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1. Introduction

The theoretical response of a half-space under a moving load
with static and dynamic components has been largely investigated
in the past. The numerous applications that can be modeled within
the frame of wave propagation have driven such efforts. Among all
these applications one can refer to seismic problems, road and high
speed railways engineering. As a consequence, studies in this area
have considered many types of medium and loading, such as mov-
ing point loads or uniformly distributed normal and shear loads.

Early works by Sneddon (1952) or Cole and Huth (1958) have
focused on two-dimensional problems and have used integral
transform methods. Considering similar methods, Eason (1965)
analyzed the three-dimensional response of a semi-infinite homo-
geneous and isotropic elastic solid under a point, a disk or a rectan-
gular load moving at a uniform velocity. For application to cement
concrete roads, railway tracks or bridges, several authors like Frýba
(1972, 1987), Olsson (1991) or Sun (2006) preferred to model the
pavement system as an elastic beam or plate resting on an elastic
(Winkler) foundation excited by a moving force. Barros and Luco
(1994), among others, extended prior works to the analysis of a
three-dimensional multilayered half-space. They derived the stea-
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dy-state displacements and stresses within a multilayered visco-
elastic medium generated by a buried or a surface point load
moving at constant speed. They used an approach based on an
integral representation of the complete response in terms of wave-
numbers, introducing layering effects by an exact factorization of
the displacement in terms of generalized transmission and reflec-
tion coefficients. The Fourier transform is used in Barros and Luco
(1994) to compute the response in the frequency domain prior to
performing a Fast Fourier Transform (FFT) that leads to the solution
in the spatial domain. Barros and Luco (1995) later deepened their
analysis by introducing moving line load to the problem whose
solution relied on a similar procedure to obtain Green’s functions
for a layered half-space. This approach had been used formerly
by Luco and Aspel (1983a,b). About the influence of loading on
the mechanical response, Hung and Yang (2000) gave insights into
the mechanism of wave propagation for a viscoelastic half-space
under moving loads of different types including dynamic compo-
nents. In the pavement field, specific models have been developed
to propose a more realistic representation of the complex contact
problem of a tire on a pavement structure. These models handle
non-uniform stresses that depend on the load speed and they
account for the viscoelastic behavior of asphalt concrete layers.

Aside from semi-analytical methods, the solution of such
three-dimensional problems has also been addressed by means
of the boundary element method (Andersen and Nielsen, 2003)
or the finite element method (Elseifi et al., 2006; Heck et al.,



Fig. 1. Description of the moving load on a multilayered medium problem.
1998; Hornych et al., 2002). See also Hornych et al. (2007) for the
treatment of problems involving non-linear behavior of soil layers.
Nevertheless, semi-analytical methods are still developed in order
to offer alternative tools to purely numerical methods. These tools
are used for the design of engineering structures such as pave-
ments. In this framework, several models compute semi-analytical
solutions that do account for inertia forces (3D-Move (Siddharthan
et al., 1998; Siddharthan et al., 2000) and ViscoRoute (Duhamel
et al., 2005)) or do not (VEROAD (Hopman, 1996)). Otherwise from
3D-Move, the model implemented in ViscoRoute directly inte-
grates the viscoelastic behavior of asphalt materials through the
Huet–Sayegh model (Huet, 1963; Huet, 1999; Sayegh, 1965) which
is particularly well-suited for the modeling of asphalt overlays
(Chailleux et al., 2006; Nilsson et al., 2002). The models imple-
mented in these tools consider a multilayered medium in which
the layers can have a viscoelastic or an elastic behavior. Further-
more, they only assume full bonded conditions at the interface be-
tween layers. In spite of that, interface sliding is also encountered
in real pavements as, for instance, in composite pavements in
which the initial bonding between layers may eventually fail due
the action of traffic (SETRA-LCPC, 1997). Generally, as far as multi-
layered structures are considered, free edges or vertical cracks
across layers may produce debonding at interlayer locations, ask-
ing for specific modeling (Caron et al., 2006; Chabot et al., 2005).
Consequently, it is necessary to evaluate the influence of the inter-
layer sliding condition on the global response of such structures if
one wants to predict their long-term behavior.

So, the present article aims at developing a method to compute
the mechanical response of a multilayered half-space with inter-
layer slip when excited by moving loads. Layers of the studied
medium have either an elastic or a thermoviscoelastic behavior;
the governing equations are exposed in Section 2. The solving pro-
cedure derived in Section 3 relies upon Fourier transformations
and it computes the analytical solution in the frequency domain
prior to calculating the spatial solution by means of FFT and quad-
rature rules. The solution in the wavenumber domain is obtained
using matrix techniques which have already been used in many
applications related to fields such as seismology or acoustic. In
the review on the matrix techniques presented by Lowe (1995),
two different approaches, with possible variants, are distinguish-
able. These are the transfer matrix method (Thomson–Haskell)
and the global matrix method. The transfer matrix method (or
‘‘propagator matrix” method) was first developed by Thomson
(1950) and Haskell (1953) for seismological applications. It con-
sists in propagating the boundary conditions from one boundary
of the system to the other through matrix multiplications. This
method is known to encounter stability issues for high frequencies
and large layer thicknesses. On the other hand, the global matrix
method, which is used herein, was originally proposed by Knopoff
(1964). It was first implemented by Randall (1967) and employed
by number of researchers (for a quite comprehensive list, see Lowe,
1995) among which Schmidt and Jensen (1985) or Schmidt and
Tango (1986) contributed to significant developments, in particu-
lar in terms of numerical efficiency and stability. The global matrix
method consists in assembling a single matrix that gathers all the
boundary relations. Then, the response solution for the vector of
wave amplitudes may be readily obtained by inversion of the sys-
tem matrix. According to Schmidt and Tango (1986), the global
matrix approach yields both improved efficiency and versatility.
The global matrix method has been implemented in several
numerical programs. In particular, it is the basis of the early com-
puter code SAFARI (Schmidt, 1987). Note that an upgraded version
of SAFARI (named OASES) which provides higher numerical stabil-
ity, was also developed at the Massachusetts Institute of Technol-
ogy (Schmidt, 1999). So, contrary to Barros and Luco (1994) or
Duhamel et al. (2005), the solving procedure presented in this arti-
2

cle considers a global matrix instead of a recursive scheme involv-
ing transmission and reflection coefficients. In order to implement
this method, we modified and extended the original ViscoRoute
kernel (Duhamel et al., 2005). In Section 4, the implemented meth-
od is validated in elasticity by comparison with software ALIZE-
LCPC (Autret et al., 1982). Afterwards, qualitative and quantitative
results about the influence of interface sliding on the response of a
layered viscoelastic pavement are presented through the analysis
of a numerical example (Section 4). Several velocities are also
tested to examine the effect of viscoelasticity. Finally, concluding
remarks are given in Section 5.

2. Governing equations

A layered half-space composed of n horizontal layers is consid-
ered (Fig. 1). A given layer i of thickness di has either an elastic or a
viscoelastic behavior. A moving load is applied on the free surface
of the medium at a constant velocity (V); this load moves in the x
direction. The problem is governed by the elastodynamic equations
which are considered, for each layer, in a moving basis attached to
the load. One shifts from the fixed basis (x,y,z), tied to the medium,
to the moving basis (X,Y,Z) by making the following change of
variable:

x ¼ X þ Vt; y ¼ Y ; z ¼ Z: ð1Þ

The elastodynamic equations can be written in the moving basis
(X,Y,Z) and for layer i, as follows:

divðriðX; Y; ZÞÞ ¼ qiV
2 @

2uiðX;Y ; ZÞ
@X2 ; i 2 f1;ng: ð2Þ

ui and qi denote the displacement field and the density of layer i,
respectively. Boundary and interlayer conditions are required to
solve Eq. (2). These conditions are explained in Section 3. Concern-
ing the constitutive equations, a brief description of the Huet–Say-
egh model (Huet, 1963; Huet, 1999; Sayegh, 1965) used to
represent the viscoelastic behavior of asphalt materials encoun-
tered further in this article is given below for the one-dimensional
case. The extension to the tensorial constitutive law can be obtained
assuming constant Poisson’s ratio (t). As shown on the schematic
representation of Fig. 2, this model is represented by a purely
elastic spring (E0) (branch I) connected in parallel to two parabolic



Fig. 2. Schematic representation of the Huet–Sayegh rheological model.
dampers in series with an elastic spring (E1 � E0) (branch II). The
stress–strain (r � e) relation for this model reads in the temporal
domain:

rðtÞ ¼ E0eðtÞ þ rIIðtÞ ð3Þ

with e and rII (stress in branch II) linked through the convolution
law given below:

eðtÞ ¼
Z t

�1
F

t � n
sðhÞ

� �
d
dt

rIIðnÞdn ð4Þ

in which F is the creep function that reads:

F
t

sðhÞ

� �
¼ 1

E1 � E0
1þ d

t=sðhÞð Þk

Cðkþ 1Þ þ
t=sðhÞð Þh

Cðhþ 1Þ

!
: ð5Þ

Cis the Gamma function. E0 is the static elastic modulus, E1 � E0 is
the instantaneous elastic modulus, k and h are exponents of the par-
abolic dampers (1 > h > k > 0), and d is a positive non-dimensional
coefficient balancing the contribution of the first damper in the glo-
bal behavior. h denotes temperature and s is a response time
parameter which accounts for the equivalence principle between
frequency and temperature. s is governed by:

sðhÞ ¼ expðA0 þ A1hþ A2h
2Þ; ð6Þ

where A0, A1 and A2 are constant parameters.
In the frequency domain in which asphalt materials are charac-

terized, the complex modulus of the Huet–Sayegh model reads:

E�ðxsðhÞÞ ¼ E0 þ
E1 � E0

1þ dðixsðhÞÞ�k þ ðixsðhÞÞ�h
: ð7Þ

The representation of the Huet–Sayegh model in the Black and
Cole–Cole diagrams show that this model is able to fit accurately
experimental data stemming from complex modulus tests per-
formed on asphalt materials (Huet, 1963; Sayegh, 1965; Heck
et al., 1998).

3. Semi-analytical solution of the viscoelastic multilayered half-
space

A solution is first sought in the frequency domain prior to
applying the inverse Fourier’s transform that leads to the solution
in the spatial coordinate system. A spectral method is also used in
Nguyen (2002), Ricci et al. (2005).

3.1. Solution in the frequency domain

To obtain a semi-analytical solution of the aforementioned
mechanical problem, the Fourier transform is applied to the dis-
placement field in the X and Y directions and a solution is sought
in the frequency domain. The bidimensional Fourier transform of
the displacement field is denoted u* and is given by Eq. (8):
3

u�ðk1; k2; ZÞ ¼
Z 1

�1

Z 1

�1
uðX; Y; ZÞe�jk1Xe�jk2Y dX dY ; ð8Þ

where k1 and k2 are the wave numbers and j is the imaginary unit.
The constitutive law for viscoelastic materials is expressed in the
frequency domain as follows:

r�ðk1; k2; ZÞ ¼ 2l�ðk1VÞe�ðk1; k2; ZÞ þ k�ðk1VÞtrðe�ðk1; k2; ZÞÞI: ð9Þ

The complex Lame coefficients, k*(k1V) and l*(k1V), depend on the
complex modulus E*(k1V) in the same way as in the elastic case. r*
and e* are the Cauchy stress and the strain tensors expressed in the
frequency domain. I is the identity. Then, the equilibrium equation
(2) can be rewritten in the frequency domain:

Ai
@2u�ðk1; k2; ZÞ

@Z2 þ jBi
@u�ðk1; k2; ZÞ

@Z
� Ciu�ðk1; k2; ZÞ ¼ 0; i 2 f1; ng: ð10Þ

Eq. (10) applies to each layer i of the multilayered half-space and
matrices Ai, Biand Ci are given by:

Ai¼
c2

si 0 0
0 c2

si 0
0 0 c2

pi

0
B@

1
CA;

Bi¼

0 0 k1 c2
pi�c2

si

� �
0 0 k2 c2

pi�c2
si

� �
k1 c2

pi�c2
si

� �
k2 c2

pi�c2
si

� �
0

0
BBBB@

1
CCCCA;

Ci¼

k2
1 c2

pi�V2
� �

þk2
2c2

si k1k2 c2
pi�c2

si

� �
0

k1k2 c2
pi�c2

si

� �
k2

1 c2
si�V2

� �
þk2

2c2
pi 0

0 0 k2
1 c2

si�V2
� �

þk2
2c2

si

0
BBBB@

1
CCCCA;

ð11Þ

where, in layer i, cpi and csi are the dilatation and the shear wave
velocities whose expressions are detailed in Eq. (12).

cpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�i þ 2l�i

qi

s
; csi ¼

ffiffiffiffiffiffi
l�i
qi

s
: ð12Þ

A solution to the differential equation (10) takes the exponential
form shown in Eq. (13).

u�ðk1; k2; ZÞ ¼ ûðk1; k2Þejk3Z : ð13Þ

Seeking solutions having the form exhibited in Eq. (13) leads in turn
to the determination of eigenvalues and eigenvectors of the follow-
ing quadratic problem:

k2
3Ai þ k3Bi þ Ci

� �
ûðk1; k2Þ ¼ 0: ð14Þ

Non-trivial solutions to Eq. (14) are given by Eq. (15):

k3 ¼ �jjpi;

k3 ¼ �jjsi; ;
ð15Þ

where jpi and jsi are the longitudinal and the shear wave numbers
given by:

jpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m2
pi

� �
k2

1 þ k2
2

r
;

jsi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

si

� �
k2

1 þ k2
2

q
with m2

pi ¼
V2

c2
pi

; m2
pi ¼

V2

c2
si

: ð16Þ

mpi and msi are the Mach numbers of layer i. The eigenvectors asso-
ciated to the eigenvalues obtained in Eq. (15) are:



û1 ¼
k1

k2

jjpi

2
64

3
75; û2 ¼

k1

k2

�jjpi

2
64

3
75; û3 ¼

0
jsi

jk2

2
64

3
75; û4 ¼

0
�jsi

jk2

2
64

3
75;

û5 ¼
jsi

0
jk1

2
64

3
75; û6 ¼

�jsi

0
jk1

2
64

3
75: ð17Þ

The two first eigenvectors are linked to jpi while the others are
associated to jsi. Finally, the solution to Eq. (10) can be computed
for each layer i (i 2 {1,n}) as the sum of these eigenvectors what
leads to the following expressions of the displacement field in the
frequency domain:

u�1iðk1; k2; ZÞ ¼ k1b
�
1ie
�jpiZ þ jsib

�
3ie
�jsiZ þ k1b

þ
1ie

jpiZ � jsib
þ
3ie

jsiZ ;

u�2iðk1; k2; ZÞ ¼ k2b
�
1ie
�jpiZ þ jsib

�
2ie
�jsiZ þ k2b

þ
1ie

jpiZ � jsib
þ
2ie

jsiZ ;

u�3iðk1; k2; ZÞ ¼ jjpib
�
1ie
�jpiZ þ jk2b

�
2ie
�jsiZ þ jk1b

�
3ie
�jsiZ

� jjpib
þ
1ie

jpiZ þ jk2b
þ
2ie

jsiZ þ jk1b
þ
3ie

jsiZ :

ð18Þ

The displacement field logically depends on the wave numbers and
the Z-coordinate. It also involves six constant parameters per layer
which are called amplitudes (Eq. (19)):

bi ¼
b�i

bþi

	 

; with b�i ¼

b�1i

b�2i

b�3i

0
B@

1
CA and bþi ¼

bþ1i

bþ2i

bþ3i

0
B@

1
CA: ð19Þ

For the whole multilayered medium, 6n parameters have to be
determined from boundary conditions. To accomplish this, contact
conditions expressed at the interface between layers are required.
These contact laws involve displacements or/and stresses. For use
in the interlayer conditions, the traction vector (Eq. (20)) of layer i
(i 2 {1,n}), corresponding to the normal eZ, is defined from Eq.
(18) and the constitutive relation Eq. (9).

r�13i¼l�i �2k1jpi
b�1ie

�jpiZ�k1k2b
�
2ie
�jsiZ� k2

1þj2
si

� �
b�3ie

�jsiZ
h

þ2k1jpib
þ
1ie

jpi Z�k1k2b
þ
2ie

jsi Z� k2
1þj2

si

� �
bþ3ie

jsiZ
i
;

r�23i¼l�i �2k2jpib
�
1ie
�jpi Z� k2

2þj2
si

� �
b�2ie

�jsiZ�k1k2b
�
3ie
�jsiZ

h
þ2k2jpib

þ
1ie

jpi Z� k2
2þj2

si

� �
bþ2ie

jsiZ�k1k2b
þ
3ie

jsiZ
�
;

r�33i¼ jl�i � k2
1þk2

2þj2
si

� �h
b�1ie

�jpiZ�2k2jsib
�
2ie
�jsiZ

�2k1jsib
�
3ie
�jsiZ� k2

1þk2
2þj2

si

� �
bþ1ie

jpi Zþ2k2jsib
þ
2ie

jsiZþ2k1jsib
þ
3ie

jsiZ
�
:

ð20Þ
3.2. Determination of the amplitude vector

The amplitude vector is determined from boundary conditions
at the free surface and at infinity as well as from the interlayer con-
tact conditions.

Boundary conditions on the free surface and at infinity yield six
equations. At the free surface the condition reads:

r�Z¼0 � eZ ¼ f̂; ð21Þ

where f̂ is the Fourier transform of the imposed force vector. The
radiation condition is considered at infinity, in the underlying
half-space, so that the displacement field must scatter to infinity.
Given the displacement response shown in Eq. (18) the radiation
condition implies that bþn is equal to zero at infinity.

The contact conditions at the interface between layers provide
6(n � 1) equations (six equations per interface). Two types of con-
4

dition are analyzed in this article: the continuity (or bonded) and
the interface sliding conditions. The continuity condition is com-
monly used and states that the displacements and the traction vec-
tor from both sides of an interface are equal at the Z-coordinate of
this interface. This condition for an interface located between lay-
ers i and i + 1 reads:

u� k1; k2; Zð Þ
r�ðk1; k2; ZÞ � eZ

	 

i

¼
u�ðk1; k2; ZÞ

r�ðk1; k2; ZÞ � eZ

	 

iþ1

: ð22Þ

On the other hand, the sliding condition stipulates that the shear
components of the traction vector are equal to zero at both sides
of an interface. In the same time, the conditions on the vertical dis-
placement and the third component of the traction vector remain
the same as in Eq. (22). The sliding case for an interface settled be-
tween layers i and i + 1 reads:

u�3ðk1; k2; ZÞ
r�13ðk1; k2; ZÞ
r�23ðk1; k2; ZÞ

0
0

r�33ðk1; k2; ZÞ

0
BBBBBBBB@

1
CCCCCCCCA

i

¼

u�3ðk1; k2; ZÞ
0
0

r�13ðk1; k2; ZÞ
r�23ðk1; k2; ZÞ
r�33ðk1; k2; ZÞ

0
BBBBBBBB@

1
CCCCCCCCA

iþ1

: ð23Þ

Accounting for interface relations plus the boundary conditions at
the top layer and at infinity leads to a well-defined problem of 6n
unknowns and 6n equations.

The global matrix technique (Schmidt and Tango, 1986) is
adopted to calculate the amplitude vector which is obtained by
solving a unique linear system per couple of wave numbers
(k1,k2). This method enables to easily handle the combination of
bonded and sliding interfaces of a multilayered structure. The
assembly of the global matrix relies on Eq. (24) that links
quantities of layer i and i + 1 at the interface between these two
layers.
ðMi�eiÞ � bi ¼ ðNiþ1Þ � biþ1; i 2 f1; ng: ð24Þ
Mi and Ni+1 are 6-by-6 matrices that depend on the material prop-
erties of layer i and i + 1, respectively. These matrices are different
from sliding to bonded interfaces. Substitution of Eqs. (18) and
(20) in Eq. (22) leads to the determination of matrices Mi and Ni

in the bonded case. The definition of Mi and Ni for sliding interfaces
is obtained by inserting Eqs. (18) and (20) into Eq. (23). These
matrices are detailed in the appendix for both cases. �ei is a diagonal
6-by-6 matrix that compiles the exponential terms of displace-
ments and stresses involved in the contact relations. �ei is defined
as follows:

diagð�eiÞ ¼ e�jpidi e�jsidi e�jsidi ejpidi ejsidi ejsidi
� �T

; ð25Þ
where the exponential terms are computed at the Z-coordinates of
interfaces only. To formulate the contact conditions at an interface,
a change of variable is locally operated: for each layer, the origin of
the Z-axis is chosen at the top of the considered layer. As a conse-
quence, for an interface located between layers i and i + 1, the Z-
coordinate of this interface is Z = di for layer i and Z = 0 for layer
i + 1. This change of variable explains why no exponential term ap-
pears in the left hand side of Eq. (24). �ei does not depend on the type
of interface.

To obtain the amplitude vector, one needs to solve the linear
system above (Eq. (26)) in which the assembled matrix is block
diagonal.



D0

M1e1 �N2 0
M2e2 �N3

. .
.

Miei �Niþ1

0 . .
.

Mn�1en�1 �Dn

2
66666666666664

3
77777777777775

b�1 bþ1
� �T

b�2 bþ2
� �T

..

.

..

.

b�i bþi
� �T

..

.

b�n

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼

f̂
0
..
.

..

.

..

.

..

.

0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

: ð26Þ
The filling procedure of the global matrix bears on the repetition of
Eq. (24) for every interface. Eq. (26) is verified whatever the inter-
face condition. The first block of the global matrix is the 3-by-6 ma-
trix, D0. It reflects the boundary condition at the free surface (Eq.
(21)). D0 is given in the appendix. On the other hand, the boundary
condition at infinity affects the last block (Dn) whose size is 6-by-3
instead of 6-by-6. bþn is indeed equal to zero so it is not included in
the unknown vector (b). Dn is equivalent to M�

n for the bonded con-
dition whereas it is equal to N�n for sliding interfaces. The size of the
global matrix is 6(n � 1) + 3. Naturally, different conditions can be
mixed within the global matrix.

Before solving the linear system (Eq. (26)) by using a pivoting
method, two particular treatments must be applied to this sys-
tem. In the global matrix, indeed, some terms relate to the dis-
placement field and others to the stress field. The order of
magnitude of these fields may be significantly different leading
to a global matrix that is ill conditioned. To overcome this diffi-
culty, the terms that connect to the stress field are divided by
the module of the l* Lame coefficient. These terms are exactly di-
vided by the largest module of l�i and l�iþ1 providing that the
interface between layers i and i + 1 is concerned. This treatment
applies for both the perfect-slip interface condition (Eq. (23))
and the bonded condition (Eq. (22)). The same operation must
be employed on the right hand side of Eq. (26) so f̂ is divided
by max l�1

 ; l�2
 � �

whatever are the interface conditions within
the structure. A second treatment is necessary when the positive
exponentials in �ei become too large, i.e. large values of N1 and N2

are required to perform the FFT (Section 3.3), triggering overflow
issues. These exponentials depend on either jpi or jsi which
themselves are function of k1 and k2. A change of variable is made
to get over this second difficulty: the positive exponentials in Eq.

(25) are divided by exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2

q� �
di and so are the bþi once the

system of Eq. (26) has been solved. Note that the particular treat-
ments mentioned above follow the recommendation of the spe-
cialized literature in terms of stability of the numerical solution.
In particular, according to Schmidt and Tango (1986), uncondi-
tionally stable solutions can be ensured by using Gaussian elimi-
nation with partial pivoting, where only simple scaling and
rearrangement is employed.

We implemented the method presented in this section as
well as the different interface conditions in the ViscoRoute
kernel (Duhamel et al., 2005) which uses the C++ language
programming.
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3.3. Solution in the spatial domain

The solution of Eq. (2) in the spatial domain (X,Y,Z) is obtained
by integration of its counterpart in the frequency domain (k1,k2,Z).
The integration is not straightforward because of the form of the
integrand that leads to improper integrals. Several difficulties
arise: either the integrand is not directly defined from a numerical
viewpoint at some (k1,k2) but it is continuous and finite at those
points, or the integrand is infinite at some (k1,k2) within the inte-
gration interval but still integrable (integrable singularity). More-
over, in the vicinity of those critical points, the integrand varies
rapidly causing accuracy issues of the numerical integration.

These difficulties can be illustrated in the case of a homoge-
neous half-space in which, for instance, the vertical displacement
in the frequency domain reads:

u�3ðk1;k2;ZÞ¼
e�ðjpþjsÞZjpfZ �2ejpZ k2

1þk2
2

� �
þejsZ k2

1þk2
2þj2

s

� �� �
l� k2

1þk2
2

� �2
�4 k2

1þk2
2

� �
jpjsþ2 k2

1þk2
2

� �
j2

s þj4
s

� �:
ð27Þ

fZ, which is supposed to be well-defined, is the applied force at the
surface of the medium. The first difficulty with Eq. (27) comes up
when k1 = 0 and k2 – 0 because in this case the denominator is zero.
However, the Taylor series expansion at about k1 = 0 and k2 – 0 of
the displacement u�3 is:

u�3ðk1; k2; ZÞ ¼ �
e�k2ZfZ �k2

2m2
pZ þm2

s k2 þ k2
2Z

� �� �
2l� k2

2 m2
p �m2

s

� �� � þ O½k1�2: ð28Þ

In the case of a homogeneous half-space, the vertical displacement
could be replaced by Eq. (28) when k1 = 0 and k2 – 0. This is not fea-
sible for a multilayered structure. Here, mp is different from ms, and
u�3 is singular or not depending on the value of l*. For the Huet–Say-
egh model which is used in the numerical example of the present
article and briefly described in Section 2, l* is defined in the wave-
number domain as follows:

l�ðk1V ; hÞ ¼ 1
2ð1þ tÞ E0 þ

E1 � E0

1þ dðik1VsðhÞÞ�k þ ik1VsðhÞð Þ�h

!
:

ð29Þ

E0 cannot be equal to zero and therefore l* is never nil. However,
since for usual data E0 is very small compared to E1, l* strongly
varies with k1 in the vicinity of k1 = 0 whatever is k2. l* is close to
a function of the form kh

1 as long as k1 is small and different from
zero. This generates accuracy troubles in the numerical integration
although u�3 is not singular.

On the other hand, the Taylor series at about k1 = k2 = 0 of u�3
reads:

u�3ðk1;k2;ZÞ¼
a2fZm2

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2 m2

p�1
� �r

� �2b2þa2 m2
s �2

� �� �2
þ4 a2þb2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2�a2 m2
p�1

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�a2 m2

s �1
� �q

� 1
l�e
þCða;b;ZÞ

l�
þO½e�:

ð30Þ

In the above equation, we set k1 = ae, k2 = be and the Taylor series
was developed around e = 0. C(a,b,Z) is a function of a, b and Z. This
time, the vertical displacement in the frequency domain is singular
in e = 0, and the integrable singularity takes the form 1/e which is
typical of the purely elastic problem. Note that in elasticity there
is no singularity in k1 = 0, k2 – 0. The issue concerning l* is similar
to that explained previously.



The generalization of the above analysis to a multilayered struc-
ture could be done through the development in Taylor series of the
algebraic system that defines the solution in the frequency domain
for multilayered media. This is not formulated herein.

In conclusion, two types of improper integrals encountered
when computing the solution in the spatial domain have been de-
scribed. The mentioned difficulties appear in k1 = 0, k2 – 0 and
k1 = k2 = 0. To overcome these obstacles a specific scheme of inte-
gration is envisaged. To explain this scheme, let ĝðk1; k2; ZÞ denote
the function to integrate. Then, the integrated function g(X,Y,Z)
that represents a component of the displacement, the stress or
the strain field in the spatial coordinate system takes the form:

gðX;Y ; ZÞ ¼ 1
4p2

Z 1

�1

Z 1

�1
ĝðk1; k2; ZÞejk1Xejk2Y dk1 dk2

� 1
4p2 dk1dk2FFT2D ð1� Indðk1ÞÞĝðk1; k2; ZÞ½ �½

þ
Z 1

�1

Z 1

�1
Indðk1Þĝðk1; k2; ZÞejk1Xejk2Y dk1 dk2
� �


� 1
4p2 dk1dk2FFT2D ð1� Indðk1ÞÞĝðk1; k2; ZÞ½ �½

þ
Z 1

�1

Z
Hðdk1Þ

ĝðk1; k2; ZÞejk2Y dk1 dk2

#
: ð31Þ

FFT2D denotes the two-dimensional Fast Fourier Transform. Ind(k1)
and Ind(k2) are the interval indicator functions such that:

Indðk1Þ ¼
1; k1 2 Hðdk1Þ ¼ ½�dk1=2; dk1=2�
0; k1 R Hðdk1Þ

�
and

Indðk2Þ ¼
1; k2 2 Hðdk2Þ ¼ ½�dk2=2; dk2=2�
0; k2 R Hðdk2Þ

�
ð32Þ

The exponential term ejk1X is neglected in the evaluation of the last
term of Eq. (31) for which k1 is close to zero. Similarly, ejk2Y is ne-
glected in the last term of Eq. (33) which is obtained by decompo-
sition of Eq. (31)

gðX;Y ; ZÞ � 1
4p2 dk1dk2FFT2D½ð1� Indðk1ÞÞĝðk1; k2; ZÞ�½

þ dk2FFTk2
1� Indðk2Þð Þ

Z
Hðdk1Þ

ĝðk1; k2; ZÞdk1

" #

þ
Z

Hðdk2Þ

Z
Hðdk1Þ

ĝðk1; k2; ZÞdk1 dk2

#
: ð33Þ

FFTk2 denotes the one-dimensional FFT in the k2-direction. Practi-
cally, the last integral within the brackets of Eq. (33) leads to a con-
stant which is inserted in the array of the FFTk2 discrete values in
k2 = 0. This constant is divided by dk2 prior to insertion. Eq. (33)
indicates that to obtain g(X,Y,Z), we first perform a 2D FFT on the
whole domain minus a small strip centered in k1 = 0. Two other
integrations are then performed over the domain omitted in the
2D FFT. This decomposition enables to handle the aforementioned
integration issues. The results of these integrations, which are de-
tailed below, are added to compose the solution in the spatial
domain.

3.3.1. Calculation of FFT2D½ð1� Indðk1ÞÞĝðk1; k2; ZÞ�
To perform the 2D FFT, the solution in the frequency domain,

which is a continuous function of k1 and k2, is discretized within
the range of integration that goes from �N1dk1/2 to N1dk1/2 in
the k1-direction and from �N2 dk2/2 to N2dk2/2 in the k2-direction.
The steps of discretization or sampling intervals are denoted dk1

and dk2. N1 and N2 are determined by ensuring that discrete values
of the solution in the frequency domain are negligible for suffi-
ciently large values of k1 and k2, respectively. The criterion used
to evaluate N1 reads:
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Xi1¼5

i1¼1

ĝ �N1

2
dk1 þ i1dk1;0; Z

� �
 < e

Xi1¼5

i1¼1

jĝði1dk1;0; ZÞj; ð34Þ

where e is a small positive quantity. ĝðk1; k2; ZÞ is supposed to be
non-zero only in a finite interval of k1 and k2 that is itself supposed
to be contained within the range of integration. Eq. (34) checks that
the aforesaid statement is verified with a good accuracy; the same
technique is used to set N2. Note that prior to running the 2D FFT,
ĝðk1; k2; ZÞ is set equal to zero in k1 = 0.

3.3.2. Calculation of FFTk2
½ð1� Indðk2ÞÞ

R
Hðdk1Þ

ĝðk1; k2; ZÞdk1�
It is achieved in two steps. A Gauss quadrature is first used before

an one-dimensional FFT is applied in the k2-direction. The interval
H(dk1) is split into two subintervals: [� dk1/2,0] [ ]0,dk1/2], and
seven points are used on each subintervals to perform the Gauss
quadrature. The following change of variable is made prior to the
Gaussian integration:

k1 ¼
1þ x

2

� �3 dk1

2
ð35Þ

and finally the integral over H(dk1) is computed as follows:

Z
Hðdk1Þ

ĝðk1; k2; ZÞdk1 ¼
X7

i¼1

3dk1

4
wi

1þ xi

2

� �2

� ĝ ki
1; k2; Z

� �
þ ĝ �ki

1; k2; Z
� �h i

: ð36Þ

xi and wi are the abscissas and the weights of the Gauss–Legendre
quadrature rule, and ki

1 are the discrete values at which ĝ is com-
puted. These are obtained from Eq. (35) for x = xi. Eq. (36) is calcu-
lated for the k2 discrete values going from �N2dk2/2 to N2dk2/2. The
integrated function for all k2 discrete values is stored in an array in
which real and imaginary parts alternate. This array is then used to
perform the one-dimensional FFT in the k2 direction. The value of
this array for the zero frequency is obtained from the integration
described in Section 3.3.3.

3.3.3. Calculation of
R

Hðdk1Þ
R

Hðdk2Þ
ĝðk1; k2; ZÞdk1 dk2

A similar procedure to the one exposed above is used to com-
pute this integral. This leads to the formula:

Z
Hðdk2Þ

Z
Hðdk1Þ

ĝðk1; k2; ZÞdk1 dk2 ¼ 2 �
X7

j¼1

X7

i¼1

9dk1dk2

16
wjwi

1þ xj

2

� �2

� 1þ xi

2

� �2

ĝ ki
1; k

i
2; Z

� �h
þ ĝ �ki

1; k
i
2; Z

� �i
: ð37Þ

The following symmetry, related to the one existing in the y-direc-
tion of the spatial domain, is used in Eq. (37): ĝðk1; k2Þ ¼ ĝðk1;�k2Þ.

Once all the aforementioned integrations have been performed
and added to obtain a solution in the spatial domain, another cri-
terion is checked. It verifies that the continuous function has been
properly sampled and that aliasing effects (owing to non-adapted
sampling frequencies) have been minimized. This second criterion
in the k1-direction reads:

Xi1¼5

i1¼1

g �N1

2
dx1 þ i1dx1; 0; Z

� �
 < ~e

Xi1¼5

i1¼1

gði1dx1;0; ZÞj j: ð38Þ

~e is a small positive quantity and dx1 = 2p/(dk1N1). If Eq. (38) is not
verified the sampling interval dk1 is divided by two and the integra-
tion process is restarted from the beginning. This procedure is run
until an acceptable solution is reached. A similar verification holds
for dk2.



Fig. 3. Sketch of the studied multilayered pavement structure.

Table 1
Properties of the elastic layers considered in the validation case.

Layer Thickness (m) E (MPa) m Type

[1] 0.08 5400 0.35 Bituminous material
[2] 0.12 9300 0.35 Bituminous material
[3] 0.20 23,000 0.25 Material treated with

hydraulix binders
[4] Infinite 120 0.35 Foundation
4. Numerical applications to a four-layer semi-infinite structure

This section is split into two subsections. The first one aims at
validating the accuracy and the implementation of the methods
detailed in Section 3. It studies a multilayered structure for which
all layers have an elastic behavior. In the second subsection, the
influence of interface slip on the mechanical response of the same
structure but with viscoelastic layers is analyzed. The mechanical
response of a structure, with bonded or sliding interfaces, to a
moving load is typical of pavement problems.

The structure under consideration is described in Fig. 3. It is a
composite pavement that consists of four layers defined as follows:
a surface course of bituminous materials, a base layer of bitumi-
nous materials, a layer of materials treated with hydraulic binders,
and a pavement foundation. As shown in Fig. 3, a sliding interface
condition can be introduced between layers 2 and 3, i.e. between
the asphalt and the concrete cement layers.

The layers of composite pavements are initially bonded. How-
ever, due to traffic stresses and differential expansion between
the base of layer 2 and layer 3, the bonding between the asphalt
concrete and the material treated with hydraulic binders may
eventually fail (SETRA-LCPC, 1997). To better understand the effect
of interface slip on the long-term behavior of such structures, their
mechanical response to a moving load needs to be investigated by
introducing sliding between these two layers.
Fig. 4. Mechanical response under static loading of an elastic four-layer structure with a
(a) vertical displacement versus X-coordinate for two different depths and (b) normal s
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4.1. Validation case in elasticity

The validation of the developed method is performed by com-
parison with software ALIZE-LCPC (Autret et al., 1982) which is
used in the French design of pavements. ALIZE-LCPC computes
the Burmister solution (Burmister, 1943) of an elastic multilayered
half-space under static loading. This comparison enables to check
the solution procedure through a global matrix, the implementa-
tion of sliding as an interface condition and the integration meth-
ods. The confrontation is performed, at different depths, on
components of the displacement, the strain and the stress fields.

All layers of the studied structure are assumed to have an elastic
behavior (Hooke’s law) as described by the Young moduli and Pois-
son’s ratios given in Table 1.

A uniform disc-shaped load of 0.25 m in diameter (i.e.
2a = 0.25 m) and centered in (X = 0, Y = 0, Z = 0) is applied (in the
Z-direction) on the free surface of the pavement structure. The
pressure load, f0, is equal to 0.662 MPa which corresponds to
the value used in the French design of pavements (SETRA-LCPC,
1997). The load expression in the frequency domain is then given
by Eq. (39):

f̂ ¼
0
0
f̂ Z

0
B@

1
CA with f̂ Z ¼ f0J1 a k2

1 þ k2
2

h i1=2
� �

dðx3Þ=a k2
1 þ k2

2

h i1=2
;

ð39Þ

where J1 is a Bessel function of the first kind.
Figs. 4 and 5 show the comparison between the results obtained

from the developed method and ALIZE-LCPC when the sliding inter-
face condition is considered between layers 2 and 3. Figs. 4(a), (b)
and 5(a) display horizontal profiles (in the X-direction, Y = 0), at
two different depths corresponding to the base of asphalt concrete
(Z1 = 0.19 m) and the base of materials treated with hydraulic bind-
ers (Z2 = 0.39 m), of the vertical displacement, the normal stress (rxx)
and the component of longitudinal strain in the direction of rolling
(exx), respectively. Only half of these profiles (in the X-direction)
are plotted because of the symmetry of the mechanical response in
elasticity. Fig. 5(b) shows the vertical profile (in the Z-direction) of
the longitudinal strain (exx). In all these figures, the curves obtained
from the developed method perfectly match the ones stemming
from ALIZE-LCPC. The developed method is thus validated and is
going to be applied, in Section 4.2, to a pavement structure including
viscoelastic materials. More details on the trends observed in the
strain and stress profiles are also provided below.

4.2. Effects of the sliding interface condition in viscoelasticiy

In this section, two cases of interface condition are studied.
Either a sliding or a bonded interface condition is assumed
slip boundary between layers 2 and 3. Comparison of ViscoRoute with ALIZE-LCPC:
tress in the X direction versus X-coordinate for two different depths.



Fig. 5. Mechanical response under static loading of an elastic four-layer structure with a slip boundary between layers 2 and 3. Comparison of ViscoRoute with ALIZE-LCPC:
(a) longitudinal strain versus X-coordinate and (b) vertical profile of the longitudinal strain.

Table 2
Properties of the pavement structure layers.

Layer E0 (MPa) E1 (MPa) d k h A0 A1 A2 m

[1] 11 32,665 2.24 0.19 0.59 2.943 �0.39742 1.95E�03 0.35
[2] 13 43,934 2.10 0.17 0.53 5.945 �0.39962 1.070E�03 0.35

E (MPa) m
[3] 23,000 0.25
[4] 120 0.35
between layers 2 and 3 of the structure depicted in Fig. 3. More-
over, the bituminous layers (layers 1 and 2) have a viscoelastic
behavior described by the Huet–Sayegh model (Huet, 1963,
1999; Sayegh, 1965) which is appropriate to model the behavior
of asphalt materials. In the frequency domain, the complex mod-
ulus of this model depends on the load speed and the tempera-
ture as shown in Eq. (29). The values of the Huet–Sayegh
parameters corresponding to the bituminous materials involved
herein are summarized in Table 2 that also gathers the elastic
properties of layers 3 and 4.

The longitudinal strain (exx) and the normal stress (rxx) are
analyzed in this section. These quantities commonly intervene
in the criteria for the design of pavements in France that, basi-
cally, rely on the estimate of tensile stresses and strains at par-
ticular locations in the structure (SETRA-LCPC, 1997). When a
single load is applied on the pavement, the maximum tensile
strain is obtained for the exx component of the strain tensor. This
is not systematically verified for multiple loads (Chabot et al.,
2010).

Fig. 6 shows the longitudinal strain component (exx) as a func-
tion of the depth in the structure for several load velocities and
at a temperature of 30 �C. These vertical profiles are collected
right under the load, in X = Y = 0. The sliding (plus markers) and
the bonded (circle markers) interface conditions are compared
on each graph. The temperature in the bituminous courses is
constant and set to thirty degrees Celsius. Note that the temper-
ature is used in Eq. (6) to determine the response time parameter
and that the higher the temperature the more viscous is the
behavior of asphalt materials. Likewise, the response of the struc-
ture depends on the load velocity due to viscoelasticity of layers
1 and 2. Low speeds lead to higher viscoelastic deformations. In
Fig. 6, the load velocity ranges from 20 m/s to 0.1 m/s which is
close to the static case.

As expected, the sliding interface condition enforced between
layers 2 and 3 yields a discontinuity in the longitudinal strain at
this location (z = 0.2 m). This discontinuity is noticeable in all
graphs of Fig. 6. In layers 3 and 4, beneath the slip interface, exx re-
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mains quite unchanged as the velocity varies. In these layers, a rel-
atively small influence of the velocity on exx is also noticed in the
bonded case. Contrarily, the longitudinal strain depends strongly
on the velocity in layers 1 and 2 in which, at a velocity of 20 m/s,
exx evolves almost linearly with depth. This variation becomes
non-linear, essentially in the first layer, as the velocity lowers. At
a velocity of 20 m/s, compressive strain is observed in the first
layer whereas tensile strain prevails at velocities inferior or equal
to 1 m/s.

For all studied velocities, the maximum magnitude in exx (com-
pressive or tensile strain) is higher for the interlayer slip condition
than for the bonded condition. For v = 20 m/s, v = 5 m/s and
v = 1 m/s, the maximum tensile strain is located in layer 2 next
to the interface with layer 3. In the near static case, this maximum
is observed in layer 1. At relatively high velocities (v = 20 m/s or
v = 5 m/s), values of the same order of magnitude as the maximum
strain for these speeds are also attained at the interface between
layers 3 and 4. Then, as the velocity decreases the maximum ten-
sile strain increases. In the near static case (v = 0.1 m/s), the max-
imum tensile strain is equal to more than twice its value at a
velocity of 20 m/s. For full bonded conditions the maximum ten-
sile strain is also located in layer 1 for velocities lesser than 1 m/s.

Besides, horizontal profiles in the X direction (Y = 0) of the
longitudinal strain, eXX, are plotted in Figs. 7(a) and 7(b) whose
curves are obtained for a velocity of 0.1 m/s and 20 m/s, respec-
tively. These profiles are computed for a temperature of 30 �C
and at a depth of 0.18 m, just above the interface between layers
2 and 3. The horizontal profiles confirm that as speed decreases
the maximum magnitude in eXX increases and that the slip
boundary case leads to higher longitudinal deformations. We
also notice that, at a depth of 0.18 m, the bonded case yields
essentially contraction strains (negative value of eXX) which are
much smaller than the extension strains observed in the sliding
case. Additionally, note that the maximum value of extension at
a velocity of 0.1 m/s (i.e. for highly viscous materials) is
located a little behind the center of the load imprint, at about
0.05 m.



Fig. 7. Horizontal profile at a depth of 0.18 m of the longitudinal strain computed for a four-layer viscoelastic system excited by a moving load. A bonded or a slip boundary is
assumed between layers 2 and 3. (a) V = 20 m/s and (b) V = 0.1 m/s.

Fig. 8. Mechanical response under a moving load of a viscoelastic four-layer structure with a bonded or a slip boundary between layers 2 and 3: influence of the velocity on
the normal stress (vertical profiles).

Fig. 6. Mechanical response under a moving load of a viscoelastic four-layer structure with a bonded or a slip boundary between layers 2 and 3: influence of the load velocity
on the longitudinal strain (vertical profiles).
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Fig. 8 shows the normal stress (rxx) as a function of depth for
two velocities: v = 20 m/s and v = 0.1 m/s. The influence of the
interlayer condition between layers 2 and 3 on the global response
of the structure is also analyzed. For both bonded and sliding
interface conditions, a decrease of the velocity goes along with
an increase of the normal tensile and compressive stresses in layer
3 (material treated with hydraulic binders). The gain in normal
stress is significant for the full bonded case but not for the sliding
interface condition. Contrary to the trend observed in elastic layer
3, the normal stress decreases with velocity in asphalt layers. This
is especially true for layer 2 when the sliding interface condition
is considered. Besides, the normal stress within the subgrade
(layer 4) is equal to zero. Indeed, because of high rigidity, the
layer of materials treated with hydraulic binders forming the
sub-base spreads and attenuates the stresses transmitted to the
subgrade.

5. Conclusion

This article presented a semi-analytical method to compute
the response of a layered viscoelastic medium under a uniform
load moving at constant speed. Emphasis was put on the treat-
ment of interlayer relations so that full bonded or sliding inter-
face conditions could be considered (and mixed) in the solving
process.

An algorithm based on the global matrix technique was used to
compute the solution. Moreover, particular attention was paid to
the treatment of singularities encountered when integrating the
solution in the frequency domain to obtain the spatial response
of the structure. The solution procedure was validated by compar-
ison with engineering software ALIZE-LCPC which is used for the
design of pavements in France.

The influence of the sliding interface condition on the response
of a viscoelastic layered half-space was addressed through an
application dedicated to pavement structures. The analysis was
conducted on the longitudinal strain (exx) and the normal stress
(rxx).

The following concluding remarks are made: (i) deformations
(extension and compression) are higher for the sliding interface
condition than for the full bonded case. (ii) A discontinuity in
exx is observed at the location of the sliding interface; this discon-
tinuity becomes larger as the load velocity decreases, i.e. as the
behavior in viscoelastic layers gets more viscous. Moreover, at
very low speeds, the maximum value of the longitudinal strain
can be observed elsewhere than at the location of the sliding
interface. (iii) The normal stress is also affected by the load veloc-
ity and the type of interface. The sliding interface condition leads
to higher tensile stresses in the structure than does the full
bonded case. Moreover, for interlayer slip, a decrease of the load
speed goes along with a decrease of the normal stress in the vis-
coelastic layers and an increase of the normal stress in the elastic
layer.

The method developed in this paper will allow, in future works,
to easily introduce more complex contact laws between the layers
of a structure.
Appendix A

A.1. Mi and Ni for the bonded condition

Substitution of Eqs. (18) and (20) in Eq. (22) leads to the deter-
mination of matrices Mi and Ni. For the sake of making the layout
look right, Mi is divided into submatrices:

Mi ¼ M�
i Mþ

i

� �
; ðA:1Þ
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where

M�
i ¼

k1 0 jsi

k2 jsi 0
jjpi jk2 jk1

�2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
�2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

�jl�i k2
1 þ k2

2 þ j2
si

� �
�2jl�i k2jsi �2jl�i k1jsi

2
6666666666664

3
7777777777775
;

ðA:2Þ

Mþ
i ¼

k1 0 �jsi

k2 �jsi 0
�jjpi jk2 jk1

2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

�jl�i k2
1 þ k2

2 þ j2
si

� �
2jl�i k2jsi 2jl�i k1jsi

2
6666666666664

3
7777777777775
:

ðA:3Þ

Mi and Ni are the same for the continuity equation.

A.2. Mi and Ni for the sliding condition

The definition of Mi and Ni for sliding interfaces is obtained by
inserting Eqs. (18) and (20) into Eq. (23) which is then expressed
in a matrix form. Mi and Ni are split as follows:

Mi ¼ M�
i Mþ

i

� �
; Ni ¼ N�i Nþi

� �
; ðA:4Þ

where

M�
i ¼

jjpi jk2 jk1

�2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
�2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

0 0 0
0 0 0

jl�i k2
1 þ k2

2 þ j2
si

� �
2jl�i k2jsi 2jl�i k1jsi

2
666666666664

3
777777777775
;

ðA:5Þ

Mþ
i ¼

�jjpi jk2 jk1

2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

0 0 0
0 0 0

jl�i k2
1 þ k2

2 þ j2
si

� �
�2jl�i k2jsi �2jl�i k1jsi

2
666666666664

3
777777777775
;

ðA:6Þ

N�i ¼

jjpi jk2 jk1

0 0 0
0 0 0

�2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
�2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

�jl�i k2
1 þ k2

2 þ j2
si

� �
�2jl�i k2jsi �2jl�i k1jsi

2
666666666664

3
777777777775
;

ðA:7Þ



Nþi ¼

�jjp jk2 jk1

0 0 0
0 0 0

2l�i k1jpi �l�i k1k2 �l�i k2
1 þ j2

si

� �
2l�i k2jpi �l�i k2

2 þ j2
si

� �
�l�i k1k2

�jl�i k2
1 þ k2

2 þ j2
si

� �
2jl�i k2jsi 2jl�i k1jsi

2
666666666664

3
777777777775
:

ðA:8Þ
A.3. Definition of matrix D0

D0 is split into submatrices:

D0 ¼ D�0 Dþ0
� �

ðA:9Þ

D�0 and Dþ0 act on b�1 and bþ1 , respectively. D0 expresses (20) in a ma-
trix form and it is defined as follows:
D�0 ¼

�2l�1k1jp1 �l�1k1k2 �l�1 k2
1 þ j2

s1

� �
�2l�1k2jp1 �l�1 k2

2 þ j2
s1

� �
�l�1k1k2

�jl�1 k2
1 þ k2

2 þ j2
s1

� �
�2l�1k2js1 �2l�1k1js1

2
66664

3
77775;

ðA:10Þ

Dþ0 ¼

2l�1k1jp1 �l�1k1k2 �l�1 k2
1 þ j2

s1

� �
2l�1k2jp1 �l�1 k2

2 þ j2
s1

� �
�l�1k1k2

�jl�1 k2
1 þ k2

2 þ j2
s1

� �
2l�1k2js1 2l�1k1js1

2
66664

3
77775:

ðA:11Þ
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