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Abstract—Reducing both power consumption and the eco-
logical impact of networks has become a priority. Solutions
which allow us to reduce these factors are based on all-optical
technologies. All-optical rings are beginning to be deployed as
metropolitan networks and new more energy efficient equipments
are being proposed. We present one of these equipments and
explain how to reduce the CAPEX of such networks by properly
dimensioning them. Receivers located in nodes read information
from wavelengths. We study a dimensioning problem which
consists in minimizing the number of wavelengths and the total
number of receivers in a ring for a given traffic matrix. We
prove that this problem is NP-complete and propose a heuristic
algorithm. The solution has been validated under realistic traffic
conditions and achieved near-optimal results. The solution could
be extended to wider networks if we consider working with multi-
ring networks.

I. INTRODUCTION

Metropolitan networks carry traffic generated by distributed

services such as VoIP (Voice over IP) or VOD (Video On

Demand) among others. Since these services require an ever-

growing bit rates, the network should provide a high band-

width capacity. For this reason current metropolitan networks

partly use optical technologies, which are based on low-layer

protocols such as Synchronous Optical NETwork (SONET)

and Synchronous Digital Hierarchy (SDH) [16]. Generally,

their architecture is a hybrid ring, i.e. a ring with optical fiber

links and optoelectronic nodes. Despite the fact that the fiber

offers low attenuation rate, the optical signal is stopped and

regenerated at each node since optoelectronic devices do not

allow the light to pass transparently. Moreover the study [5]

shows that the power consumption of the current electronic

devices depends on the amount of traffic passing through

them. The optoelectronic solution does not meet the increasing

demand well. In order to reduce the power consumption

and thus reduce both the OPerationnal EXpenditure (OPEX)

and the ecological impact of metropolitan networks, future

metropolitan networks will include all-optical technology [25].

Unlike hybrid rings, all-optical rings are made of transparent

nodes. In these nodes the optical signal can either pass through

or be dropped off. According to [5], power requirements in the

photonic domain are almost independent of the bit rate.

The DOROthéE1 project aims to reduce the CAPital EXpen-

diture (CAPEX) of metropolitan networks with low ecological

impact by properly dimensioning them. We deal with the

new dimensioning constraints arising due to the all-optical

technology and try to understand the emerging problems.

We study one of the identified problems for a ring topology

which is, as we have said before, the most commonly used

topology for optical metropolitan networks. The dimensioning

process of an all-optical network consists in both minimizing

the number of wavelengths used and simplifying the internal

structure of nodes.

The rest of this paper is organized as follows. Section II

contains an overview of the all-optical technology and a survey

of the research studies. The node architecture presented in

[25] has been chosen as a reference for most of the performed

studies. In Section III we describe a new architecture for all-

optical nodes. This architecture was introduced in [7]. To

the best of our knowledge there is no dimensioning work

dealing with this architecture. In Section IV we introduce an

identified dimensioning problem which we call the Minimum

WaveLength Problem (MWLP). We study its complexity in

Section V. In Section VI we present a heuristic algorithm

which solves the MWLP and comment the obtained results.

Finally we conclude and outline perspectives.

II. RELATED WORK

In this section we give an overview of the all-optical

technologies and present the research that has been carried

out and which can be associated with our work.

In SONET/SDH networks traffic is carried between nodes

on the different wavelengths using Wavelength-Division Mul-

tiplexing (WDM) technology. Each wavelength is a high speed

channel with a fixed transmission rate OC-N where N indicates

the wavelength capacity (ex: OC-192 = 192 · 51.84 = 9.952
Mbps). Using Time-Division Multiplexing (TDM) a wave-

length can carry multiple time-slot channels. Time-slot channel

transmission rates can be variable (ex: OC-3, OC-8). We note

OC-min the size of the smallest time-slot channel.

The ratio between OC-N (WDM channel) and OC-min

(TDM channel) is called grooming ratio. We will use the

grooming ratio value as wavelength capacity.

1DOROthéE is a Digiteo project financed by the Ile-de-France region.
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Fig. 1. ADM node architecture

Current SONET/SDH networks are point-to-point networks.

Traffic is added/dropped to/from the wavelength using elec-

tronic Add-Drop Multiplexer (ADM). Fig. 1 depicts an ar-

chitecture of nodes provided only with ADMs. One ADM is

required for each wavelength at each node. The optical signal

is stopped at each node even if the node does not need to

add/drop traffic to/from all the wavelengths.

The cost of ADMs represents the dominant cost of the

network infrastructure [25]. In general the solution proposed

in order to reduce the number of ADMs is an upgrade of the

point-to-point network architecture. This upgrade consists in

providing each node with an Optical Add-Drop Multiplexer

(OADM) (Fig. 2). An OADM allows the optical signal to

bypass a node. By properly positioning the time-slot channels

on the wavelengths the number of ADMs can be reduced.

If a node does not need to receive or transmit traffic on a

wavelength, the associated ADM can be removed.

In this article, we study a different node architecture. It is

described in the next section and depicted in Fig. 3. Despite

the difference between these architectures we will see that our

study is similar to the reduction of the number of ADMs.

Methods which propose a solution to the time-slot chan-

nels assignment are referred to as grooming methods. Traffic

grooming and wavelength assignment have been proposed, as

a solution to the dimensioning problem, on many topologies,

e.g. mesh networks [13], ring networks [18] [17] [4] [12]

[9] [6] [14] and multi-ring networks [20]. In [6] the authors

described the problem of traffic grooming and proved it NP-

complete. An Integer Linear Problem was formulated in [19]

and the problem can thus be optimally resolved for small

instances. Under special traffic constraints optimal solutions

have been provided for greater instances. For example, the

authors of [9] furnish an optimal solution for all-to-all traffic

with identical traffic rates. Lower bounds have been computed

in [24]. Finally, heuristics were introduced in [18] [6]. In [18]

the authors proposed heuristics to minimize the total number

of ADMs. In [6] the presented method aims to minimize the

number of ADMs at the node where this number is maximum.

In [17] [12], the authors considered an architecture provided

with one or more Digital Cross Connect (DXC), also called

hubs. These electronic equipments allow traffic to be switched

from one wavelength to another. A DXC is provided with an

ADM for each wavelength. An optical version referred as OXC

(Optical Cross Connect) is introduced in [20]. An OXCs allow

the optical signal to bypass the hubs. In both electronic and

optic cases the authors studied the impact of high grooming

capacity provided by hubs on the dimensioning. More recent

studies [23] were made into mesh networks equipped with

OXCs. These studies aim to reduce the power consumption

using traffic grooming and a sleeping method (i.e. inactive

routers can be turned off).

Metropolitan optical networks were studied in many projects

as the HORNET project [21] which mainly focused on the

architecture of an opto-electronic node under assumption of

the bursty Internet traffic. The RINGO project [10] pro-

posed a slotted mesh topology. The two following projects

were oriented principally to optical rings: the FLAMINGO

project [8] which considered the packet switching over WDM

in an all-optical environment and the DAVID [11] project.

The latter studied a slotted metropolitan multi-ring paying

particular attention to ADD & DROP wavelength assignment

problems [2].

To finish we note that a survey of the research papers dealing

with OADM technologies was made in [17].

III. ALL-OPTICAL NODES

We describe here a node architecture for WDM/TDM

metropolitan networks, known as Packet Optical Add-Drop

Multiplexer (POADM) [7]. Like the OADM architecture, it

allows us to reduce the power consumption because it allows

the optical signal to bypass nodes. Both the OPEX and the

ecological impact can thus be reduced. However OADM and

POADM have different internal structures. We compare these

structures and outline the fact that using POADM potentially

allows us to reach a smaller CAPEX cost.

An ADM can add/drop traffic to/from a wavelength. It

can be seen as the composition of a receiver (Rx) and a

transmitter (Tx). The term of transceiver (TRx) is commonly

used to describe an ADM. The OADM architecture uses TRx.

A node has thus the capacity to read and write on a subset

of wavelengths. Reading on a wavelength does not necessarily

imply writing on the wavelength and vice versa. In POADM

architecture Rx and Tx are separated. Tunable Lasers (TL)

are used to inject the information into the wavelengths and the

node requires only one Tx. Fig. 2 and Fig. 3 depict nodes using

an OADM device and a POADM device, receptively. In both

cases the green wavelength (the one in the middle) bypasses

the node. In this simple example, the node with OADM has

two Txs whereas the node with POADM has only one Tx.

Using POADMs allows us to reduce the CAPEX cost.

The dimensioning of a network with a POADM node archi-

tecture consists in minimizing both the number of wavelengths

used and the number of Rxs. We note that minimizing the

number of Rxs is not equivalent to minimizing the number of

ADMs in a network with OADM node architecture. As a con-

sequence, new dimensioning problems have to be explored.

IV. THE MINIMUM WAVELENGTH PROBLEM

In this section, we propose to minimize the number of

wavelengths of a network with POADM node architecture.

In Section III, we saw that to minimize the total number of

receivers was important in order to reduce both the OPEX and
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CAPEX costs. In the problem introduced here as a decision

problem, the number of receivers is considered as a constraint

instead of a parameter. Indeed, we fix the number of receivers

to its minimum for each node.

Problem: MINIMUM WAVELENGTH PROBLEM

Data:

• An elementary circuit [3] G = (V,E) .

• A traffic matrix T with T [i, j] the amount of traffic sent

from node i to node j.

• A set λ = {λ1, λ2, ..., λK} of wavelengths and K ∈ N.

• A wavelength capacity C ∈ N (= grooming ratio).

We call assignment the operation which decomposes T into

a set of K matrices Tk of the same dimension as T and

associates Tk to a wavelength k ∈ λ of an optical ring.

Question: Is it possible to find an assignment of the traffic

T on the wavelengths λ that respects simultaneously the flow,

capacity and receiver constraints?

Flow constraint: For any couple of nodes (i, j), the

amount of traffic carried on each wavelength has to be equal

to the total amount of traffic between i and j:

∀i, j ∈ V,
∑

k∈λ

Tk[i, j] = T [i, j].

Capacity constraint: Let loadk(x) be the load of the arc

x ∈ E for the wavelength k. In other words loadk(x) is equal

to the amount of traffic carried by the arc x on the wavelength

k. loadk(x) cannot exceed the capacity C:

∀k ∈ λ, ∀x ∈ E, loadk(x) =
∑

i,j s.t. x∈path(i,j)∈G

Tk[i, j] ≤ C.

Receiver constraint: Let w−

i be the set of wavelengths on

which a node i has to read in order to receive all the traffic sent

to it. The |w−

i | indicates the minimal number of Rxs needed

for the node i.

∀i ∈ V,w−

i = {k ∈ λ|∀s ∈ V, Tk[s, i] 6= 0},

∀i ∈ V, |w−

i | =

⌈

∑

j T [j, i]

C

⌉

.

V. COMPLEXITY

We use the Bin Packing Problem (BPP) [15] to prove that

the MWLP is NP-Complete.

Problem: BIN-PACKING PROBLEM

Data:

• A set of boxes B = {B1, B2, ..., Bl}
• A box capacity CB ∈ N

• A set of elements X = {X1, X2, ..., Xm}
• A function b : X → {1, 2, ..., CB} which associates a

volume to each element of X .

Question: Is it possible to find a partition of X into l non-

empty subsets so that for each subset the sum of the element

volumes is less than or equal to CB?

Theorem 5.1: The MWLP is NP-Complete.

Proof: Given an instance of MWLP and an assignment

of the traffic T on λ, we can determine if this assignment

verify all three constraints in polynomial time. The certificate

of MWLP is in P.

Let us consider an instance of the BPP. For each element of

X we create a node in an initially empty elementary circuit G.

This node is called Xi as a reference to the associated element.

We then add to G the node S which will be the origin of all

traffic. Nodes in G are ordered so that S ≺ X1 ≺ ... ≺ Xm

where X ≺ Y means that X is placed before Y in the ring.

The traffic matrix is built as follows: T [S,Xi] = b(Xi). All

other T elements are equal to zero. We now fix the box Bi

to the wavelength λi. The wavelength capacity C = CB . At

this moment we obtain a proper instance of MWLP. We now

show that if BPP has a solution, then MWLP has a solution and

reciprocally. We see that all the traffic is passing through the

arc between S and X1 on the different wavelengths. Obviously,

we are able to say that if the assignment of the traffic T on λ

verifies our three constraints on the arc, then this assignment

is a solution to MWLP.

Since an element Xi is associated with a node in G and

cannot be cut into several parts, the traffic passing through

Xi is assigned to one wavelength. In other words Xi is in



one and only one box and, consequently, the flow constraint

is respected.

For each wavelength the amount of traffic on the arc (S, X1)

is equal to the sum of the element volumes in the associated

box. The sum is less or equal to CB = C. Thus the capacity

constraint is respected:

∀k ∈ λ, loadk((S,X1)) =

M
∑

i=1

bi · χ(Xi, k) ≤ C, where

χ(a, k) =

{

1, if a ∈ X is packed in the box Bk,

0, otherwise.

All the traffic received by the nodes Xi originates from S.

Since the traffic is assigned to one and only one wavelength,

any node, S excluded, has one receiver. The receiver constraint

is respected:

∀i ∈ CB − {S},
∑

k∈λ

χ(i, k) = |w−

i | = 1,

∑

k∈λ

χ(S, k) = |w−

S | = 0.

If there exists an assignment of traffic with the matrix T

on the wavelength λ which respects all the three constraints,

then a traffic from S to Xi is associated with one and only one

wavelength. The set of wavelengths is then a partition of traffic

Tk(S,Xi) in K subsets and each of these subsets has a size

less or equal to C. The BPP can be reduced polynomially to

MWLP. Moreover, a solution of the BPP is a solution for the

MWLP and reciprocally, a MWLP solution is a BPP solution.

MWLP is thus NP-Complete.

VI. THE HEURISTIC ALGORITHM

In this section we introduce a heuristic algorithm which

solves the MWLP. This algorithm assigns groups of point-to-

point connections (requests) to wavelengths. We explain how

to proceed in order to obtain a solution that minimizes the

number of wavelengths while satisfying the three constraints.

Given a n-node ring network, with nodes numbered from 1

to n, we consider each wavelength as a n-dimension cube. The

dimension i is associated with the arc i (i.e. the arc between

nodes i and i + 1). The length of the edges of this cube is

equal to C. Such a cube is called a box.

We consider a request as a n-dimension vector. The request

from a node x to a node y is written as r(x,y) . The size of a

request is equal to the amount of traffic carried by this request.

We note s(r(x,y)), the size of the request r(x,y). For example,

in a 4-node ring we consider the request r(1,3) = (2, 2, 0, 0).
The request r(1,3) passes through the arcs 1 and 2 but not

through the arcs 3 and 4 and s(r(1,3)) = 2. A unitary request

is a request with size equal to one.

The length of a request is the number of arcs between its

origin and its destination. The length of request r(1,3) is 2.

A set of requests R fits in a box if and only if :

∀i ∈ [1, n]
∑

r∈R

Pi(r) ≤ C, (1)

where Pi(r) is the projection of vector r on the dimension i.

In order to satisfy the capacity and receiver constraints, a

set of requests destined to the same node d may have to be

partitioned into a small number of subsets. Each subset has to

fit in a box (Eq. 1) and the number of subsets created for a

node d has to be equal to |w−

d |.
The number of Rxs for each node has to be minimal. We

thus group the requests according to their destination. To create

the subsets of requests for a destination d, we proceed as

follows. Firstly, each request of size x is divided into unitary

requests. Secondly, we sort requests in a decreasing order

according to their lengths. Thirdly, we constitute groups of

C unitary requests starting with the longest requests. The

last group may contain fewer than C unitary requests. This

sequence of operations has to be made for each destination.

1 2 3 4 5 6 1

(5,6)
r
(3,6)
r
(2,6)
r
(1,6)
r2

1

2

3 B

A

Fig. 4. Subsets of requests dedicated to the node 6 in a 6-node ring

For example, in Fig. 4 we study how to create the subsets

of requests for the node 6 in a 6-node ring with C = 4. The

sizes of the requests are: s(r(2,6)) = 1, s(r(1,6)) = s(r(3,6)) =
2, s(r(5,6)) = 3. The total amount of traffic received by node

6 is eight which means that we have to create two subsets.

Fig. 4 depicts the decreasingly sorted unitary requests. The

dotted line separates the two subsets. The optical technology

allows one to split a request into several sub-requests. Each

sub-request should have a size greater than or equal to one.

In our example r(3,6) is split.

A subset of requests can be also seen as a n-dimension

vector which is equal to the sum of the requests which it is

composed of. In the previous example the two subsets created

are A = (2, 3, 4, 4, 4, 0) and B = (0, 0, 1, 1, 4, 0).
An element is a subset of requests which fits in a box.

To pack elements into the boxes (i.e. to assign subsets to

wavelengths) we use the First Fit Decreasing method (FFD)

[22]. In this method we first sorted the elements by size in

a decreasing order then packed into the first box available

into which they fit. The first element to be packed is thus the

biggest. We note that the term biggest element may designate

the element which is the most difficult to pack. For one

dimension problems, such as a Knapsack problem [15], the

size is easy to determine as we take either the height or the

weight. For this heuristic algorithm we propose two methods

in order to compute the size of the elements.

We consider the n-dimension element x = (x1, x2, ..., xn).



In the first method, the size of an element is equal to the

sum of the sizes in each dimension, s(x) =
∑n

i=1 xi. In our

example (Fig. 4) s(A) = 17 and s(B) = 6.

In the second method we consider the total load loadi of

each arc i (each dimension) in the network. Indeed, if the

load of an arc i is high and if for an element the size of its

dimension i is great, then this element is difficult to pack. With

this method the size of an element is s(x) =
∑n

i=1 xi · loadi.

VII. RESULTS

In this section we discuss the performance of the heuristic

algorithm introduced above. We present results for two series

of experiments. The first one aims to show the influence of

different sizes of connections on the heuristic performance.

The second one aims to show the influence of different spatial

distributions of the traffic (i.e. some nodes receive a lot of

traffic while others do not).

We performed the following experiments on small (10

nodes), average (50 nodes) and wide (100 nodes) rings. The

heuristic performance exhibits the same tendencies in all cases

we present regardless of the number of nodes.

In a first time we present results computed using the First

Fit method without have sorting out the elements. Next, we

show the results computed with the FFD method. In this case

we use two different methods to compute the element size.

A. Connection size

We generate all-to-all traffic and use probabilistic distri-

butions to determine the amount to be sent between the

nodes. We study here the influence of four distributions on

the size of the connection (uniform, exponential, normal:

N(µ, 20%µ) and N(µ, 50%µ)). Fig. 5 depicts the evolution of

the average utilization of the bandwidth depending on the ratio

of the average size of connection (µ) and the capacity of the

wavelength (C). We choose to study this ratio since both the

capacity of the wavelength and the average size of connection

may increase in future networks. The means are estimated with

3% precision and the confidence coefficient α = 0.05.

Fig. 5. Bandwidth utilization for all-to-all traffic with size of connection
randomly distributed (the curves are identical for all four distributions)

Firstly, we see here that when the ratio µ
C

increases, then

the bandwidth utilization also increases. Secondly, despite the

fact that we use different distributions to compute the size of

a connection, the four curves overlap perfectly.

When the ratio µ
C

is high, the elements generated from

the pyramid are more "regular". Such elements are indeed

composed of few connections. Consequently, the elements are

easier to pack into the wavelengths. In other words the unused

space is easily used to pack other elements.

An element is composed of a sum of connections. The

element size is a sum of iid values and thus follows a normal

distribution.

B. Spatial distribution

We randomly choose origin-destination couples in order to

show the influence of a spatial distribution on the performance

of our heuristic algorithm. Fig. 6 depicts the evolution of the

average utilization of the bandwidth depending, as before,

on µ
C

. We use two spatial distributions: uniform and Rich

Get Richer (RGR) distribution [1]. The RGR distribution

is chosen to represent the real traffic condition. In a ring

network some nodes may attract more traffic (e.g., video base

server, backbone access nodes). The sizes of the connections

are uniformly distributed. The performances of the heuristic

algorithm are almost identical in both the cases and reach a

bandwidth utilization of 70 percent.

Fig. 6. Bandwidth utilization for spatially distributed traffic

In Fig. 7 we consider the elements which are packed using

the FFD method. The element size is computed using the first

method introduced in the previous section. We note that the

performances of our heuristic algorithm improve when the

elements are sorted in this way and reach respectively 87

percent and 97 percent of the bandwidth utilization for RGR

and normal traffic condition. We also see that the heuristic

algorithm uses the bandwidth for an uniform distribution more

effectively than for an RGR distribution.

On both Figs. 8 and 9 we take as an example a network with

100 nodes (numbered from 1 to 100). We consider the amount

of traffic Ri received by each node i which is expressed as a

number of occupied wavelengths because all but possibly one



Fig. 7. Bandwidth utilization for spatially distributed traffic with sort

are completly filled up (curve on the bottom). We compare

the use of the bandwidth by our heuristic algorithm (curve

on the top) with the use of the bandwidth by a lower bound

(curve in the middle). λ∗ is the number of wavelengths used

by an optimal solution. It is obvious that λ∗C ≥ max
i

(Ri).

We take thus max
i

(Ri) as the lower bound. λ∗

uni and λ∗

rgr is

the number of wavelengths used respectively by an optimal

solution for uniform distribution and an optimal solution for

RGR distribution for the same total amount of traffic sent.

We have max
i

(Runi
i ) ≤ max

i
(Rrgr

i ) since uniform traffic is

more regular. λ∗

uni ≤ λ∗

rgr. Fig. 8 depicts results computed

for the uniform distribution. For this distribution our heuristic

algorithm uses only 3 percent more of wavelengths than

the lower bound. Fig. 9 depicts results computed for RGR

distribution. For this distribution our heuristic algorithm uses

only 1,7 percent more of wavelengths than the lower bound.

We show with these experiments that our heuristic algorithm

performs well under uniform traffic conditions and even better

under RGR traffic conditions.

Fig. 8. Results for uniform spatial traffic vs lower bound

VIII. CONCLUSION AND PERSPECTIVES

We have studied a dimensioning problem for all-optical

metropolitan rings called Minimum WaveLength Problem

Fig. 9. Results for RGR spatial traffic vs lower bound

(MWLP). We want to minimize both the number of wave-

lengths and the number of receivers used in the network.

We have proved that the construction of an optimal solution

for this problem is NP-Complete. We proposed a heuristic

algorithm based on greedy multi-dimensional packing. Finally,

we have studied the performance of our heuristic algorithm

using random traffic matrices. We observed that our heuristic

algorithm performs well under realistic traffic conditions. We

are currently working on the approximability of the MWLP.

We also plan to study the extension of the MWLP to the multi-

ring networks.
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