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Benchmark 3D: CeVe-DDFV, a Discrete Duality
Scheme with Cell/Vertex Unknowns.

Yves Coudére and Charles Pierre

Abstract This paper presents numerical results for a 3D Cell and ¥exatered
DDFV scheme. The method applies to very general 3D meshkaling non con-
formal ones. Its construction and implementation are pitesk
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1 Presentation of the scheme

1.1 General presentation of DDFV methods

“Discrete Duality” Finite Volumes(DDFV) schemes have been specifically de-
signed for anisotropic and/or heterogeneous diffusiobleras working on general
meshes: distorted, non-conformal and locally refined. Thieywere introduced in
2D independently by Hermeline [9, 10] and Domelevo and @sni8], though the
key ideas already appear in the work of Nicolaides [14].

As originally defined in [8], a 2IDDFV scheme consists in associating a second
mesh (the dual mesh) to the original (primal) mesh by bujdinal cells around
each (primal) mesh vertex. Cell and vertex centeseglar dataare associated to
this double mesliramework (one data per primal and dual cell), whereasaor
data consists in one vector per (primal) mesh edge. To a scalarigdatssociated
a discrete gradient that is a vector datagradient reconstructiomethod is used
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to define this discrete gradient: precisely using the diadmoethod [6]. A discrete
divergence acts on vector data by averaging their normapooent on the primal
and dual cell boundaries, which procedure is classical fotefivolume methods.
The key feature is a duality property between the discretdignt and the discrete
divergence operators of Green formula type.

Extensions 0DDFV schemes to 3D [15, 11, 12, 2, 3, 1, 3] are of two types.

CV-DDFV. The original 2Ddouble mesiframework is conserved, dual cells are
built around the primal mesh vertices and scalar data doimsésdouble set of
unknowns associated with the (primal) mesh cells and \e=tic

CeVeFE-DDFV. Recently Coudire and Hubert [4, 3] modified the 2D frame-
work by considering a third mesh (triple mesh method), witknowns associ-
ated with cells, faces, edges and vertices of the primal mesh

The method considered here is@Y-DDFV type, CV holding for Cell and Vertex
centered. Two versions have been developed so far.

(A) A first 3D construction was introduced by Pierre in [15] folismtropic and/or
heterogeneous diffusion problems. The dual cells here tfonm a mesh in the
classical sense: they recover the domain twice.

(B) A second version, independently introduced by Hermelir2 §ihd Andreianov
& al. [2, 1] differs from the previous one by the dual cell défon that here form
a partition ofQ.

For both versions, in presence of heterogeneity, auxiljfegally eliminated) data
are added relatively to faces, as presented in [5, 12]. la oAgomplex meshes,
involving face shapes other than triangles or quadrantfissiocal elimination pro-
cedure is made difficult enforcing to consider auxiliaryadas real unknowns inside
the algorithm, which drastically increases the problema.siz
We first emphasize the similarities betwe@) and (B). These two versions are
based on the same definition of the discrete gradient. Ttseyiatluce comparable
discrete duality properties. Indeed, after a careful eration of these duality prop-
erties in [15] and in [2] it turns out that they do involve eitgche same stiffness
and mass matrices. As a result, between these two versiolysthe averaging of
the source terms on the dual cells will differ.

In this paper, versiogA) will be considered without auxiliary data on the mesh
faces. The fifth test case, including heterogeneity and nlegsssitating these aux-
iliary unknowns per face center, will not be treated hereabise of a lack of time.

1.2 CV- DDFV version (A), discrete duality

Let the domainQ c R3 be a connected open subset, its boundary is assumed to be
polyhedral. Let# be a (general) mesh @, possibly non conformal, and whose
(primal) cells ¢esp.faces) are general polyhedrat$p.polygonal). The set of cells,
faces and vertices o7 are respectively denotefl, % and?'. To any vertex € ¥
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is associated a dual celf and to any face € .7 is associated a diamond cel.
Diamond cells form a partition of2, whereas dual cells intersect and reco@er
exactly twice.

A vector data is a piecewise constant vector function on tamadnd cells. A
scalar data is provided by one scalar per cell and per vefte 0 The space of
vector data is denote@y, and the space of scalar ddfa. A discrete function is
obtained by supplementing a scalar data with one scalarpatdoundary face.
The space of discrete functions is denotéd As developed in Sec. 1.8y, € Uy,
will be interpreted as a function defined on the diamond aalifaaries:

07:=|J dos, un: 02 —R, (1)

fez

that moreover is continuous and piecewise affine on the didnaell faces.
Two discrete operators will be definedy, : Uy — Qp and diy, : Qn — Fy.
that satisfy thaliscrete duality propertysee [15])

/ Oh Un - hdX = —{(un, divh h)) +/ Un Oh-Nn ds 2)
Q 2Q

for any functionsu, € U, andy, € Qn, with n the unit normal ondQ pointing
outsideQ, and the pairing:

1

) ) 1 ) N
{(un,divhan)) = 3 Z Uclecqh|C|+§ z Uy divy gp V"] 3)

ce? vey

Here, |c| and |v*| are the volumes of the primal and dual callsind v+, u: and
divcgn are the values associated to the calif the two scalar data, and div, gy,
and similarlyu, and diy, gy are the values associated to the vextexthe two scalar
dataup and div, gp.

In (2) the two integrals are well defined. The first integrahisL? product on
Q since bothg, and[y up are piecewise constant vector functions on the diamond
cells.The second integral is &3 product ondQ: g, is piecewise constant on the
boundary faces and its normal compongptn also, moreoved Q C 02 defined
in (1) and sauy has a restriction td Q that is continuous.

1.3 Dual and diamond cells

A centerx. (resp.x¢) is associated to each cele ¢ (resp.f € .%#).

Diamond cells.Let f € .#. In casef ¢ dQ thenf is the interface between two
cellscy, c; € €: f =Tty N, Denotingx; the center oft;, thenbs is the union
of the two pyramids with apex; and with basef as depicted on Fig. 1. In case
f C0Q, thenf =0Q ncfor one cellc € . In this caseps is the pyramid with
apexx. and basef. Still in this casesf can be considered as a degenerated (flat)
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pyramid of apex its own centet; and basef. Thus, in all casesys is the union
of two pyramids, and its boundary can be partitioned intangies. The vertices of
these triangles either are: cell centers, vertices or bayrfdce centers of7. As a
result providing a scalar value to each cell, vertex and Hannface of # defines
a unique continuous piecewise affine functign: 02 — R, with 02 defined in
(). This is precisely the lift from the discrete functionlii presented in Sec. 1.2
into continuous piecewise affine functions @ in (1).

Fig. 1 Left: diamond cell for an internal triangular fade Right: dual cell construction.

Dual cells.Letv € ¥ and consider a cetl € ¥ and a facef € . so thatvis a
vertex of f and f is a face ofc. This configuration is denoted by< f < c. To a
triple (v, f,c) so thatv < f < cis associated an elemeRts c. The dual celv* then
is defined a3/ = Us ¢ y<f<c Tvf.c. Let us eventually define the elemeRys ¢, as
depicted on Fig. 1. Introducs; andw, the two vertices off such thatv,w;] and
[v,wy] are two edges of. ThenTy ¢ ¢ is the union of the two tetrahedua:xsw; for
i=1,2.

As one can see, for a fixed fadeand a fixed celt such thatf C dc, considering
all elementsly ¢ ¢ for all the verticess of f recovers exactly twices Nc. As a result
the dual cells recover the whole domain exactly twigg: |v'| = 2/Q]|.

1.4 Discrete operators

The discrete divergence is classically defined by averatfieghormal component
of g, € Qp on the primal and dual cells, for ale ¥ and allv € 7
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. 1 ) 1
divegn = —/ gnh-nds, divygn= —/ gh-hds (4)
lc| Jac V<] Jovr

for n the unit normal o@c (resp.dv*) pointing outsides (resp.v*). This definition is
well posed since the discontinuity setgqpf € Qp has a zero 2-dimensional measure
intersection with the primal and dual cell boundaries.

The discrete gradient is defined as follows. ugt Uy, for all f € .%:

1
Ofup = 7/ upnds (5)
HWELY

wheresuy, is the (vector) value ofl,u, onbs and forn the unit normal ordp¢
pointing outsidep;.

In practice, definition (5) can always be reformulated imeof data differences
as in the 2D case where (see e.g. [7]):

Dfuh = (uC]_ - uCz)Nf + (uV]_ - uVQ)M fy

f is a mesh interface (edge), andc, the two cells on each side éf v; andv, the
two vertices off andN¢, M ; two vectors. We refer to [15, 5] for similar expansions
in 3D.

1.5 The scheme

The linear diffusion problem-div(K Ou) = f is considered together with a Dirichlet
boundary conditioniyo = g. The tensoK is discretized intdK by averaging<
on each diamond cells and the source tdrin discretized agy, € Fy by averaging

f over each primal and dual cells. The problem reads:djnd Uy, such that

Vce®: dch(KhDhUh):fc, Vve 7/,V¢09: diVV(KhDhUh)ZfV (6)
Vve?,vedQ: u(v)=9g(v), VieF, fCaQ:ux)=0xt), (7)

To solve (6) (7), we splitUp = Upo® B whereUp is the subset of discrete
functions equal to zero odQ. Thenu, decomposes as, = Up + (, whereuc B
is uniquely determined by (7). Nowp € Up satisfies— divy(KnOpUo) = fr+
divh(KpOp0) = f, for all primal cells and all interior vertices. This is a sggia
linear system equivalent with: fingy € Uy g so that for allv € Up o we have:

—({(divh(Kh On o), V)) = ((fn, V)

With the help of the discrete duality property (2) it is alsuiralent with finding
Up € Unp so that for allv € Uy o:

/Q KhOhUg - DthX: <<fh,v>>.
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In practice, introducing the stiffness mati$associated to the discrete ten&ay,
this problem is rewritten as the square positive symmatrealr system

Sty =F, (8)

with Ug (resp.F) the vector formed by the values af (resp.fp,) at the cell centers
and interior vertices. The stiffness matfbhas the coefficientSj = [o KnOpW; -
Onw;dx withw; € Uy o the base function having value 1 at one cell center or interio
vertex and 0 everywhere else. This matrix is clearly symimatrd positive.

2 Numerical results

The cell centers as well as the face centers are set to theiaigcenter.

Let us first define the data (source tefrand anisotropy tensdt) discretization.
Primal, dual and diamond cells are partitioned using a siagt of tetrahedra of type
E =xcXsV1vo, withc € &, f aface oft andvy, v, two vertices off forming one of its
edges. To form the scalar ddfig f is averaged on the tetrahedEgartitioning each
primal and dual cells whereas the discrete teigpis obtained by averaging on
the tetrahedr& partitioning the diamond cells. Averaging is made by the mefa
Gaussian quadrature on each tetrah&ttesing a 15 points quadrature formula of
order 5, see e.g. [13]. Assembling the discrete source fgand tensoKy, requires
one loop on the mesh faces.

The stiffness matrixS in (8) also is assembled using a loop on the mesh
faces. Precisely two base functions and w; have a non zero interaction (i.e.
Sj = Jo KnOnWi - Onw;jdx # 0) in case they are associated to two vertices of a
same diamondys.

Let us now define the?, H! and energy errors reported in the following tables
as erl2, ergrad and ener respectively. ugtdenote the discrete solution of one of
the test case, andthe solution of the associated continuous problem. Theatisc
function uy, is lifted to a functiont, € L?(Q) as follows. Consider a facé, u,
provides a value at each vertex of and also at the face centey in case of a
boundary face. In case of an interior face, a supplement@ew; is computed
atxs asus = (3L, uy)/n where they; are then vertices off, which definition is
consistent sinceg; is the iso-barycenter of. With these additional values, scalars
are available for every vertices of the tetraheHr¢hat partitionQ: this defines a
unique functiont, by P* interpolation, which then is continuous piecewise affine
on Q. We define:

eriz2 — Jo |t —Uldx
Jo [u[2dx
The discrete vector datan u, is a piecewise constant vector function on the dia-
mond cells. Thereforel, uy, is anL? functions onQ and theH! and energy errors
reported in the following tables are defined as:



Cell/Vertex Centered DDFV

Jo | Ohun — Oul?dx Jo K(OnUn— Ou) - (Opup — Ou)
ergrad = enef = .
g Jo|Oul2dx Jo KOu- Oudx

e Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(rnx)sin(r(y+ 3 )) sin(m(z+ 3))
min = 0, max= 2, Tetrahedral meshes

il nu nmat umin uemin umax uemax normg
1| 2187 21287 1.34E-02 1.53E-02 1.99E+00 1.99E+00 1.80E+00
2| 4301 44813 3.24E-03 6.84E-03 1.99E+00 1.99E+00 1.80E+00
3/ 8584 94088 8.78E-03 7.44E-03 2.00E+00 1.99E+00 1.80E+00
4
5
6

17102 195074 4.74E-03 5.52E-03 2.00E+00 2.00E+00 1.80E+00
34343 405077 5.90E-04 1.49E-03 2.00E+00 2.00E+00 1.80E+00
69160 838856 1.30E-03 6.19E-04 2.00E+00 2.00E+00 1.80E+00

i| nu erl2 ratiol2 ergrad ratiograd ener ratioeher
1/ 2187 1.39E-02 - 1.85E-01 - 1.80E-01

2| 4301 8.80E-03 2.04E+00 1.48E-01 1.01E+00 1.44E-01 9.

3| 8584 5.64E-03 1.93E+00 1.18E-01 9.73E-01 1.15E-01 9.
417102 3.61E-03 1.94E+00 9.36E-02 1.01E+00 9.10E-02 1.0QE+
5

6

69160 1.42E-03 2.00E+00 5.87E-02 1.01E+00 5.70E-02 1.0QE+

e Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(rnx) sin(rt(y+3)) sin(m(z+3))
min = 0, max= 2, Voronoi meshes

il nu nmat umin  uemin umax uemax normlg
1| 87 1433 1.23E-01 1.79E-01 1.91E+00 1.85E+00 1.80KE+00
2| 235 4393 6.66E-02 2.93E-03 1.87E+00 2.00E+00 1.80E+00
3| 527 10777 1.32E-02 9.56E-03 1.93E+00 1.97E+00 1.80E+00
4
5

1013 21793 -1.76E-03 4.97E-03 1.93E+00 2.00E+00 1.80E+00
1776 40998 5.42E-04 4.30E-03 1.98E+00 1.97E+00 1.80E+00

i| nu erl2 ratiol2  ergrad ratiograd ener ratioener
1| 87 6.19E-02 - 4.43E-01 - 4.29E-01 —

2| 235 3.36E-02 1.85E+00 3.37E-01 8.28E-01 3.29E-01 7.96E-01
3| 527 2.10E-02 1.74E+00 2.55E-01 1.03E+00 2.49E-01 1.04E+00
4
5

1013 1.35E-02 2.03E+00 2.05E-01 1.01E+00 2.01E-01 9.85E-0
1776 9.99E-03 1.62E+00 1.75E-01 8.38E-01 1.71E-01 8.4I/E-0
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e Test 1 Mild anisotropy, u(x,y,z) = 1+ sin(nx) sin(rt(y+ 3 )) sin(m(z+3))

min=20

, max= 2, Kershaw meshes

nu nmat umin  uemin  umax  uemax nom19

i

1
2
3
4

855 13819 7.16E-02 2.88E-02 1.94E+00 1.96E+00 1.80E+00
7471 138691 1.26E-02 6.45E-03 1.99E+00 1.99E+00 1.80E+00
62559 1237459 1.30E-03 1.75E-03 2.00E+00 2.00E+00 1.80E+0

512191 10443763 4.61E-04 5.45E-04 2.00E+00 2.00E+00 +@0E

nu erl2 ratiol2 ergrad ratiograd ener ratioeher

i

1
2
3
4

855 5.64E-02 - 4.57E-01 - 4.51E-01 -
7471 1.71E-02 1.65E+00 1.91E-01 1.20E+00 1.89E-01 1.2QE+0
62559 3.45E-03 2.26E+00 7.74E-02 1.28E+00 7.67E-02 1.QUE+

512191 7.62E-04 2.15E+00 3.47E-02 1.14E+00 3.41E-02 *QGE

e Test 1 Mild anisotropy, u(x,y,z) = 1+sin(rx)sin(rt(y+ 3)) sin(m(z+ 3))
min = 0, max= 2, Checkerboard meshes

nu nmat umin uemin umax uemax normg

59 703 1.46E-01 3.41E-02 1.86E+00 1.97E+00 1.80E+00
509 9835 3.87E-02 8.56E-03 1.96E+00 1.99E+00 1.80E+00
5423 101539 9.24E-03 2.14E-03 1.99E+00 2.00E+00 1.80E+00

46175 917395 2.15E-03 5.35E-04 2.00E+00 2.00E+00 1.80E+00
381119 7788403 5.01E-04 1.34E-04 2.00E+00 2.00E+00 1@QE+

nu erl2 ratiol2  ergrad ratiograd ener ratioe|ner

59 4.79E-02 - 4.01E-01 - 3.94E-01 -
599 1.08E-02 1.93E+00 1.95E-01 9.34E-01 1.92E-01 9.31E-01

46175 6.27E-04 1.96E+00 4.75E-02 9.83E-01 4.63E-02 9BYE-
381119 1.56E-04 1.98E+00 2.36E-02 9.92E-01 2.30E-02 S(H5E

[
1
2
3| 5423 2.55E-03 1.96E+00 9.58E-02 9.66E-01 9.37E-02 9.7BE-0
4
5

e Test 2 Heterogeneous anisotropy,
u(x,y, 2) = x3y?z+ xsin(2mxz) sin(27xy) sin(2mz), min = —0.862 max= 1.0487,
Prism meshes

nu nmat umin uemin umax  uemax norrﬂg

i

1
2
3
4

3010 64158 -8.54E-01 -8.41E-01 1.00E+00 1.00E+00 1.71E+00
24020 555528 -8.56E-01 -8.59E-01 1.02E+00 1.05E+00 1.0QE+
81030 1924098 -8.61E-01 -8.59E-01 1.04E+00 1.04E+00 *GQE
192040 4619868 -8.59E-01 -8.61E-01 1.04E+00 1.05E+0CEHG
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nu erl2 ratiol2 ergrad ratiograd ener ratiogner

i

1
2
3
4

3010 5.06E-02 - 2.45E-01 - 2.48E-01 -
24020 1.85E-02 1.45E+00 1.26E-01 9.63E-01 1.27E-01 9(BHE-
81030 1.46E-02 5.90E-01 8.51E-02 9.63E-01 8.59E-02 9BBHE-
192040 1.37E-02 2.08E-01 6.49E-02 9.44E-01 6.53E-02 S(E

e Test 3 Flow on random meshesy(x,y,z) = sin(27x) sin(2ty) sin(2rz),
min = —1, max= 1, Random meshes

nu nmat umin uemin umax  uemax norrﬂg

91 1063 -1.58E+00 -9.78E-01 1.54E+00 9.31E-01 3.65E+00
855 13819 -1.08E+00 -9.94E-01 1.12E+00 9.82E-01 3.57E+00
7471 138691 -1.04E+00 -9.95E-01 1.01E+00 9.91E-01 3.60E+0

62559 1237459 -1.01E+00 -9.98E-01 1.01E+00 9.98E-01 3-60E

nu erl2 ratiol2 ergrad ratiograd ener ratiogner

i
1
2
3| 7471 2.28E-02 1.79E+00 1.65E-01 8.90E-01 1.46E-01 9.2BE-0
4

91 3.06E-01 - 5.89E-01 - 5.70E-01 -
855 8.29E-02 1.75E+00 3.14E-01 8.56E-01 2.87E-01 9.21E-01

62559 6.98E-03 1.67E+00 8.96E-02 8.58E-01 7.34E-02 9(BBE-

e Test 4 Flow around a well, Well meshesnin = 0, max= 5.415

nu nmat umin uemin umax  uemax norn19

1482 23942 4.85E-01 -6.02E-06 5.32E+00 5.42E+00 1.62E+03
3960 70872 2.71E-01 -5.68E-06 5.33E+00 5.42E+00 1.62E+03
9229 173951 1.66E-01 -5.76E-06 5.33E+00 5.42E+00 1.62E+03
21156 412240 1.25E-01 -7.39E-06 5.33E+00 5.42E+00 1.63E+0
44420 882520 9.37E-02 -6.93E-06 5.34E+00 5.42E+00 1.62E+0
82335 1654893 7.48E-02 -6.94E-06 5.35E+00 5.42E+00 1.62E+
145079 2937937 5.80E-02 -8.05E-06 5.36E+00 5.42E+00 *+GZE

nu erl2 ratiol2 ergrad ratiograd ener ratioeher

9229 7.45E-04 2.19E+00 8.57E-02 1.25E+00 8.56E-02 1.2@E+0
21156 5.53E-04 1.08E+00 6.56E-02 9.71E-01 6.55E-02 9
44420 3.77E-04 1.55E+00 5.14E-02 9.85E-01 5.13E-02 9
82335 2.44E-04 2.11E+00 4.18E-02 1.01E+00 4.17E-02 1.0QE+
E

1482 2.92E-03 - 1.79E-01 - 1.78E-01 -
3960 1.38E-03 2.29E+00 1.22E-01 1.18E+00 1.21E-01 1.16E+0
145079 1.83E-04 1.53E+00 3.51E-02 9.27E-01 3.50E-02 9
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3 Comments

The linear system (8) to be solved is symmetric and posiiv@onjugate Gradient
algorithm has been applied, together with a basic Jacolbbprditioner. The spar-
sity pattern of the stiffness matrix is not compact, esplgcfar matrix lines cor-
responding to vertex nodes. The stiffness matrix linesesponding to cell nodes
have 1+ nf + ng nonzero terms witms andn, the number of faces and vertices of
the considered cell; for a tetrahedra- b + ny = 9. The maximum principle is not
fulfilled by DDFV schemes. In practice it has been violated only once for t@st o
on Vorond meshes and more significantly on test 3. Meanwhile no asiciti phe-
nomena are observed. Expected order 2 convergence on eldgdsved for all tests
excepted test 2. Order 1 convergence is observed for ergchdreer on all tests.
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