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Benchmark 3D: CeVe-DDFV, a Discrete Duality
Scheme with Cell/Vertex Unknowns.

Yves Coudìere and Charles Pierre

Abstract This paper presents numerical results for a 3D Cell and Vertex centered
DDFV scheme. The method applies to very general 3D meshes including non con-
formal ones. Its construction and implementation are presented.
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1 Presentation of the scheme

1.1 General presentation of DDFV methods

“Discrete Duality” Finite Volumes(DDFV) schemes have been specifically de-
signed for anisotropic and/or heterogeneous diffusion problems working on general
meshes: distorted, non-conformal and locally refined. Theyfirst were introduced in
2D independently by Hermeline [9, 10] and Domelevo and Omnès [8], though the
key ideas already appear in the work of Nicolaides [14].

As originally defined in [8], a 2DDDFV scheme consists in associating a second
mesh (the dual mesh) to the original (primal) mesh by building dual cells around
each (primal) mesh vertex. Cell and vertex centeredscalar dataare associated to
this double meshframework (one data per primal and dual cell), whereas avector
data consists in one vector per (primal) mesh edge. To a scalar data is associated
a discrete gradient that is a vector data. Agradient reconstructionmethod is used
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LMJL, Universit́e de Nantes, France, e-mail:Yves.Coudiere@univ-nantes.fr

Charles Pierre
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2 Yves Coudìere and Charles Pierre

to define this discrete gradient: precisely using the diamond method [6]. A discrete
divergence acts on vector data by averaging their normal component on the primal
and dual cell boundaries, which procedure is classical for finite volume methods.
The key feature is a duality property between the discrete gradient and the discrete
divergence operators of Green formula type.

Extensions ofDDFV schemes to 3D [15, 11, 12, 2, 3, 1, 3] are of two types.

CV-DDFV. The original 2Ddouble meshframework is conserved, dual cells are
built around the primal mesh vertices and scalar data consist in a double set of
unknowns associated with the (primal) mesh cells and vertices.
CeVeFE-DDFV. Recently Coudìere and Hubert [4, 3] modified the 2D frame-
work by considering a third mesh (triple mesh method), with unknowns associ-
ated with cells, faces, edges and vertices of the primal mesh.

The method considered here is ofCV-DDFV type,CV holding for Cell and Vertex
centered. Two versions have been developed so far.

(A) A first 3D construction was introduced by Pierre in [15] for anisotropic and/or
heterogeneous diffusion problems. The dual cells here do not form a mesh in the
classical sense: they recover the domain twice.

(B) A second version, independently introduced by Hermeline [12] and Andreianov
& al. [2, 1] differs from the previous one by the dual cell definition that here form
a partition ofΩ .

For both versions, in presence of heterogeneity, auxiliary(locally eliminated) data
are added relatively to faces, as presented in [5, 12]. In case of complex meshes,
involving face shapes other than triangles or quadrangles,this local elimination pro-
cedure is made difficult enforcing to consider auxiliary data as real unknowns inside
the algorithm, which drastically increases the problem size.
We first emphasize the similarities between(A) and (B). These two versions are
based on the same definition of the discrete gradient. They also induce comparable
discrete duality properties. Indeed, after a careful examination of these duality prop-
erties in [15] and in [2] it turns out that they do involve exactly the same stiffness
and mass matrices. As a result, between these two versions, only the averaging of
the source terms on the dual cells will differ.

In this paper, version(A) will be considered without auxiliary data on the mesh
faces. The fifth test case, including heterogeneity and thusnecessitating these aux-
iliary unknowns per face center, will not be treated here because of a lack of time.

1.2 CV- DDFV version (A), discrete duality

Let the domainΩ ⊂ R3 be a connected open subset, its boundary is assumed to be
polyhedral. LetM be a (general) mesh ofΩ , possibly non conformal, and whose
(primal) cells (resp.faces) are general polyhedral (resp.polygonal). The set of cells,
faces and vertices ofM are respectively denotedC , F andV . To any vertexv∈ V
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is associated a dual cellv⋆ and to any facef ∈ F is associated a diamond cellD f .
Diamond cells form a partition ofΩ , whereas dual cells intersect and recoverΩ
exactly twice.

A vector data is a piecewise constant vector function on the diamond cells. A
scalar data is provided by one scalar per cell and per vertex of M . The space of
vector data is denotedQh and the space of scalar dataFh. A discrete function is
obtained by supplementing a scalar data with one scalar dataper boundary face.
The space of discrete functions is denotedUh. As developed in Sec. 1.3,uh ∈ Uh

will be interpreted as a function defined on the diamond cell boundaries:

∂D :=
⋃

f∈F

∂ D f , uh : ∂D −→ R, (1)

that moreover is continuous and piecewise affine on the diamond cell faces.
Two discrete operators will be defined,∇h : Uh −→ Qh and divh : Qh −→ Fh.

that satisfy thediscrete duality property(see [15])
∫

Ω
∇huh ·qhdx=−〈〈uh,divhqh〉〉+

∫

∂Ω
uh qh ·n ds (2)

for any functionsuh ∈ Uh andqh ∈ Qh, with n the unit normal on∂Ω pointing
outsideΩ , and the pairing:

〈〈uh,divhqh〉〉=
1
3 ∑

c∈C

ucdivcqh|c|+
1
3 ∑

v∈V

uvdivvqh|v
⋆|. (3)

Here, |c| and |v⋆| are the volumes of the primal and dual cellsc and v⋆, uc and
divcqh are the values associated to the cellc of the two scalar datauh and divhqh,
and similarlyuv and divvqh are the values associated to the vertexv of the two scalar
datauh and divhqh.

In (2) the two integrals are well defined. The first integral isan L2 product on
Ω since bothqh and∇huh are piecewise constant vector functions on the diamond
cells.The second integral is anL2 product on∂Ω : qh is piecewise constant on the
boundary faces and its normal componentqh ·n also, moreover∂Ω ⊂ ∂D defined
in (1) and souh has a restriction to∂Ω that is continuous.

1.3 Dual and diamond cells

A centerxc (resp.xf ) is associated to each cellc∈ C (resp. f ∈ F ).
Diamond cells.Let f ∈ F . In casef 6⊂ ∂Ω then f is the interface between two

cells c1, c2 ∈ C : f = c1 ∩ c2. Denotingxi the center ofci , then D f is the union
of the two pyramids with apexxi and with basef as depicted on Fig. 1. In case
f ⊂ ∂Ω , then f = ∂Ω ∩ c for one cellc ∈ C . In this caseD f is the pyramid with
apexxc and basef . Still in this cases,f can be considered as a degenerated (flat)
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pyramid of apex its own centerxf and basef . Thus, in all cases,D f is the union
of two pyramids, and its boundary can be partitioned into triangles. The vertices of
these triangles either are: cell centers, vertices or boundary face centers ofM . As a
result providing a scalar value to each cell, vertex and boundary face ofM defines
a unique continuous piecewise affine functionuh : ∂D 7→ R, with ∂D defined in
(1). This is precisely the lift from the discrete function inUh presented in Sec. 1.2
into continuous piecewise affine functions on∂D in (1).

x2

D f

c1

c2

x1

f = c1∩c2

x1

c1

xexf

x2
v1

v2

e2c2

Fig. 1 Left: diamond cell for an internal triangular facef . Right: dual cell construction.

Dual cells.Let v∈ V and consider a cellc∈ C and a facef ∈ F so thatv is a
vertex of f and f is a face ofc. This configuration is denoted byv ≺ f ≺ c. To a
triple (v, f ,c) so thatv≺ f ≺ c is associated an elementTv, f ,c. The dual cellv⋆ then
is defined asv⋆ =

⋃

f ,c: v≺ f≺cTv, f ,c. Let us eventually define the elementTv, f ,c, as
depicted on Fig. 1. Introducew1 andw2 the two vertices off such that[v,w1] and
[v,w2] are two edges off . ThenTv, f ,c is the union of the two tetrahedravxcxf wi for
i =1, 2.
As one can see, for a fixed facef and a fixed cellc such thatf ⊂ ∂c, considering
all elementsTv, f ,c for all the verticesv of f recovers exactly twiceD f ∩c. As a result
the dual cells recover the whole domain exactly twice:∑v∈V |v⋆|= 2|Ω |.

1.4 Discrete operators

The discrete divergence is classically defined by averagingthe normal component
of qh ∈Qh on the primal and dual cells, for allc∈ C and allv∈ V :
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divcqh =
1
|c|

∫

∂c
qh ·nds , divvqh =

1
|v⋆|

∫

∂v⋆
qh ·nds, (4)

for n the unit normal on∂c (resp.∂v⋆) pointing outsidec (resp.v⋆). This definition is
well posed since the discontinuity set ofqh ∈Qh has a zero 2-dimensional measure
intersection with the primal and dual cell boundaries.

The discrete gradient is defined as follows. Letuh ∈ Uh, for all f ∈ F :

∇ f uh =
1

|D f |

∫

∂D f

uhnds, (5)

where∇ f uh is the (vector) value of∇huh on D f and forn the unit normal on∂ D f

pointing outsideD f .
In practice, definition (5) can always be reformulated in terms of data differences

as in the 2D case where (see e.g. [7]):

∇ f uh = (uc1 −uc2)N f +(uv1 −uv2)M f ,

f is a mesh interface (edge),c1 andc2 the two cells on each side off , v1 andv2 the
two vertices off andN f , M f two vectors. We refer to [15, 5] for similar expansions
in 3D.

1.5 The scheme

The linear diffusion problem−div(K∇u)= f is considered together with a Dirichlet
boundary conditionu|∂Ω = g. The tensorK is discretized intoKh by averagingK
on each diamond cells and the source termf is discretized asfh ∈ Fh by averaging
f over each primal and dual cells. The problem reads: finduh ∈ Uh such that

∀ c∈ C : divc(Kh ∇huh) = fc , ∀ v∈ V , v 6∈ ∂Ω : divv(Kh ∇huh) = fv (6)

∀ v∈ V , v∈ ∂Ω : uh(v) = g(v) , ∀ f ∈ F , f ⊂ ∂Ω : uh(xf ) = g(xf ), (7)

To solve (6) (7), we splitUh = Uh,0 ⊕B whereUh,0 is the subset of discrete
functions equal to zero on∂Ω . Thenuh decomposes asuh = u0+ ũ, whereũ ∈ B

is uniquely determined by (7). Nowu0 ∈ Uh,0 satisfies−divh(Kh ∇hu0) = fh +
divh(Kh ∇h ũ) := f̃h for all primal cells and all interior vertices. This is a square
linear system equivalent with: findu0 ∈ Uh,0 so that for allv∈ Uh,0 we have:

−〈〈divh(Kh ∇hu0),v〉〉= 〈〈 f̃h,v〉〉

With the help of the discrete duality property (2) it is also equivalent with finding
u0 ∈ Uh,0 so that for allv∈ Uh,0:

∫

Ω
Kh ∇hu0 ·∇hvdx= 〈〈 f̃h,v〉〉.
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In practice, introducing the stiffness matrixS associated to the discrete tensorKh,
this problem is rewritten as the square positive symmetric linear system

SU0 = F̃ , (8)

with U0 (resp.F̃) the vector formed by the values ofu0 (resp. f̃h) at the cell centers
and interior vertices. The stiffness matrixShas the coefficientsSi j =

∫

Ω Kh ∇hwi ·

∇hw jdx, with wi ∈Uh,0 the base function having value 1 at one cell center or interior
vertex and 0 everywhere else. This matrix is clearly symmetric and positive.

2 Numerical results

The cell centers as well as the face centers are set to their iso-barycenter.
Let us first define the data (source termf and anisotropy tensorK ) discretization.

Primal, dual and diamond cells are partitioned using a single set of tetrahedra of type
E= xcxf v1v2, with c∈C , f a face ofc andv1, v2 two vertices off forming one of its
edges. To form the scalar datafh, f is averaged on the tetrahedraE partitioning each
primal and dual cells whereas the discrete tensorKh is obtained by averagingK on
the tetrahedraE partitioning the diamond cells. Averaging is made by the mean of
Gaussian quadrature on each tetrahedraE using a 15 points quadrature formula of
order 5, see e.g. [13]. Assembling the discrete source termfh and tensorKh requires
one loop on the mesh faces.

The stiffness matrixS in (8) also is assembled using a loop on the mesh
faces. Precisely two base functionswi and w j have a non zero interaction (i.e.
Si j =

∫

Ω Kh ∇hwi ·∇hw jdx 6= 0) in case they are associated to two vertices of a
same diamondD f .

Let us now define theL2, H1 and energy errors reported in the following tables
as erl2, ergrad and ener respectively. Letuh denote the discrete solution of one of
the test case, andu the solution of the associated continuous problem. The discrete
function uh is lifted to a functionuh ∈ L2(Ω) as follows. Consider a facef , uh

provides a value at each vertex ofD f and also at the face centerxf in case of a
boundary face. In case of an interior face, a supplementary valueuf is computed
at xf asuf = (∑n

i=1uvi )/n where thevi are then vertices of f , which definition is
consistent sincexf is the iso-barycenter off . With these additional values, scalars
are available for every vertices of the tetrahedraE that partitionΩ : this defines a
unique functionuh by P1 interpolation, which then is continuous piecewise affine
on Ω . We define:

erl22 =

∫

Ω |uh−u|2dx
∫

Ω |u|2dx
.

The discrete vector data∇huh is a piecewise constant vector function on the dia-
mond cells. Therefore∇huh is anL2 functions onΩ and theH1 and energy errors
reported in the following tables are defined as:
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ergrad2 =

∫

Ω |∇huh−∇u|2dx
∫

Ω |∇u|2dx
, ener2 =

∫

Ω K(∇huh−∇u) · (∇huh−∇u)
∫

Ω K∇u·∇udx
.

• Test 1 Mild anisotropy, u(x,y,z) = 1+sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Tetrahedral meshes

i nu nmat umin uemin umax uemax normg
1 2187 21287 1.34E-02 1.53E-02 1.99E+00 1.99E+00 1.80E+00
2 4301 44813 3.24E-03 6.84E-03 1.99E+00 1.99E+00 1.80E+00
3 8584 94088 8.78E-03 7.44E-03 2.00E+00 1.99E+00 1.80E+00
4 17102 195074 4.74E-03 5.52E-03 2.00E+00 2.00E+00 1.80E+00
5 34343 405077 5.90E-04 1.49E-03 2.00E+00 2.00E+00 1.80E+00
6 69160 838856 1.30E-03 6.19E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 2187 1.39E-02 – 1.85E-01 – 1.80E-01 –
2 4301 8.80E-03 2.04E+00 1.48E-01 1.01E+00 1.44E-01 9.89E-01
3 8584 5.64E-03 1.93E+00 1.18E-01 9.73E-01 1.15E-01 9.97E-01
4 17102 3.61E-03 1.94E+00 9.36E-02 1.01E+00 9.10E-02 1.01E+00
5 34343 2.26E-03 2.01E+00 7.43E-02 9.92E-01 7.24E-02 9.81E-01
6 69160 1.42E-03 2.00E+00 5.87E-02 1.01E+00 5.70E-02 1.02E+00

• Test 1 Mild anisotropy, u(x,y,z) = 1+sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Voronoı̈ meshes

i nu nmat umin uemin umax uemax normg
1 87 1433 1.23E-01 1.79E-01 1.91E+00 1.85E+00 1.80E+00
2 235 4393 6.66E-02 2.93E-03 1.87E+00 2.00E+00 1.80E+00
3 527 10777 1.32E-02 9.56E-03 1.93E+00 1.97E+00 1.80E+00
4 1013 21793 -1.76E-03 4.97E-03 1.93E+00 2.00E+00 1.80E+00
5 1776 40998 5.42E-04 4.30E-03 1.98E+00 1.97E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 87 6.19E-02 – 4.43E-01 – 4.29E-01 –
2 235 3.36E-02 1.85E+00 3.37E-01 8.28E-01 3.29E-01 7.96E-01
3 527 2.10E-02 1.74E+00 2.55E-01 1.03E+00 2.49E-01 1.04E+00
4 1013 1.35E-02 2.03E+00 2.05E-01 1.01E+00 2.01E-01 9.85E-01
5 1776 9.99E-03 1.62E+00 1.75E-01 8.38E-01 1.71E-01 8.47E-01
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• Test 1 Mild anisotropy, u(x,y,z) = 1+sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Kershaw meshes

i nu nmat umin uemin umax uemax normg
1 855 13819 7.16E-02 2.88E-02 1.94E+00 1.96E+00 1.80E+00
2 7471 138691 1.26E-02 6.45E-03 1.99E+00 1.99E+00 1.80E+00
3 62559 1237459 1.30E-03 1.75E-03 2.00E+00 2.00E+00 1.80E+00
4 512191 10443763 4.61E-04 5.45E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 855 5.64E-02 – 4.57E-01 – 4.51E-01 –
2 7471 1.71E-02 1.65E+00 1.91E-01 1.20E+00 1.89E-01 1.21E+00
3 62559 3.45E-03 2.26E+00 7.74E-02 1.28E+00 7.67E-02 1.27E+00
4 512191 7.62E-04 2.15E+00 3.47E-02 1.14E+00 3.41E-02 1.16E+00

• Test 1 Mild anisotropy, u(x,y,z) = 1+sin(πx)sin
(

π
(

y+ 1
2

))

sin
(

π
(

z+ 1
3

))

min= 0, max= 2, Checkerboard meshes

i nu nmat umin uemin umax uemax normg
1 59 703 1.46E-01 3.41E-02 1.86E+00 1.97E+00 1.80E+00
2 599 9835 3.87E-02 8.56E-03 1.96E+00 1.99E+00 1.80E+00
3 5423 101539 9.24E-03 2.14E-03 1.99E+00 2.00E+00 1.80E+00
4 46175 917395 2.15E-03 5.35E-04 2.00E+00 2.00E+00 1.80E+00
5 381119 7788403 5.01E-04 1.34E-04 2.00E+00 2.00E+00 1.80E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 59 4.79E-02 – 4.01E-01 – 3.94E-01 –
2 599 1.08E-02 1.93E+00 1.95E-01 9.34E-01 1.92E-01 9.31E-01
3 5423 2.55E-03 1.96E+00 9.58E-02 9.66E-01 9.37E-02 9.73E-01
4 46175 6.27E-04 1.96E+00 4.75E-02 9.83E-01 4.63E-02 9.89E-01
5 381119 1.56E-04 1.98E+00 2.36E-02 9.92E-01 2.30E-02 9.95E-01

• Test 2 Heterogeneous anisotropy,
u(x,y,z) = x3y2z+xsin(2πxz)sin(2πxy)sin(2πz), min=−0.862, max= 1.0487,
Prism meshes

i nu nmat umin uemin umax uemax normg
1 3010 64158 -8.54E-01 -8.41E-01 1.00E+00 1.00E+00 1.71E+00
2 24020 555528 -8.56E-01 -8.59E-01 1.02E+00 1.05E+00 1.71E+00
3 81030 1924098 -8.61E-01 -8.59E-01 1.04E+00 1.04E+00 1.71E+00
4 192040 4619868 -8.59E-01 -8.61E-01 1.04E+00 1.05E+00 1.71E+00
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i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 3010 5.06E-02 – 2.45E-01 – 2.48E-01 –
2 24020 1.85E-02 1.45E+00 1.26E-01 9.63E-01 1.27E-01 9.66E-01
3 81030 1.46E-02 5.90E-01 8.51E-02 9.63E-01 8.59E-02 9.66E-01
4 192040 1.37E-02 2.08E-01 6.49E-02 9.44E-01 6.53E-02 9.50E-01

• Test 3 Flow on random meshes,u(x,y,z) = sin(2πx)sin(2πy)sin(2πz),
min=−1, max= 1, Random meshes

i nu nmat umin uemin umax uemax normg
1 91 1063 -1.58E+00 -9.78E-01 1.54E+00 9.31E-01 3.65E+00
2 855 13819 -1.08E+00 -9.94E-01 1.12E+00 9.82E-01 3.57E+00
3 7471 138691 -1.04E+00 -9.95E-01 1.01E+00 9.91E-01 3.60E+00
4 62559 1237459 -1.01E+00 -9.98E-01 1.01E+00 9.98E-01 3.60E+00

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 91 3.06E-01 – 5.89E-01 – 5.70E-01 –
2 855 8.29E-02 1.75E+00 3.14E-01 8.56E-01 2.87E-01 9.21E-01
3 7471 2.28E-02 1.79E+00 1.65E-01 8.90E-01 1.46E-01 9.28E-01
4 62559 6.98E-03 1.67E+00 8.96E-02 8.58E-01 7.34E-02 9.68E-01

• Test 4 Flow around a well, Well meshes,min= 0, max= 5.415

i nu nmat umin uemin umax uemax normg
1 1482 23942 4.85E-01 -6.02E-06 5.32E+00 5.42E+00 1.62E+03
2 3960 70872 2.71E-01 -5.68E-06 5.33E+00 5.42E+00 1.62E+03
3 9229 173951 1.66E-01 -5.76E-06 5.33E+00 5.42E+00 1.62E+03
4 21156 412240 1.25E-01 -7.39E-06 5.33E+00 5.42E+00 1.62E+03
5 44420 882520 9.37E-02 -6.93E-06 5.34E+00 5.42E+00 1.62E+03
6 82335 1654893 7.48E-02 -6.94E-06 5.35E+00 5.42E+00 1.62E+03
7 145079 2937937 5.80E-02 -8.05E-06 5.36E+00 5.42E+00 1.62E+03

i nu erl2 ratiol2 ergrad ratiograd ener ratioener
1 1482 2.92E-03 – 1.79E-01 – 1.78E-01 –
2 3960 1.38E-03 2.29E+00 1.22E-01 1.18E+00 1.21E-01 1.16E+00
3 9229 7.45E-04 2.19E+00 8.57E-02 1.25E+00 8.56E-02 1.24E+00
4 21156 5.53E-04 1.08E+00 6.56E-02 9.71E-01 6.55E-02 9.72E-01
5 44420 3.77E-04 1.55E+00 5.14E-02 9.85E-01 5.13E-02 9.83E-01
6 82335 2.44E-04 2.11E+00 4.18E-02 1.01E+00 4.17E-02 1.01E+00
7 145079 1.83E-04 1.53E+00 3.51E-02 9.27E-01 3.50E-02 9.26E-01
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3 Comments

The linear system (8) to be solved is symmetric and positive:a Conjugate Gradient
algorithm has been applied, together with a basic Jacobi preconditioner. The spar-
sity pattern of the stiffness matrix is not compact, especially for matrix lines cor-
responding to vertex nodes. The stiffness matrix lines corresponding to cell nodes
have 1+nf +ns nonzero terms withnf andnv the number of faces and vertices of
the considered cell; for a tetrahedra 1+nf +nv = 9. The maximum principle is not
fulfilled by DDFV schemes. In practice it has been violated only once for test one
on Voronöı meshes and more significantly on test 3. Meanwhile no oscillation phe-
nomena are observed. Expected order 2 convergence on erl2 isobserved for all tests
excepted test 2. Order 1 convergence is observed for ergrad and ener on all tests.
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9. Hermeline, F.: Une ḿethode de volumes finis pour leséquations elliptiques du second ordre.
C. R. Acad. Sci.326(12), 1433–1436 (1998)

10. Hermeline, F.: A finite volume method for the approximation ofdiffusion operators on dis-
torted meshes. J. Comput. Phys.160(2), 481–499 (2000)

11. Hermeline, F.: Approximation of 2-D and 3-D diffusion operators with variable full tensor
coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Engrg. 196(21-24), 2497–
2526 (2007)

12. Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general
meshes. Comput. Meth. Appl. Mech. Engrg. (2009)

13. Jinyun, Y.: Symmetric gaussian quadrature formulae for tetrahedronal regions. Computer
Methods in Applied Mechanics and Engineering (1981)

14. Nicolaides, R.: Direct discretization of planar div-curlproblems. SIAM J. Numer. Anal.29(1),
32–56 (1992)

15. Pierre, C.: Modelling and simulating the electrical activity of the heart embedded in the torso,
numerical analysis and finite volumes methods. . PhD Thesis, Université de Nantes (2005)
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