the � pin to
be summed on an external capacitance. Analog signals (� and one � )
are output for display or storage. � is digitized on a digital output, using a
threshold comparator. � and � are used for stimulation and �
clamping, respectively.

We also implemented eight synaptic current generators, trig-
gered by digital pre-synaptic inputs, together with a tunable de-
tection threshold, to digitize the action potential.

C. Topology Management

The connectivity of these different blocks is externally pro-
grammable, via the on-chip SRAM memory. The data sent to the
chip is decoded and drives static switches. We define three types
of data. The first type configures each analog core, e.g., selects,
from the ionic channels, synapses, a stimulation current, and
those current generators to be connected to . The second
type describes the analog core configuration according to Sec-
tion II, e.g., the time constant range for and ,
the power raising for the activation term in the calcium channel,
or the computational mode (closed-loop neural membrane or
voltage-clamp experiment). The last data set defines the mon-
itored current output(s).

D. Analog Memories

We designed a specific analog memory bank for our applica-
tion. The simplest dynamic memory cell is a capacitive device,
which is periodically refreshed. A switch, opened when the cell
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Fig. 15. The 2 stages analog memory cell, addressed by the signal Switch_en.
C2 is the final storage capacitor.

is addressed for writing, controls its access. We apply the 158
model parameters in serial fashion, coded by analog voltages,
onto one input of the ASIC. The access frequency on this pin
is 100 kHz, which limits the refresh frequency of any one cell
to 633 Hz (a hold period of 1.6 ms). This provides a good com-
promise, limiting the clocking noise and the discharge of the
storage capacitor.

The memory cell itself is a 2-stage circuit, as shown in Fig. 15.
A digital state-machine (not represented in the figure) addresses
the cell by controlling the Switch_en signal. The design was
optimized [38] in order to minimize leakage currents, in par-
ticular during and transitions:
M3-M4 and M7-M8 respectively compensate the leakage tran-
sition currents of the switches M1-M2 and M5-M6. The analog
data is stored on C2. The value of the M5-M6 switch is
maximized during the time when, due to its first stage storage
capacitance C1, the voltage difference across M5-M6 is being
reduced. These combined features limit the leakage current on
the M5-M6 switch. The first stage switch M1-M2 has a small
resistance , to limit the loading period. Simulations show
that in a period of 2 ms, the memory value is degraded by 1 mV,
from an initial total range of 5 V (12 bit encoding); we observe
glitches with a maximum duration of 200 ns and an amplitude
of 10 mV which is not sufficient to trigger a spike, whatever
the parameter. This performance matches our requirements per-
fectly, since the parameters lie in the range [1 V – 5 V], with a
refresh period of 1.6 ms.

VII. SILICON INTEGRATION

The second prototype ASIC was designed in full-custom
mode, using a BiCMOS SiGe 0.35 technology process from
austriamicrosystems (AMS), under the Cadence environment.
Fig. 16 is a microphotograph of this ASIC, called Pamina. The
analog cores, topology, and analog memory cells are indicated
on the figure.

Pamina contains around 19000 MOS transistors, 2000
bipolar ones, and 1200 passive elements; its surface area is
4170 3480 . All analog cells are designed in full-custom
mode. For this, we drew the analog operator layouts, and
merged them in such a way as to build the target current gener-
ators. The average power consumption for a five conductances
neuron is 38 mW. Whereas the digital cells are taken from the
austriamicrosystems’s library, 71% of the 22 000 components
are produced by a fully customized design procedure. We used
optimized analog layout procedures, such as common-centroid

Fig. 16. Microphotograph of the Pamina chip (4170� 3480 �� ) after fab-
rication. The areas for the current generators and the analog memory cells are
identified.

and dummy devices, in order to implement critical structures
and to harden the design against technological process mis-
matches and variations [39].

VIII. HARDWARE SIMULATION SYSTEM

In this section, we describe the hardware simulation system,
based on the Pamina IC, which was designed to explore the
neuron conductance based model.

A. System Specifications

To facilitate the use of the simulation system (by neuroscien-
tists), we interfaced Pamina with a computer: the experimenter
can define the neuron model parameters using a software
interface. These characteristics include the ionic channel type,
selected from the options of sodium, potassium, leakage, cal-
cium, and calcium-dependent potassium, and the parameter
values for each channel. The control software sends this data
to the IC, through the analog and digital data paths described
in Section VI. The analog computation core simulates, in
real-time, the membrane potential which is digitized by an
analog to digital converter and sent to the computer for display,
storage or further processing (see Fig. 17). We do not insert
synapse parameters or synaptic plasticity at this level, because
a layout mistake prevented the synapses from functioning
correctly.

B. PCI and Interface Boards

The analog ICs are interfaced with the computer using a
specifically designed PCI board and a circuit-dedicated inter-
face board. The interface board supports the Pamina chip, one
DAC to directly stimulate each neuron (see Section VI.B.), and
two analog ADCs to sample the membrane voltages.

The PCI board is controlled by an on-board FPGA, which
is configured to control the main interfacing operations. The
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Fig. 17. Synopsis of the simulation system based on the Pamina IC. The IC is
controlled by a software and a dedicated PCI board.

FPGA accesses the Pamina IC through the daughter board
and a PCI bridge, which handles data transfer from and to
the computer. The FPGA decodes the information sent by the
computer, and dispatches it to the different components on the
daughter board. Among these components, an external 1 MB
RAM buffers the sampled membrane voltage in real-time and
sends it to the PC storage unit through the PCI bus. Lastly, the
FPGA provides the signals required by the chip topology, and
for analog memory cell refreshment.

C. Software Layers

The host computer runs on a GNU/Linux operating system,
based on the RedHat distribution. An open source system fa-
cilitates the development of dedicated driver software to control
the PCI board. Among the required functions to manage the PCI
board, two were optimized for speed and latency. The first one of
these, poke(address,data), writes to the FPGA, and the second
one, peek(address), reads from it. Associated with the address
table of the FPGA, these two functions provide easy access for
system development and debugging.

All simulations are preceded by a configuration phase in-
volving the definition and transmission of a set of parameters.
During execution of the effective simulation, the users can, at
any time, send a set of configuration data to change any simula-
tion parameter.

IX. IONIC CHANNEL IDENTIFICATION

We performed a set of benchmark tests on Pamina, prior to
running any explorative experiments. The classical method used
to check a modeled neuron relies on measurements of the mem-
brane voltage, which should exhibit an oscillatory activity. At
the behavioral level, however, this type of verification remains
very imprecise.

Neurophysiologists have developed specific techniques to ex-
tract current-based models from the biological recordings of
neuronal electrical activity. The most popular method is the
voltage-clamp technique [40]. For such an experiment, the neu-
roscientists record the in vitro neural activity using intra-cel-
lular electrodes. It is possible to measure the conductance of
an individual ionic channel by inhibiting the other channels,
through the injection of specific drugs, and by clamping the
neuron membrane voltage. After measuring the neuron’s sur-
face area and membrane capacitance, the experimentalist ex-
tracts the current-voltage relationships of the ionic conductances

for each type of ionic channel. In complex neuron models, such
as the Hodgkin-Huxley enhanced models, 15 parameters are
needed to describe a 3-conductance neuron.

In analog design, the influence of dispersion and mismatch
in the manufacturing process, in addition to the influence of the
IC electronic environment, lead to a certain degree of uncer-
tainty concerning the exact equations computed in the circuit.
The use of a voltage-clamp method, such as in electrophysi-
ology, enables the exact model implemented on the IC to be
extracted after manufacture. If the parameters are tunable, the
model parameters can be adjusted, in order to increase the pre-
cision of the model. These extracted characteristics also provide
useful information, which can be used for further modifications
of the analog blocks. The relevance of these extracted parame-
ters when compared to the original biological model is discussed
in Section X.

Using the voltage-clamp technique, we can identify, one by
one, the parameters of each ionic channel. We open the mem-
brane voltage loop with the switch between the output
and the Voltage-clamp input (see Fig. 14). We then study the
responses of the ionic current generators to successive steps in
the value of , applied to the voltage-clamp input con-
nected to the ionic channel. Fig. 18 illustrates the experimental
process: Fig. 18(a) shows the membrane voltage steps succes-
sively applied to , and Fig. 18(bB) shows the associated
response of the isolated potassium channel. The process used to
extract the potassium channel parameters is described in Sec-
tion IX(A). In this paper, we studied inhibitory and excitatory
neuron models to check the behavior of the Pamina IC. In the
literature, these two types of model are also referred to as, re-
spectively, Fast Spiking (FS) and Regular Spiking (RS) neurons.
These require respectively three and four conductance values:
sodium, potassium, and leakage channels for the FS neuron, and
an additional modulator channel for the RS neuron. The mod-
ulator channel is a slow potassium current commonly used for
spike-frequency adaptation [41]. It has the same equation as the
calcium one, but different parameters. We use the calcium cur-
rent generator to implement this modulator current. In the fol-
lowing paragraphs, we apply this identification technique to the
potassium, sodium, leakage, and modulator channels. In Sec-
tion X, we compare the experimental and theoretical results.

A. Potassium Channel

The potassium ( ) channel is easy to identify because it has
only one activation term, . When (2) is adapted to the electronic
variables of this channel, it gives:

(20)

Fig. 18 presents the results of the voltage-clamp experiment
on the channel of Pamina. For in Fig. 18(b), the
current reaches its steady state value and , where
is the fraction of the activated channel. For ,
(4) adapted also to electronic values gives: . Expression
(20) thus becomes:

(21)
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Fig. 18. Illustration of the voltage-clamp method on the ASIC, applied to the
potassium channel. A) �� input steps. During the experiment, voltage
steps are applied successively, with a rest period of 50 ms. � axis scale:
� � � � � . B) Response current of the Potassium channels
to the voltage step �� of A. The current absolute value for � � increases
with � . � axis scale: � � ��	�
� � . � axis: simulation time
is equal to biological real time.

By applying a simple linear regression method, we obtain
and .

Then, for , we can use (20) to plot the activated
channel fraction as a function of :

(22)

for each parameter pair .
The resulting curve, , is fitted by a sigmoid func-

tion, with and .
For the activation time constant, we use a classical approxi-

mation method (81.5% of the full range at ), leading
to .

B. Sodium Channel

The Sodium channel has an activation term ( ) and an in-
activation term ( ). Then, when (2) is adapted to the electronic
variables, it becomes:

(23)

If we consider (a biologically realistic assumption)
and for equivalent to , can be approximated by a con-
stant, whereas can vary. We can thus identify and sep-
arately. With the stimulation steps used in Fig. 18(a),
the measured responses are as shown in Fig. 19(a). These
curves attain their maximum values, when the fraction of the
activated channel reaches its steady state value . As men-
tioned above, remains equal to 1, which is its initial value
when starts at . From these curves, we can iden-
tify the following parameters: , ,

Fig. 19. Measurements on the sodium channel. A) represents the response to
Sodium channel activation. B) represents the response to Sodium channel inacti-
vation. On the chip, both currents are a factor of 113.6 greater than the biological
values.

, , and
.

Identification of the inactivation term requires a second set
of measurements. The stimulation involves steps, ,
which start from different initial values ( to

) and finish at an identical final value ( ).
We apply the initial voltage for 10 ms, after which and
reach their respective steady states and . Using the
same hypothesis, i.e., that , when the final value of

is applied the current should reach its maximum
value, for . The inactivation term remains at
its initial value, which depends on the initial value of
(see Fig. 19(b)). We then obtain ,

, and . The hypothesis
is verified.

C. Leak Channel

The last channel for the FS neuron corresponds to the leakage
current. Its model, adapted to the electronics variables, is:

(24)

We can verify this equation by a simple series of
voltage-clamp measurements, since has a linear
dependence on . The extracted parameters are

, .

D. Modulator Channel

The regular spiking neuron contains a modulator channel.
This is more straightforward to identify than the sodium
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TABLE II
PARAMETER MODEL FOR FS AND RS NEURONS.

channel, because, like the potassium channel, it has only one
activation term n. We can thus write the following equation,
adapted to the electronics variables:

(25)

The results of the voltage-clamp experiment on the Modulator
channel are not shown here, because the process is similar to
that used for the channel. We extracted the following values:

, , ,
, and .

X. RESULTS AND COMPARISON WITH SIMULATIONS

We simulated the FS and RS neurons using the neural simu-
lation software Neuron [42], and translated the model parame-
ters, extracted from the measurements, to their equivalent values
for the biological model. The ICs are designed to compute volt-
ages and currents with the following gains:

and . If we choose ,
and since , with a membrane area of

, we obtain a ratio of 22.72 between the hard-
ware and biological conductances. We can thus write

. The resulting parameters for the FS and RS bio-
logical neuron model are summarized in Table II.

Before looking into the details of this table, we can observe
the effect of a process mismatch on all of the parameters and
errors coming from the DAC and analog memories. The time
constants for the predefined and measured values are very dif-
ferent, because we use external capacitors with a precision of

. The leakage and modulator currents are of the order of
hundreds of nA, in a range equivalent to CMOS leakage cur-
rents: we cannot evaluate the precision of the parameters ex-
tracted using this technique. To solve this problem, we plan to

Fig. 20. Software and hardware membrane voltages when the neurons are
spiking at 44.3 Hz. Area A: hyperpolarization of the software membrane
voltage. Area B: sharp rise of hardware membrane voltage.

Fig. 21. Frequency vs. stimulation current curves, for FS and RS neurons, from
hardware and software simulations.

integrate current amplifiers into each current generator, in our
next generation of ICs.

To compare the shape of the action potentials between soft-
ware and hardware simulations, we used the extracted parame-
ters and tuned the current stimulation of both neurons so as to
achieve the same spiking frequency. Fig. 20 plots the membrane
voltage for both simulations, when the FS neuron spikes at 44.3
Hz. The shapes of the hardware and software spikes are sim-
ilar, in particular the spike widths. Nevertheless, the hardware
simulation membrane voltage is characterized by hyperpolariza-
tion (shown in area A). This phenomenon arises from the very
negative value of : although a value of could be
expected, we extracted and used this value in our
software simulations. The area B shows, around the threshold
voltage, a difference in the shape of the membrane voltage; the
result is smoother in the simulation. We were able to visualize
this defect in post layout simulations.

We ran another benchmark test to validate the library of
analog operators. In Fig. 21, the frequencies of the action
potentials are plotted for different values of a constant stimu-
lation current ( ). This plot is characteristic of the FS and RS
neurons. We observe that theses curves have the same shape,
but with a different gain. Once again, the mismatch comes from
the estimation errors in the leakage and modulator channels.

These errors do not however compromise the module’s func-
tionalities, and we conclude that the library of analog operators
is operational.
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Fig. 22. A 600 ms simulation of a 4 conductance neuron receiving a stimulation
pulse. A: Membrane voltage � ���. B: Calcium current � ���. C: Stimulation
current � ���.

XI. ADDITIONAL RESULTS

A. Calcium Plateau

Here, the ICs simulate the activity of a 4-conductance neuron
(sodium, potassium, leak, and calcium). Fig. 22 shows plots of
the stimulation current, the calcium current, and the membrane
voltage. Before stimulation, the artificial neuron is silent. When
the stimulation current is applied, the neuron starts oscillating
and the calcium current increases, which in turn raises the os-
cillation frequency. When the stimulation pulse stops, the oscil-
lations continue until the calcium current is sufficiently weak.
Finally, the neuronal activity ceases. With this simulation, we
show that the same ionic current generator can be tuned over
a large range of parameters, thereby simulating different ionic
channels. In the present case, is tuned to , whereas
it was set to for the modulator channel.

B. Real-Time Interactions

We used the same set of parameters to illustrate two features
of the system: real-time simulation and dynamic reconfigura-
tion. Whereas the circuit needs initial values to start the simula-
tion, it is possible to dynamically modify one or more values
during the course of the simulation. Fig. 23 shows the elec-
trical activity of a 4-conductance neuron measured at the IC
output. From A) to C), the maximum conductance of the cal-
cium channel is increased, resulting in continued oscilla-
tions, even after stimulation reset.

We performed this change in parameter value without stop-
ping or resetting the simulation; the influence of an individual
parameter is therefore easier to visualize. By combining dy-
namic tuning and membrane electrical potential acquisition, we
can use this real-time system to explore with greater precision
the different interactions between the model parameters and
neuronal activity.

C. Spiking Activity

We added a model of the calcium-dependent potassium
channel to the neuron described above. The stimulation current
and the neuron’s electrical activity can be seen in Fig. 24. When

the stimulation current starts, the neuron begins to spike and
activates the calcium channel. The calcium channel activates,
in turn, the calcium-dependent potassium channel. The calcium
conductance tends to increase the spiking frequency, whereas
the calcium-dependent potassium conductance tends to de-
crease it. The calcium-dependent potassium effect is finally
predominant, and the spiking frequency decreases, whereas the
stimulation current is still present. When the stimulation current
stops, the calcium current is not strong enough to maintain the
activity; we then observe hyperpolarization of the membrane,
while the calcium-dependent potassium channel still provides
current. The calcium channel finally becomes inactive, leading
to inactivation of the calcium-dependent potassium channel,
and the membrane potential returns to its rest state.

If the maximum conductance of the calcium channel is
slightly decreased, the membrane voltage does not decrease to
hyperpolarization. In this case, the two ionic channels find an
equilibrium, which allows the spiking activity of the membrane
voltage to be maintained (see Fig. 25).

XII. APPLICATIONS

In this section, we present two upcoming applications, using
the same analog library.

A. Optimization Technique

With the Pamina neuromimetic IC, and communications with
the host computer via the PCI-bus, we have all the components
needed to build a system for determining the full set of model
parameters needed to represent a biological neuron.

Parameter extraction by means of optimization algorithms
requires the minimization of an error function between 2 sig-
nals. This error function compares two membrane potentials,
one measured from a biological cell (the reference), and the
other from the hardware simulation (the model whose param-
eters are examined). Optimization algorithms are responsible
for error function minimization. An error function in the static
temporal domain would have to deal with the arbitrary phase
difference, which arises between the two signals. Synchroniza-
tion of the reference and simulated activities, by adjusting (for
example) the stimulations, is not straightforward. We chose to
define an error function that compares the membrane potential
dynamics rather than their static values. Considering the def-
inition of the mathematical expressions in (1) and (2) for the
membrane potentials, we calculated the phase diagram as spec-
ified in (26), over a single oscillatory period, regardless of the
absolute phase. This approach is possible only if we consider
periodic activities, which is the case in the following example.

(26)

Fig. 26 presents the phase diagram for the case of a three con-
ductance neuron model (sodium, potassium, and leakage; the
same model as for FS in Section IX). We plot the phase diagram
of the reference and IC activities, which simulate the model with
a set of arbitrarily chosen parameters. In the case of this demon-
stration, the reference activity is taken from an already known
model card, obtained from voltage-clamp experiments, and sim-
ulated by software. This plot highlights the difference between
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Fig. 23. Effect of the dynamic modification of a parameter during a real-time simulation. Measurements show the effect of parameter change on the membrane
voltage. For A), B), and C) and from bottom to top: Stimulation current, calcium current, and membrane voltage. In A) � is the smallest; the neuron electrical
activity stops with the stimulation. In B), C), the oscillations are maintained for a duration that increases with � .

Fig. 24. A 400 ms simulation of a 5 conductance neuron receiving a stimulation
pulse. A) Membrane potential � ���. B) Stimulation current � ���. The mem-
brane potential exhibits hyperpolarization when the stimulation current stops.

Fig. 25. A 500 ms simulation of a 5 conductance neuron receiving a stimula-
tion pulse. A) Membrane potential � ���. B) Stimulation current � ���. The
membrane potential exhibits tonic activity when the stimulation current stops.

the two electrical activities, showing that the IC parameters are
not well tuned to the reference model. The optimization tech-
nique minimizes an error function, to obtain closer trajectories
in the phase diagram. [43] discusses the definition of an error
function, and the choice of optimization algorithms.

The main advantages of this technique are that it simplifies
the process of extracting a neuron model, when compared to
the complex and time-consuming voltage-clamp experiments. It
also provides the opportunity of systematically exploring the pa-
rameter space of the studied model. With this technique, the neu-
roscientist only needs to measure the membrane voltage. The
parameter exploration set will provide neuroscientists with (pos-
sibly more than one) mathematically possible solutions, from
which the most realistic model card can be retained. Although

Fig. 26. Phase diagrams (�� ��� � 	�� �) of the software and the IC sim-
ulations, for a 3-conductance neuron exhibiting a spiking activity (
 ���
� � 

action potential).

this method is currently limited to periodic activities, we are
studying its adaptation to non-periodic applications.

B. Increase of Computational Speed

Analog neuromimetic ICs have a considerable advantage over
digital implementations: their computational speed can easily be
increased. This is possible, provided we remain within the band-
width of the circuit. As neural activities occur at low frequencies
( ), circuits designed with BiCMOS technology have
operating frequencies higher than real-time neural activities. In
expression (1), if we arbitrarily divide the value of the mem-
brane capacitor by a term , and divide all the time constants
of the activation and inactivation variables by the same term ,
the simulation time scale is immediately divided by (i.e., t in
expression (1) is replaced by ). This feature is not shared
with digital implementation because the software changes also
the computational step to solve the equations, and it lasts the
same computational time. In Fig. 27, we show test measure-
ments made with the Pamina ASIC, for the following cases:

, 10, and 100. Each simulation is represented with its
own time scale . When , the action potential shape
is almost identical to the reference shape ( ), and the ac-
tivity frequency increases slightly. When , noise can be
observed during the depolarizing phase of the spike, before the
action potential. These results show that, although the Pamina
IC was not designed to enable computational speeds to be in-
creased, an optimal factor can be found which accelerates the
simulations, while maintaining an activity identical to the ref-
erence one. Application of this property to the software/hard-
ware optimization technique will reduce simulation times; this
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Fig. 27. Membrane voltage for a 3-conductance neuron, when increasing the
IC simulation speed, as a function of the term �.

can be a key issue when exploring a large set of parameters in
the Hodgkin-Huxley models. In this case, the sub-circuits in the
analog library will also be characterized by their respective max-
imum values of . The minimum of all the sub-circuit values
implemented in a neuromimetic IC will give an indication of the
maximum accelerated time scale, which can be achieved.

XIII. SUMMARY AND OUTLOOK

In this paper we have presented a prototype analog neu-
romimetic IC, which validates the functionality of the library
of analog circuit operating functions of the Hodgkin-Huxley
formalism, to describe biologically realistic neurons. This
library will be enriched with current amplifiers (see Section X),
and additional circuits to simulate neuronal ionic currents that
have a complex dependence on the ionic species. The potential
increase in speed, compared to biological real-time, can also be
specified for each module (see Section XII.B.).

We propose that such a library is a good starting point to de-
sign neuromimetic ICs acting the computational cores in a simu-
lation platform for conductance-based neural networks. Thanks
to its real-time, such a system is a good candidate for supporting
experiments on hybrid neural networks combining biological
and silicon neural networks. The prototype IC presented in this
paper demonstrates the use of the library. In its current state,
such an analog and custom IC is less performing than a dig-
ital solution (FPGA or stand-alone processor) in terms of design
cost and power consumption.

The main advantage of the analog implementation of neural
network models, compared to their numerical simulation, arises
from the locally analog and parallel nature of the computations.
In addition to the facilitation of analog connections to biolog-
ical systems, this leads to neuromorphic network models being
typically highly scalable and being able to emulate neural net-
works in real time or much faster, independent of the under-
lying network size [44]. It is difficult to quantify the effective
gain of this hardware system in terms of computation time.
Running times are specified for some supercomputer installa-
tions such as Lenngren from Dell or BlueGene/L from IBM,
which declared goal is to simulate substantial parts of a mammal
brain [45]. We did not found in the literature experiments in a
context equivalent to ours (conductance-based models running
on standard computers or ASICs) giving complete information
about the simulation experiments: simulation time depends on

the simulation software (or hardware), the operating system, and
the computer architecture, processors and memory. [46] is for
example a recent digital implementation of conductance-based
models. The authors mention a “standard personal computer”
under Windows XP to compute in real-time 1000 conductances
with no more details. However, we did software simulations that
gave us some comparison points. The first experiment is the sim-
ulation of a two-neuron oscillator, as part of the leech heartbeat
system [47], where we simplified the neuron models down to 7
conductances by neuron (synapses are equivalent to 1 additional
conductance). The simulation was done using Scilab 5.0.2 with
a CPU Intel Core 6600, 2.4 GHz, 2 GB RAM, and Windows
Vista 32 bits. The simulation of 1 s in biological time ran during
42.26 s with a time step of 1 ms. A second experiment was done
with a network of 6 excitatory neurons (4-conductance neuron)
with STDP [48] using Neuron software with a Core 2 CPU, 2.13
GHz, 3.5 GB RAM, and GNU/Linux Ubuntu 6.10. The simula-
tion of 6 minutes in biological time took about 3 hours. In this
case, the STDP computation is time consuming, but this com-
parison remains interesting, considering that hardware systems
can implement STDP using a digital or mixed computation, as
proposed in another version of our system [49]. We feel then that
analog implementation can be part of the solution when building
large networks with adaptation functions at the synaptic level:
it can then preserve the digital computational power for highly
configurable functions such as plasticity. For networks with sev-
eral hundreds of cells, the parallel computation mode available
with analog blocks is clearly an advantage and will lead to em-
bedded solutions easily connected to analog sensors and actua-
tors. An ongoing study in our group proposes a method to op-
timize re-use and synthesis when designing analog ICs [50].
It uses a library of functions based to the one presented here
and completed by the VHDL-AMS description of each block. A
reuse-based design mode will also support the successive tech-
nological migrations of the library.

We have already used this library to design another IC ded-
icated to the real-time hardware simulation of medium-sized
neural networks (up to 128 neurons). This IC includes 5
analog cores, synapses, and digital functions to manage the
analog components [51]. We are also working on the design
of an embedded simulation platform merging analog conduc-
tance-based silicon neurons and digital adaptive synapses [52].
Conductance-based models provide enough complexity to
allow the exploration of complex activity patterns or adaptation
sequences in a small scale neural network.
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