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Benchmark 3D: CeVe-DDFV, a discrete duality

scheme with cell/vertex unknowns.

Yves Coudière and Charles Pierre
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1 Presentation of the scheme

1.1 General presentation of DDFV methods

“Discrete Duality” Finite Volumes (DDFV) schemes have been specifically de-

signed for anisotropic and/or heterogeneous diffusion problems working on general

meshes: distorted, non-conformal and locally refined. They first were introduced in

2D independently by Hermeline [12, 13] and Domelevo and Omnès [11], though

the key ideas already appear in the work of Nicolaides [20]. During the last decade

DDFV schemes have been extended to a wide class of PDEs in 2D and in 3D in-

cluding nonlinear diffusion [4], the Stokes problem [10, 18, 19], Maxwell equations

[14], convection diffusion problems [7] and biological reaction diffusion models in

electro-cardiology [8, 3].

As originally defined in [11], a 2D DDFV scheme consists in associating a sec-

ond mesh (the dual mesh) to the original (primal) mesh by building dual cells around

each (primal) mesh vertex. Cell and vertex centered scalar data are associated to

this double mesh framework (one data per primal and dual cell), whereas a vector

data consists in one vector per (primal) mesh edge. To a scalar data is associated

a discrete gradient that is a vector data. A gradient reconstruction method is used

to define this discrete gradient: precisely using the diamond method [9]. A discrete

divergence acts on vector data by averaging their normal component on the primal
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LMJL, Université de Nantes, France, e-mail: Yves.Coudiere@univ-nantes.fr

Charles Pierre
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and dual cell boundaries, which procedure is classical for finite volume methods.

The key feature is a duality property between the discrete gradient and the discrete

divergence operators of Green formula type.

Extensions of DDFV schemes to 3D [21, 15, 16, 2, 6, 1, 6] are of two types.

CV-DDFV. The original 2D double mesh framework is conserved, dual cells are

built around the primal mesh vertices and scalar data consist in a double set of

unknowns associated with the (primal) mesh cells and vertices.

CeVeFE-DDFV. Recently Coudière and Hubert [5, 6] modified the 2D frame-

work by considering a third mesh (triple mesh method), with unknowns associ-

ated with cells, faces, edges and vertices of the primal mesh.

The method considered here is of CV-DDFV type, CV holding for Cell and Vertex

centered. Two versions have been developed so far.

(A) A first 3D construction was introduced by Pierre in [21] for anisotropic and/or

heterogeneous diffusion problems. The dual cells here do not form a mesh in the

classical sense: they recover the domain twice.

(B) A second version, independently introduced by Hermeline [16] and Andreianov

et al. [2, 1] differs from the previous one by the dual cell definition that here form

a partition of Ω .

For both versions, in presence of heterogeneity, auxiliary (locally eliminated) data

are added relatively to faces, as presented in [8, 16]. In case of complex meshes,

involving face shapes other than triangles or quadrangles, this local elimination pro-

cedure is made difficult enforcing to consider auxiliary data as real unknowns inside

the algorithm, which drastically increases the problem size.

We first emphasise the similarities between (A) and (B). These two versions are

based on the same definition of the discrete gradient. They also induce comparable

discrete duality properties. Indeed, after a careful examination of these duality prop-

erties in [21] and in [2] it turns out that they do involve exactly the same stiffness

and mass matrices. As a result, between these two versions, only the averaging of

the source terms on the dual cells will differ.

In this paper, version (A) will be considered without auxiliary data on the mesh

faces. The fifth test case, including heterogeneity and thus necessitating these aux-

iliary unknowns per face centre, will not be treated here because of a lack of time.

1.2 CV- DDFV version (A), discrete duality

Let the domain Ω ⊂ R3 be a connected open subset, its boundary is assumed to be

polyhedral. Let M be a (general) mesh of Ω , possibly non conformal, and whose

(primal) cells (resp. faces) are general polyhedral (resp. polygonal). The set of cells,

faces and vertices of M are respectively denoted C , F and V . To any vertex v ∈ V

is associated a dual cell v⋆ and to any face f ∈ F is associated a diamond cell D f .

Diamond cells form a partition of Ω , whereas dual cells intersect and recover Ω

exactly twice.
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A vector data is a piecewise constant vector function on the diamond cells. A

scalar data is provided by one scalar per cell and per vertex of M . The space of

vector data is denoted Qh and the space of scalar data Fh. A discrete function is

obtained by supplementing a scalar data with one scalar data per boundary face.

The space of discrete functions is denoted Uh. As developed in Sec. 1.3, uh ∈ Uh

will be interpreted as a function defined on the diamond cell boundaries:

∂D :=
⋃

f∈F

∂ D f , uh : ∂D −→ R, (1)

that moreover is continuous and piecewise affine on the diamond cell faces.

Two discrete operators will be defined, ∇h : Uh −→ Qh and divh : Qh −→ Fh.

that satisfy the discrete duality property, see [21]:

Proposition 1. for all uh ∈ Uh and all qh ∈Qh:

∫

Ω
∇h uh ·qhdx =−〈〈uh,divh qh〉〉+

∫

∂Ω

uh qh ·n ds, (2)

for n the unit normal on ∂Ω pointing outside Ω , and with the pairing:

〈〈uh,divh qh〉〉=
1

3
∑

c∈C

uc divc qh|c|+
1

3
∑

v∈V

uv divv qh|v
⋆|, (3)

where: |c| and |v⋆| are the volumes of the primal and dual cells c and v⋆, uc and

divc qh are the values associated to the cell c of the two scalar data uh and divh qh,

and similarly uv and divv qh are the values associated to the vertex v of the two

scalar data uh and divh qh.

In (2) the two integrals are well defined. The first integral is an L2 product on

Ω since both qh and ∇h uh are piecewise constant vector functions on the diamond

cells.The second integral is an L2 product on ∂Ω : qh is piecewise constant on the

boundary faces and its normal component qh ·n also, moreover ∂Ω ⊂ ∂D defined

in (1) and so uh has a restriction to ∂Ω that is continuous.

1.3 Dual and diamond cells

A centre xc (resp. x f ) is associated to each cell c ∈ C (resp. f ∈ F ).

Diamond cells. Let f ∈ F . In case f 6⊂ ∂Ω then f is the interface between two

cells c1, c2 ∈ C : f = c1 ∩ c2. Denoting xi the centre of ci, then D f is the union

of the two pyramids with apex xi and with base f as depicted on Fig. 1. In case

f ⊂ ∂Ω , then f = ∂Ω ∩ c for one cell c ∈ C . In this case D f is the pyramid with

apex xc and base f . Still in this cases, f can be considered as a degenerated (flat)

pyramid of apex its own centre x f and base f . Thus, in all cases, D f is the union

of two pyramids, and its boundary can be partitioned into triangles. The vertices of

these triangles either are: cell centres, vertices or boundary face centres of M . As a

result providing a scalar value to each cell, vertex and boundary face of M defines



4 Yves Coudière and Charles Pierre

a unique continuous piecewise affine function uh : ∂D 7→ R, with ∂D defined in

(1). This is precisely the lift from the discrete function in Uh presented in Sec. 1.2

into continuous piecewise affine functions on ∂D in (1).

x2

D f

c1

c2

x1

f = c1 ∩ c2

c

w2

w1

xc

f ⊂ ∂c

D f ∩ c

x fv

Fig. 1 Left: diamond cell for an internal triangular face f . Right: dual cell construction.

Dual cells. Let v ∈ V and consider a cell c ∈ C and a face f ∈ F so that v is a

vertex of f and f is a face of c. This configuration is denoted by v ≺ f ≺ c. To a

triple (v, f ,c) so that v ≺ f ≺ c is associated an element Tv, f ,c. The dual cell v⋆ then

is defined as v⋆ =
⋃

f ,c: v≺ f≺c Tv, f ,c. Let us eventually define the element Tv, f ,c, as

depicted on Fig. 1. Introduce w1 and w2 the two vertices of f such that [v,w1] and

[v,w2] are two edges of f . Then Tv, f ,c is the union of the two tetrahedra vxcx f wi for

i =1, 2.

As one can see, for a fixed face f and a fixed cell c such that f ⊂ ∂c, considering

all elements Tv, f ,c for all the vertices v of f recovers exactly twice D f ∩c. As a result

the dual cells recover the whole domain exactly twice: ∑v∈V |v⋆|= 2|Ω |.

1.4 Discrete operators

The discrete divergence is classically defined by averaging the normal component

of qh ∈Qh on the primal and dual cells, for all c ∈ C and all v ∈ V :

divc qh =
1

|c|

∫

∂c
qh ·nds , divv qh =

1

|v⋆|

∫

∂v⋆
qh ·nds, (4)

for n the unit normal on ∂c (resp. ∂v⋆) pointing outside c (resp. v⋆). This definition is

well posed since the discontinuity set of qh ∈Qh has a zero 2-dimensional measure

intersection with the primal and dual cell boundaries.

The discrete gradient is defined as follows. Let uh ∈ Uh, for all f ∈ F :

∇ f uh =
1

|D f |

∫

∂D f

uhnds, (5)
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where ∇ f uh is the (vector) value of ∇h uh on D f and for n the unit normal on ∂ D f

pointing outside D f .

In practise, definition (5) can always be reformulated in terms of data differences

as in the 2D case where (see e.g. [10]):

∇ f uh = (uc1
−uc2

)N f +(uv1
−uv2

)M f ,

f is a mesh interface (edge), c1 and c2 the two cells on each side of f , v1 and v2 the

two vertices of f and N f , M f two vectors. We refer to [21, 8] for similar expansions

in 3D.

1.5 The scheme

The linear diffusion problem −div(K∇u)= f is considered together with a Dirichlet

boundary condition u|∂Ω = g. The tensor K is discretised into Kh by averaging K

on each diamond cells and the source term f is discretised as fh ∈ Fh by averaging

f over each primal and dual cells. The problem reads: find uh ∈ Uh such that

∀ c ∈ C : divc(Kh ∇h uh) = fc , ∀ v ∈ V , v 6∈ ∂Ω : divv(Kh ∇h uh) = fv (6)

∀ v ∈ V , v ∈ ∂Ω : uh(v) = g(v) , ∀ f ∈ F , f ⊂ ∂Ω : uh(x f ) = g(x f ), (7)

To solve (6) (7), we split Uh = Uh,0 ⊕B where Uh,0 is the subset of discrete

functions equal to zero on ∂Ω . Then uh decomposes as uh = u0 + ũ, where ũ ∈ B

is uniquely determined by (7). Now u0 ∈ Uh,0 satisfies −divh(Kh ∇h u0) = fh +
divh(Kh ∇h ũ) := f̃h for all primal cells and all interior vertices.

This is a square linear system. With the help of the discrete duality property it is

rewritten as

SU0 = F̃ , (8)

with U0 (resp. F̃) the vector formed by the values of u0 (resp. f̃h) at the cell centres

and interior vertices. The stiffness matrix S has the following coefficients Si j =
∫

Ω
Kh ∇h wi ·∇h w jdx, with wi ∈ Uh,0 the base function having value 1 at one cell

centre or interior vertex and 0 everywhere else. This matrix is clearly symmetric and

positive.

2 Numerical results

The cell centres as well as the face centres are set to their isobarycentre.

Let us first define the data (source term f and anisotropy tensor K) discretisation.

Primal, dual and diamond cells are partitioned using a single set of tetrahedra of type

E = xcx f v1v2, with c∈C , f a face of c and v1, v2 two vertices of f forming one of its

edges. To form the scalar data fh, f is averaged on the tetrahedra E partitioning each

primal and dual cells whereas the discrete tensor Kh is obtained by averaging K on

the tetrahedra E partitioning the diamond cells. Averaging is made by the mean of

Gaussian quadrature on each tetrahedra E using a 15 points quadrature formula of
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order 5, see e.g. [17]. Assembling the discrete source term fh and tensor Kh requires

one loop on the mesh faces.

The stiffness matrix S in (8) also is assembled using a loop on the mesh

faces. Precisely two base functions wi and w j have a non zero interaction (i.e.

Si j =
∫

Ω
Kh ∇h wi ·∇h w jdx 6= 0) in case they are associated to two vertices of a

same diamond D f .

Let us now define the L2, H1 and energy errors reported in the following tables

as erl2, ergrad and ener respectively. Let uh denote the discrete solution of one of

the test case, and u the solution of the associated continuous problem. The discrete

function uh is lifted to a function uh ∈ L2(Ω) as follows. Consider a face f , uh

provides a value at each vertex of D f and also at the face centre x f in case of a

boundary face. In case of an interior face, a supplementary value u f is computed

at x f as u f = (∑n
i=1 uvi

)/n where the vi are the n vertices of f , which definition is

consistent since x f is the isobarycentre of f . With these additional values, scalars

are available for every vertices of the tetrahedra E that partition Ω : this defines a

unique function uh by P1 interpolation, which then is continuous piecewise affine

on Ω . We define:

erl22 =

∫

Ω
|uh −u|2dx
∫

Ω
|u|2dx

.

The discrete vector data ∇h uh is a piecewise constant vector function on the dia-

mond cells. Therefore ∇h uh is an L2 functions on Ω and the H1 and energy errors

reported in the following tables are defined as:

ergrad2 =

∫

Ω
|∇h uh −∇u|2dx
∫

Ω
|∇u|2dx

, ener2 =

∫

Ω
K(∇h uh −∇u) · (∇h uh −∇u)

∫

Ω
K∇u ·∇udx

.

• Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min = 0, max = 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg

1 2187 21287 1.34E-02 1.53E-02 1.99E+00 1.99E+00 1.80E+00

2 4301 44813 3.24E-03 6.84E-03 1.99E+00 1.99E+00 1.80E+00

3 8584 94088 8.78E-03 7.44E-03 2.00E+00 1.99E+00 1.80E+00

4 17102 195074 4.74E-03 5.52E-03 2.00E+00 2.00E+00 1.80E+00

5 34343 405077 5.90E-04 1.49E-03 2.00E+00 2.00E+00 1.80E+00

6 69160 838856 1.30E-03 6.19E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 2187 1.39E-02 – 1.85E-01 – 1.80E-01 –

2 4301 8.80E-03 2.04E+00 1.48E-01 1.01E+00 1.44E-01 9.89E-01

3 8584 5.64E-03 1.93E+00 1.18E-01 9.73E-01 1.15E-01 9.97E-01

4 17102 3.61E-03 1.94E+00 9.36E-02 1.01E+00 9.10E-02 1.01E+00

5 34343 2.26E-03 2.01E+00 7.43E-02 9.92E-01 7.24E-02 9.81E-01

6 69160 1.42E-03 2.00E+00 5.87E-02 1.01E+00 5.70E-02 1.02E+00
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• Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min = 0, max = 2, Voronoi meshes

i nu nmat umin uemin umax uemax normg

1 87 1433 1.23E-01 1.79E-01 1.91E+00 1.85E+00 1.80E+00

2 235 4393 6.66E-02 2.93E-03 1.87E+00 2.00E+00 1.80E+00

3 527 10777 1.32E-02 9.56E-03 1.93E+00 1.97E+00 1.80E+00

4 1013 21793 -1.76E-03 4.97E-03 1.93E+00 2.00E+00 1.80E+00

5 1776 40998 5.42E-04 4.30E-03 1.98E+00 1.97E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 87 6.19E-02 – 4.43E-01 – 4.29E-01 –

2 235 3.36E-02 1.85E+00 3.37E-01 8.28E-01 3.29E-01 7.96E-01

3 527 2.10E-02 1.74E+00 2.55E-01 1.03E+00 2.49E-01 1.04E+00

4 1013 1.35E-02 2.03E+00 2.05E-01 1.01E+00 2.01E-01 9.85E-01

5 1776 9.99E-03 1.62E+00 1.75E-01 8.38E-01 1.71E-01 8.47E-01

• Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min = 0, max = 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg

1 855 13819 7.16E-02 2.88E-02 1.94E+00 1.96E+00 1.80E+00

2 7471 138691 1.26E-02 6.45E-03 1.99E+00 1.99E+00 1.80E+00

3 62559 1237459 1.30E-03 1.75E-03 2.00E+00 2.00E+00 1.80E+00

4 512191 10443763 4.61E-04 5.45E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 855 5.64E-02 – 4.57E-01 – 4.51E-01 –

2 7471 1.71E-02 1.65E+00 1.91E-01 1.20E+00 1.89E-01 1.21E+00

3 62559 3.45E-03 2.26E+00 7.74E-02 1.28E+00 7.67E-02 1.27E+00

4 512191 7.62E-04 2.15E+00 3.47E-02 1.14E+00 3.41E-02 1.16E+00

• Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min = 0, max = 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg

1 59 703 1.46E-01 3.41E-02 1.86E+00 1.97E+00 1.80E+00

2 599 9835 3.87E-02 8.56E-03 1.96E+00 1.99E+00 1.80E+00

3 5423 101539 9.24E-03 2.14E-03 1.99E+00 2.00E+00 1.80E+00

4 46175 917395 2.15E-03 5.35E-04 2.00E+00 2.00E+00 1.80E+00

5 381119 7788403 5.01E-04 1.34E-04 2.00E+00 2.00E+00 1.80E+00
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 59 4.79E-02 – 4.01E-01 – 3.94E-01 –

2 599 1.08E-02 1.93E+00 1.95E-01 9.34E-01 1.92E-01 9.31E-01

3 5423 2.55E-03 1.96E+00 9.58E-02 9.66E-01 9.37E-02 9.73E-01

4 46175 6.27E-04 1.96E+00 4.75E-02 9.83E-01 4.63E-02 9.89E-01

5 381119 1.56E-04 1.98E+00 2.36E-02 9.92E-01 2.30E-02 9.95E-01

• Test 2 Heterogeneous anisotropy,

u(x,y,z) = x3y2z+ xsin(2πxz)sin(2πxy)sin(2πz), min =−0.862, max = 1.0487,

Prism meshes

i nu nmat umin uemin umax uemax normg

1 3010 64158 -8.54E-01 -8.41E-01 1.00E+00 1.00E+00 1.71E+00

2 24020 555528 -8.56E-01 -8.59E-01 1.02E+00 1.05E+00 1.71E+00

3 81030 1924098 -8.61E-01 -8.59E-01 1.04E+00 1.04E+00 1.71E+00

4 192040 4619868 -8.59E-01 -8.61E-01 1.04E+00 1.05E+00 1.71E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 3010 5.06E-02 – 2.45E-01 – 2.48E-01 –

2 24020 1.85E-02 1.45E+00 1.26E-01 9.63E-01 1.27E-01 9.66E-01

3 81030 1.46E-02 5.90E-01 8.51E-02 9.63E-01 8.59E-02 9.66E-01

4 192040 1.37E-02 2.08E-01 6.49E-02 9.44E-01 6.53E-02 9.50E-01

• Test 3 Flow on random meshes, u(x,y,z) = sin(2πx)sin(2πy)sin(2πz),
min =−1, max = 1, Random meshes

i nu nmat umin uemin umax uemax normg

1 91 1063 -1.58E+00 -9.78E-01 1.54E+00 9.31E-01 3.65E+00

2 855 13819 -1.08E+00 -9.94E-01 1.12E+00 9.82E-01 3.57E+00

3 7471 138691 -1.04E+00 -9.95E-01 1.01E+00 9.91E-01 3.60E+00

4 62559 1237459 -1.01E+00 -9.98E-01 1.01E+00 9.98E-01 3.60E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 91 3.06E-01 – 5.89E-01 – 5.70E-01 –

2 855 8.29E-02 1.75E+00 3.14E-01 8.56E-01 2.87E-01 9.21E-01

3 7471 2.28E-02 1.79E+00 1.65E-01 8.90E-01 1.46E-01 9.28E-01

4 62559 6.98E-03 1.67E+00 8.96E-02 8.58E-01 7.34E-02 9.68E-01
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• Test 4 Flow around a well, Well meshes, min = 0, max = 5.415

i nu nmat umin uemin umax uemax normg

1 1482 23942 4.85E-01 -6.02E-06 5.32E+00 5.42E+00 1.62E+03

2 3960 70872 2.71E-01 -5.68E-06 5.33E+00 5.42E+00 1.62E+03

3 9229 173951 1.66E-01 -5.76E-06 5.33E+00 5.42E+00 1.62E+03

4 21156 412240 1.25E-01 -7.39E-06 5.33E+00 5.42E+00 1.62E+03

5 44420 882520 9.37E-02 -6.93E-06 5.34E+00 5.42E+00 1.62E+03

6 82335 1654893 7.48E-02 -6.94E-06 5.35E+00 5.42E+00 1.62E+03

7 145079 2937937 5.80E-02 -8.05E-06 5.36E+00 5.42E+00 1.62E+03

i nu erl2 ratiol2 ergrad ratiograd ener ratioener

1 1482 2.92E-03 – 1.79E-01 – 1.78E-01 –

2 3960 1.38E-03 2.29E+00 1.22E-01 1.18E+00 1.21E-01 1.16E+00

3 9229 7.45E-04 2.19E+00 8.57E-02 1.25E+00 8.56E-02 1.24E+00

4 21156 5.53E-04 1.08E+00 6.56E-02 9.71E-01 6.55E-02 9.72E-01

5 44420 3.77E-04 1.55E+00 5.14E-02 9.85E-01 5.13E-02 9.83E-01

6 82335 2.44E-04 2.11E+00 4.18E-02 1.01E+00 4.17E-02 1.01E+00

7 145079 1.83E-04 1.53E+00 3.51E-02 9.27E-01 3.50E-02 9.26E-01

3 Comments

The linear system (8) to be solved is symmetric and positive: a Conjugate Gradi-

ent algorithm has been applied, together with a basic Jacobi preconditionner. The

sparsity pattern of the stiffness matrix is not compact, especially for matrix lines cor-

responding to vertex nodes. The stiffness matrix lines corresponding to cell nodes

have 1+ n f + ns nonzero terms with n f and nv the number of faces and vertices of

the considered cell; for a tetrahedra 1+n f +nv = 9.

The maximum principle is not fulfilled by DDFV schemes. In practice it has been

violated only once for test one on Voronoı̈ meshes and more significantly on test 3.

Meanwhile no oscillation phenomena are observed.

Expected order 2 convergence on erl2 is observed for all tests excepted test 2.

Order 1 convergence is observed for ergrad and ener on all tests.
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