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Abstract
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1. Introduction

A better understanding of the effects of undraimegting and induced thermal pressurization
phenomenon is an important point to properly unders the behaviour and evaluate the integrity
of an oil well cement sheath submitted to rapid gerature changes. Temperature increase in
saturated porous materials under undrained conditieads to volume change and pore fluid
pressure increase. This thermal pressurizatiorués td discrepancy between thermal expansion
coefficients of the pore fluid and of the pore voki This pore pressure increase induces a
reduction of effective mean stress and can leah&ar failure or hydraulic fracturing. Indeed the
geomaterials are pressure sensitive and the maxisihgar stress depends on the effective mean
stress. On the other hand, when pore pressurghehthan maximum principal stress (positive in
compression) the material may undergo tensile raillihe thermal pressurization phenomenon is
important in petroleum engineering where the resiemock and the well cement lining undergo
sudden temperature changes, as for example wheacexg heavy oils by steam injection
methods. This rapid temperature increase could garo@ment sheath integrity of wells and lead to
loss of zonal isolation. Within this context, a mascale experimental program of drained and
undrained heating tests is performed on a fluidrsé¢d hardened oil-well cement paste. The
results of this study are presented in [1] and sksome important aspects of behaviour of this
material when submitted to rapid temperature cheindgée thermal pressurization coefficient,
defined as the pore pressure increase due to demmiterature increase in undrained conditions, is
evaluated to about 0.6MPa/°C which is a relativeggh value comparing to other geomaterials (see
[2] for a review). In accordance with results of&&a and Scherer [3], the analysis of the
undrained heating test revealed that the thermadmesion coefficient of cement paste pore fluid is
anomalously higher than the one of pure bulk wéthkis experimental study was a part of a larger
study on the thermo-poro-mechanical behaviour dfasdened cement paste [1][4][5][6]. The
experimental program consisted by drained, unddaamel unjacketed compression tests, as well as
drained and undrained heating tests and permegaéiiluation tests. This experimental program is
performed on a particular cement paste, preparéld elass G cement at a water-to-cement ratio
equal to 0.44. The poroelastic parameters are #&x¢rapolated to cement pastes with different
water-to-cement ratios by means of micromechanigdeiiing and homogenization technique [7].
This is done using a multi-scale micromechanics ehodriginally proposed by Ulnet al [8],
which is calibrated on the experimental results THe predictive capacity of the micromechanics
model is verified by comparing the parameters wsitime experimental results from literature. In
the continuity of the approach used in [7], the namgechanics model is used here in association
with the results of drained and undrained hea@ststpresented in [1]. The model has been already
calibrated in [7] for the poroelastic parametenst, & second calibration step should be performed
for the thermal behaviour. This permits also tadgtthe thermal expansion of the pore fluid in
different parts of the microstructure. The calibchimodel will then be used to calculate thermal
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expansion and thermal pressurization parameterseiment pastes with different water-to-cement
ratios.

The paper is organized in six sections and onerafipeAfter this introduction, the second section
presents the microstructure of the cement pastadmodsses the anomalous thermal expansion of
its pore fluid. The third section presents the thaoal framework of macro- and micro-thermo-
poroelasticity and homogenization method. The tesahd analysis of drained and undrained
heating tests are presented briefly in the fouetttisn. The homogenization of thermal expansion
and thermal pressurization properties is presemddte fifth section. First the calibration of the
model is completed on the basis of the resultsraindd and undrained heating tests and then, the
homogenization model is used to extrapolate thgperamental results for the cement pastes with
different water-to-cement ratios. The last sect®dedicated to concluding remarks. Appendix A
presents the developments of micro-thermo-poraeigséquations.

2. Microstructure of cement paste

The cement clinker is composed of four main pha€sS, GS, GA and GAF where in the
standard cement chemistry the notation C stand€&@, S for SiQ A for Al,O3; and F for FgDs.
The setting and hardening of cement paste areethdts of complex reactions, called hydration
reactions, between clinker phases and water. Tmemepaste has a very complex microstructure
which varies with cement composition, time and lagidn conditions. In a simplified view, the
main phases of the microstructure are calciumat#ihydrate (ES—-H) which is the main binding
phase of all Portland cement-based materials, &wlite (CH), Aluminates (AL), cement clinkers
(CK) and macro-porosity. €5-H is the main hydration product which is a porohsge with an
amorphous and colloidal structure and a variabknsbal composition. The CH often occurs as
massive crystals but is also mixed withSSH at the micron-scale. CH and cement clinker can be
considered as non-porous solid phases. Becauses @blioidal and amorphous nature and the
variability of its chemical composition, the strut of C-S-H matrix and its solid phase are not
clearly known. Since a few decades different motielse been proposed in the literature for the
structure of this material. Most of these modelssuter a layered structure for&-H and also the
existence of an important quantity of chemicallyndéed or adsorbed water. Jennings [9][10]
proposed a microstructural model for&-H in which the amorphous and colloidal structurehef
C-S-H is organized in elements, called ‘globules’. Tglebule, with a size of about 4nm, is
composed of solid €5-H sheets, intra-globule porosity filled with strucl water and a
monolayer of water on the surface. The structur€<8-H in Jennings’ model contains small gel
pores in the space between adjacent globules agerigel pores between the groups of several
globules. Jennings’ model distinguishes two type€-6S-H, called low density (LD) and high
density (HD) CG-S-H. The globules are considered to be identicalihdnd HD G-S-H and the
difference between these two types ofSEH is in the gel porosity of about 0.24 for HD-&-H

and 0.37 for LD €S-H. A more detailed description of the microstruetof the hardened cement
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paste is presented in [7]. For the purpose of meachanics modelling the microstructure of the
cement paste is divided into the following threalsdevels:

- Level 0 (10°-10®%m, the G-S—H solid): Solid phase of €5-H matrix.
- Level 1 (10°-10°m, the G-S-H matrix): High density and low density-G-H.

- Level 2 (10°-10"m, the cement paste)=6-H matrix, Portlandite (CH), Alluminates (AL),
cement clinker (CK) and water.

2.1. Active porosity

The analysis of the test results of Ghabe#bal [4] revealed that the active porosity of the cetne
paste in poromechanics tests is smaller than tiégd porosity. A pore volume can be considered to
be active if under the effect of a pressure grddide pore fluid can exchange with the fluid fithi

the pore volume situated in its neighbourhood. Fthenporomechanics point of view, the inactive
pore volume and the pore fluid filling it should bensidered as a part of the solid phase. Scleerer
al. [11] and Sun and Scherer [12][13] also argued @haart of the pore fluid in the microstructure
of cement paste is inactive. Accordingly, thesénaxs reduced the total porosity of cement paste
and mortar samples for the effect of inactive pibyos

The distribution of the active pore volume withimettotal pore volume of cement paste is not
accurately known, but is important for homogenmatof the poroelastic properties. Considering
the microstructure of the hardened cement pastgdins reasonable to assume that the inactive
porosity is entirely situated in HD-G-H. A detailed discussion of this assumption is @nésd in

[7]. Consequently, the active porosity consiststlg porosity in LD €S-H and the macro-
porosity. Assuming that the porosity in HB-&-H is not active from the poromechanics point of
view means that in the time-scale of the appliexti$y the mass of the pore fluid in HB-&H
porosity is constant. Consequently the HBSEH behaves like a porous material in undrained
conditions.

2.2. Anomalous pore fluid thermal expansion

There are experimental evidences showing thatht@eral expansion coefficient of cement paste
pore fluid is higher than the one of pure bulk w@B}{1]. This phenomenon is mainly attributed to

confinement of pore fluid in very small pores oé thmicrostructure. It is known that the thermal
expansion coefficient of fluids when confined inrwesmall pores, smaller than 15nm, is

anomalously higher than that of the bulk fluid. s confirmed by experimental evaluations of
thermal expansion of water and salt solutions irops silica glasses [14][15][16][17] showing that

the thermal expansion of confined fluid increasés wWecreasing pore size. Moreover, the ratio of
the thermal expansion of confined fluid to thabafk fluid decreases with temperature increase.

The origin of this anomalous thermal expansionads ciearly known but is attributed to surface
effects resulting in higher pressure of the fluidtihe close vicinity of solid surface [18] or the

4



Ghabezloo: Micromechanics analysis of thermal espnand thermal pressurization of a hardened cerpaste

disturbance of the structure of water molecules ithin layer adjacent to the solid surface [19].
Considering the pressure dependency of thermalnsipa of water, the higher pore pressure at the
vicinity of the pore wall results in an averagerthal expansion of fluid in a small pore that is
different from the one of bulk fluid. Figure (1)gsents the thermal expansion of pure bulk water as
a function of pressure at various temperatures. 2@ can see that for temperatures below 50°C
the thermal expansion increases with pressure,ewdidove 50°C it decreases with pressure
increase. At 50°C the thermal expansion of wat@wshalmost no pressure dependency. From
these observations, the average thermal expantigater in a pore for temperatures below 50°C is
higher than the one of bulk water, and the themwalnsion anomaly decreases with pore size and
temperature increase. This analysis for temperdiglew 50°C is therefore compatible with the
experimental results on the behaviour of confinadi$ mentioned above. A similar compatibility
can also be observed for the results of the arsapesiformed by Garofalirat al [19].
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-1
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Figure (1): Pressure dependency of thermal expansiof pure bulk water at different temperatures

Valenza and Scherer [3] were the first who notitlegl anomalous thermal expansion of cement
paste pore fluid when comparing permeability measents using two different methods:
thermopermeametry and beam bending. Accordingdsetfauthors, to bring the two measurements
into agreement, the pore fluid should have a theewpansion coefficient about one and a half
times larger than the one of bulk fluid. This isiioned by experimental study of Ghabezkiaal

[1], presented in section 4, who showed that thre flaid thermal expansion is greater than the one
of pure bulk water and has a lower rate of incredtie temperature.

In addition to confinement in small pores, it sedira the presence of dissolved ions in the pore
fluid of cement paste influences its thermal expamslt is known that the presence of dissolved
ions in a fluid increases its thermal expansiorbath bulk and confined conditions [21][17].
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Typical concentrations in the pore fluid of a higlkali cement paste for NaK™ and OH are
respectively 0.16mol/l, 0.55mol/l and 0.71mol/leafl80 days [22]. Accordingly Ghabezlebal.

[1] argued that the anomalous thermal expansiooeaient paste pore fluid is partly due to the
presence of dissolved ions in the pore fluid.

2.3. Volume fractions

The volume fractions of different phases of therostructure of cement paste can be evaluated by
knowing cement composition, water-to-cement ratid degree of hydration. Using the method
proposed by Bernaret al [23], presented in details in [7], one can eviduhe volume fractions of

C-S-H, Portlandite, unhydrated clinker and macroepity. These volume fractions are denoted
respectively byf.,, f.,, fox and f,. The volume fractions that are calculated by assgrthe

complete hydration are presented in Table (1). fdi@meterf.y, gives the volume fractions of

HD and LD C-S-H asf, = f.&, ., and f,, =(1— fggH) f e It is assumed that the Aluminates

phase has the same properties as tffe-8 phase [7], consequently the volume fraction eSeH

in Table (1) is equal to the sum of volume fracsioof Aluminates and €5-H. The volume
fractions presented in Table (1) are used in agmechanics model to evaluate the macroscopic
properties of the hardened cement paste and tosenéihe results of macro-scale drained and
undrained heating tests. The needed theoreticalkfnark for doing this analysis is presented in the
following section.

C-=S—H level Pore fluid Cement paste level
Parameter Value Parameter Value Parameter Value
K, ((ztg'liobrél;eg ;o calibrated fesn 0.71
g (fg'ilbg‘;z‘; O oy | calibrated |  fo 0.18
a calibrated f, 0.11
Ao 0.24 fex 0.00
Ao 0.37 fooy 0.60
Kew 32.5 GPa
Jcn 14.6 GPa
ey 7x10° (°C)*

" Calibration presented in [7]

Table (1): Homogenization model parameters
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3. Theoretical framework

This paper associates the results of a macro-gqlerimental study with the tools of micro-
mechanics theory and homogenization method. Ihesefore necessary to present the theoretical
framework used in the macro-scale experimentalysttite one used for the micromechanics
modelling, as well as the link between the pararseia these two scales. The theoretical
framework is the same as the one presented irb[it]js extended here to take into account the
temperature effect.

3.1. Macro-thermo-poroelasticity

The theoretical framework is presented for the wsapic thermo-elastic volumetric behaviour of
a porous material which is heterogeneous at theonsicale. This framework is presented in
different papers and textbooks, e.g. [24][25][28][28], and is recalled briefly in the following.
More details about the definitions of the paranseiatroduced in this section and the relations
between these parameters can be found in [1][4][7].

The variations of the total volumé and of the pore volum¥, of an elementary volume introduce

Six parameters:

V1 s+ Lap-a,dr (1)
VO Kd KS
av,

- L ys,+ L dp-a,dT ?)
V!PO Kp K¢

where p is the pore pressurd, is the temperaturel =1/3X :1 is the isotropic stress which is
positive in compression and, =2 - p is the differential pressure that is equivalenfTeszaghi
effective stress. The macroscopic volumetric straiorement is defined asdE=-dV/V,
(E=E:1). K, is the drained bulk modulus and, is the unjacketed modulu& , andK, are two

moduli related to the pore volume. Using Betti'ipeocal theorem it can be shown that
@/K, =YK, -YK [29]. a, is the volumetric drained thermal expansion cofit that can be

measured in a drained heating test andis the pore volume thermal expansion coeffici¢rie

for K,, the direct experimental evaluation of, is very difficult [1]. In the case of a micro-
homogeneous and micro-isotropic porous materjg a, =a,, and K, =K, =K, wherea, and

K, are respectively thermal expansion coefficient bakk modulus of the single solid constituent
of the material.

The macro-scale experimental study of thermo-poobraeical behaviour of the hardened cement
paste in [1][4][5][6] was based on the constitutisevs (1) and (2). The derivation of the equations

of micro-thermo-poroelasticity, presented in seatti®.2 and in Appendix A, is done more
commonly based on an alternative set of paramelbesse alternative parameters can be obtained



Ghabezloo: Micromechanics analysis of thermal espnand thermal pressurization of a hardened cerpaste

by writing the variations of Lagrangian porositydatotal stress from equations (1) and (2). The
variation of Lagrangian porositzg)=v¢/\/o is given by:

dqo:—de+% dp- QdT ; @ b,-ga, 3)

whereb is Biot’'s effective stress coefficient arid is Biot’s skeleton modulus. The paramet@r
gives the variations of the porosity with temperatwhen strains and pore pressure are constant.
The total stress increment is given by:

dZ =K dE+ bdptx dT ; «= Ka, 4)
The parametek gives the variations of the total stress with terafure when the strains and the

pore pressure are constant. The equations of rthermro-poroelasticity in the following section
are presented interms &f,, b, N, x andQ.

An important part of the experimental study in #l]Jvas based on undrained compression and

heating tests. The analysis of the performed unddaheating test needs the introduction of the
parameters/l and a, that are measured in this test. The variatiomheffluid contentm, =g, in

the undrained conditions is equal to zedsn( =0). The pore pressure variation in the undrained

conditions is given by:

+q@a. —ba
dp= BdZ +AdT ; /|=Q il - (5)
1 @ . b
—+ 0+
N K, K,

where A is the thermal pressurization coefficient ads Skempton’s coefficientr, andK, are

respectively the fluid thermal expansion coeffitiemd compression modulus. The volumetric
strain in undrained conditions is given by:
dE=Lds-aqdT ; a,=a,+2 (6)
Ku Kd
where a, is the undrained thermal expansion coefficient &ndis the undrained bulk modulus. In
laboratory experiments, the most commonly perfortests are drained, undrained and unjacketed
compression tests as well as drained and undr&ieating test which yielk,, K, K,, B, K,

a,, a, and /1. On the other hand, the homogenization of theroro+elastic parameters is more
commonly done usind,, b, N, « and Q. The presentation of the complete set of parammeter

permits to establish the link between the pararadteat are easier to evaluate experimentally and
the ones used more commonly in micromechanics yheor

3.2. Micro-thermo-poroelasticity and homogenization method

The aim of classical homogenization method is ptage an actual heterogeneous complex body by
a fictitious homogeneous one that behaves glolraltiie same way. The theoretical framework of
micromechanics modelling and homogenization metexibeen presented in different papers and
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textbooks, e.g. [8][30][31][32][33][34][35]. The mmciples and main equations of this framework
are presented briefly in the following. A detaile@rivation of homogenization equations is
presented in Appendix A.

The volumeV, of the REV of a heterogeneous material is compaset different phases with
volumesV,, r =1..n, and volume fractiond, =V. /\, . We consider that there is only one porous
phase with volumé/, and porositygo=V,/,/\/o . The number of solid phases is therefone n—1
with total volumeV,. The tensors of elastic moduli and thermal exmansioefficients of each
phase are denoted respectivelydhyanda, .

The equations of micro-thermo-poroelasticity anthbgenization of thermo-poroelastic properties
can be derived on a REV submitted to a homogenetw@sn boundary condition and two
eigenstresses, as presented in appendix A. Thertehshe effective elastic modu€™™ is given

by:
Cchm=(c:A), = Zn: f.c :(A), (7)

Where<A>V is the volume average of the strain localizatemsbrs over the phase(see appendix

r

A). The tensor of effective Biot’s coefficienks is expressed as:
b“°m=¢61:<A>V¢=1:(I—Zfr<A>VJ (8)
r=1

The tensor of effective solid moduG!®™ can be identified by writing the relation betwettie

average local stresses and strains over the sallicine:
1 . 1 . — . . -1
(o >VS =CI":(e >VS ; Crm=(c: A>VS .<A>VS (9)
(A), and(A), are the volume average of the strain localizatibmisors respectively over the pore

s

volume and the solid volume. The effective Biokeleton modulusN™™"is given by:

ﬁzl:gfrql:(l— 1(A),) (10)

The effective thermal parametef°™ and the effective thermal expansieff™ are given by:
K""=(c:a:A), ; a;"=(C “°”‘)_l ti (11)

The effective thermal paramet@™" is obtained as:

Q=13 fa, (1=,

r

) (12)

3.2.1.Multi-scale porous material

Considering the multi-scale microstructure of tlaedened cement paste presented in section 2, the
homogenization of the macroscopic properties shbalgerformed in two steps. The pore volume

9
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of the hardened cement paste manifests itself atifferent scales. The scale | corresponds to the
gel porosity of HD and LD C-S-H, and the scale dirresponds to the macro-porosity. The
homogenization of the macroscopic properties ohsmaterials can be done using a multi-step
homogenization method [8][35]. This method is expd briefly in the following for a two-scale
porous material in which the pore volume exhibits tifferent scales | and IM, :V; +\/¢',I ). This

material is composed df (I <m) porous phases with the porositigs m-1 solid phases and a
pore volume with the porosity' . The pore volumes are connected and there is om@deneous
pore pressure. The total porosity is given by:

=3 14 +¢ (19

At the level | of the microstructure of the cemguasste LD and HD C-S-H are composed of one
solid phase and one porous phase with nanometemsies. At the level Il the cement paste is
composed of LD and HD C-S-H, Portlandite, unhydtatéinker and macro-porosity. Standard
homogenization equations, as presented in the qus\section, give the poroelastic properties of
the | porous phases of level €, b!, N!, c. , a!, Q). The effective paramete&™" and k"""

sr?
can be evaluated respectively from equations (@) (). The other effective parametdr®¥™,
N"™™ and Q™™ for level Il are given in the following equations.

b = 1—21:( i (A), :(1-b] )) (14)
NL=Z f (1;(c;r)‘1:(| —<A>Vr):(1—b'r)+Nir,j (15)
Q@™=) i (al:(1-(a), ):-0/)+ Q) 19)

A detailed derivation of these equations is pre=gm Appendix A. It can be easily verified that
when all solid phases are non-porobs£0, 1/N! =0, c,, =c,, Q' =0), equations (14), (15) and

(16) reduce respectively to equations (8), (10) @).

4. Experimental evaluation of thermal expansion and termal
pressurization parameters

The experimental program for evaluation of the ptastic parameters at ambient temperature is
presented in [4][6] and is briefly recalled in [7o study the effect of temperature, drained and
undrained heating tests have been performed uraletant confining pressure. The results are
presented in details in [1] and are briefly reahile the following.

The tests were performed on cylindrical samples @& mm diameter and 76mm length, made from
class G oil well cement at/c=0.44. The samples were cured for at least three manthsbath

containing an equilibrated fluid under a controliesperature of 90°C. This temperature was

10
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chosen to reproduce the curing conditions of a cerging installed in a deep (~2 km) oil well.
The porosity of the samples was studied by two push oven drying and mercury intrusion
porosimetry. The total porosity was measured etmapb=0.35 by drying the samples at 105°C

until a constant mass is achieved. Mercury intnugorosimetry was performed with a maximum
intruding pressure of 200MPa and the porosity igsaédqo ¢=0.26. The maximum intruding

pressure of 200MPa corresponds to a minimum pam@eter of about 6nm.

A drained heating test was performed under a cohstanfining pressure of 1.5 MPa and a
constant pore pressure of 1.0 MPa. During the tlesttemperature was increased from 18 °C to 87
°C at a rate of 0.08 °C/min. The volumetric stregmperature response is almost linear and results
in a drained thermal expansion coefficient with ligggle temperature dependency, equal to
6><105(°C)_1. The thermal pressurization phenomenon was studieth undrained heating test

under a constant confining pressure. In the beggrof the test the confining pressure was
increased up to 19 MPa in drained conditions. Afiee stabilization of creep strains, the
temperature was increased at a rate equal to Qrhiridn undrained conditions and the pore
pressure changes were monitored. The heating phasecontinued until a point where the pore
pressure reached the confining pressure at abd@. Gthe heating of the sample was stopped at
this point and the cooling phase was started. Thasored pore pressure was corrected for the
effect of the dead volume and thermo-mechanicabrd&dtions of drainage system of the triaxial
cell using a simple method presented in [2][39]e Hverage thermal pressurization coefficignt

is found equal to 0.62 MPa/°C for heating phase@b@ MPa/°C for cooling phases. The analysis
of test results showed that the variations of tterpressurization coefficient is less that what is
expected from the variations of thermal expansibwater with temperature. Moreover, the value
of coefficient A particularly at lower temperatures is higher thahat can be evaluated by
knowing other thermo-poro-elastic parameters. Timexpected thermal pressurization response is
attributed to the anomalous thermal expansion bebewf the cement paste pore fluid. This
anomalous behaviour is discussed in details in@e& 2. The back analysis of pore pressure and
volumetric strain responses of the undrained hgatest permitted to evaluate the thermal
expansion coefficient of pore fluid. The analysiswed that for temperatures between 25 and 55°C
the pore fluid thermal expansion is greater thanahe of pure bulk water and has a lower rate of
increase with temperature. The analysis is perfdrarethe cooling phase of the test, because of the
less importance of the creep strains. For the saason, the calibration of the micromechanics
model in section 5.2 is done also on the coolingseh For the sake of simplicity, the corrected pore
pressure-temperature curve of the cooling phas@psoximated by a hyperbolic equation, which
gives the following linear expression for the meaduthermal pressurization coefficient as a
function of the temperature:

A(MPg/ °C) = 0.4+ 0.004B 25°€ T< 55¢ (17)

This equation is used in section 5.2 for calibratd the homogenization model.
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5. Homogenization of thermal expansion and thermal presurization
properties

The classical homogenization procedure is to cateithe homogenized macroscopic properties by
knowing the microscopic parameters. In the methsetun [7] and in this work, the macroscopic
properties are already known for a particular cammaste and will be used to calibrate the
unknown microscopic parameters, thermo-elasticrpatars of C-S-H solid and thermal expansion
of pore fluid in HD and LD C-S-H. The model willeh permit to calculate the same macroscopic
parameters for a cement paste having different rvateement ratio. A part of this procedure
concerning the mechanical properties has beendgiidane in [7].

5.1. Homogenization equations

Considering the multi-scale microstructure of thement paste, the homogenization of the
macroscopic parameters is done in two steps,férdtiD and LD GC-S—-H and then for the cement
paste. A micromechanics representation of the RE&-S-H and cement paste which are used in
the homogenization model is given in [7].

5.1.1.Level 1: C-S-H matrix

HD and LD C-S-H are constituted by one solid prese# one porous phase. The homogenization of
poroelastic properties ofG-H matrix can therefore be done using equationsepted in section

3.2. The only difference between HD and LBSSH is in their packing density or porosity. The
needed parameters are the porositigs, and ¢, and the elastic parameters and the thermal

expansion of the €5-H solid, k;, g, and a,. The homogenized drained bulk modulus and the

shear modulus can be evaluated from equation (@$idering one solid phase and one porous
phase. The subscript X represents LD or HD.

Ke"=(1-g)kAx : G=(1-4) g Ax (18)
Assuming an Eshelbian type morphology with sphérstepes for solids and pores, the strain
localization tensor parametersy, and A’,, of each phase can be estimated using equatid®)A.
considering a solid and a porous pha(sre,:s, qo). Note that this homogenization approach only

uses the volume fractions of different phases &im&tion of the thermo-poro-elastic properties
and the grains size and the pore size distribudi@nnot taken into account. Considering the self-
consistent scheme we should take= K™, g, = Gi°™ and the parameters, and 3, are given by

following relations:
6(K)rzom+ hom)
5(3K>f(10m+ hom)

hom
go= 3Ky
° 3K+ 4G "

b= (19)

12
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Considering these expressions, the evaluatioki 5f and G}°™ from equation (18) should be done

using iterative calculations. The homogenized tlanparameters can be calculated from equations
(11) and (12):

K =(1-g)ka Ry o oagx =a; (20)
e =a,(1-g ) (1- Ax) (21)
The expressions of the other homogenized poroelpatameterd®™ and N°", presented in [7],

can be obtained respectively from equations (8)(a0yl

As mentioned in section 2.1, we assume that thegagrin HD G-S-H is not active so that the HD
C-S-H behaves like a porous material in the undraineaditions. Consequently, in the second
homogenization step the undrained bulk modulusthednal expansion coefficient of HD-G-H
should be used. The following relations are usezhtoulate these parameters.

( hom)2 Qhom + a _ homa, hom
Khom =K hom D - a hom _ a hom Ao f,HD D “d,HD (22)
u,HD — HD l ’ uHD — “d HD hom
+ %o Kig™ 1 @ | hom
Nom K hom hom T + bHD
HD f D NHD Kf

where a, ,,, is the thermal expansion coefficient of the pdudfin HD C-S-H. Considering the

anomalous thermal expansion of confined fluids, tifferent thermal expansion coefficients are
considered for the pore fluid in HD C-S-H and tmeon LD C-S-H and macro pores, denoted by
a;ov- We assume the same pore fluid compression modiuys for all parts of the

microstructure.
5.1.2.Cement paste

The microstructure of the cement paste for secamddgenization step is constituted by five main
phases: HD and LD €5S-H, Portlandite, anhydrous clinker and the macrapity. These phases
are respectively represented by HD, LD, CH, CK anhdsubscripts. Among these phases,
Portlandite crystals and anhydrous clinker can digsiclered as non-porous solids, while LD and
HD C-S-H are porous solids. However, we assumed thatemptnomechanics tests the porosity in
HD C-S-H was not active and so the only porous phasedamtltrostructure is the LD €5-H.
Consequently the homogenization of the poroelgstiperties at this step should be performed
using the framework presented in section 3.2.Infaltiphase porous materials. The homogenized
drained bulk modulus and shear modulus can be a&tealdrom equation (7):

hom _ homav hom Av \% V
KCP - fLDKLD D,CP+ fHDKu,HD D,CP+ fCHkCHACH,CP+ fCKk CKACK,C (23)

Gggm = fLDGngAgD,CP + fHD Ca:gmﬁD,CP-i_ fCH gCH &H,CP+ fCKgCK A)K,C (24)

Assuming spherical shapes for solids and poressttiaén localization tensor parametef§ ., and
A'ee, of each phase can be estimated using equatidi®)Aonsidering four solid phases and a

13
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pore volumer =HD, LD, CH, CK, ¢). For HD G-S-H the homogenized undrained bulk modulus
hom

% should be used. Considering the self-consistdrgrae we should takk, = K", g, = GX"
and the parametes, and 3, are given by following relations:

s §(KET+26g)

a, = om om '’ 'B - (25)
" BKE"+4G ?5(3KE"+ 4G
The homogenized thermal parametecan be obtained from equation (11):
hom hom hompav hom hompav
Ko = T oai oK + 00, oK,
CP LD~ d,LD" *LD D,CP HD ,HD ,HD D,CP (26)

+ fCHalCHkCH N:H,CP-'- fCKcr CKkCKA/CK,CP
The drained thermal expansion coefficient is thealcudated as ayo =k&"/K &' The
homogenized thermal paramet@rcan be evaluated from equation (12):

ggm =fo (as (1_ A_VD,CP) (1_ Hl%m) + hgm) + fHDauh,ﬁnS(l‘ AHD,CP)
+ feoudey (1_ AéH,CP) +fok CK(l_ A\::K,CP)

The active porosity is calculated & = f ¢, + f,. The expressions of the other homogenized

(27)

poroelastic parameter’>” and N22", presented in [7], can be obtained respectivegmfr

equations (14) and (15). By evaluation of the hoemized parameters and the active porosity, the
remaining parameterX(, Ks, K, B, 1, a,, a,) can be evaluated. The homogenized thermal

pressurization coefficient™™ which is used for the model calibration is caltedbas:

hom act ho hom
hom _ Q™ +g a; ov -b rTb’d

1 g ()
Nhom Kf thom

(28)

5.2. Model calibration

The model parameters are summarized in Table {.pFoperties of the microstructure phases are
the same as the ones used by Wmal [8]. The volumetric thermal expansion coefficienft
Portlanditea,,, is taken equal t@.0x 105( °Q_l [40]. Note that assuming the complete hydration
of the cement pasteff, =0), the properties of the clinker phase are notiredu The principal
unknown parameters akg, g,, a,, a, ,, anda, , . The calibration of these parameters is done

by minimizing the error between the experiment&isaluated parameters and the results of the

homogenization model using a least-squares metkRooin the calibration of the mechanical
properties in [7] we havé, =25.0 GP: and g, =18.4 GPz The known macroscopic parameters

are anp:GX105(°C)_1 and N*® given by equation (17). The calibration procedigr@lone in
three steps. Note that, ,, and a; ,, are different and can vary with temperature bytis

assumed to be constant. In section 2.2 we havetbaethe thermal expansion of confined fluids

14
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increases with decreasing pore size. Knowing timasize of pores in HD C-S-H is smaller than the
pores in LD C-S-H [41][42], it seems that ,,, should be greater tham, . The first calibration

step is performed at 50°C assuming that at thispégaturea, ,, =a; ., , i.e. the pore fluid
thermal expansion is no more influenced by confieeimin nanoscale pores. Based on the

discussion in section 2.2, this assumption is cdiblgawith the negligible pressure dependency of

water thermal expansion at this temperature anol wlth the experimental results of Xat al
[15][16]. The calibration ofa, and a, ,, =a, ,,,, at 50°C is done by minimizing the error defined

exp __ - hom 2 exp _ phom 2
Er{”" = j+(/' : j (29)

below:

/18P

The calibration is done using a computer prograrichvbalculates the homogenized properties and
the error for different combinations ef, and a; ,, =a; ,, . The minimum error is found for

a,=4.2x10°(°Q " anda, ., =a, ,p, =4.8x10%(°Q " (Figure (2-a)). The calibrated pore fluid
thermal expansion coefficient at 50°C is very clésethe one of pure bulk water at the same
temperature that is4.57x 10%( °Q™". This is compatible with the assumption made above

concerning the negligible effect of the confinemeémtnanoscale pores at 50°C. The small
difference of about 5% between the two thermal e coefficients can be attributed to the
effect of dissolved ions.

The second step concerns the calibratiorr of , . Knowing the value ofr, which is assumed to be
constant, the only unknown variable for evaluatafna(°" at each temperature i, ,,. This
parameter is needed for evaluationai’f’H”E, from equation (22). Neglecting the variationsajf®
with temperature between 25 and 50°@, ,, should also remain constant equal to
4.8x10%(°Q".

The last calibration step is performed foy . Knowing a, and a; ,, from the previous steps,
a, ., for different temperatures can be evaluated byimizing the error betweem™™ from

equation (28) and1®® from equation (17). The variations of the erroteen 2™ and A*® for
three different temperatures are presented in Ei(+b).
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Figure (2): (a) Contour plot of calculated error far different values of thermal expansion coefficierg a and
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Error

@ oy =0 at50°C. The minimum error is equal to188x 107 for @, =4.2x10°(°C)™ and
Qo =0y =4.8x10" (°C)_l. (b) Variations of error for evaluation of @; ,,, for different

temperatures.

The calculateda, ,, and a, ,, are presented in Figure (3) and compared with tiieemal
expansion coefficients of pure bulk water and 0d¥/inNaOH bulk solution. We can see thaf ,,,

and a, ., are greater than the thermal expansions of buliddl This anomalous thermal
expansion of the cement paste pore fluid is dude¢oconfinement in the nanoscale pores and the
presence of dissolved ions. The effect of confingnoan be analysed by calculating the confined
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/bulk ratio of thermal expansion. This ratio retkee¢he effect of pore structure on the thermal
expansion and is almost independent of presendessbdlved ions in the case of cement pore fluid
which is mainly composed of univalent ions [1][1The confined/bulk ratio for the cement paste
pore fluid can be calculated by assuming that tleental expansion of the bulk fluid in the cement
paste is equal to the thermal expansion of 0.5M@OH solution [1]. The results are presented in
Figure (4) and compared with the confined/bulkadir pure water confined in 5.0 nm and 7.4 nm
pores of silica glass [15][16]. We can see thatahefined/bulk ratio for HD C-S-H is greater than
the one of 5.0 nm pores, meaning that the averagegize in HD C-S-H should be smaller than 5.0
nm. This is compatible with the estimation of perees in HD C-S-H from the results of mercury
intrusion porosimetry. The mercury intrusion ponosiry does not basically permit to differentiate
between LD and HD C-S-H porosity. However, a simglaluation may be done assuming that the
mercury can not access HD C-S-H porosity. Thidnslar to the assumption made by Tennis and
Jennings [43] for evaluation of the volume fractiohLD C-S-H by analysing the results of
surface area measurements by nitrogen sorptiorseTaethors assumed that none of the pores in
HD C-S-H are accessible to nitrogen. The empirical retatbtained using this assumption for
volume fraction of LD €S-H is widely used in the literature. Assuming thdd K€-S-H is not
accessible to mercury, from the results of this asspresented in section 4, it seems that HD C-S-H
is composed of pores smaller than 6 nm. The comimek ratio for LD C-S-H is smaller than the
one of 5.0 nm pores and is closer to the one ohih4ores.
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g
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[0
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= —%— Pure water (Bulk)
0.0E+00
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Figure (3): Calibration of thermal expansion of cenent paste pore fluid. Comparison with the thermal
expansions of pure bulk water and 0.5 mol/l NaOH bl solution
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Figure (4): Thermal expansion anomaly for cement pste pore fluid. Comparison with experimental resul$ of
Xu et al. [15][16] for thermal expansion anomaly opure water confined in the pores of silica glass

By calibration of necessary parameters, now we paoceed with extrapolation of the
experimentally evaluated thermal expansion andhtbepressurization parameters to cement pastes
with different water-to-cement ratios.

5.3. Effect of water-to-cement ratio

The lower w/c limit is chosen equal to 0.4 as tsiapproximately the lowest w/c for which a
complete hydration can be obtained. Figure (5)gntssthe variations of, and a,, with w/c. The

@
modulusK,, presented in [7], the possibility of evaluationaf is a considerable advantage of the

pore volume thermal expansiam, is calculated asr,™ :(b“"mad“"m—Q“"") /qo . Like for the

presented association between the results of nwapms experimental study and the
homogenization method, as experimental evaluatfotmese parameters is very difficult. We can
observe the decrease @f and more significant decrease @f with w/c. This decrease of thermal
expansion coefficients by increasing w/c is maidlye to the decrease of Portlandite volume
fraction in the microstructure, as presented irufe@g(6). Note that Portlandite thermal expansion
g, = 7.0x 105( °Q_l , evaluated in [40] using time-of-flight neutroifficction, is greater than the

calibrated thermal expansion of C-S-H sadig=4.2x 105( °Q_l. Consequently a reduction of the

Portlandite fraction results in a decrease of th@dgenized thermal expansion coefficients. Figure
(6) shows also the increase of active porosity with increase. This is mainly due to increase of
the quantity of remaining water after the complegdration of cement clinker. The available water
is completely consumed in hydration reactions féc wlose to 0.4. For higher w/c a quantity of

water is not consumed and forms the macro-poragithe cement paste. For w/c lower than 0.56,
the evaluatedz, is greater thar, but becomes smaller thaw, for higher w/c. The difference

between these parameters is smaller than 11% awedsshat the assumptiom, = a, made in [1]
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for back analysis of the undrained heating tesciteptable. The induced error on evaluation of the
thermal pressurization coefficiemt assuminga, =a, is smaller than 1%. This is mainly due to

significant difference between the thermal expamsibwater and the ones of the materi), and
a,. The assumptiona,=a, is commonly made in the literature due to the icliffy of
experimental evaluation af,,. It should be mentioned that the coefficientsanda,, in Figure (5)

do not vary with temperature, because the calibrptee fluid thermal expansion for HD C-S-H is
constant. This is due to the measumgdwhich shows negligible temperature dependency.
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Figure (5): Effect of water-to-cement ratio on draned thermal expansiona, and pore volume thermal
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Figure (6): Variations of Portlandite volume fraction and active porosity with water-to-cement ratio

Figure (7) shows the variations of undrained thérexgansion coefficientr, and the thermal
pressurization coefficient1 with w/c for two different temperatures, 25°C aA@°C. Both
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parameters increase with temperature due to threase of thermal expansion coefficient of the
pore fluid. A higher w/c results in a highet and a lowera,, mainly due to the significant

reduction of K, and the resulting increase bf with w/c increaseK, reduces from 9.81 GPa at
w/c=0.4 to 3.97 GPa at w/c=0.65 and results in raorease ofb from 0.54 to 0.81 [7]. The
significant increases of the terrrllﬁ/Kd in equation (28) and/K, in equation (6) cause the
reduction of A and increase ofr, with w/c increase. The reduction &f, with w/c increase is
mainly due to the increase of porosity with w/c,passented in Figure (6). It would be ideal to
compare these predictions of thermal expansion thedmal pressurization parameters with

experimentally evaluated values, but unfortunaselgh experimental results for different w/c are
not currently available.
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Figure (7): Effect of water-to-cement ratio on undained thermal expansiona, and thermal pressurization

coefficient A\

6. Conclusions

This paper is presented in the continuity of thprapch introduced in [7] for association of the
results of a macro-scale experimental study withke tmicromechanics modelling and
homogenization technique. This approach is apgied to the results of drained and undrained
heating tests performed on a hardened class G tgraste with w/c=0.44 [1]. The main purpose is
to extrapolate the experimentally evaluated thermagpansion and thermal pressurization
parameters to cement pastes with different wateetoent ratios. The used multi-scale model is
capable of predicting the macroscopic thermo-pasial parameters of a hardened cement paste by
knowing the volume fractions and the thermo-elagiroperties of the constituents of its
microstructure. The model calibration for thermalrgmeters is performed by means of some
simplification assumptions, but revealed interagtinformation about the anomalous thermal
expansion behaviour of cement paste pore fluid. ddleulated thermal expansion anomaly for the
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pore fluid in HD C-S-H and also in LD C-S-H and maporosity show a good compatibility with
the experimental results of Xet al [15][16][17] on thermal expansion of confinedifls. The
calibrated model permits to calculate the thernxplaesion and thermal pressurization parameters
for cement pastes with different w/c. Moreoverpérmits to evaluate the pore volume thermal
expansion coefficientor, which is very difficult to measure experimentallfhis capacity of
parameter prediction for different conditions ahd better understanding of the results of the tests
as also presented in [7], clearly demonstrate thearstages of the association of macroscopic
laboratory experiments and micromechanics modellifigs approach reduces significantly the
number of laboratory tests needed to charactdnzeamplete set of thermo-poroelastic parameters
of a cement paste. This is a great advantage fpererental studies, as due to the very low
permeability of the material, the laboratory tests usually long.
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8. Appendix A: Homogenization of thermo-poroelastic psameters

This appendix is dedicated to derivation of the adiquns of micro-thermo-poroelasticity and
homogenization method. The aim of classical homizgéion techniques is to replace an actual
heterogeneous complex body by a fictitious homoges®ne which behaves globally in the same
way. Continuum micromechanics is mainly concernéih \statically homogeneous materials for
which it is possible to define a representativemelestary volume (REV). Over the REV, the
average values of local stress and strain fieldhénactual heterogeneous body are equal to the
macroscopic values of stress and strain fieldsvddrby solving the boundary value problem of a
homogeneous body constituted by this fictitious bgemeous material [31]. This requires that, for
the mechanical behaviour under investigation, tharacteristic lengthd of the considered
heterogeneity and deformation mechanism to be modiler than the sizeof the studied volume
element. Moreovei, must be sufficiently smaller than the charactieridimensionL of the whole
body.

After the scale separation, the three steps of lgemaation method as mentioned by Zaoui [31]
are: description (or representation)concentration (or localization) andhomogenization(or
upscaling). Thelescriptionstep deals with identification of different “mecieal” phases of the
microstructure in the REV of the considered hetenegpus material, and both geometrical and
mechanical characteristics of these phases. A plmatee sense of continuum micromechanics, is a
material domain that can be identified, at a giwamale, with on-average constant material
properties. Theoncentrationstep is concerned with the mechanical modellinghefinteractions
between the phases and the link between the Iteaissand strain fields within the REV and the
macroscopic quantities of stress and strain. Tke dtep deals with theomogenizatiorof the
macroscopic properties by combining the local dautste equations, averaging the stresses and the
strains over the REV and the concentration relatittomogenization delivers estimated values of
macroscopic poroelastic properties of the REV danation of the geometrical and mechanical
properties of different phases of the microstruetirthe material.

8.1. Representation

The volumeV, of the REV of a heterogeneous material is compaset different phases with
volumesV,, r =1..n, and volume fractions denoted By=V. /V, . We consider that there is only
one porous phase with volunvg and porosityqo=V¢/\/o . The number of solid phases is therefore
m= n-1 with total volumeV,. The tensor of elastic moduli of each phase i®t&hbyc, . In the
case of isotropy of the solid phases, the tensaladtic moduli can be written as the sum of a
volumetric and a deviatoric part:

c, =3k J+2gK (A1)
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where k. and g, are the bulk modulus and shear modulus of the ephasespectively.
Jia =434 g, is the volumetric part of the fourth-order symnigetmit tensorl andK =1 -J is
the deviatoric partl is defined ad :]/2(5Ik o, +q 9, ) and g; stands for Kronecker delta. The

tensor of thermal expansion coefficients of eachsghs denoted by, which is reduced tar,1 in
the isotropic case witlh; = .

8.2. Concentration

The concentration problem is presented by assurarmgogeneous boundary conditions on the

REV [36][37]. Homogeneous stress boundary conditioogespond to prescribed surface tractions
T on the boundaryV of the REV:

ondV: T=X[h (A.2)
where X is the macroscopic stress tensor and the unit outward normal at the boundary. From
(A.2) it can be shown that the macroscopic str@ssds equal to the volume average of the
microscopic equilibrated (i.e., divergence freegss fields (x) in the REV [31].
¥ =(a), (A.3)
where (2), :(J/V)J'V Z ¥}dV stands for the volume average of quantityover domainV.
Similarly, homogeneous strain boundary conditi@me associated to prescribed displacemands
the boundary:
ondV : u=EI[KX (A.4)
where X is the microscopic position vector aidis the macroscopic strain tensor which is equal to
the volume average of the microscopic compatibke,(derived from a displacement field) strain
field &(x) in the REV [31].
E=(g), (A.5)
For the homogeneous boundary conditions (A.2) o)X Hill's lemma is presented in the following
form [30][31]:
(6:8)=(c):(e) =X E (A.6)
The Hill lemma is relevant for any stress and sti@mpatible with either a homogeneous stress

boundary condition (A.2) or a homogeneous straimnidary condition (A.4), irrespective of a link
betweens ande through a constitutive law.

In the framework of linear elasticity, the locatssh and stress fields,(x) ande(x), are related to
macroscopic strain and stre&s,and £, through fourth-order localization tensotq x) and B(x)
respectively:

e(x)=A(X):E ; o(X)=B(X:X (A.7)
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By inserting equation (A.7) in equations (A.5) a#d3), the following relations for localizations
tensors are obtained:

(A), =1 ; B), = (A.8)

For a heterogeneous material composed of homogsmawses, a linear phase strain localization
tensor can be introduced [8]:

(e), =(A),:E i 2 fA(A), =I (A.9)
r=1
In the isotropic caséA), is reduced tqA), = A'J + A’K where A’ and A are volumetric and

deviatoric strain localization coefficients. For Bahelbian type morphology [38], i.e. an spherical
inclusion embedded in a reference medium, an esiwfathe strain localization tensor of phase
assuming the isotropy of the local and the refezenedium is given by [31]:

o (Wralk/e-D)” L (vhA(e/e-9) A10)
> f (1+ay (k /1) > t(#a(e/e-9)
With
_ 3, 6(k+2g,)
© arag, TG 4g) (B

where k, and g, are bulk modulus and shear modulus of the referemedium. According to the

choice of the reference medium in these equatione can distinguish two different
homogenization schemes: thori-Tanakascheme [44] in which the reference medium is chose
to be the matrix phase; tHeelf-consistenscheme [45] in which the reference medium is the
homogenized medium. The Mori-Tanaka scheme is mastapted to the composite materials in
which the continuous matrix plays a prominent moipgical role in the behaviour of the material.
In this casek, and g, are taken equal to the elastic parameters of theemal phase which is
considered as the reference medium. The Self densischeme is adequate for materials, such as
polycrystals, whose phases are dispersed in the BYHEhat none of them plays any specific
morphological role [31]. In the case of self-cotmid schemek, and g, are taken equal to the
homogenized elastic properties which are unknowadwance. This point is further explained in
section 8.3.1.

8.3. Homogenization

The equations of micro-poroelasticity and the hoemization of the poroelastic properties can be
derived on a REV submitted to a homogeneous sh@imdary condition and two eigenstressés
and ¢’ corresponding respectively to application of aeppressure and a temperature variation.
The constitutive relation in the microstructurgigen in the form:
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o(x) =c(x):&(x) +o” (Y +6 (X (A.12)
where c(g) is the tensor of local elastic moduli which is agio zero in the pore volume:
inV.
o(x) = {Cf (%) n s (A.13)
0 inV,
¢’ (1() is an eigenstress applied to the pore volumeefrihterial:
U L A Y
o"(x)= pl inV, (A.14)
¢ (1() Is an eigenstress applied to the solid phaseeofmtéiterial:
o' (x)= {K ()T inv (A.15)
0 inv,

where k =c:a. The linear elastic nature of the microscopic behavallows decomposing the
problem in three sub-problems. In the first subbpem the eigenstresses and ¢’ are equal to
zero and the REV is submitted only to the homogesestuain boundary conditions. The
displacement on the boundary of the REV is equakto in the second and third sub-problems and
the system is subjected to the eigenstresseand ¢’ respectively. These three sub-problems are

denoted respectively bf) , ()" and ()" superscripts.

8.3.1.Sub-problem 1

In the first sub-problem the eigenstresses areleguaero and the local strain is given using
equation (A.7):

o (x)=c(x):e'(x) ; &(XN=A(XN:E (A.16)
The macroscopic stress' is equal to the volume average of the microscepjgilibrated stress
field X' :<c’>v. By inserting equation (A.16) in this relation tfe@lowing expression is obtained

where C™™ can be viewed as the tensor of the oveti#ictivemoduli of the heterogeneous porous
material.

X =C"™E ; C""=(c:A), =) fc (A), (A.17)
r=1 '
In the isotropic cas€™™ can be presented in the following form:
C"™ =3K /"I + 2G "'K (A.18)
The homogenized bulk and shear moduli in the isatr@ase are calculated using following
relations:

KPm=3 kA GPm=Y g A (A.19)
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In the case of an Eshelbian type morphology, therstoncentration coefficients)’ and A’ can

be evaluated using equation (A.10). The self-comsishomogenization scheme is associated with
the choice of k, = K[°" and g, = G™" which are unknown in advance. Consequently, eguati
(A.19) can not be solved directly and the homogethiglastic properties should be calculated using
iterative calculations.

The porosity changelg=@—-¢ can be calculated from the average volumetridrsirathe pore

volume, (dw)' =-@1:(¢'), - By using equation (A.16) in this equation we éentify the tensor

of effectiveBiot’s coefficientsb™":

(dg) =-b™™:E ; b"™"=g@l:(A) =1:(I—if,<A>VJ (A.20)

r=1

For the isotropic case, Biot's coefficient is obtd from the following simplified equation:
b =1->" f A’ (A.21)
r=1

The average local stress in the solid phase isimdatausing equation (A.16) equal to
(¢"), =(c:¢), =(c:A), :E. From equation (A.9) the average local straintia solid phase is

s s s

equal to(g'), =(A), :E. Using these equations the relation between teeage local stress and

s

strains in the solid phase permits to evaluateehsor of effective solid modu@!°":

(@), =CIm:{s), © CIm=(c:A), (A}

S

(A.22)
In the isotropic case the expression of effectimgacketed modulus is written as:

Ko = Zm: fk A Zm: fA (A.23)

i=1 i=1

From equations (A.17) and (A.13) we ha@&" :(1—%)<CZA>VS. Moreover, from equation (A.8)
we have¢6<A>V¢ =l -(1-@)A >vs' Inserting these relations in equation (A.22) asihg equation
(A.20) we can obtain the following expression foe tensor of effective Biot's coefficients:

brem=1: (I —C hom (CS“"'“)_l) (A.24)

In the isotropic case this relation is reducechtowell-known relatiorb™™ =1- K"/ K "™,

8.3.2.Sub-problem 2

In the second sub-problem the displacement on thendary of the REV is equal to zero
(E"=(¢"), =0) and the system is subjected to the eigenswésdefined in equation (A.14). The

local stress tensor is given by:
o’ (x) =c(x):&" (¥ +o" () (A.25)
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The macroscopic stress tensor for this sub-probgepalculated by application of Hill's lemma,
equation (A.6), on the stress field of second sudivem ¢” and the strain field of first sub-problem
g

E:X"=(¢:6"), =(¢':Cci¢"), +<£' :op>v (A.26)

Using equation (A.16) and then, by application df'$llemma the first term in the right-hand side
of equation (A.26) is found to be equal to zero:

(¢':cie"), =(¢":¢"), =X':(e"), =0 (A.27)
Now by introducing equation (A.16) in the secondref the right-hand side of equation (A.26)

and then, using equation (A.14) one finds the foily equations which permit to identify the
tensor of effective Biot’'s coefficients, as presehin equation (A.20):

X' =(c":A) =@l:(A), p=pb"™" (A.28)

Knowing thatE" :<s”>v =0, the variation of the porosity is given by followi expression:

m

(dg) = _%l:<£">v¢, =(1-@)1:(e"), :1:; f.gt(a"), (A.29)
The average local stress in the REV is given by
(o), =a(a"),, +z f(e"), © ("), =% (A.30)
Using equations (A.20), (A.28) and (A.30) and knmgv’[hat(o"}vw = p1 we find:
2 f,(a"), = p(b"™"-g1)= pl:rz: £(1-(a), ) (A.31)
From this equation we can obtain the average stnzen a phase of the solid volume [8]:
("), =pL:(1=(A),) iV (A.32)

Inserting equation (A.32) in equation (A.29) we abtthe following expression for the effective
Biot skeleton modulus\™™:

(dg) = NE"m - =1:Zm: f.ch: (1— 1:( A>v,) (A.33)

1o (1-AY)
Nhom _Z K (A34)
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8.3.3.Sub-problem 3

In the third sub-problem the displacement on theindary of the REV is equal to zero
(E" :<s’">v =0) and the system is subjected to the eigenswésdefined in equation (A.15). The

local stress tensor is given by:
6" (x)=c(x):e"(X) +e" (X (A.35)

The macroscopic stress tensor for this sub-probtecalculated by application of Hill's lemma,

equation (A.6), on the stress field of the thirdguwoblem ¢” and the strain field of first sub-

probleme':
E:X"=(¢':6"), =(¢':ce"), + <£' o' >V (A.36)

Using equation (A.16) and then, by application df'$llemma the first term in the right-hand side
of equation (A.26) is found to be equal to zero:

(¢':cie”), =(a"1e"), =X :(¢"), =0 (A.37)

\

By introducing equation (A.16) in the second terhthe right-hand side of equation (A.36) and
then, using equation (A.15) one finds the followaguations which permit to identify the tensor of
effective coefficientac™™:

el o s sk, S, a0
r=1 '

m

Knowing thatE"” = <s"’>v =0, the variation of the porosity is given by followji expression:

(dg)" =-g@1: <s’">vw =1: Zm: f ("), (A.39)

r=1

Using equations (A.35) and (A.15) the average Istalss in the REV is given by:
("), =2 1 (&™), +T ti (o), =" (A.40)
r=1 r=1
Using equation (A.38) in equation (A.40) we obtain:
rz:frcr ("), :-T;: e (1-(a),) (A.41)
Knowing thata =c™:x we can evaluate the average strain in a phaseeafdid volume:

(&), =-a:(1=(A), )T inV (A.42)

r

Inserting equation (A.42) in equation (A.39) we abtthe following expression for the effective
coefficient Q™™:

(dg)" =-QT ; Q=1 fo, :(1-(A), ) (A.43)

In the isotropic case this relation is reduced to:
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Qror = i fa, (1- &) (A.44)

8.3.4.Macroscopic equations

The summation of the macroscopic stresses and iponegriations of the three sub-problems
permit to retrieve the equations of macro-poroalagt From equations (A.17), (A.28) and (A.38)
we have:

L= +X"+X"=C"™":E+b"™"p+x "T (A.45)
Similarly, from equations (A.20), (A.33) and (A.48¢ find:
do=(dg) +(dg) +(dp)" =-b"":E+0- T (A.46)

8.4. Multi-scale porous material

A patrticular situation, mentioned by Ulet al [8] and Dormieuwet al [35], which is not addressed
directly in the standard micro-poroelasticity agganted in the previous section is the case of a
porous material in which the pore volume manifésislf at two or several different scales. These
two pore volumes are connected and there is on@geneous pore pressure in all parts of the pore
volume. The homogenization of poroelastic propsrtiesuch a porous material needs a multi-step
homogenization technique. The first step of thiscpdure is the homogenization of the porous
phases which have the smallest-length scales pwprdsiis step is performed using the standard
homogenization equations as presented in the pre\gection. The next step of homogenization
procedure is concerned with a heterogeneous mlaterigposed of some porous phases, some solid
phases and a pore volume with a greater lengtle slikah the one inside the porous phases. Let us
consider a two-scale porous material in which tbee wvolume exhibits two different scales | and Il
(V,=V,+V,), i.e. a micro-porosity and a macro-porosity. Timaterial is composed df (I <m)
porous phases with the porositigs, m—1 solid phases and a pore volume with the porogity

The total porosity of the material is thereforeegivby:
|
p=> f4d+¢ (A.47)
r=1

Standard homogenization permits to evaluate thegbastic properties of the porous phases of
level I (c!, b!, N!). Referring to the sub-problems defined in thevianes section, using equations

(A.47) and (A.46), the variation of the porositytire first sub-problem is given by:
] I [ ' |
(dg) =X 1. (dgf) +(dg') == fbl :(&), -~ 1:(=),, (A.48)
r=1 r=1

Using equations (A.9) and knowing thiat =0 for the non-porous phases, equation (A.48) can be
re-written as:
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(dqo)' - —i fb :(A), :E —(I —Zm: @A), j:E (A.49)
r=l ' r=1 '
Consequently the homogenized tensor of Biot effeciiress coefficients is found to be:
(dw)’ :_bhom:E : bhomzl—i( fr<A>v (1—b: )) (ASO)
r=1 '

It can be verified that equation (A.50) is redutecequation (A.20) when all solid phases are non-
porous P, =0), i.e. the porosity is taking effect in a singength scale. For the isotropic case

equation (A.50) is presented in the following siifigd form:
b =1-3 (1, A (1- 1)) (A.51)
r=1

The variation of the porosity for the second subbpem can be obtained using equations (A.47)
and (A.46):

n I
(00 =3 1 (0a) +(00 ) =3 1[0, 7 dr),  @s
Using the right-hand side equality of equation @.m equation (A.52) and noting tha} =0 and
:I/Nr' =0 in the non-porous phases, the following express@émnbe obtained:

(dg)’ = il f ((1— br): (&"), +%] (A.53)

r

From equation (A.45) for the first homogenizatioepsof each solid phase we have:

(e"), :(c'r )_l:(<<s">vr - pb'r) inVs (A.54)

r

The average local stress in the phagé the solid phase can be evaluated using equa(idr28)
and (A.30) ancb™™ of multiscale porous material from equation (A:50)

(o), =p(1-1:(A), +bl:(A), ) Vs (A.55)
This relation is equivalent to equation (A.32) fmple porous materials. Replacing equations
(A.55) and (A.54) in (A.53) and using the relati(élh— b'r):(d,)_lz 1:((;)_l from (A.24) we

obtain:

P . -
(d(ﬂ) Nhom ! Nhom zf

r=1

e )| mss

When all solid phases are non-porows £0, 1/N! =0, ¢, =c,), equation (A.56) is reduced to
(A.33). For the isotropic case (A.56) can be reteni as:

Y (( A)(1-H) _1} A5

N hom e ksr er

The porosity variation for the third sub-problenoistained using (A.47) and (A.46):
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m

(dg)" ='Zl t (dg) +(dd) :'zl f (—b', (&), - Q T) ~@1:(e), (A58

Using the right-hand side equality of (A.39) in $8) and noting thab! =0 and Q' =0 in the non-

porous phases, the following expression can berwuta
(dg)" =" ,((1-b}):(e"), -QT) (A.59)
r=1

Using (A.45) for the first homogenization step atk solid phase and equations (A.38) and (A.40)
the average local strain in phasef the solid phase is evaluated as:

(&), =—al:(1=(A), )T inV (A.60)

This relation is equivalent to (A.42) for simplerpos materials. Replacing (A.60) in (A.59) we
obtain:

(dg)" =-Q°"T ; Q“°m:il t(a,':(l—(A}Vr):(l -b')+ Q') (A.61)

When all solid phases are non-poroi £0, Q' =0), equation (A.61) is reduced to equation
(A.43).
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10. List of symbols

A
AV

2

O o m T T

O 0

2]

- m m

DA~ O a

~

©

~

2]

~

<

A

c

A

< 4 O v Z2 5 3

Strain localization tensor

Volumetric strain localization coefficient
Deviatoric strain localization coefficient
Biot’s effective stress coefficient

Tensor of Biot's effective stress coefficients
Skempton’s coefficient

Microscopic tensor of elastic moduli
Microscopic tensor of solid moduli
Macroscopic tensor of elastic moduli
Macroscopic tensor of solid moduli
Macroscopic strain tensor

Macroscopic volumetric strain

Volume fraction of microstructure phase

Microscopic shear modulus
Shear modulus
Microscopic bulk modulus

Drained bulk modulus

Drained pore volume modulus
Unjacketed modulus

Unjacketed pore volume modulus
Undrained bulk modulus

Pore fluid bulk modulus

Number of solid phases

Number of phases

Biot’s skeleton modulus

Pore pressure

Thermal porosity change coefficient
Temperature

Total volume
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V, Pore volume
V, Solid volume
X Position vector

a, Drained thermal expansion coefficient
a, Pore volume thermal expansion coefficient
a, Undrained thermal expansion coefficient

a; Pore fluid thermal expansion coefficient
o  Tensor of thermal expansion coefficients
€  Microscopic strain tensor

@ Lagrangian porosity

@ Active porosity

Thermal stress coefficient

X

/A Thermal pressurization coefficient

6  Microscopic stress tensor
o” Eigenstress related to pore pressure
¢' Eigenstress related to temperature

2 Macroscopic mean stress
24 Macroscopic Terzaghi effective stress

¥  Macroscopic stress tensor
CH  Subscript for Portlandite
CK  Subscript for cement clinker
CP  Subscript for cement paste
HD  Subscript for high density C-S-H
LD  Subscript for low density C-S-H
CSH Subscript for C-S-H
S  Subscript for C-S-H solid
V  Subscript for macro porosity
hom Superscript for homogenized parameter
exp Superscript for experimentally evaluated patame
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