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ON MEASURE SOLUTIONS OF THE BOLTZMANN EQUATION
PART I: MOMENT PRODUCTION AND STABILITY ESTIMATES

XUGUANG LU AND CLÉMENT MOUHOT

Abstract. The spatially homogeneous Boltzmann equation with hard potentials is
considered for measure valued initial data having finite mass and energy. Moment
production estimates in the usual form and in the exponential form are obtained for
measure solutions with and without angular cutoff on the collision kernel. For the
Grad angular cutoff, it is also established the strong stability estimate for measure
solutions.
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1. Introduction

In this paper we study the spatially homogeneous Boltzmann equation for hard
interaction potentials with or without angular cutoff. The initial data are assumed to
be positive Borel measures having finite moments up to order 2. Our main results are
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the existence and stability of measure solutions that have polynomial and exponential
moment production properties.

1.1. The spatially homogeneous Boltzmann equation. Before introducing the
main results, let us recall the Boltzmann equation for L1 solutions and basic notations.
The equation for the space homogeneous solution takes the form

(1.1)
∂

∂t
ft(v) = Q(ft, ft)(v) , (v, t) ∈ R

N × (0,∞) , N ≥ 2

with some given initial data ft(v)|t=0 = f0(v) and Q is the collision integral defined by

(1.2) Q(f, f)(v) =

∫∫

R
N×SN−1

B(v − v∗, σ)
(
f(v′)f(v′∗)− f(v)f(v∗)

)
dσdv∗ ,

where v, v∗ and v′, v′∗ stand for velocities of two particles respectively after and before
their collision,

v′ =
v + v∗

2
+

|v − v∗|
2

σ , v′∗ =
v + v∗

2
− |v − v∗|

2
σ , σ ∈ S

N .

The above relation between v, v∗ and v′, v′∗ shows that the collision is elastic:

v′ + v′∗ = v + v∗ , |v′|2 + |v′∗|2 = |v|2 + |v∗|2 .
The collision kernel B(z, σ) is in general assumed to take the form

(1.3) B(z, σ) = B̄(|z|, cos θ), cos θ =
z

|z| · σ, θ ∈ [0, π]

where (r, θ) 7→ B̄(r, t) is a nonnegative Borel function on [0,∞)× [−1, 1] satisfying

(1.4) ∀ t ∈ (−1, 1), r 7→ B̄(r, t) is continuous on [0,∞),

(1.5) B(z, σ) ≤ (1 + |z|2)γ/2b(cos θ), γ > 0.

In this paper most of the results are concerned with the production form:

(1.6) B(z, σ) = |z|γb(cos θ), γ ∈ (0, 2] .

Recall that this case corresponds to the so-called hard potential molecular interactions.
The angular function b(·) is a nonnegative Borel function on [−1, 1] satisfying some

weighted integrability. Our strongest assumption is that b(·) as a function of σ is
integrable on the sphere S

N−1, which means
∫ π

0

b(cos θ) sinN−2 θ dθ <∞ .

However more singular situations can be considered. The minimal assumption is that
b(·) sin2 θ is integrable on the sphere as a function of σ (this corresponds physically to
an angular momentum), which means

∫ π

0

b(cos θ) sinN θ dθ <∞ .
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In the physical case, N = 3, it is well-known that for the hard sphere model, b(·) ≡
cst., whereas for hard potential model without angular cutoff, there is only weighted
integrability:

∫ π

0

b(cos θ) sin θ dθ = ∞,

∫ π

0

b(cos θ) sin2 θ dθ <∞ .

In this paper we consider the following different assumptions:

0 < γ ≤ 2 , A2 :=
∣∣SN−2

∣∣
∫ π

0

b(cos θ) sinN θ dθ <∞ . (H0)

0 < γ ≤ 2 ,

∫ π

0

b(cos θ) sinN θ (1 + | log(sin θ)|)dθ <∞ . (H1)

1 < γ < 2 ,

∫ π

0

b(cos θ) sinN−2+β θ dθ <∞ , β = 2

(
2

γ
− 1

)
∈ (0, 2) . (H2)

γ = 2 , ∃ p ∈ (1,∞) s. t.

∫ π

0

[b(cos θ)]p sinN−2 θ dθ <∞ . (H3)

0 < γ ≤ 2 , A0 :=
∣∣SN−2

∣∣
∫ π

0

b(cos θ) sinN−2 θ dθ <∞ . (H4)

Note that (H3)-(H4) corresponds to the angular “cutoff” case (short-range interactions),
whereas (H0)-(H1)-(H2) allow for non locally integrable b(·) on the sphere, i.e. “non-
cutoff” case (long-range interactions).

For any n ∈ SN , let

S
N−2(n) = {ω ∈ S

N | ω · n = 0 } (N ≥ 3)

and in dimension N = 2 let

S
0(n) = {−n⊥ , n⊥} where n⊥ ∈ S

1 satisfies n⊥ · n = 0 .

Then for any g ∈ L1(SN ) or g ≥ 0 (measurable) on SN we have
∫

SN

g(σ)dσ =

∫ π

0

sinN−2 θ

(∫

SN−2(n)

g(cos θn+ sin θ ω)dω

)
dθ

where dω is the Lebesgue spherical measure on SN−2(n) and in case N = 2 we define
∫

S0(n)

g(ω)dω = g(−n⊥) + g(n⊥) .

Let |SN−2(n)| =
∫
SN−2(n)

dω, etc. Then |SN−2(n)| = |SN−2| forN ≥ 3, |S0(n)| = |S0| = 2

for N = 2.
By classical calculation one has

(1.7) 〈Q(f, g), ϕ〉 :=
∫

RN

Q(f, g)(v)ϕ(v)dv =
1

2

∫∫

RN×RN

LB[∆ϕ](v, v∗)f(v)g(v∗)dvdv∗

where

∆ϕ = ∆ϕ(v, v∗, v
′, v′∗) = ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗) ,
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and

(1.8) LB[∆ϕ](v, v∗) =

∫ π

0

B̄(|v − v∗|, cos θ) sinN−2 θ

(∫

SN−2(n)

∆ϕ dω

)
dθ

and σ = cos θn + sin θ ω ,n = (v − v∗)/|v − v∗| for v 6= v∗; n = e1 = (1, 0, . . . , 0) for
v = v∗.

Observe that when assuming (H0)-(H1)-(H2) (non locally integrable b(·)), the colli-
sion operator in the dual form (1.7) above is well-defined thanks to the cancellations in
the symmetric difference ∆ϕ of ϕ ∈ C2(RN). Basic estimates on ∆ϕ are as follows (see
for instance [9, Lemma 3.2]): For all (v, v∗, σ) ∈ RN × RN × SN−1 one has

(1.9) |∆ϕ| ≤
√
2

(
max

|u|≤
√

|v|2+|v∗|2
|∇ϕ(u)|

)
|v − v∗| sin θ ;

(1.10)

∣∣∣∣
∫

SN−2(n)

∆ϕ dω

∣∣∣∣ ≤ |SN−2|
(

max
|u|≤

√
|v|2+|v∗|2

|Hϕ(u)|
)
|v − v∗|2 sin2 θ ,

where ∇ϕ, Hϕ are gradient and Hessian matrix of ϕ. Consequently the Boltzmann
equation (1.1) in a weak form can be written

(1.11)

∫

RN

ϕ(v)ft(v)dv =

∫

RN

ϕ(v)f0(v)dv +

∫ t

0

〈Q(fτ , fτ ), ϕ〉dτ .

From the estimate (1.10) it is easily seen that if A2 < ∞ (minimal assumption) then
LB[∆ϕ] is well-defined for all ϕ ∈ C2(RN).

In fact we shall prove in Proposition 2.1 (see Section 2) that (v, v∗) 7→ LB[∆ϕ](v, v∗)
is also continuous on RN × RN . Furthermore if∫ π

0

b(cos θ) sinN−1 θ dθ <∞

then from the estimate (1.9) one sees that

LB[|∆ϕ|](v, v∗) =
∫

SN

B(v − v∗, σ)|∆ϕ| dσ <∞

so that LB coincides with the simpler formula

(1.12) LB[∆ϕ](v, v∗) =

∫

SN

B(v − v∗, σ)∆ϕ dσ .

The collision integral (1.7) and the equation (1.11) for L1-functions are naturally
extended to finite Borel measures. For every 0 ≤ s <∞, let Bs(RN) = (Bs(RN), ‖ · ‖s)
be the Banach space of real Borel measures on RN having finite total variations up to
order s, i.e.

‖µ‖s :=
∫

RN

〈v〉sd|µ|(v) <∞, 〈v〉 := (1 + |v|2)1/2

where the positive Borel measure |µ| is the total variation of µ. In particular ‖µ‖ =
‖µ‖0 = |µ|(RN) is simply the total variation of µ. Let

B+
s (R

N) =
{
µ ∈ Bs(RN) | µ ≥ 0

}
.



MEASURE SOLUTIONS OF THE BOLTZMANN EQUATION PART I 5

Let us denote

Ck
b (R

N ) =




ϕ ∈ Ck(RN)
∣∣∣
∑

|α|≤k

sup
v∈RN

|∂αϕ(v)| <∞




 .

Our test function space for defining measure weak solutions is then C2
b (R

N).
Finally by analogy with Bs(RN) we introduce the class L∞

−s(R
N) of locally bounded

Borel functions such that

ψ ∈ L∞
−s(R

N) ⇐⇒ ‖ψ‖L∞
−s

:= sup
v∈RN

|ψ(v)|〈v〉−s <∞

and we define

L∞
−s ∩ Ck(RN) =




ϕ ∈ Ck(RN)
∣∣∣
∑

|α|≤k

‖∂αϕ‖L∞
−s
<∞




 , s ≥ 0, k ∈ N .

In accordance with (1.7) we now define for every µ, ν ∈ Bs(RN) and every suitable
smooth function ϕ

(1.13) 〈Q(µ, ν), ϕ〉 := 1

2

∫∫

RN×RN

LB[∆ϕ](v, v∗)dµ(v)dν(v∗) .

1.2. Previous results and references. Let us give a short (and non exhaustive)
overview of the main previous results and references related to the subject of this
paper.

Cauchy theory for the spatially homogeneous Boltzmann equation for hard potentials
with cutoff. The first rigorous mathematical result is due to Carleman [7, 8] who proved
existence and uniqueness of solutions in L1 ∩ L∞ with pointwise moment bounds, for
hard spheres interactions. A general Cauchy theory was later developped by Arkeryd
[3, 4] who proved existence and uniqueness of solutions in L1∩L logL with L1 moment
bounds. More recently optimal results were obtained by Mischler and Wennberg [19]
(see also Lu [17]), and we refer the references therein for a more extensive bibliography.

Cauchy theory for the spatially homogeneous Boltzmann equation for hard potentials
without cutoff. This theory is much more recent, and not complete at now. As far as
existence theory is concerned let us mention the seminal works of Villani [24] and then
Alexandre and Villani [2]. As far as uniqueness results are concerned (in the general far
from equilibrium regime), let us mention the works [23, 12, 14, 13] based on Wasserstein
metrics and probabilistic tools, and the work [10] based on a priori estimates. Finally
let us mention the related recent works in the perturbative close-to-equilibrium regime
(but without assuming spatial homogeneity) of Gressman and Strain [16] on the one
hand, and Alexandre, Morimoto, Ukai, Xu, Yang [1] on other hand.

Polynomial moment bounds. The first seminal result of the propagation of polynomial
moments that exists initially for “variable hard spheres” (hard potentials with angular
cutoff) is due to Elmroth [11] and makes use of so-called “Povzner’s inequalities” [21].
Then Desvillettes proved, for the same model, the appearance of any polynomial as



6 XUGUANG LU AND CLÉMENT MOUHOT

soon as a moment of order strictly higher than 2 exists initially (see also [25]). Finally
optimal results were obtained in [19] again.

Exponential moment bounds The first seminal result of propagation of moments of
exponential form is due to Bobylev [5], still in the case of short-ranged interactions.
Improvements of these results were later obtained in [6]. Let us also mention the
related result of propagation of pointwise maxwellian bound in [15]. Inspired by the
same techniques, the appearance of exponential moments was first obtained by the
second author together with Mischler in [20, 18].

1.3. Definition of Measure Weak Solutions.

Definition 1.1. Let B(z, σ) be given by (1.3)-(1.4)-(1.5) with γ and b(·) satisfying
(H0). Let F0 ∈ B+

2 (R
N) and {Ft}t≥0 ⊂ B+

2 (R
N). We say that {Ft}t≥0, or simply Ft,

is a measure weak solution of Eq. (1.1) associated with the initial datum F0, if it
satisfies the following:

(i) sup
t≥0

‖Ft‖2 <∞ .

(ii) For every ϕ ∈ C2
b (R

N),




∫∫

RN×RN

|LB[∆ϕ](v, v∗)|dFt(v)dFt(v∗) <∞ , ∀ t > 0

t 7→ 〈Q(Ft, Ft), ϕ〉 belongs to C((0,∞)) ∩ L1
loc([0,∞))

∫

RN

ϕ(v)dFt(v) =

∫

RN

ϕ(v)dF0(v) +

∫ t

0

〈Q(Fτ , Fτ ), ϕ〉dτ ∀ t ≥ 0 .

Moreover a measure weak solution Ft is called a conservative solution if it conserves
the mass, momentum and energy, i.e.

∫

RN




1
v
|v|2



 dFt(v) =

∫

RN




1
v
|v|2



 dF0(v) ∀ t ≥ 0 .

Note that every measure weak solution conserves at least the mass.
Our first main result of the paper is the following

Theorem 1.2 (Existence of solutions and moment production estimates without cut-
off). Suppose that B(z, σ) = |z|γb(cos θ) satisfies (H1). Given any initial datum F0 ∈
B+
2 (R

N) with ‖F0‖0 > 0, we have

(a) The Eq. (1.1) always has a conservative measure weak solution Ft, and the so-
lution Ft can be chosen such as to satisfy the moment production estimate:

(1.14) ‖Ft‖s ≤ Ks(F0)

(
1 +

1

t

) s−2
γ

∀ t > 0 , ∀ s ≥ 2

where

(1.15) Ks(F0) = ‖F0‖2
(
2s+7‖F0‖2

‖F0‖0

(
1 +

1

16‖F0‖2A2γ

)) s−2
γ

.
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(b) If in addition either 0 < γ ≤ 1 or one of the assumptions (H2) or (H3) is
satisfied, then every solution in part (a), or more generally every conservative
measure weak solution Ft having the property of moment production

sup
t≥t0

‖Ft‖s <∞ ∀ t0 > 0, ∀ s > 2 ,

satisfies a moment production estimate of exponential form:

(1.16)

∫

RN

exp(c(t)〈v〉γ)dFt(v) ≤ 2‖F0‖0 ∀ t > 0 ,

where

c(t) = 2−s0
‖F0‖0
‖F0‖2

(1− e−αt) , α = 16‖F0‖2A2γ

and 1 < s0 <∞ depends only on b(·) and γ.
Corollary 1.3. Under the same assumptions on B(z, σ) and the initial datum F0 in
Theorem 1.2, there exists a conservative measure weak solution Ft of Eq. (1.1) such that
for any 0 < s < γ and any R > 0

∫

RN

exp(R〈v〉s)dFt(v) ≤ (exp(Cs(t)) + 2) ‖F0‖0 ∀ t > 0

where

Cs(t) = R

(
R

c(t)

)s/(γ−s)
.

Proof. The proof of this Corollary is quite short and we can present it here. As a
consequence of Theorem 1.2 there exists a conservative measure weak solution Ft of
Eq. (1.1) such that Ft satisfies (1.16). For any t > 0, if R〈v〉s > Cs(t), then 〈v〉γ−s >
( 1
R
Cs(t))

(γ−s)/s = R
c(t)

and so

R〈v〉s = R

c(t)〈v〉γ−s c(t)〈v〉
γ ≤ c(t)〈v〉γ .

Thus ∫

RN

eR〈v〉
s

dFt(v) =

∫

{R〈v〉s≤Cs(t)}

eR〈v〉
s

dFt(v) +

∫

{R〈v〉s>Cs(t)}

eR〈v〉
s

dFt(v)

≤ eCs(t)‖F0‖0 +
∫

{R〈v〉s>Cs(t)}

ec(t)〈v〉
γ

dFt(v) ≤ eCs(t)‖F0‖0 + 2‖F0‖0 .

�

1.4. Definition of Measure Strong Solutions. Now let us considermeasure strong
solutions of Eq. (1.1) under the angular cutoff assumption (H4). Let B(z, σ) be given
by (1.3)-(1.4)-(1.5) with b(·) satisfying A2 <∞. Then we can define bilinear operators
Q± : Bs+γ(RN)× Bs+γ(RN ) → Bs(RN) (s ≥ 0) and

(1.17) Q(µ, ν) := Q+(µ, ν)−Q−(µ, ν)
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through Riesz’s representation theorem by

(1.18)

∫

RN

ψ(v)dQ+(µ, ν)(v) =

∫∫

RN×RN

LB[ψ](v, v∗)dµ(v)dν(v∗) ,

(1.19)

∫

RN

ψ(v)dQ−(µ, ν)(v) =

∫∫

RN×RN

A(|v − v∗|)ψ(v)dµ(v)dν(v∗)

for all ψ ∈ L∞
−s ∩ C0(RN), where

(1.20) LB[ψ](v, v∗) =

∫

SN

B(v − v∗, σ)ψ(v
′) dσ, A(|z|) =

∫

SN−1

B(z, σ)dσ

and recall that n = (v − v∗)/|v− v∗| in b(n · σ) is replaced by a fixed unit vector e1 for
v = v∗.

Recall that the norm ‖µ‖s of µ ∈ Bs(RN) (s ≥ 0) can be estimated in terms of
compactly smooth test functions: For all k ≥ 0

(1.21) ‖µ‖s = sup
ϕ∈Ck

c (R
N ), ‖ϕ‖L∞

−s
≤1

∣∣∣
∫

RN

ϕdµ
∣∣∣ .

Basic properties of the Borel measures Q±(µ, ν) are as follows (which will be proven
in Section 2 ):

Proposition 1.4. Let B(z, σ) be given by (1.3)-(1.4)-(1.5) with b(·) satisfying A0 <∞.
Then

Q± : Bs+γ(RN )× Bs+γ(RN) → Bs(RN) (s ≥ 0)

are bounded and

(1.22)
∥∥Q±(µ, ν)

∥∥
s
≤ 2(s+γ)/2A0 (‖µ‖s+γ‖ν‖0 + ‖µ‖0‖ν‖s+γ) ,

(1.23)∥∥Q±(µ, µ)−Q±(ν, ν)
∥∥
s
≤ 2(s+γ)/2A0 (‖µ+ ν‖s+γ‖µ− ν‖0 + ‖µ+ ν‖0‖µ− ν‖s+γ)

and hence

(1.24) ‖Q(µ, µ)−Q(ν, ν)‖0 ≤ 21+(s+γ)/2A0 (‖µ+ ν‖γ‖µ− ν‖0 + ‖µ+ ν‖0‖µ− ν‖γ) .
Finally for all µ ∈ Bγ(RN) and all ϕ ∈ C2

b (R
N), there holds

(1.25) 〈Q(µ, µ), ϕ〉 =
∫

RN

ϕdQ(µ, µ)

where the left-hand side of (1.25) is defined in (1.13).

Definition 1.5. Let B(z, σ) be given by (1.3)-(1.4)-(1.5) with γ and b(·) satisfying
(H4). Let F0 ∈ B+

2 (R
N) and {Ft}t≥0 ⊂ B+

2 (R
N). We say that Ft is a measure strong

solution of Eq.(1.1) associated with the initial datum Ft|t=0 = F0, if it satisfies the
following:

(i) sup
t≥0

‖Ft‖2 <∞ .
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(ii) t 7→ Ft ∈ C([0,∞);B2(R
N)) ∩ C1([0,∞);B0(R

N)) and

(1.26)
d

dt
Ft = Q(Ft, Ft) , t ∈ [0,∞) .

Note from (1.22)-(1.23)-(1.24) that the strong continuity of

t 7→ Ft ∈ C([0,∞);B2(R
N))

implies the strong continuity t 7→ Q(Ft, Ft) ∈ C([0,∞);B0(R
N)), so that the differential

equation (1.26) is equivalent to

(1.27) Ft = F0 +

∫ t

0

Q(Fs, Fs)ds , t ≥ 0

where the integral is taken in the Riemann sense or generally in the Bochner sense.

Recall also that here the derivative d
dt
µt and integral

∫ b
a
νtdt as measures are defined by

( d

dt
µt

)
(E) =

d

dt
µt(E) ,

(∫ b

a

νtdt
)
(E) =

∫ b

a

νt(E)dt

for all Borel sets E ⊂ R
N .

Note also that if a strong measure solution Ft is absolutely continuous with respect to
the Lebesgue measure for all t ≥ 0, i.e. dFt = ftdv, then it is easily seen that ft (after
modification on a v-null set) is a mild solution of Eq. (1.1). That is, (t, v) 7→ ft(v) is
nonnegative and Lebesgue measurable on [0,∞) × RN and for every t ≥ 0, v 7→ ft(v)
belongs to L1

2(R
N), supt≥0 ‖ft‖L1

2
<∞, and there is a Lebesgue null set Z0 ⊂ RN (which

is independent of t) such that

(1.28)






∫ t

0

Q±(fτ , fτ )(v)dτ <∞ ∀ t ∈ [0,∞) , ∀ v ∈ R
N \ Z0

ft(v) = f0(v) +

∫ t

0

Q(fτ , fτ )(v)dτ , ∀ t ∈ [0,∞) , ∀ v ∈ R
N \ Z0 .

Here

L1
s(R

N) =

{
f ∈ L1(RN) | ‖f‖L1

s
:=

∫

RN

|f(v)|〈v〉sdv <∞
}
, s ≥ 0 .

From classical measure theory [22, Theorem 6.13, page 149]: if dµ = fdv for f ∈
L1
s(R

N), then d|µ| = |f |dv and hence ‖µ‖s = ‖f‖L1
s
.

For any positive measure µ ∈ B+
2 (R

N) we introduce the following continuous function
r 7→ Ψµ(r) on [0,∞):

(1.29) Ψµ(r) = r + r1/3 +

∫

|v|>r−1/3

|v|2dµ(v) , r > 0 ; Ψµ(0) = 0 .

Our second main result of this paper is

Theorem 1.6 (Uniqueness and stability estimates for locally integrable b). Let B(z, σ) =
|z|γb(cos θ) satisfy (H4). Then

(a) Every conservative measure weak solution of Eq. (1.1) is a strong solution, while
every measure strong solution of Eq. (1.1) is a measure weak solution.
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(b) Let Ft be a measure strong solution of Eq. (1.1) with initial datum F0 satisfying
‖Ft‖2 ≤ ‖F0‖2 for all t ≥ 0. Then Ft in fact conserves the mass, momentum
and energy.

(c) Given any F0 ∈ B+
2 (R

N). There exists a unique conservative measure strong
solution Ft of Eq. (1.1) such that Ft|t=0 = F0. Therefore if ‖F0‖0 > 0, then Ft
satisfies the moment production estimates in Theorem 1.2 .

(d) Let Ft be a conservative measure strong solutions of Eq. (1.1) with an initial
datum Ft|t=0 = F0 ∈ B+

2 (R
N ), and suppose ‖F0‖0 > 0. Let Gt be a conservative

measure strong solutions of Eq. (1.1) with time-interval (τ,∞) with an initial
datum Gt|t=τ = Gτ ∈ B+

2 (R
N) for some τ ≥ 0. Then:

– If τ = 0, then

(1.30) ‖Ft −Gt‖2 ≤ ΨF0(‖F0 −G0‖2)eC(1+t), t ≥ 0

where ΨF0 is given by (1.29), C = R(γ, A0, A2 ‖F0‖0, ‖F0‖2) is an explicit
positive continuous function on (R+)

⊗5.
– If τ > 0, then

(1.31) ‖Ft −Gt‖2 ≤ ‖Fτ −Gτ‖2ecτ (t−τ), t ∈ [τ,∞)

where cτ = 4A0(K2+γ(F0)+ ‖F0‖2)(1+ 1
τ
), K2+γ(F0) is given in (1.15) with

s = 2 + γ.
(e) If F0 ∈ B+

2 (R
N) is absolutely continuous with respect to the Lebesgue measure,

i.e. dF0 = f0dv with 0 ≤ f0 ∈ L1
2(R

N), then the unique conservative measure
strong Ft with the initial datum F0 is also absolutely continuous with respect to
the Lebesgue measure: dFt = ftdv for all t ≥ 0, and ft is the unique conservative
mild solution of Eq. (1.1) with the initial datum f0.

(f) If F0 ∈ B+
2 (R

N) is not a Dirac-mass and let Ft be the unique measure strong
solution of Eq. (1.1) with initial datum F0, then there is a sequence {fnt } of con-
servative L1-solutions of Eq. (1.1) with initial data 0 ≤ fn0 ∈ L1

2(R
N ) satisfying

(1.32)

∫

RN




1
v
|v|2


 fn0 (v)dv =

∫

RN




1
v
|v|2


dF0(v) , n = 1, 2, . . .

such that

(1.33) lim
n→∞

∫

RN

ϕ(v)fnt (v)dv =

∫

RN

ϕ(v)dFt(v) ∀ϕ ∈ Cb(R
N), ∀ t ≥ 0 .

Remark 1.7. An application of the estimate (1.31) for solutions with different initial
times will be seen in our next paper concerning the rate of convergence to equilibrium.

Remark 1.8. In the second part of this work we shall prove the exponential convergence
to equilibrium (for bounded angular function b(·)): ‖Ft−M‖0 ≤ Ce−ct where M is the
Maxwellian (gaussian) with the same mass, momentum and energy as F0 (assuming
that F0 is not a single Dirac mass and ‖F0‖0 > 0), C, c > 0 are constants depending
only on N , b(·), γ and the mass, momentum and energy of F0. This results shall allow
to prove that the stability estimate (1.30) can be improved to be uniform in time:

sup
t≥0

‖Ft −Gt‖2 ≤ Ψ̃F0(‖F0 −G0‖2)
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for some explicit continuous function Ψ̃F0(r) on [0,∞) satisfying Ψ̃F0(0) = 0.

2. Continuity and Convergence

We shall prove in this section the continuity of the collision kernel. It is required for
defining measure weak solutions of Eq. (1.1) as we mentioned in Section 1, but also
for proving weak convergence of approximate solutions, which leads to the existence of
measure weak solutions.

2.1. Representations of 〈v′〉2, 〈v′∗〉2. We first begin this section with a preliminary
technical computation.

For any v, v∗ ∈ R
N , let us define

h =
v + v∗
|v + v∗|

for v + v∗ 6= 0 ; h = e1 = (1, 0, ..., 0) for v + v∗ = 0

and recall that n = (v − v∗)/|v − v∗| when v 6= v∗ and n = e1 else. By definition

(2.1)






〈v′〉2 := 1 + |v′|2 = 〈v〉2 + 〈v∗〉2
2

+
|v + v∗||v − v∗|

2
(h · σ)

〈v′∗〉2 := 1 + |v′∗|2 =
〈v〉2 + 〈v∗〉2

2
− |v + v∗||v − v∗|

2
(h · σ) .

Let us also define the unit vector

j =
h− (h · n)n√
1− (h · n)2

for |h · n| < 1 and j = e1 for |h · n| = 1 .

Then with the change of variables σ = cos θn+ sin θ ω , ω ∈ SN−2(n), we have

h · σ = (h · n) cos θ +
√

1− (h · n)2 sin θ (j · ω) , ω ∈ S
N−2(n)

so that we get another representation:

(2.2)





〈v′〉2 = 〈v〉2 cos2 θ/2 + 〈v∗〉2 sin2 θ/2 +

√
|v|2|v∗|2 − (v · v∗)2 sin θ (j · ω)

〈v′∗〉2 = 〈v〉2 sin2 θ/2 + 〈v∗〉2 cos2 θ/2−
√

|v|2|v∗|2 − (v · v∗)2 sin θ (j · ω) .

2.2. Continuity of the collision kernel. Let us now prove the continuity property.

Proposition 2.1. Let B(z, σ) be given by (1.3)-(1.4)-(1.5) with b(·) satisfying A2 <∞.
Then

(I) The function (v, v∗) 7→ LB[∆ϕ](v, v∗) is continuous on R
N × R

N for all ϕ ∈
C2(RN).

(II) Let Bn(z, σ) = B̄n(|z|, cos θ) satisfy (1.4) and

(2.3) B̄n(r, t) ր B̄(r, t) (n→ ∞) ∀ (r, t) ∈ [0,∞)× (−1, 1).

Then for any ϕ ∈ C2(RN) and any 0 < R <∞
(2.4) sup

|v|+|v∗|≤R

|LBn[∆ϕ](v, v∗)− LB[∆ϕ](v, v∗)| → 0 (n→ ∞).
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Moreover let ϕn ∈ C2(RN) satisfy

(2.5) lim
n→∞

ϕn(v) = ϕ(v) ∀ v ∈ R
N ; sup

n≥1
sup
|v|≤R

∑

|α|≤2

|∂αϕn(v)| <∞ ∀R <∞ .

Then

(2.6) LBn [∆ϕn](v, v∗) → LB[∆ϕ](v, v∗) (n→ ∞) ∀ (v, v∗) ∈ R
N × R

N .

Proof. Let us write

(2.7) LB[∆ϕ](v, v∗) =

∫ π

0

B̄(|v − v∗|, cos θ) sinN θ L[∆ϕ](v, v∗, θ)dθ

where

L[∆ϕ](v, v∗, θ) =
1

sin2 θ

∫

SN−2(n)

∆ϕ dω, 0 < θ < π.

Recalling (1.10) we have

(2.8) sup
0<θ<π

|L[∆ϕ](v, v∗, θ)| ≤ |SN−2|
(

max
|u|≤

√
|v|2+|v∗|2

|Hϕ(u)|
)
|v − v∗|2.

Part (I). For any 0 < R <∞, consider decomposition

B(v − v∗, σ) = B(v − v∗, σ) ∧ R + (B(v − v∗, σ)−R)+

where x ∧ y = min{x, y}, (x− y)+ = max{x− y, 0}. We have

LB[∆ϕ](v, v∗) = LB∧R[∆ϕ](v, v∗) + L(B−R)+ [∆ϕ](v, v∗),

LB∧R[∆ϕ](v, v∗) =

∫

SN−1

[B(v − v∗, σ) ∧R]∆ϕ dσ.

Fix any (v0, v∗0) ∈ RN × RN . Applying (2.7)-(2.8) to L(B−R)+ [∆ϕ] and recalling the
assumption (1.5) we have

sup
|v−v0|2+|v∗−v∗0|2≤1

|L(B−R)+ [∆ϕ](v, v∗)| ≤ Cϕ

∫ π

0

(
Cγb(cos θ)− R

)+
sinN θdθ =: Iϕ,γ(R)

where Cϕ, Cγ are finite constants depending only on ϕ, γ, v0, v∗0. Therefore

(2.9) |LB[∆ϕ](v, v∗)− LB[∆ϕ](v0, v∗0)|
≤ |LB∧R[∆ϕ](v, v∗)− LB∧R[∆ϕ](v0, v∗0)|+ Iϕ,γ(R) ∀ |v − v0|2 + |v∗ − v∗0|2 ≤ 1.

Let (∆ϕ)0 = ϕ(v0
′) + ϕ(v∗

′
0) − ϕ(v0) − ϕ(v∗0). Applying (2.7) to LB∧R[∆ϕ] and using

the assumption (1.4) we have

|LB∧R[∆ϕ](v, v∗)− LB∧R[∆ϕ](v0, v∗0)|

≤ Cϕ|SN−2|
∫ π

0

∣∣∣B̄(|v − v∗|, cos θ) ∧ R− B̄(|v0 − v∗0|, cos θ) ∧ R
∣∣∣ sinN−2 θdθ

+R

∫

SN−1

∣∣∣∆ϕ− (∆ϕ)0

∣∣∣ dσ → 0 as (v, v∗) → (v0, v∗0).
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Also by assumption
∫ π
0
b(cos θ) sinN θdθ < ∞ we have Iϕ,γ(R) → 0 as R → +∞. Thus

from (2.9), by first letting (v, v∗) → (v0, v∗0) and then letting R → +∞, we obtain

lim sup
(v,v∗)→(v0,v∗0)

|LB[∆ϕ](v, v∗)− LB[∆ϕ](v0, v∗0)| = 0 .

Part (II). By assumption (2.3) and (1.5) we have B̄n(r, cos θ) ≤ B̄n+1(r, cos θ) ≤
B̄(r, cos θ) ≤ (1 + r2)γ/2b(cos θ) which together with (1.4) implies that the functions

r 7→
∫ π

0

B̄n(r, cos θ) sin
N θ dθ, r 7→

∫ π

0

B̄(r, cos θ) sinN θ dθ

are all continuous on [0,∞). Thus by first using (2.3) and dominated convergence and
then using Dini’s theorem we conclude that for any 0 < R <∞

∫ π

0

(
B̄(r, cos θ)− B̄n(r, cos θ)

)
sinN θ dθ → 0 (n→ 0) uniformly in r ∈ [0, R].

Therefore applying (2.7)-(2.8) to LB−Bn [∆ϕ] we have, for any 0 < R <∞,

sup
|v|+|v∗|≤R

|LB[∆ϕ](v, v∗)− LBn [∆ϕ](v, v∗)| = sup
|v|+|v∗|≤R

|LB−Bn [∆ϕ](v, v∗)|

≤ Cϕ,R sup
r∈[0,R]

∫ π

0

(
B̄(r, cos θ)− B̄n(r, cos θ)

)
sinN θdθ → 0 (n→ ∞)

where Cϕ,R = sup
|u|≤R

|Hϕ(u)|R2.

Finally for any (v, v∗) ∈ RN ×RN , using (2.5) and denoting r = |v− v∗| we have by
dominated convergence that

|LB[∆ϕ](v, v∗)− LBn [∆ϕn](v, v∗)| ≤ |LB[∆(ϕ− ϕn)](v, v∗)|+ |LB−Bn [∆ϕn](v, v∗)|

≤
∫ π

0

B̄(r, cos θ) sinN θ |L[∆(ϕ− ϕn)](v, v∗, θ)|dθ

+C

∫ π

0

(
B̄(r, cos θ)− B̄n(r, cos θ)

)
sinN θdθ −→ 0 (n→ ∞).

�

Proposition 2.2. Let 0 ≤ sj <∞, {µnj }∞n=1 ⊂ B+
sj
(RNj ) , µj ∈ B+

0 (R
Nj ) satisfy

(2.10) sup
n≥1

‖µnj ‖sj <∞, j = 1, 2, . . . , k ;

(2.11) lim
n→∞

∫

R
Nj

ϕjdµ
n
j =

∫

R
Nj

ϕjdµj , ∀ϕj ∈ C∞
c (RNj ), j = 1, 2, . . . , k .

Then

(2.12) µj ∈ B+
sj
(RNj ), ‖µj‖sj ≤ lim inf

n→∞
‖µnj ‖sj , j = 1, 2, . . . , k .

Moreover if Ψn,Ψ ∈ C(RN1 × RN2 × · · · × RNk) satisfy

(2.13) lim
|x|→∞

sup
n≥1

|Ψn(x)|∑k
j=1〈xj〉sj

= 0 , lim
n→∞

sup
|x|≤R

|Ψn(x)−Ψ(x)| = 0
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for all 0 < R <∞, where x = (x1, x2, ..., xk) ∈ ⊗k
j=1R

Nj , then

(2.14) lim
n→∞

∫

⊗k
j=1R

Nj

Ψnd(µ
n
1 ⊗ µn2 ⊗ · · · ⊗ µnk) =

∫

⊗k
j=1R

Nj

Ψd(µ1 ⊗ µ2 ⊗ · · · ⊗ µk) .

Proof. First (2.12) easily follows from Fatou’s Lemma. Let us prove (2.14). Consider

M = sup
n≥1

{‖µn1‖s1 , ‖µn2‖s2 , ... , ‖µnk‖sk}

and

νn = µn1 ⊗ µn2 ⊗ · · · ⊗ µnk , ν = µ1 ⊗ µ2 ⊗ · · · ⊗ µk .

By assumption on Ψn,Ψ, for any ε > 0 there exist R > 0, nε ≥ 1 such that for all
n ≥ nε one has

(2.15) |Ψn(x)| , |Ψ(x)| < ε
k∑

j=1

〈xj〉sj , ∀ |x| > R ,

and

(2.16) |Ψn(x)−Ψ(x)| < ε, ∀ |x| ≤ k(R + 2) .

On the other hand, by polynomial approximation, there exists a polynomial P (x) such
that

(2.17) |Ψ(x)− P (x)| < ε ∀ |x| ≤ k(R + 2) .

Choose χRj ∈ C∞
c (RNj ) satisfying 0 ≤ χRj (xj) ≤ 1 on RNj and χRj (xj) = 1 for |xj | ≤ R

and χRj (xj) = 0 for |xj | ≥ R + 2. If we write P (x) =
∑m

i=0

∏k
j=1 Pi,j(xj) where m ∈ N

and Pi,j(xj) are polynomials in xj , then

P (x)

k∏

j=1

χRj (xj) =

m∑

i=0

k∏

j=1

ϕi,j(xj)

where ϕi,j(xj) = Pi,j(xj)χ
R
j (xj) , i = 0, 1, 2, . . . , m , j = 1, 2, . . . , k. Then consider the

decomposition:
∫
∏k

j=1 R
Nj

Ψndν
n −

∫
∏k

j=1 R
Nj

Ψdν =

∫
∏k

j=1 R
Nj

Ψn

(
1−

∏k

j=1
χRj

)
dνn

+

∫
∏k

j=1 R
Nj

(Ψn −Ψ)
∏k

j=1
χRj dν

n +

∫
∏k

j=1 R
Nj

(Ψ− P )
∏k

j=1
χRj dν

n

+

[
m∑

i=0

k∏

j=1

∫
∏k

j=1 R
Nj

ϕi,jdµ
n
j −

m∑

i=0

k∏

j=1

∫
∏k

j=1 R
Nj

ϕi,jdµj

]

+

∫
∏k

j=1 R
Nj

(P −Ψ)
∏k

j=1
χRj dν +

∫
∏k

j=1 R
Nj

Ψ
(∏k

j=1
χRj − 1

)
dν

:= In,1 + In,2 + In,3 + In,4 + I5 + I6.
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Since 1 −
∏k

j=1χ
R
j (xj) = 0 for all |x| ≤ R, and

∏k
j=1χ

R
j (xj) = 0 for all |x| > k(R + 2),

it follows from (2.15)-(2.16)-(2.17) that for all n ≥ nε

|In,1|+ |I6| ≤ 2ε

∫

|x|>R

k∑

j=1

〈xj〉sjdνn ≤ 2εkMk ,

|In,2|+ |In,3|+ |I5| ≤ 2ε

∫

|x|≤k(R+2)

dνn + ε

∫

|x|≤k(R+2)

dν ≤ 3εMk .

For In,4, since ϕi,j ∈ C∞
c (RNj ), it follows from the assumption of the lemma that

In,4 =
m∑

i=0

(∏k

j=1

∫

R
Nj

ϕi,jdµ
n
j −

∏k

j=1

∫

R
Nj

ϕi,jdµj

)
→ 0 (n→ ∞).

Therefore

lim sup
n→∞

∣∣∣∣∣

∫
∏k

j=1 R
Nj

Ψndν
n −

∫
∏k

j=1 R
Nj

Ψdν

∣∣∣∣∣ ≤ 5kMkε .

This proves (2.14) by letting ε → 0+. �

We end this section with the

Proof of Proposition 1.4. By elementary inequalities

〈v′〉s ≤ (〈v〉2 + 〈v∗〉2)s/2,
(
1 + |v − v∗|2

)γ/2 ≤ 2γ/2
(
〈v〉2 + 〈v∗〉2

)γ/2

and the assumption on B we have for any ϕ ∈ Cc(R
N) with ‖ϕ‖L∞

−s
≤ 1

|ϕ(v′)|B(v − v∗, σ) ≤ 〈v′〉s
(
1 + |v − v∗|2

)γ/2
b(cos θ) ≤ 2(s+γ)/2(〈v〉s+γ + 〈v∗〉s+γ)b(cos θ)

and hence∫∫

RN×RN

LB [|ϕ|] (v, v∗)d(|µ| ⊗ |ν|) ≤ A02
(s+γ)/2 (‖µ‖s+γ‖ν‖0 + ‖µ‖0‖ν‖s+γ) ,

∫∫

RN×RN

A(|v − v∗|)|ϕ(v)|d(|µ| ⊗ |ν|) ≤ A02
(s+γ)/2 (‖µ‖s+γ‖ν‖0 + ‖µ‖0‖ν‖s+γ) .

These imply (1.22). The inequality (1.23) follows from (1.22) and the following identi-
ties:

Q±(µ, µ)−Q±(ν, ν) =
1

2
Q±(µ+ ν, µ− ν) +

1

2
Q±(µ− ν, µ+ ν) .

Next recall B(v− v∗, σ) = B̄(|v− v∗|, v−v∗|v−v∗|
·σ). By changing variables σ → −σ, v ↔ v∗

and using Fubini’s theorem we have
∫

RN

ϕdQ+(µ, µ) =
1

2

∫∫

RN×RN

(∫

SN−1

B(v − v∗, σ)
(
ϕ(v′) + ϕ(v′∗)

)
dσ
)
dµ(v)dµ(v∗).

A similar symmetry for
∫
RN ϕdQ

−(µ, µ) is obvious. The difference of the two is equal
to 〈Q(µ, µ), ϕ〉. This proves (1.25). �
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3. Some Lemmas

In this section we collect and prove some inequalities that will be used to prove our
main result.

Lemma 3.1 (Cf. [6]). Let p ≥ 1 and kp = [(p + 1)/2] the integer part of (p + 1)/2.
Then for all x, y ≥ 0

kp−1∑

k=0

(
p
k

)(
xkyp−k + xp−kyk

)
≤ (x+ y)p ≤

kp∑

k=0

(
p
k

)(
xkyp−k + xp−kyk

)

where (
p
k

)
=
p(p− 1) · · · (p− k + 1)

k!
, k ≥ 1 ;

(
p
0

)
= 1 .

Let p ≥ 1 and n ∈ {1, 2, . . . , [p]}. Then using Taylor’s formula for the function
x 7→ (1 + x)p one has

n∑

k=0

(
p
k

)
xk ≤ (1 + x)p ∀ x ≥ 0 .

In particular

(3.1)
n∑

k=0

(
p
k

)
≤ 2p , 1 ≤ n ≤ p .

Let Γ(x),B(x, y) be the gamma and beta functions:

Γ(x) =

∫ ∞

0

tx−1e−tdt , x > 0 ; B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt , x, y > 0 .

It is well-known that

(3.2) Γ(x)Γ(y) = Γ(x+ y)B(x, y) , ∀ x, y > 0 .

Other relations that we shall also use are: For any integer k ≥ 1 and for any real
number p ≥ k we have

(3.3)

(
p
k

)
=

Γ(p+ 1)

Γ(p− k + 1)Γ(k + 1)
.

And

(3.4) B(x+ 1, y) + B(x, y + 1) = B(x, y) , x, y > 0 .

Lemma 3.2. Let 0 < α, η <∞, g ∈ C([0, η]) and S ∈ C1([0, η]) such that

S(0) = 0, S ′(x) < 0 ∀ x ∈ [0, η) .

Then for any λ ≥ 1 we have
∫ η

0

xα−1g(x)eλS(x)dx = Γ(α)

(
1

−λS ′(0)

)α (
g(0) + o(1)

)

where o(1) → 0 as λ→ ∞.
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Proof. This is classical stationary phase type of analysis, we omit the proof for the sake
of conciseness of this paper. �

Lemma 3.3. Let p ≥ 3 and kp = [(p+ 1)/2]. Then

(3.5)

kp∑

k=1

(
p
k

)
B(k, p− k) ≤ 4 log p .

More generally for any a > 1 we have

(3.6)

kp∑

k=1

(
p
k

)
B(ak, a(p− k)) ≤ Ca(ap)

1−a ,

(3.7)

kp−1∑

k=0

(
p− 2
k

)
B(a(k + 1), a(p− k − 1)) ≤ Ca(ap)

−a

where 0 < Ca <∞ only depends on a.

Proof. Since p ≥ 3 we have

kp∑

k=1

(
p
k

)
B(k, p− k) =

kp∑

k=1

p

k(p− k)
=

kp∑

k=1

(1
k
+

1

p− k

)
≤ 2

kp∑

k=1

1

k
≤ 4 log p .

Now suppose a > 1. Let

kp∑

k=1

(
p
k

)
B(ak, a(p− k)) = Ia(p) + Ia(p, kp)

where

Ia(p) =

kp−1∑

k=1

(
p
k

)
B(ak, a(p− k))

and

Ia(p, kp) =

(
p
kp

)
B(akp, a(p− kp)) .

For the first term Ia(p) we use the symmetry (w.r.t x = 1/2) and Lemma 3.1 to get

Ia(p) :=

kp−1∑

k=1

(
p
k

)
B(ak, a(p− k))

=
1

2

∫ 1

0

1

x(1 − x)

{ kp−1∑

k=1

(
p
k

)(
xak(1− x)a(p−k) + xa(p−k)(1− x)ak

)}
dx

≤ 1

2

∫ 1

0

1

x(1− x)

{(
xa + (1− x)a

)p
− xap − (1− x)ap

}
dx

=

∫ 1/2

0

1

x(1− x)

{(
xa + (1− x)a

)p
− xap − (1− x)ap

}
dx .
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Omitting the negative term −xap we have

(xa + (1− x)a)p − xap − (1− x)ap ≤ p(xa + (1− x)a)p−1xa

so that

Ia(p) ≤ p

∫ 1/2

0

xa−1g1(x)e
pS(x)dx

where g1(x) = (1 − x)−1(xa + (1 − x)a)−1 and S(x) = log(xa + (1 − x)a), x ∈ [0, 1/2].
Since g1(0) = 1, S(0) = 0 and

S ′(0) = −a , S ′(x) =
a
(
xa−1 − (1− x)a−1

)

xa + (1− x)a
< 0 ∀ x ∈ [0, 1/2)

(because a > 1) it follows from Lemma 3.2 that for all p ≥ 3

Ia(p) ≤ CapΓ(a)

(
1

pa

)a
= Ca(ap)

1−a .

For the second term Ia(p, kp) we use Stirling’s formula

Γ(x) =
(x
e

)x√2π

x
e

θx
12x , Γ(x+ 1) = xΓ(x) =

(x
e

)x√
2πx e

θx
12x , x ≥ 1

(0 < θx < 1) to compute

Ia(p, kp) =
Γ(p+ 1)

Γ(kp + 1)Γ(p− kp + 1)
· Γ(akp)Γ(a(p− kp))

Γ(ap)
(3.8)

≤ e1/4
√
a

ap

(
kp
p

)(a−1)kp (p− kp
p

)(a−1)(p−kp) ( p

kp

)(
p

p− kp

)
≤ Ca

1

ap

(
1

2

)(a−1)p

.

Here in the last inequality we used the simple estimates

p− 1

2
≤ p− kp ≤

p+ 1

2

for p ≥ 3. This proves (3.6) because a > 1.
In order to prove (3.7) we consider again a decomposition

kp−1∑

k=0

(
p− 2
k

)
B(a(k + 1), a(p− k − 1)) = Ja(p) + Ja(p, kp)

where for the first term Ja(p) we use that kp−2 = [(p−1)/2]−1 = kp−2−1 and Lemma
3.1 to get

Ja(p) =

kp−2∑

k=0

(
p− 2
k

)
B(a(k + 1), a(p− k − 1))

=
1

2

∫ 1

0

xa−1(1− x)a−1

kp−2−1∑

k=0

(
p− 2
k

)(
xak(1− x)a(p−2−k) + xa(p−2−k)(1− x)ak)

)
dx

≤ 1

2

∫ 1

0

xa−1(1− x)a−1
(
xa + (1− x)a

)p−2

dx =

∫ 1/2

0

xa−1g2(x)e
pS(x)dx
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with g2(x) = (1− x)a−1(xa + (1− x)a)−2. Since a > 1, it follows from Lemma 3.2 that

Ja(p) ≤ Ca

( 1

ap

)a
.

For the second term Ja(p, kp) we use (3.8) to get

Ja(p, kp) :=

(
p− 2
kp − 1

)
B(akp, a(p− kp)) =

(p− kp)kp
p(p− 1)

Ia(p, kp) ≤ Ca
1

ap

(
1

2

)(a−1)p

.

Since a > 1, this proves the lemma. �

Lemma 3.4. Suppose b(·) satisfies the assumption (H0). For all p ≥ 3 we define

(3.9) εp :=
2

A2

∣∣SN−2
∣∣
∫ π

0

b(cos θ) sinN θ

∫ 1

0

t
(
1− sin2 θ

2
t
)p−2

dtdθ (≤ 1) .

Then εp → 0 (p→ ∞) . Furthermore, if either 0 < γ ≤ 1 or (H2) is satisfied, then

(3.10) p2−
2
γ εp → 0 (p→ ∞) .

Proof. Under the assumption (H0), the convergence εp → 0 (p → ∞) is obvious. And
if 0 < γ ≤ 1 then 2/γ ≥ 2, and so (3.10) is also trivial. Suppose (H2) is satisfied. Then
1 < γ < 2 and β = 2(2/γ − 1) ∈ (0, 2). Let ν = 1− β/2. Then for all p ≥ 4

(3.11) εpp
ν ≤ 2νεp(p− 2)ν

≤ Cν,N,A2

∫ π

0

b(cos θ) sinN−2ν θ

∫ 1

0

(
(p− 2)

sin2 θ

2
t

)ν (
1− sin2 θ

2
t

)p−2

dtdθ .

From the elementary estimates

0 ≤ (kx)ν(1− x)k < 1 , (kx)ν(1− x)k → 0 (k → ∞) ∀ x ∈ [0, 1]

we get, setting k = p− 2, x = t sin2 θ/2, that

(
(p− 2)

sin2 θ

2
t

)ν (
1− sin2 θ

2
t

)p−2

→ 0 (p→ ∞)

for all θ ∈ [0, π] and t ∈ [0, 1]. Since by assumption (H2), θ 7→ b(cos θ) sinN−2ν θ =
b(cos θ) sinN−2+β θ is integrable on [0, π], it follows from (3.11) and the dominated con-
vergence theorem that εpp

ν → 0 (p→ ∞). �

Remark 3.5. It is easily calculated that if A0 < ∞, then εp ≤ (16A0)/(A2p) for all
p ≥ 3, so that in case 0 < γ < 2 we have p2−2/γεp ≤ (16A0p

1−2/γ)/A2 .

Lemma 3.6. Let B(z, σ) = |z|γb(cos θ).
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(I) Under the assumption (H0) we have for all p ≥ 3

LB
[
∆〈·〉2p

]
(v, v∗)(3.12)

≤ −A2

4

(
〈v〉2p+γ + 〈v∗〉2p+γ

)
+
A2

2

(
〈v〉2p〈v∗〉γ + 〈v∗〉2p〈v〉γ

)

+A2

kp∑

k=1

(
p
k

)(
〈v〉2k+γ〈v∗〉2(p−k) + 〈v〉2(p−k)+γ〈v∗〉2k

)

+A2

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2(p−k)+γ + 〈v〉2(p−k)〈v∗〉2k+γ

)

+2p(p− 1)A2εp

kp−1∑

k=0

(
p− 2
k

)(
〈v〉2(k+1)+γ〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)+γ〈v∗〉2(k+1)

)

+2p(p− 1)A2εp

kp−1∑

k=0

(
p− 2
k

)(
〈v〉2(k+1)〈v∗〉2(p−1−k)+γ + 〈v〉2(p−1−k)〈v∗〉2(k+1)+γ

)
.

(II) Under the assumption (H3) which is rewritten in the form

(3.13) γ = 2, 1 < p1 <∞ , A∗
p1

:=
∣∣SN−2

∣∣
(∫ π

0

[b(cos θ)]p1 sinN−2 θ dθ

)1/p1

<∞

we have for all p ≥ p0 =
(
12A∗

p1
/A0

)2q1

LB
[
∆〈·〉2p

]
(v, v∗)(3.14)

≤
12A∗

p1

pη

kp∑

k=1

(
p
k

)(
〈v〉2(k+1)〈v∗〉2(p−k) + 〈v〉2(p−k+1)〈v∗〉2k

)

+
12A∗

p1

pη

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2(p−k+1) + 〈v〉2(p−k)〈v∗〉2(k+1)

)

+
A0

2
〈v〉2p〈v∗〉2 +

A0

2
〈v∗〉2p〈v〉2 −

A0

4
〈v〉2(p+1) − A0

4
〈v∗〉2(p+1)

where q1 = p1/(p1 − 1) and η = 1/2q1.

Proof. Part (I) Let us write

LB
[
∆〈·〉2p

]
(v, v∗) = |v − v∗|γ

∣∣SN−2
∣∣
∫ π

0

b(cos θ) sinN θ Lp(v, v∗, θ) dθ

with

Lp(v, v∗, θ) :=
1

sin2 θ |SN−2|

∫

SN−2(k)

(
〈v′〉2p + 〈v′∗〉2p − 〈v〉2p − 〈v∗〉2p

)
dω.
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We first prove that

Lp(v, v∗, θ) ≤ −1

2

(
〈v〉2p + 〈v∗〉2p

)
(3.15)

+
1

2

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2p−2k + 〈v〉2p−2k〈v∗〉2k

)

+2p(p− 1)

∫ 1

0

t
(
1− sin2 θ

2
t
)p−2

dt

×
kp−1∑

k=0

(
p− 2
k

)(
〈v〉2(k+1)〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)〈v∗〉2(k+1)

)
.

Let us denote the shorthand

E(θ) = 〈v〉2 cos2 θ/2 + 〈v∗〉2 sin2 θ/2 , h =
√

|v|2|v∗|2 − 〈v, v∗〉2 .
Then

〈v′〉2 = E(θ) + h sin θ (j · ω) , 〈v′∗〉2 = E(π − θ)− h sin θ (j · ω) .
By Taylor’s formula we have

(
E(θ)± h sin θ (j · ω)

)p
=
(
E(θ)

)p
± q
(
E(θ)

)p−1

h sin θ (j · ω)

+p(p− 1)

∫ 1

0

(1− t)
(
E(θ)± th sin θ 〈j, ω〉

)p−2

dt(h sin θ 〈j, ω〉)2 .

Look at the last term: We have for all θ ∈ (0, π), t ∈ [0, 1]

E(θ) + th sin θ |(j · ω)| ≤ E(θ) +
(
E(π − θ)

)
t

= 〈v〉2 + 〈v∗〉2 −
(
E(π − θ)

)
(1− t)

≤
(
〈v〉2 + 〈v∗〉2

)(
1− 1− t

2
sin2 θ

)

where we used

E(π − θ) ≥ (〈v〉2 + 〈v∗〉2)min{cos2 θ/2 , sin2 θ/2} ≥ (〈v〉2 + 〈v∗〉2)
sin2 θ

2
.

Since ∫

SN−2(n)

(j · ω)dω = 0

it follows that

Lp(v, v∗, θ) ≤
1

sin2 θ

(
(E(θ))p + (E(π − θ))p − 〈v〉2p − 〈v∗〉2p

)
(3.16)

+2p(p− 1)
(
〈v〉2 + 〈v∗〉2

)p−2

h2
∫ 1

0

t
(
1− sin2 θ

2
t
)p−2

dt .
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We next prove that for p ≥ 3 and kp = [(p+ 1)/2]

1

sin2 θ

(
(E(θ))p + (E(π − θ))p − 〈v〉2p − 〈v∗〉2p

)
(3.17)

≤ −1

2

(
〈v〉2p + 〈v∗〉2p

)
+

1

2

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2p−2k + 〈v〉2p−2k〈v∗〉2k

)
.

In fact using Lemma 3.1 we have

(E(θ))p + (E(π − θ))p

≤
kp∑

k=0

(
p
k

)([
〈v〉2 cos2(θ/2)

]k [〈v∗〉2 sin2(θ/2)
]p−k

+
[
〈v〉2 cos2(θ/2)

]p−k [〈v∗〉2 sin2(θ/2)
]k
)

+

kp∑

k=0

(
p
k

)( [
〈v〉2 sin2(θ/2)

]k [〈v∗〉2 cos2(θ/2)
]p−k

+
[
〈v〉2 sin2(θ/2)

]p−k [〈v∗〉2 cos2(θ/2)
]k
)

≤ sin2 θ

2

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2p−2k + 〈v〉2p−2k〈v∗〉2k

)

+
(
〈v〉2p + 〈v∗〉2p

)(
cos2p(θ/2) + sin2p(θ/2)

)

where we used the fact that p ≥ 3 =⇒ p− kp ≥ 1 so that

cos2k(θ/2) sin2p−2k(θ/2)), sin2k(θ/2) cos2p−2k(θ/2)) ≤ 1

4
sin2 θ

for all 1 ≤ k ≤ kp . Since p ≥ 3 implies

cos2p(θ/2) + sin2p(θ/2) ≤ cos4(θ/2) + sin4(θ/2) = 1− 1

2
sin2(θ)

this gives (3.17).
Note that h2 ≤ 〈v〉2〈v∗〉2. Then using Lemma 3.1 again and recalling kp−1 = kp−2 =

[(p− 1)/2] we have

(
〈v〉2 + 〈v∗〉2

)p−2

h2 ≤
kp−1∑

k=0

(
p− 2
k

)(
〈v〉2(k+1)〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)〈v∗〉2(k+1)

)
.

This together with (3.16)-(3.17) concludes the proof of (3.15).
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Using (3.15) and the definitions of LB[∆ϕ], A2 and εp we obtain

LB
[
∆〈·〉2p

]
(v, v∗) ≤ −A2

2

(
〈v〉2p + 〈v∗〉2p

)
|v − v∗|γ

+
A2

2

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2p−2k + 〈v〉2p−2k〈v∗〉2k

)
|v − v∗|γ

+p(p− 1)A2εp

kp−1∑

k=0

(
p− 2
k

)(
〈v〉2(k+1)〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)〈v∗〉2(k+1)

)
|v − v∗|γ .

Next by 0 < γ ≤ 2 we have

(3.18) |v − v∗|γ ≥
1

2
〈v〉γ − 〈v∗〉γ , |v − v∗|γ ≥

1

2
〈v∗〉γ − 〈v〉γ .

Thus

(
〈v〉2p + 〈v∗〉2p

)
|v − v∗|γ = 〈v〉2p|v − v∗|γ + 〈v∗〉2p|v − v∗|γ

≥ 〈v〉2p
(1
2
〈v〉γ − 〈v∗〉γ

)
+ 〈v∗〉2p

(1
2
〈v∗〉γ − 〈v〉γ

)

=
1

2
〈v〉2p+γ + 1

2
〈v∗〉2p+γ − 〈v〉2p〈v∗〉γ − 〈v∗〉2p〈v〉γ .

Moreover using

(3.19) |v − v∗|γ ≤ 2(〈v〉γ + 〈v∗〉γ)

we have

(
〈v〉2k〈v∗〉2(p−k) + 〈v〉2(p−k)〈v∗〉2k

)
|v − v∗|γ

≤ 2
(
〈v〉2k〈v∗〉2(p−k) + 〈v〉2(p−k)〈v∗〉2k

)
(〈v〉γ + 〈v∗〉γ)

= 2
(
〈v〉2k+γ〈v∗〉2(p−k) + 〈v〉2(p−k)+γ〈v∗〉2k

)

+2
(
〈v〉2k〈v∗〉2(p−k)+γ + 〈v〉2(p−k)〈v∗〉2k+γ

)
.

And similarly

(
〈v〉2(k+1)〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)〈v∗〉2(k+1)

)
|v − v∗|γ

≤ 2
(
〈v〉2(k+1)〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)〈v∗〉2(k+1)

)
(〈v〉γ + 〈v∗〉γ)

= 2
(
〈v〉2(k+1)+γ〈v∗〉2(p−1−k) + 〈v〉2(p−1−k)+γ〈v∗〉2(k+1)

)

+2
(
〈v〉2(k+1)〈v∗〉2(p−1−k)+γ + 〈v〉2(p−1−k)+γ〈v∗〉2(k+1)+γ

)
.

These together with (3.18) yield the estimate (3.12).
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Part (II). We have for any p ≥ 1

|v − v∗|−2LB[∆〈·〉2p](v, v∗) = 2

∫

SN

b(cos θ)〈v′〉2pdσ − A0

(
〈v〉2p + 〈v∗〉2p

)

≤ 2A∗
p1

(
1

|SN−2|

∫

SN

〈v′〉2pq1dσ
)1/q1

− A0

(
〈v〉2p + 〈v∗〉2p

)

where we used Hölder inequality. We still have to prove

(3.20)

(
1

|SN−2|

∫

SN

〈v′〉2pq1dσ
)1/q1

≤ 3

pη

(
〈v〉2 + 〈v∗〉2

)p
, η =

1

2q1
.

Let λ = pq1 > 1. Using the inequality

|v + v∗||v − v∗| ≤ 〈v〉2 + 〈v∗〉2

and N ≥ 2 we compute using (2.1) and the monotone increase of the function

x 7→ (
1 + x

2
)λ + (

1− x

2
)λ on x ∈ [0, 1]

that

1

|SN−2|

∫

SN

〈v′〉2λdσ

=
(
〈v〉2 + 〈v∗〉2

)λ
∫ π

0

sinN−2 θ

(
1

2
+

|v + v∗||v − v∗|
2(〈v〉2 + 〈v∗〉2)

cos θ

)λ
dθ

≤
(
〈v〉2 + 〈v∗〉2

)λ
∫ π

0

(
1 + cos θ

2

)λ
dθ ≤

(
〈v〉2 + 〈v∗〉2

)λ√2π

λ

where we used the well-known inequality

∫ π/2

0

sinn θ dθ <

√
π

2n

with n = 2[λ]. This yields (3.20).
From this and using Lemma 3.1 we obtain that for all p ≥ 3

|v − v∗|−2LB
[
∆〈·〉2p

]
(v, v∗) ≤

6A∗
p1

pη
(
〈v〉2 + 〈v∗〉2

)p − A0

(
〈v〉2p + 〈v∗〉2p

)

≤
6A∗

p1

pη

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2(p−k) + 〈v〉2(p−k)〈v∗〉2k

)
−
(
A0 −

6A∗
p1

pη

)(
〈v〉2p + 〈v∗〉2p

)
.

By definition of p0 we see that

p ≥ p0 :=

(
12A∗

p1

A0

)2q1

=⇒
6A∗

p1

pη
≤ A0

2
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and so

LB
[
∆〈·〉2p

]
(v, v∗)

≤
6A∗

p1

pη

kp∑

k=1

(
p
k

)(
〈v〉2k〈v∗〉2(p−k) + 〈v〉2(p−k)〈v∗〉2k

)
|v − v∗|2

−A0

2

(
〈v〉2p + 〈v∗〉2p

)
|v − v∗|2 .

Therefore as shown in the above using (3.18)-(3.19) with γ = 2 we obtain (3.14). �

Lemma 3.7. (I) Suppose that B(z, σ) = |z|γb(cos θ) satisfies the assumption (H0).
Let p ≥ 3, µ ∈ B+

s (R
N) with ‖µ‖0 > 0 and s ≥ 2p+ γ. Then

〈
Q(µ, µ), 〈·〉2p

〉
≤ 22p+1A2‖µ‖2‖µ‖2p −

1

4
A2‖µ‖0‖µ‖2p+γ .(3.21)

Furthermore if 0 < γ < 2, then
〈
Q(µ, µ), 〈·〉2p

〉

‖µ‖0Γ(q)
(3.22)

≤
(
Caq

2−a + Caq
3−aεp

)
A2‖µ‖0Zp +

1

2
‖µ‖2A2zq −

q

16
A2‖µ‖0(zq)1+

1
q

where q = ap , a = 2/γ,

(3.23) zq =
‖µ‖γq

‖µ‖0Γ(q)
,

(3.24) Zp = max
k∈{1,2,...,kp}

{zak+1za(p−k) , zakza(p−k)+1} .

(II) If γ = 2, and B(v − v∗, σ) = |z|γb(cos θ) satisfies (H3) which is rewritten as in
(3.13), and let

p ≥ p0 :=
(
12A∗

p1
/A0

)2q1 where 1/p1 + 1/q1 = 1

then

(3.25)

〈
Q(µ, µ), 〈·〉2p

〉

‖µ‖0Γ(p)
≤ 48A∗

p1
p1−η(log p)‖µ‖0Z̃p +

(
12A∗

p1
p1−η + A0/4

)
‖µ‖2zp −

p

16
A0‖µ‖0(zp)1+

1
p

where η = 1/2q1 and

(3.26) Z̃p = max
k∈{1, 2,..., kp}

zk+1zp−k .

Proof. Substituting µ for µ/‖µ‖0, we can assume that ‖µ‖0 = 1.
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Part (I). By part (I) of Lemma 3.6 we have

〈
Q(µ, µ), 〈·〉2p

〉
=

1

2

∫∫

RN×RN

LB
[
∆〈·〉2p

]
(v, v∗)dµ(v)dµ(v∗)

≤ −A2

4
‖µ‖2p+γ +

A2

2
‖µ‖2p‖µ‖γ

+A2

kp∑

k=1

(
p
k

)(
‖µ‖2k+γ‖µ‖2(p−k) + ‖µ‖2k‖µ‖2(p−k)+γ

)

+2p(p− 1)A2εp

kp−1∑

k=0

(
p− 2
k

)(
‖µ‖2(k+1)+γ‖µ‖2(p−1−k) + ‖µ‖2(k+1)‖µ‖2(p−1−k)+γ

)
.

Using Hölder inequality we have (for s > 2)

(3.27) ‖µ‖r ≤ ‖µ‖
s−r
s−2

2 ‖µ‖
r−2
s−2
s , 2 ≤ r ≤ s

from which we obtain for all s1, s2 ≥ 2 satisfying s1 + s2 ≤ 2p+ 2 we have

‖µ‖s1‖µ‖s2 ≤ ‖µ‖
2p−s1+2p−s2

2p−2

2 ‖µ‖
s1+s2−4

2p−2

2p ≤ ‖µ‖2‖µ‖2p

where we used ‖µ‖2 ≤ ‖µ‖2p. Thus
〈
Q(µ, µ), 〈·〉2p

〉
≤ −A2

4
‖µ‖2p+γ +

A2

2
‖µ‖2‖µ‖2p

+2A2

{ kp∑

k=1

(
p
k

)
+ 2p(p− 1)

kp−1∑

k=0

(
p− 2
k

)}
2‖µ‖2‖µ‖2p .

≤ −A2

4
‖µ‖2p+γ +

A2

2
‖µ‖2‖µ‖2p + 2A2

(
2p − 1 + 2p(p− 1)2p−2

)
2‖µ‖2‖µ‖2p

≤ −A2

4
‖µ‖2p+γ + 22p+1A2‖µ‖2‖µ‖2p

which proves (3.21) for ‖µ‖0 = 1, where we used the inequality (3.1) and

2p + p(p− 1)2p−1 ≤ 22p−1 , ∀ p ≥ 3 .

Now suppose that 0 < γ < 2. This implies a = 2/γ > 1. Recall definitions of zq and
Zp in (3.23)-(3.24) with ‖µ‖0 = 1. We have for all 1 ≤ k ≤ kp

‖µ‖2k+γ‖µ‖2(p−k) + ‖µ‖2k‖µ‖2(p−k)+γ
= ‖µ‖γ(ak+1)‖µ‖γa(p−k) + ‖µ‖γak‖µ‖γ(a(p−k)+1)

= zak+1za(p−k)Γ(ak + 1)Γ(a(p− k)) + zakza(p−k)+1Γ(ak)Γ(a(p− k) + 1)

≤ ZpΓ(ap+ 1) (B(ak + 1, a(p− k)) + B(ak, a(p− k) + 1))

= ZpΓ(ap+ 1)B(ak, a(p− k)) ,
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and for all 0 ≤ k ≤ kp − 1

‖µ‖2(k+1)+γ‖µ‖2(p−1−k) + ‖µ‖2(k+1)‖µ‖2(p−1−k)+γ

= za(k+1)+1za(p−k−1)Γ(a(k + 1) + 1)Γ(a(p− 1− k))

+za(k+1)za(p−1−k)+1Γ(a(k + 1))Γ(a(p− 1− k) + 1)

≤ ZpΓ(ap+ 1)B(a(k + 1), a(p− 1− k)) .

This together with Γ(ap+ 1)/Γ(ap) = ap = q and Lemma 3.3 and Lemma 3.7 gives

〈
Q(µ, µ), 〈·〉2p

〉

Γ(q)
≤ ZpqA2

kp∑

k=1

(
p
k

)
B(ak, a(p− k))

+Zp2qp(p− 1)A2εp

kp−1∑

k=0

(
p− 2
k

)
B(a(k + 1), a(p− 1− k))

+
A2‖µ‖2

2
zq −

A2

4Γ(q)
‖µ‖2p+γ

≤ ZpA2Caq
2−a + ZpA2Caq

3−aεp +
A2‖µ‖2

2
zq −

A2

4Γ(q)
‖µ‖2p+γ .(3.28)

For the negative term, using Hölder inequality and ‖µ‖0 = 1 we have

‖µ‖2p+γ ≥ ‖µ‖1+
γ
2p

2p = ‖µ‖1+
1
q

γq , q = ap =
2

γ
p

and so

1

Γ(q)
‖µ‖2p+γ ≥ (Γ(q))

1
q

(‖µ‖γq
Γ(q)

)1+ 1
q

= (Γ(q))
1
q (zq)

1+ 1
q ≥ q

4
(zq)

1+ 1
q

where we have used the inequality (Γ(q))
1
q ≥ q/4. Thus (3.22) (with ‖µ‖0 = 1) follows

from (3.28).

Part (II). In this case we have γ = 2, i.e. a = 1 so that q = p. By part (II) of Lemma
3.6 we have, as shown above, that (the special term ‖µ‖2k‖µ‖2(p−k+1) for k = 1 in the
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sum should be treated singly)
〈
Q(µ, µ), 〈·〉2p

〉

Γ(p)
=

1

2Γ(p)

∫∫

RN×RN

LB
[
∆〈·〉2p

]
(v, v∗)dµ(v)dµ(v∗)

≤ 1

Γ(p)
·
12A∗

p1

pη

kp∑

k=1

(
p
k

)(
‖µ‖2(k+1)‖µ‖2(p−k) + ‖µ‖2k‖µ‖2(p−k+1)

)

+
1

4Γ(p)
A0‖µ‖2‖µ‖2p −

1

Γ(p)

A0

4
‖µ‖2(p+1)

=
1

Γ(p)
·
12A∗

p1

pη

kp∑

k=2

(
p
k

)(
‖µ‖2(k+1)‖µ‖2(p−k) + ‖µ‖2k‖µ‖2(p−k+1)

)

+
1

Γ(p)
·
12A∗

p1

pη

(
p
1

)
‖µ‖4‖µ‖2(p−1) +

1

Γ(p)
·
12A∗

p1

pη

(
p
1

)
‖µ‖2‖µ‖2p

+
1

4Γ(p)
A0‖µ‖2‖µ‖2p −

1

Γ(p)

A0

4
‖µ‖2(p+1)

≤ Z̃p
12A∗

p1

pη
· p

kp∑

k=2

(
p
k

)
B(k, p− k) + Z̃p ·

12A∗
p1

pη
p

(
p
1

)
B(2, p− 1)

+
(
12A∗

p1
p1−η +

A0

4

)
‖µ‖2zp −

A0

16
(zp)

1+ 1
p

≤ Z̃p
12A∗

p1

pη
· p

kp∑

k=1

(
p
k

)
B(k, p− k) +

(
12A∗

p1p
1−η +

A0

4

)
‖µ‖2zp −

A0

16
(zp)

1+ 1
p

≤ 48A∗
p1
p1−η(log p)Z̃p +

(
12A∗

p1
p1−η +

A0

4

)
‖µ‖2zp −

A0

16
(zp)

1+ 1
p

where in the last inequality we used Lemma 3.3. This proves (3.25) for ‖µ‖0 = 1. �

Lemma 3.8. Given any A > 0, B > 0, ε > 0, we have:

(I) The function

Y (t) =

(
A

B(1− e−εAt)

)1/ε

, t > 0

is the unique positive C1-solution of the equation

d

dt
Y (t) = AY (t)− BY (t)1+ε , t > 0 ; Y (0+) = ∞ .

(II) Let u(t) be a non-negative function in (0,∞) with the properties that u is abso-
lutely continuous on every bounded closed subinterval of (0,∞) and satisfies

( d

dt
u(t)− Au(t) +Bu(t)1+ε

)
1{u(t)>Y (t)} ≤ 0 a.e. t ∈ (0,∞) .

Then u(t) ≤ Y (t) for any t > 0.
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Proof. Part (I) is obvious. To prove part (II) we use the assumption on u and notice
that the function x 7→ Bx1+ε−Ax is increasing in ((A/B)1/ε,∞) and Y (t) > (A/B)1/ε.
Then it follows from the assumption that

( d

dt
u(t)− d

dt
Y (t)

)
1{u(t)>Y (t)}

≤
(
B(Y (t))1+ε −AY (t)− B(u(t))1+ε + Au(t)

)
1{u(t)>Y (t)} ≤ 0

for almost every t > 0. Thus by the absolute continuity of u we have for any t > t∗ > 0

(u(t)− Y (t))+

= (u(t∗)− Y (t∗))
+ +

∫ t

t∗

( d

dτ
u(τ)− d

dτ
Y (τ)

)
1{u(τ)>Y (τ)}dτ ≤ (u(t∗)− Y (t∗))

+ .

From this we see it is enough to prove that for any t > 0 there is t∗ ∈ (0, t) such that
u(t∗) ≤ Y (t∗). Otherwise there were t0 > 0 such that u(t) > Y (t) for all t ∈ (0, t0). By
assumption on u, this implies

d

dt
u(t) ≤ Au(t)− B(u(t))1+ε a.e. t ∈ (0, t0) .

On the other hand, from the lower bound Y (t) > (A/B)1/ε we see that the function
t 7→ u−ε(t) is absolutely continuous on every bounded closed subinterval of (0, t0]. We
then compute for a.e. t ∈ (0, t0)

d

dt
(u−ε(t)) ≥ −εAu−ε(t) + εB

and hence for any 0 < τ < t0 we have by the absolute continuity of t 7→ u−ε(t)eεAt on
[τ, t0] that

u−ε(t)eεAt ≥ u−ε(τ)eεAτ +
B(eεAt − eεAτ)

A
, ∀ t ∈ [τ, t0] .

Omitting the positive term u−ε(τ)eεAτ and letting τ → 0+ leads to

u−ε(t)eεAt ≥ B(eεAt − 1)

A
, ∀ t ∈ (0, t0]

i.e.

u(t) ≤
(

A

B(1− e−εAt)

)1/ε

= Y (t) ∀ t ∈ (0, t0]

which contradicts the assertion “u(t) > Y (t) for all t ∈ (0, t0)”. This prove the existence
of t∗ ∈ (0, t) for all t > 0 and therefore concludes the proof of the lemma. �

4. Proof of Theorem 1.2

For notation convenience we denote
∫

RN

ϕdFt =

∫

RN

ϕ(v)dFt(v), etc.
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And note that if Ft is a measure weak solution of Eq. (1.1), then for any ϕ ∈ C2
b (R

N)
we have

(4.1)

∫

RN

ϕdFt =

∫

RN

ϕdFt0 +

∫ t

t0

〈Q(Fτ , Fτ ), ϕ〉 dτ ∀ t > t0 > 0 .

Our proofs of the parts (a) and (b) of Theorem 1.2 are contained in the following
three steps.

Step 1. We first prove that if Ft is a measure weak solution of Eq. (1.1) associated
with the initial datum F0 satisfying ‖F0‖0 > 0 and

(4.2) ‖Ft‖2 ≤ ‖F0‖2 ∀ t > 0

(4.3) sup
t0≤t≤T

‖Ft‖s <∞ ∀ 0 < t0 < T <∞ , ∀ s > 2

then Ft conserves mass, momentum and energy, and Ft satisfies the moment estimates
(1.14) and (1.16). Moreover for any s ≥ 0 and any ϕ ∈ L∞

−s ∩ C2(RN),

(4.4) t 7→ 〈Q(Ft, Ft), ϕ〉 is continuous on (0,∞)

and

(4.5)
d

dt

∫

RN

ϕdFt = 〈Q(Ft, Ft), ϕ〉 ∀ t > 0 .

And these integrals are absolutely convergent for any t > 0.
Since our test function space for defining measure weak solutions is only C2

b (R
N), we

need a truncation-mollification approximation. Let χ ∈ C∞
c (RN) satisfy 0 ≤ χ ≤ 1 on

RN and χ(v) = 1 for |v| ≤ 1, χ(v) = 0 for |v| ≥ 2. Given any s ≥ 0 and any ϕ ∈
L∞
−s ∩ C2(RN), let ϕn(v) := ϕ(v)χ(v/n). It is easily seen that ϕn ∈ C2

c (R
N ) ⊂ C2

b (R
N)

and their Hessian matrices satisfy

sup
n≥1

|Hϕn(v)| ≤ Cϕ〈v〉s .

Thus by (1.10) we have for any s1 > s+ 2 + γ

sup
n≥1

|LB [∆ϕn] (v, v∗)|
〈v〉s1 + 〈v∗〉s1

≤ CϕA2
(〈v〉s + 〈v∗〉s)|v − v∗|2+γ

〈v〉s1 + 〈v∗〉s1
→ 0

as |v|2 + |v∗|2 → ∞, and by part (II) of Proposition 2.1, we deduce

lim
n→∞

LB [∆ϕn] (v, v∗) = LB [∆ϕ] (v, v∗) ∀ (v, v∗) ∈ R
N × R

N .

Thus by (4.1) and using the assumption (4.3) and the dominated convergence theorem
we obtain

lim
n→∞

∫ t

t0

〈Q(Fτ , Fτ ), ϕn〉 dτ =

∫ t

t0

〈Q(Fτ , Fτ ), ϕ〉 dτ ∀ t > t0 > 0

and thus (4.1) holds for all ϕ ∈
⋃
s≥0L

∞
−s ∩ C2(RN). Since ϕ(v) = 1, v, |v|2 belong to

L∞
−2 ∩ C2(RN) with ∆ϕ ≡ 0, it follows that Ft conserves the mass, momentum and

energy in the open interval (0,∞). Of course we need to show that Ft conserves the
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mass, momentum and energy on the closed interval [0,∞). Since ϕ = 1 ∈ C2
b (R

N),
this implies that every measure solution conserves the mass, i.e.

‖Ft‖0 = ‖F0‖0 ∀ t > 0 .

Therefore the fact that Ft conserves the energy on [0,∞) is equivalent to ‖Ft‖2 =
‖F0‖2 for all t > 0. Let χ(v) be given above. For any 1 < R < ∞, let χR(v) =
χ(v/R), ϕR(v) = 〈v〉2χR(v). Then ϕR ∈ C2

c (R
N) ⊂ C2

b (R
N) so that by definition of

measure weak solution we have for any t > 0

‖Ft‖2 =
∫

RN

〈v〉2dFt ≥
∫

RN

ϕRdFt =

∫

RN

ϕRdF0 +

∫ t

0

〈Q(Fτ , Fτ ), ϕR〉 dτ

and hence

0 ≤ ‖F0‖2 − ‖Ft‖2 ≤
∫

RN

〈v〉21{|v|≥R}dF0 +

∣∣∣∣
∫ t

0

〈Q(Fτ , Fτ ), ϕR〉 dτ
∣∣∣∣ .

Thus first letting t→ 0+ and then letting R → ∞ gives

lim
t→0+

(‖F0‖2 − ‖Ft‖2) = 0 .

So Ft conserves the energy. The proof of conservation of momentum on [0,∞) is easy by
using compactly supported smooth approximation for every ϕi(v) = vi, i = 1, 2, . . . , N .

Next let’s prove (4.4) and (4.5). Given any s ≥ 0 and ϕ ∈ L∞
−s ∩ C2(RN). For any

0 < δ < T <∞, by denoting

Cδ,T,s =

(
sup
δ≤t≤T

‖Ft‖s
)2

<∞

and using (1.10) we have
∣∣∣∣
∫

RN

ϕdFt1 −
∫

RN

ϕdFt2

∣∣∣∣ ≤ CϕA2Cδ,T,s|t1 − t2| ∀ t1, t2 ∈ [δ, T ] .

So

(4.6) t 7→
∫

RN

ϕdFt is continuous in t ∈ (0,∞) .

In order to prove (4.4), we need only to show that for any fixed t > 0 and any sequence
{tn} ⊂ [t/2, 3t/2] satisfying tn → t (n→ ∞) we have

(4.7) lim
n→∞

〈Q(Ftn , Ftn), ϕ〉 = 〈Q(Ft, Ft), ϕ〉 .

This is an application of Proposition 2.2. In fact by Proposition 2.1 we know that
(v, v∗) 7→ LB[∆ϕ](v, v∗) is continuous on RN × RN , and as shown above

|LB [∆ϕ] (v, v∗)|
〈v〉s1 + 〈v∗〉s1

≤ CϕA2
(〈v〉s + 〈v∗〉s)|v − v∗|2+γ

〈v〉s1 + 〈v∗〉s1
→ 0

for all s1 > s+ 2 + γ as |v|2 + |v∗|2 → ∞. Since

sup
t/2≤τ≤3t/2

‖Fτ‖s1 <∞,
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it follows from Proposition 2.2 and the weak-star convergence Ftn ⇀ Ft (n → ∞) (see
(4.6)) that (4.7) (and therefore (4.4)) hold true.

The differential equation (4.5) follows from the continuity property (4.4) and from
the equation (4.1) which has been proven for all ϕ ∈ L∞

−s ∩ C2(RN).
Now for any s ≥ 6, let p = s/2 and take ϕ(v) = 〈v〉s, which belongs to L∞

−s∩C2(RN).
Then by Lemma 3.7 and (4.5) we have for any t > 0

d

dt
‖Ft‖s = 〈Q(Ft, Ft), 〈·〉s〉 ≤ 2s+1A2‖F0‖2‖Ft‖s −

1

4
A2‖F0‖0‖Ft‖s+γ.

By (3.27) we have

‖Ft‖s ≤ (‖F0‖2)
γ

s+γ−2 (‖Ft‖s+γ)
s−2

s+γ−2

i.e.

‖Ft‖s+γ ≥ (‖F0‖2)−
γ

s−2 (‖Ft‖s)1+
γ

s−2 .

It follows that

d

dt
‖Ft‖s ≤ 2s+1A2‖F0‖2‖Ft‖s −

1

4
A2‖F0‖0(‖F0‖2)−

γ
s−2 (‖Ft‖s)1+

γ
s−2 ∀ t > 0 .

By Lemma 3.8 we thus obtain

‖Ft‖s ≤


 2s+1A2‖F0‖2

1
4
A2‖F0‖0(‖F0‖2)−

γ
s−2

(
1− exp(− γ

s−2
2s+1A2‖F0‖2t)

)




s−2
γ

∀ t > 0 .

Since s ≥ 6 implies 2s ≥ 8(s− 2), this gives

γ

s− 2
2s+1A2‖F0‖2 ≥ 16A2‖F0‖2γ =: α

and hence

‖Ft‖s ≤ ‖F0‖2
(‖F0‖2
‖F0‖0

· 2s+3

1− e−αt

) s−2
γ

, t > 0 , s ≥ 6 .

From this we have for any 2 ≤ s < 6

‖Ft‖s ≤ (‖F0‖2)
6−s
4 (‖Ft‖6)

s−2
4 ≤ (‖F0‖2)

6−s
4 (‖F0‖2)

s−2
4

(‖F0‖2
‖F0‖0

· 29

1− e−αt

) 4
γ
× s−2

4

= ‖F0‖2
(‖F0‖2
‖F0‖0

· 29

1− e−αt

) s−2
γ

.

Maximizing the two cases and using max{2s+3 , 29} ≤ 2s+7 for s ≥ 2 we obtain

(4.8) ‖Ft‖s ≤ ‖F0‖2
(
2s+7‖F0‖2

‖F0‖0
· 1

1− e−αt

) s−2
γ

∀ t > 0 , ∀ s ≥ 2.

The estimate (1.14) now follows from (4.8) since by using the inequality

1

1− e−αt
≤
(
1 +

1

α

)(
1 +

1

t

)
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we have

‖Ft‖s ≤ ‖F0‖2
{
2s+7‖F0‖2

‖F0‖0

(
1 +

1

α

)} s−2
γ
(
1 +

1

t

) s−2
γ

= Ks(F0)

(
1 +

1

t

) s−2
γ

.

Note that from (4.8) we also have

(4.9) ‖Ft‖s ≤
‖F0‖0
2s+7

(
2s+7‖F0‖2

‖F0‖0
× 1

(1− e−αt)

) s
γ

∀ t > 0 , ∀ s ≥ 2

which will be used below.
Now we are going to prove the exponential moment production estimate (1.16). We

consider two cases:

Case 1. 0 < γ < 2. That implies that a = 2/γ > 1. By Lemma 3.7 we have for all
q ≥ 3a and t > 0

d

dt
zq(t) =

〈
Q(Ft, Ft), 〈·〉2p

〉

‖F0‖0Γ(q)

≤
(
Caq

2−a + Caq
3−aεp

)
A2‖F0‖0Zp(t) +

1

2
A2‖F0‖2zq(t)−

q

16
A2‖F0‖0(zq(t))1+

1
q ,

where p = q/a ≥ 3, and

zq(t) =
‖Ft‖γq

‖F0‖0Γ(q)
, Zp(t) = max

k∈{1,2,...,kp}
{zak+1(t)za(p−k)(t) , zak(t)za(p−k)+1(t)} .

Using 0 < γ < 2 and Lemma 3.4 we have

Caq
2−a + Caq

3−aεp = o(1)q (q → ∞)

so that there is a positive integer n0, depending only on b(·) and γ, such that

q0 := (a− 1)n0 ≥ 3a and Caq
2−a + Caq

3−aεp ≤
q

32
∀ q ≥ q0 .

Since

q ≥ q0 ≥ 3a =⇒ A2‖F0‖2
2

< 16A2‖F0‖2γq = αq,

it follows that

(4.10)
d

dt
zq(t) ≤

A2‖F0‖0q
32

Zp(t) + αqzq(t)−
q

16
A2‖F0‖0(zq(t))1+

1
q ∀ q ≥ q0 .

Let

Θ := 2γq0+7‖F0‖2
‖F0‖0

, Yq(t) =

(
Θ

1− e−αt

)q
, t > 0 .

Then Yq satisfies the equation

d

dt
Yq(t) = αqYq(t)−

αq

Θ
(Yq(t))

1+ 1
q , t > 0 ; Yq(0+) = ∞ .

We now prove that

(4.11) zq(t) ≤ Yq(t) ∀ t > 0 , ∀ q ≥ 1 .

To do this, it suffices to show that

(4.12) zq(t) ≤ Yq(t) ∀ t > 0 , ∀ q ∈ [1, nδ] , n = n0, n0 + 1, . . .
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where δ = a − 1 > 0. First of all it is easily seen that (4.12) holds for n = n0. In
fact by definition of zq(t), Yq(t), (4.9) and Γ(q) = Γ(q + 1)/q ≥ 1/2, we have for all
1 ≤ q ≤ q0 = n0δ

zq(t) ≤ 2
‖Ft‖γq
‖F0‖0

≤
(
2γq+7‖F0‖2

‖F0‖0
· 1

1− e−αt

)q
≤ Yq(t) ∀ t > 0.

Suppose that (4.12) holds for an integer n ≥ n0. Take any q ∈ [nδ , (n + 1)δ] . Then
q ≥ nδ ≥ n0δ = q0 and so (4.10) holds for such q. Since for all integer 1 ≤ k ≤ kp =
[(p+ 1/2] there holds

1 < ak < ak + 1 ≤ (n+ 1)δ + a

2
+ 1 < nδ

1 < a(p− k) < a(p− k) + 1 ≤ (n + 1)δ − δ = nδ

it follows from the inductive hypothesis that

zak+1(t)za(p−k)(t) ≤ Yak+1(t)Ya(q−k)(t) = (Yq(t))
1+ 1

q ,

zak(t)za(q−k)+1(t) ≤ Yak(t)Ya(p−k)+1(t) = (Yq(t))
1+ 1

q .

Therefore by definition of Zp(t) we obtain

Zp(t) ≤ (Yq(t))
1+ 1

q , ∀ t > 0 , ∀ q ∈ [nδ, (n+ 1)δ]

and hence by (4.10)

d

dt
zq(t) ≤

A2‖F0‖0
32

q(Yq(t))
1+ 1

q + αpzq(t)−
A2‖F0‖0

16
q(zq(t))

1+ 1
q ∀ t > 0

for all q ∈ [nδ, (n + 1)δ]. From this we obtain the following implication:

t > 0 and zq(t) > Yq(t) =⇒ d

dt
zq(t) ≤ αqzq(t)−

αq

Θ
(zq(t))

1+ 1
q

where we used the obvious fact that Θ = 2γq0+7 ‖F0‖2
‖F0‖0

> α · 32
A2‖F0‖0

. Thus by Lemma 3.8

we get zq(t) ≤ Yq(t) for all t > 0. This together with the inductive hypotheses implies
that zq(t) ≤ Yq(t) for all t > 0 and all q ∈ [1 , (n+ 1)δ] . This proves (4.12).

Now let

c(t) =
1− e−αt

2Θ
, t > 0 .

Then [c(t)]qzq(t) ≤ [c(t)]qYq(t) = (1/2)q so that by definition of zq(t) and (4.11) we get
for all t > 0

(4.13)

∫

RN

ec(t)〈v〉
γ

dFt(v) = ‖F0‖0 +
∞∑

q=1

[c(t)]q

q!
‖Ft‖γq

≤ ‖F0‖0 + ‖F0‖0
∞∑

q=1

[c(t)]qzq(t) ≤ 2‖F0‖0 .
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Case 2. γ = 2. From part (II) of Lemma 3.7 we have for all p ≥ p0 := (12A∗
p1
/A0)

2q1

(which is always larger than 5)

d

dt
zp(t) ≤ 48A∗

p1p
1−η(log p)‖F0‖0Z̃p(t)

+
(
12A∗

p1p
1−η + A0/4

)
‖F0‖2zp(t)−

A0‖F0‖0
16

(zp(t))
1+ 1

p

where
Z̃p(t) = max

k∈{1,2,..., kp}
zk+1(t)zp−k(t) , t > 0 .

Let us fix an integer n0 satisfying n0 ≥ p0 such that

48A∗
p1
p1−η log p ≤ A2

32
p ,

(
12A∗

p1
p1−η +

A0

4

)
≤ 2A2p ∀ p ≥ n0 .

This gives

(4.14)
d

dt
zp(t) ≤

A2‖F0‖0
32

pZ̃p(t) + αpzp(t)−
A2‖F0‖0

16
p(zp(t))

1+ 1
p ∀ p ≥ n0 .

It will be clear that in the present case all p can be chosen integers. Let

Θ := 22n0+7‖F0‖2
‖F0‖0

, Yp(t) =

(
Θ

1− e−αt

)p
, t > 0 ; p ≥ 1 .

Then Yp satisfies the equation

d

dt
Yp(t) = αpYp(t)−

αp

Θ
(Yp(t))

1+ 1
p , t > 0 ; Yp(0+) = ∞ .

We now prove that

(4.15) zp(t) ≤ Yp(t) ∀ t > 0 , p = 1, 2, 3, . . .

As shown in the Case 1 one sees that (4.15) holds for all integer 1 ≤ p ≤ n0. Suppose
that (4.15) holds true for some integer q = p − 1 with p − 1 ≥ n0. Let us check
the case p. By p − 1 ≥ n0 ≥ 5 we have kp + 1 ≤ (p + 1)/2 + 1 ≤ p − 1 and so

zk+1(t)zp−k(t) ≤ Yk+1(t)Yp−k(t) = (Yp(t))
1+ 1

p hold for all 1 ≤ k ≤ kp. So

Z̃p(t) = max
k∈{1, 2,..., kp}

zk+1(t)zp−k(t) ≤ (Yp(t))
1+ 1

p .

Thus because of the differential inequality (4.14) we have

d

dt
zp(t) ≤

A2‖F0‖0
32

p(Yp(t))
1+ 1

p + αpzp(t)−
A2‖F0‖0

16
p(zp(t))

1+ 1
p ∀ t > 0

which proves the following implication:

t > 0 and zp(t) > Yp(t) =⇒ d

dt
zp(t) ≤ αpzp(t)−

αp

Θ
(zp(t))

1+ 1
p

where we used the fact that

Θ = 22n0+7‖F0‖2
‖F0‖0

>
32α

A2‖F0‖0
.

Thus by using Lemma 3.8 we conclude that zp(t) ≤ Yp(t) ∀ t > 0 . This proves (4.15).
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As shown above (replacing γ with 2) by defining c(t) = (1− e−αt)/2C0 we obtain

(4.16)

∫

RN

ec(t)〈v〉
2

dFt(v) ≤ 2‖F0‖0 ∀ t > 0 .

This completes Step 1.

Step 2. Suppose that F0 is absolutely continuous with respect to the Lebesgue measure,
i.e. dF0(v) = f0(v)dv, and suppose that (moment bounds and finite entropy)

0 ≤ f0 ∈
⋂

s≥0

L1
s(R

N ) and 0 <

∫

RN

f0(v)| log f0(v)|dv <∞ .

In this case we prove that there exists {ft}t≥0 ⊂
⋂
s≥0 L

1
s(R

N) such that the measure Ft
defined by dFt = ftdv is a conservative measure weak solution of Eq. (1.1) associated
with the initial datum F0 defined by dF0 = f0dv, and Ft satisfies the moment production
estimates (1.14) and (1.16).

To do this we consider some bounded truncations of the kernel B:

Bn(v − v∗, σ) = min{|v − v∗|γ, n}min{b(cos θ), n} , n = 1, 2, . . .

It is well-known that Eq. (1.1) with the bounded kernel Bn has a unique conservative so-
lution fnt (v) satisfying f

n
0 (v) = f0(v) and f

n ∈ C1([0,∞);L1
s(R

N ))∩L∞
loc([0,∞);L1

s(R
N))

for all s ≥ 0, and

(4.17) sup
n≥1, t≥0

∫

RN

fnt (v)
(
1 + |v|2 + | log fnt (v)|

)
dv <∞ .

Let QBn(·, ·) (collision operator) and An,2 (angular momentum defined in (H0)) cor-
respond to the kernel Bn, and define dF n

t = fnt dv. Then ‖F n
t ‖2 = ‖F0‖2 = ‖F0‖2 and

from the proof of Lemmas 3.6-3.7 we see that by omitting the negative term in the
proofs of the two lemmas and notice that An,2 ≤ A2 we have for all p ≥ 3

d

dt
‖F n

t ‖2p =
〈
QBn(F

n
t , F

n
t ), 〈·〉2p

〉
≤ 22p+1A2‖F0‖2‖F n

t ‖2p .

Thus for all s ≥ 6, letting p = s/2 and recalling ‖fnt ‖L1
s
= ‖F n

t ‖s we obtain

(4.18) sup
n≥1

‖fnt ‖L1
s
≤ ‖f0‖L1

s
exp

(
2s+1A2‖F0‖2t

)
∀ t ≥ 0 .

From this and the basic estimate (1.10) we get for any ϕ ∈ C2
b (R

N), any T ∈ (0,∞)
and t1, t2 ∈ [0, T ]

∣∣∣
∫

RN

ϕ(v)fnt1(v)dv −
∫

RN

ϕ(v)fnt2(v)dv
∣∣∣ ≤ Cϕ,T |t1 − t2| .

This together with (4.17) implies for any ψ ∈ L∞(RN) and any 0 < T <∞

(4.19) sup
t1,t2∈[0,T ], |t1−t2|≤δ;n≥1

∣∣∣∣
∫

RN

ψfnt1dv −
∫

RN

ψfnt2dv

∣∣∣∣→ 0 as δ → 0 + .
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Since (4.17) implies that for every t ≥ 0, {fnt }∞n=1 is L
1-weakly relatively compact, it

follows from diagonal argument and (4.19) that there is a subsequence of {n} (indepen-
dent of t), still denoted as {n}, and a nonnegative measurable function (t, v) 7→ ft(v)
on [0,∞)× RN satisfying ft ∈ L1(RN) (∀ t ≥ 0) such that for all ψ ∈ L∞(RN)

(4.20) lim
n→∞

∫

RN

ψfnt dv =

∫

RN

ψftdv ∀ t ≥ 0 .

And consequently

ft ∈
⋂

s≥0

L1
s(R

N ) (∀ t ≥ 0) ,

and

(4.21) sup
t≥0

‖ft‖L1
2
≤ ‖f0‖L1

2
, sup

0≤t≤T
‖ft‖L1

s
<∞ ∀ 0 < T <∞ , ∀ s ≥ 0 ,

and for any s > 0 and any ψ ∈ L∞(RN)

(4.22) t 7→
∫

RN

ψftdv is continuous on [0,∞) .

Now we are going to show that ft (or equivalently the measure Ft defined by dFt =
ftdv) is a conservative weak solution of Eq. (1.1) with the kernel B. Given any ϕ ∈
C2
b (R

N ), we have by (1.10) and Bn ≤ B

sup
n≥1

|LBn [∆ϕ] (v, v∗)|
〈v〉s + 〈v∗〉s

≤ A2Cϕ
|v − v∗|2+γ
〈v〉s + 〈v∗〉s

→ 0 (|v|2 + |v∗|2 → ∞)

for s > 2 + γ. Moreover by Proposition 2.1, LBn [∆ϕ](v, v∗), LB[∆ϕ](v, v∗) are all con-
tinuous on (v, v∗) ∈ RN × RN , and

lim
n→∞

sup
|v|+|v∗|≤R

|LBn [∆ϕ] (v, v∗)− LB [∆ϕ] (v, v∗)| = 0 ∀ 0 < R <∞ .

It follows from Proposition 2.2 that

sup
0≤t≤T

∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| ft(v)ft(v∗)dvdv∗ <∞ ∀ 0 < T <∞ ,

〈QBn(f
n
t , f

n
t ), ϕ〉 → 〈QB(ft, ft), ϕ〉 (n→ ∞) ∀ t ≥ 0 .

Again using Proposition 2.2 and (4.22) we conclude that

t 7→ 〈QB(ft, ft), ϕ〉 is continuous on [0,∞) .

Finally using the dominated convergence theorem (in the t variable) we conclude that
∫

RN

ϕftdv =

∫

RN

ϕf0dv +

∫ t

0

〈QB(fτ , fτ ), ϕ〉dτ ∀ t ≥ 0 .

Thus ft is a weak solution of Eq. (1.1). Let Ft be defined by dFt = ftdv. Therefore
from ‖Ft‖s = ‖ft‖L1

s
, (4.21), and Step 1 we conclude that Ft is a conservative measure

weak solution of Eq. (1.1) associated with the initial datum F0 and satisfies the moment
production estimates (1.14) and (1.16).

Step 3. Let F0 be the given measure in B+
2 (R

N) with ‖F0‖0 > 0. We shall prove the
existence of a measure weak solution Ft that has all properties listed in the theorem.
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First if F0 = cδv=v0 (c = ‖F0‖0 > 0) is a Dirac mass, then it is easily checked that the
measure Ft ≡ cδv=v0 is a measure weak solution of Eq.(1.1) that conserves the mass,
momentum and energy and satisfies the moment estimates.

Suppose F0 is not a Dirac mass. We shall use Mehler transform: Let

(4.23) ρ = ‖F0‖0 , v0 =
1

ρ

∫

RN

vdF0(v) , T =
1

Nρ

∫

RN

|v − v0|2dF0(v) .

Then T > 0 so that the Maxwellian used in the Mehler transform can be defined:

(4.24) M(v) =
e−|v|2/2T

(2πT )N/2
, v ∈ R

N .

The Mehler transform of F0 is defined by

(4.25) fn0 (v) = eNn
∫

RN

M
(
en
(
v − v0 −

√
1− e−2n (v∗ − v0)

))
dF0(v∗) , n ≥ 1 .

It is well-known that

(4.26)

∫

RN




1
v
|v|2



 fn0 (v)dv =

∫

RN




1
v
|v|2



 dF0(v)

and for all ψ ∈ L∞
−2C(R

N)

(4.27) lim
n→∞

∫

RN

ψ(v)fn0 (v)dv =

∫

RN

ψ(v)dF0(v) .

For every n, choose Kn > n such that

(4.28)

∫

RN

(
fn0 (v)−min{fn0 (v), Kn}e−

|v|2

Kn

)
〈v〉2dv ≤ ‖F0‖0

2n
.

Then let
f̃n0 (v) = min{fn0 (v), Kn}e−|v|2/n, dF n

0 (v) = f̃n0 (v)dv .

We need to prove that

(4.29) lim
n→∞

∫

RN

ψdF n
0 =

∫

RN

ψdF0 ∀ψ ∈ L∞
−2C(R

N) .

Indeed we have
∣∣∣
∫

RN

ψdF n
0 −

∫

RN

ψdF0

∣∣∣ ≤
∣∣∣
∫

RN

ψ(f̃n0 − fn0 )dv
∣∣∣+
∣∣∣
∫

RN

ψfn0 dv −
∫

RN

ψdF0

∣∣∣ .

The second term converges to zero (n → ∞). The first term also goes to zero: By
(4.28) we have

∣∣∣
∫

RN

ψ(f̃n0 − fn0 )dv
∣∣∣ ≤ C

∫

RN

〈v〉2|f̃n0 − fn0 |dv ≤
C

2n
.

Since for every n, f̃n0 satisfies the condition in the Step 2, there is a conservative
measure weak solution F n

t of Eq. (1.1) with the kernel B and the initial data F n
0 , such

that F n
t satisfies the moment estimate

‖F n
t ‖s ≤ Ks(F

n
0 )(1 + 1/t)

s−2
γ ∀ t > 0 , ∀ s ≥ 2.
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Here recall that Ks(·) is defined in (1.15). By the convergence (4.29) we have

lim
n→∞

Ks(F
n
0 ) = Ks(F0) ∀ s ≥ 2 .

Thus for any s ≥ 2, C∗
s := sup

n≥1
Ks(F

n
0 ) <∞ and hence

(4.30) sup
n≥1

‖F n
t ‖s ≤ C∗

s

(
1 +

1

t

) s−2
γ

∀ t > 0 , ∀ s ≥ 2 .

Next we prove the equi-continuity of {F n
t } in t ∈ [0,∞) (in particular in the neigh-

borhood of t = 0). It is only in this part that the logarithm | log(sin θ)| comes into play.
Let

λ(θ) :=
1

1 + | log(sin θ)| , 0 < θ < π .

By (1.10) and 0 < γλ(θ) ≤ γ ≤ 2 we have for any ϕ ∈ C2
b (R

N)
∣∣∣∣
∫

SN−2(n)

∆ϕ dω

∣∣∣∣ ≤ Cϕ

∣∣∣∣
∫

SN−2(n)

∆ϕ dω

∣∣∣∣

2−γλ(θ)
2

≤ Cϕ|v − v∗|2−γλ(θ)(sin θ)2−γλ(θ)

where here and below Cϕ only depends on ϕ and N . Then by using

|v − v∗|γ+2−γλ(θ) ≤ 8
(
〈v〉γ+2−γλ(θ) + 〈v∗〉γ+2−γλ(θ)

)

and (sin θ)−γλ(θ) = eγ(1−λ(θ)) ≤ e2 and recalling (1.8) we obtain

|LB [∆ϕ] (v, v∗)| ≤ Cϕ

∫ π

0

b(cos θ)(sin θ)N
(
〈v〉γ+2−γλ(θ) + 〈v∗〉γ+2−γλ(θ)

)
dθ .

So for all t > 0 (using Fubini’s theorem and (4.30))
∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| dF n
t (v)dF

n
t (v∗)(4.31)

≤ Cϕ‖F0‖0
∫ π

0

b(cos θ)(sin θ)N‖F n
t ‖γ+2−γλ(θ)dθ

≤ Cϕ,F0

∫ π

0

b(cos θ)(sin θ)N
(
1 +

1

t

)1−λ(θ)

dθ .

Thus for all t1, t2 ∈ [0,∞) we compute (assuming t1 < t2)
∫ t2

t1

dt

∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| dF n
t (v)dF

n
t (v∗)(4.32)

≤ Cϕ,F0

∫ π

0

b(cos θ)(sin θ)Ndθ (1 + t2 − t1)
1−λ(θ)

∫ t2−t1

0

tλ(θ)−1dt

= Cϕ,F0

∫ π

0

b(cos θ)(sin θ)N(1 + | log(sin θ)|) (1 + t2 − t1)
1−λ(θ) (t2 − t1)

λ(θ)dθ

=: Cϕ,F0Ω(t2 − t1).

Since

|〈Q(F n
t , F

n
t ), ϕ〉| ≤

∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| dF n
t (v)dF

n
t (v∗) ,
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it follows that

sup
n≥1

∣∣∣
∫

RN

ϕdF n
t2
−
∫

RN

ϕdF n
t1

∣∣∣ ≤ sup
n≥1

∣∣∣
∫ t2

t1

|〈Q(F n
t , F

n
t ), ϕ〉|dt

∣∣∣

≤ Cϕ,F0Ω(|t2 − t1|) → 0(4.33)

as |t1 − t2| → 0. We then deduce that for any ψ ∈ Cc(R
N) we have

(4.34) Λψ(δ) := sup
|t1−t2|≤δ;n≥1

∣∣∣∣
∫

RN

ψdF n
t1
−
∫

RN

ψdF n
t2

∣∣∣∣→ 0 as δ → 0+ .

Since Cc(R
N) is separated, it follows from a diagonal argument that there is a subse-

quence of {n} (independent of t), still denoted by {n}, and a family {Ft}t≥0 ⊂ B+
2 (R

N),
such that

(4.35) lim
n→∞

∫

RN

ψdF n
t =

∫

RN

ψdFt ∀ t ≥ 0 , ∀ψ ∈ Cc(R
N) .

Using (4.30) and the fact that F n
t are conservative solutions we have

(4.36) ‖Ft‖2 ≤ ‖F0‖2 , ‖Ft‖s ≤ C∗
s (1 + 1/t)

s−2
γ ∀ t > 0 , ∀ s ≥ 2 .

Also by (4.35) and (4.34) we have
∣∣∣
∫

RN

ψdFt1 −
∫

RN

ψdFt2

∣∣∣ ≤ Λψ(|t1 − t2|) .

Hence

(4.37) t 7→
∫

RN

ψdFt is continuous on [0,∞) ∀ψ ∈ Cc(R
N) .

We now prove that Ft is a measure weak solution of Eq. (1.1). Given any ϕ ∈ C2
b (R

N),
by (4.36) we see that the derivation of (4.31) holds also for Ft and so

∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| dFt(v)dFt(v∗) <∞ ∀ t > 0 .

Next by Proposition 2.1 the function (v, v∗) 7→ LB[∆ϕ](v, v∗) is continuous on RN×RN

and

(4.38)
|LB [∆ϕ] (v, v∗)|
〈v〉s + 〈v∗〉s

≤ CϕA2
|v − v∗|2+γ
〈v〉s + 〈v∗〉s

→ 0 (|v|2 + |v∗|2 → ∞)

for all s > 2 + γ. Thus by using (4.30)-(4.35)-(4.38), Proposition 2.1 and Proposition
2.2 we have

(4.39) 〈Q(F n
t , F

n
t ), ϕ〉 → 〈Q(Ft, Ft), ϕ〉 (n→ ∞) ∀ t > 0 .

Similarly by using (4.36)-(4.37), Propositions 2.1 and 2.2 we conclude that

(4.40) t 7→ 〈Q(Ft, Ft), ϕ〉 is continuous in (0,∞) .

Note that the derivation of (4.32) also holds for Ft and hence we have for all T ∈
(0,∞)

(4.41)

∫ T

0

dτ

∫∫

RN×RN

|LB [∆ϕ] (v, v∗)| dFt(v)dFt(v∗) ≤ Cϕ,F0Ω(T ) <∞ .
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Thus

t 7→ 〈Q(Ft, Ft), ϕ〉 belongs to C((0,∞)) ∩ L1
loc([0,∞)) .

And it also follows from (4.32)-(4.39) and the dominated convergence theorem that for
all t > 0 we have

∫ t

0

〈Q(F n
τ , F

n
τ ), ϕ〉 dτ →

∫ t

0

〈Q(Fτ , Fτ ), ϕ〉dτ (n→ ∞) .

Thus in the integral equation of measures solutions F n
t , letting n→ ∞ gives

∫

RN

ϕdFt =

∫

RN

ϕdF0 +

∫ t

0

〈Q(Fτ , Fτ ), ϕ〉 dτ ∀ t > 0 .

We have proved that Ft satisfies the conditions (i)-(ii) in the definition of measure
weak solutions. So Ft is a measure weak solution of Eq. (1.1) associated with the
initial datum F0. Finally from the moment estimates in (4.36) and Step 1 we conclude
that the solution Ft conserves mass, momentum and energy, and satisfies the moment
production estimates (1.14)-(1.16). This completes the proof of Theorem 1.2.

5. Stability Estimates and Proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6. We begin with some basic facts
about real Borel measures. As usual we denote

B(RN ) = B0(R
N), ‖µ‖ = ‖µ‖0 = |µ|(RN).

For any µ ∈ B(RN), let µ+, µ− be the positive and negative parts of µ, i.e. µ± =
1
2
(|µ| ± µ). Let h : RN → R be the Borel function satisfying |h(v)| ≡ 1 such that

dµ = hd|µ|. We may call h the sign function of µ. Then dµ+ = 1
2
(1 + h)dµ. So for any

µ, ν ∈ B(RN), we have

(5.1) |µ− ν| = ν − µ+ 2(µ− ν)+ .

Lemma 5.1. Let µt ∈ C([a,∞);B(RN)), νa ∈ B(RN ), and

νt = νa +

∫ t

a

µsds , t ≥ a,

and let v 7→ ht(v) be the sign function of the measure νt and let κt = (1+ ht)/2 so that
dν+t = κtdνt.

Then for any bounded Borel function ψ on R
N , the functions

t 7→
∫

RN

ψdµt , t 7→
∫

RN

ψd|µt| and t 7→
∫

RN

ψdµ+
t

all belong to L1
loc([a,∞)) and for any t ∈ [a,∞) we have

(5.2)

∫

RN

ψdνt =

∫

RN

ψdνa +

∫ t

a

ds

∫

RN

ψdµs ,

(5.3)

∫

RN

ψd|νt| =
∫

RN

ψd|νa|+
∫ t

a

ds

∫

RN

ψhsdµs ,
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(5.4)

∫

RN

ψdν+t =

∫

RN

ψdν+a +

∫ t

a

ds

∫

RN

ψκsdµs .

Proof. Since the half-sum of (5.2) and (5.3) is equal to (5.4), we only have to prove (5.2)
and (5.3). The proof of (5.2) is easy and similar to that of (5.3). By simple function
approximation, the proof of (5.3) can be reduced to the proof that for any Borel set
E ⊂ R

N , t 7→
∫
E
htdµt belongs to L1

loc([a,∞)) (and so does t 7→
∫
RN ψhtdµt for any

bounded Borel function ψ on RN) and

(5.5) |νt|(E) = |νa|(E) +
∫ t

a

ds

∫

E

hsdµs , t ∈ [a,∞) .

By assumption on µt, the strong derivative d
dt
νt = µt exists, and

‖νt1 − νt2‖ ≤
∫ t2

t1

‖µs‖ds ∀ a ≤ t1 ≤ t2 <∞ .

This implies that for any Borel set E ⊂ RN , t 7→ |νt|(E) is Lipschitz on every bounded
interval of [a, T ]: For all a ≤ t1 ≤ t2 ≤ T

||νt1 | (E)− |νt2 | (E)| ≤ |νt1 − νt2 |(E) ≤
∫ t2

t1

‖µs‖ ds ≤ CT |t1 − t2|

and so t 7→ |νt|(E) is differentiable for almost every t ∈ [a,∞) and satisfies

|νt|(E) = |νa|(E) +
∫ t

a

d

ds
|νs|(E)ds ∀ t ∈ [a,∞) .

Therefore in order to prove (5.5) we only have to show that for all Borel set E ⊂ RN

(5.6)
d

dt
|νt|(E) =

∫

E

htdµt , a.e. t ∈ [a,∞)

which also implies that t 7→
∫
E
htdµt belongs to L

1
loc([a,∞)).

For any t, s ∈ [a,∞), using

|νs|(E) =
∫

E

d|νs| ≥
∫

E

htdνs

we have

(5.7) |νs|(E)− |νt|(E) ≥
∫

E

htd(νs − νt) .

Now take any t ∈ (a,∞) such that the derivative d
dt
|νt|(E) exists. By (5.7) we have

s > t =⇒ |νs|(E)− |νt|(E)
s− t

≥
∫

E

htd
(νs − νt
s− t

)
,

s < t =⇒ |νs|(E)− |νt|(E)
s− t

≤
∫

E

htd
(νs − νt
s− t

)
.

Since (νs − νt)/(s− t) → µt (s→ t) in norm ‖ · ‖, it follows that
d

dt
|νt|(E) = lim

s→t

|νs|(E)− |νt|(E)
s− t

=

∫

E

htdµt .



MEASURE SOLUTIONS OF THE BOLTZMANN EQUATION PART I 43

This proves (5.6) and concludes the proof. �

Lemma 5.2. For any µ, ν ∈ B+
s (R

N) (s ≥ 0) and any locally bounded Borel function
ψ ∈ L∞

−s(R
N × RN) we have

(5.8)

∫∫

RN×RN

ψ(v, v∗)d(µ⊗ µ− ν ⊗ ν) =

∫∫

RN×RN

ψ(v∗, v)d(µ⊗ µ− ν ⊗ ν) ,

(5.9)

∫∫

RN×RN

ψ(v, v∗)d|µ⊗ µ− ν ⊗ ν| =
∫∫

RN×RN

ψ(v∗, v)d|µ⊗ µ− ν ⊗ ν| ,

(5.10)

∫∫

RN×RN

ψ(v, v∗)d(µ⊗ µ− ν ⊗ ν)+ =

∫∫

RN×RN

ψ(v∗, v)d(µ⊗ µ− ν ⊗ ν)+ .

Proof. Equation (5.8) easily follows from Fubini’s theorem. Equation (5.10) follows
from (5.9) and the relation

d(µ⊗ µ− ν ⊗ ν)+ =
1

2

(
d|µ⊗ µ− ν ⊗ ν|+ d(µ⊗ µ− ν ⊗ ν)

)
.

So we only have to prove (5.9). To do this we split ψ as ψ = ψ+ − (−ψ)+ so that we
can assume that ψ ≥ 0. Let h(v, v∗) be the sign function of the measure µ⊗ µ− ν ⊗ ν.
Then applying (5.8) to ψ(v, v∗)h(v, v∗) we have

∫∫

RN×RN

ψ(v, v∗)d|µ⊗ µ− ν ⊗ ν|

=

∫∫

RN×RN

ψ(v, v∗)h(v, v∗)d(µ⊗ µ− ν ⊗ ν)

=

∫∫

RN×RN

ψ(v∗, v)h(v∗, v)d(µ⊗ µ− ν ⊗ ν)

≤
∫∫

RN×RN

ψ(v∗, v)d|µ⊗ µ− ν ⊗ ν| .

Replacing ψ(v, v∗) with ψ(v∗, v) we also obtain the reversed inequality. This proves
(5.9). �

Lemma 5.3. Let B(z, σ) be given by (1.3)-(1.4)-(1.5) with b(·) satisfying A0 < ∞.
Let µ ∈ B+

2+γ(R
N) , ν ∈ B+

2γ(R
N), and let h(v) be the sign function of µ − ν and let

κ = 1
2
(1 + h) so that κd(µ − ν) = d(µ − ν)+. Then for any ϕ ∈ Cb(R

N) satisfying
0 ≤ ϕ(v) ≤ 〈v〉2 we have

∫

RN

ϕ(v)κ(v)d(Q(µ, µ)−Q(ν, ν))(v)(5.11)

≤ Eϕ + 2γ/2A0

(
‖µ‖2+γ‖µ− ν‖0 + ‖µ‖2‖µ− ν‖γ

)

where

Eϕ = A02
γ‖µ‖γ

∫

RN

(〈v〉2 − ϕ(v))〈v〉γdµ(v).
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Proof. Since ϕ is bounded, there is no problem of integrability in the following deriva-
tion. For instance we can write

∫

RN

ϕ(v)κ(v)d
(
Q(µ, µ)−Q(ν, ν)

)
(v) = I(+) − I(−)

where

I(+) =

∫∫

RN×RN

LB[ϕκ](v, v∗)d(µ⊗ µ− ν ⊗ ν),

I(−) =

∫∫

RN×RN

A(|v − v∗|)ϕ(v)κ(v)d(µ⊗ µ− ν ⊗ ν).

By definition of B(z, σ) and ϕ(v)κ(v) ≤ 〈v〉2 we have

LB[ϕκ](v, v∗) + LB[ϕκ](v∗, v)

≤
∫

SN−

B(v − v∗, σ)(〈v′〉2 + 〈v′∗〉2)dσ = A(|v − v∗|)(〈v〉2 + 〈v∗〉2).

Then using d(µ⊗ µ− ν ⊗ ν) ≤ d(µ⊗ µ− ν ⊗ ν)+ and Lemma 5.2 we compute

I(+) ≤ 1

2

∫∫

RN×RN

(LB[ϕκ](v, v∗) + LB[ϕκ](v∗, v))d(µ⊗ µ− ν ⊗ ν)+

≤
∫∫

RN×RN

A(|v − v∗|)〈v〉2d(µ⊗ µ− ν ⊗ ν)+ .

Since A(|v − v∗|) ≤ A02
γ〈v〉γ〈v∗〉γ, 〈v〉2 − ϕ(v) ≥ 0, and (µ ⊗ µ − ν ⊗ ν)+ ≤ µ ⊗ µ, it

follows that
∫∫

RN×RN

A(|v − v∗|)(〈v〉2 − ϕ(v))d(µ⊗ µ− ν ⊗ ν)+

≤ A02
γ

∫∫

RN×RN

〈v〉γ〈v∗〉γ(〈v〉2 − ϕ(v))d(µ⊗ µ)

= A02
γ‖µ‖γ

∫

RN

〈v〉γ(〈v〉2 − ϕ(v))dµ(v) = Eϕ .

Therefore using

d(µ⊗ µ− ν ⊗ ν)+(v, v∗) ≤ dµ(v)d(µ− ν)+(v∗) + d((µ− ν)+(v)dν(v∗)

we have

I(+) ≤ Eϕ +

∫∫

RN×RN

A(|v − v∗|)ϕ(v)dµ(v)d(µ− ν)+(v∗)(5.12)

+

∫∫

RN×RNRN×RN

A(|v − v∗|)ϕ(v)d(µ− ν)+(v)dν(v∗) .
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Similarly using d(µ⊗ µ− ν ⊗ ν)(v, v∗) = dµ(v)d(µ− ν)(v∗) + d(µ− ν)(v)dν(v∗) and
κ(v)d(µ− ν)(v) = d(µ− ν)+(v) we have

I(−) =

∫∫

RN×RN

A(|v − v∗|)ϕ(v)κ(v)dµ(v)d(µ− ν)(v∗)(5.13)

+

∫∫

RN×RN

A(|v − v∗|)ϕ(v)d(µ− ν)+(v)dν(v∗).

Canceling the common term in (5.12) and (5.13) and noticing that
d(µ− ν)+(v∗) ≤ d(µ− ν)(v∗) + d|µ− ν|(v∗) we obtain

∫

RN

ϕ(v)κ(v)d(Q(µ, µ)−Q(ν, ν))(5.14)

≤ Eϕ +

∫∫

RN×RN

A(|v − v∗|)ϕ(v)dµ(v)d|µ− ν|(v∗) .

Since A(|v − v∗|)ϕ(v) ≤ A02
γ/2(〈v〉γ + 〈v∗〉γ)〈v〉2, it follows that∫∫

RN×RN

A(|v − v∗|)ϕ(v)dµ(v)d|µ− ν|(v∗) ≤ A02
γ/2(‖µ‖2+γ‖µ− ν‖0 + ‖µ‖2‖µ− ν‖γ)

which together with (5.14) proves (5.11). �

Proof of Theorem 1.6.

Part (a). Recall that B(z, σ) = b(cos θ)|z|γ satisfies A0 <∞ and 0 < γ ≤ 2. Let Ft
be a conservative measure weak solution of Eq. (1.1) with Ft|t=0 = F0 ∈ B+

2 (R
N). We

prove that Ft is a measure strong solution.
First of all by ‖Ft‖0, ‖Ft‖γ ≤ ‖F0‖2 and Proposition 1.4 we have

‖Q±(Ft, Ft)‖0 ≤ 4A0‖F0‖22 , ∀ t ≥ 0,

〈Q(Ft, Ft), ϕ〉 =
∫

RN

ϕdQ(Ft, Ft) ∀ϕ ∈ C2
b (R

N), ∀ t ≥ 0.

Since

t 7→
∫

RN

ϕdQ(Ft, Ft) = 〈Q(Ft, Ft), ϕ〉 belongs to C((0,∞)) ∩ L1
loc([0,∞))

there is no problem of integrability and the integral equation for a measure weak solu-
tions becomes

(5.15)

∫

RN

ϕdFt =

∫

RN

ϕdF0 +

∫ t

0

ds

∫

RN

ϕdQ(Fs, Fs) .

Now take any ϕ ∈ C2
c (R

N) satisfying ‖ϕ‖L∞ ≤ 1. We have
∣∣∣
∫

RN

ϕdQ(Ft, Ft)
∣∣∣ ≤ ‖Q(Ft, Ft)‖0 ≤ 8A0‖F0‖22 , ∀ t ≥ 0 .

and thus using (5.15), for all 0 ≤ t1 < t2 <∞
∣∣∣∣
∫

RN

ϕd(Ft2 − Ft1)

∣∣∣∣ ≤
∫ t2

t1

∣∣∣
∫

RN

ϕdQ(Fs, Fs)
∣∣∣ds ≤ 8A0‖F0‖2|t1 − t2| .
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Applying (1.21) this gives

(5.16) ‖Ft1 − Ft2‖0 ≤ 8A0‖F0‖2|t1 − t2| , ∀ t1, t2 ∈ [0,∞)

which enable us to prove the strong continuity:

(5.17) t 7→ Ft ∈ C([0,∞);B2(R
N )), t 7→ Q±(Ft, Ft) ∈ C([0,∞);B0(R

N)) .

In fact applying the inequality (1.23) in Proposition 1.4 with s = 0 (recall that
0 < γ ≤ 2) we have

‖Q±(Ft, Ft)−Q±(Ft0 , Ft0)‖0 ≤ 8A0‖F0‖2‖Ft − Ft0‖2, t, t0 ≥ 0.(5.18)

Fix t0 ∈ [0,∞). Using (5.1), the conservation of mass and energy, d(Ft0 −Ft)
+ ≤ dFt0 ,

and (5.16) we have for any R ≥ 1

‖Ft − Ft0‖2 = 2

∫

RN

〈v〉2d(Ft0 − Ft)
+(v)

≤ 2R2

∫

〈v〉≤R

d(Ft0 − Ft)
+(v) + 2

∫

〈v〉>R

〈v〉2dFt0(v)

≤ 24A0R
2|t− t0|+ 2

∫

〈v〉>R

〈v〉2dFt0(v) .

Thus first letting t→ t0 and then letting R→ ∞ leads to lim sup
t→t0

‖Ft−Ft0‖2 = 0 . This

together with (5.18) proves (5.17).
From the strong continuity in (5.17) we have for all ϕ ∈ C2

b (R
N)

∫ t

0

ds

∫

RN

ϕdQ(Fs, Fs) =

∫

RN

ϕd

(∫ t

0

Q(Fs, Fs)ds

)

which together with (5.15) yields
∫

RN

ϕdFt =

∫

RN

ϕdF0 +

∫

RN

ϕd

(∫ t

0

Q(Fs, Fs)ds

)
.

Therefore applying (1.21) we obtain

Ft = F0 +

∫ t

0

Q(Fs, Fs)ds , t ≥ 0 .

Since t 7→ Q±(Ft, Ft) ∈ C([0,∞);B0(R
N)), it follows that t 7→ Ft ∈ C1([0,∞);B0(R

N))
and

d

dt
Ft = Q(Ft, Ft), t ≥ 0 .

So Ft is a measure strong solution.
The converse is obvious: Every measure strong solution is a measure weak solution.

(Recall our assumption that ‖Ft‖2 < ∞ for all times t ≥ 0 for measure solutions, and
0 < γ ≤ 2.)

Parts (b)-(c)-(d). The proof of these three parts can be reduced to the proof of the
following lemma:
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Lemma 5.4. Let us consider F0 ∈ B+
2 (R

N) with ‖F0‖0 > 0. Let Ft be a conservative
measure strong solutions of Eq. (1.1) with the initial datum

Ft|t=0 = F0 ∈ B+
2 (R

N) ,

which satisfies the moment production estimates in Theorem 1.2. Let Gt be any measure
strong solutions of Eq. (1.1) on the time interval [τ,∞) with initial data

Gt|t=τ = Gτ ∈ B+
2 (R

N)

for some τ ≥ 0, and satisfying ‖Gt‖2 ≤ ‖Gτ‖2 for all t ∈ [τ,∞).
Then the stability estimates (1.30) (for τ = 0) and (1.31) (for τ > 0) hold true.

Note that the existence of such a solution Ft as in the statement has been proven by
Theorem 1.2 and part (a) of the present theorem. Therefore if Lemma 5.4 holds true,
then by taking G0 = F0 (for the case τ = 0) we get Gt ≡ Ft on [0,∞) and hence this
proves parts (b), (c) and (d).

Proof of Lemma 5.4. Our proof is divided into several steps. First of all for notation
convenience we denote

Ht = Ft −Gt.

Step 1. Given any r ∈ [τ,∞) ∩ (0,∞). We prove that

‖Ht‖2 ≤ ‖Gτ‖2 − ‖Fτ‖2 + 2‖(Hr)
+‖2(5.19)

+4A0

(
K2+γ(F0)

∫ t

r

(1 + 1/s)‖Hs‖0ds+ ‖F0‖2
∫ t

r

‖Hs‖γds
)
, t ≥ r .

Here K2+γ(F0) is the constant in (1.15) with s = 2 + γ. To prove (5.19), we consider
approximation: By d|Ht| = dGt − dFt + 2d(Ht)

+ we have

‖Ht‖2 = ‖Gt‖2 − ‖Ht‖2 + 2 lim
n→∞

∫

RN

〈v〉2nd(Ht)
+ with 〈v〉2n = min{〈v〉2, n}.

Let v 7→ ht(v) be the sign function of Ht and κt(v) = 1
2
(1 + ht(v)) so that κtdHt =

d(Ht)
+. Then applying Lemma 5.1 to the measureHt = Hr+

∫ t
r
(Q(Fs, Fs)−Q(Gs, Gs))ds

for t ≥ r and then using Lemma 5.3 we have
∫

RN

〈v〉2nd(Ht)
+ =

∫

RN

〈v〉2nd(Hr)
+ +

∫ t

r

ds

∫

RN

〈v〉2nκs(v)d
(
Q(Fs, Fs)−Q(Gs, Gs)

)

≤ ‖(Hr)
+‖2 + En(t) + 2A0

(∫ t

r

‖Fs‖2+γ‖Hs‖0ds+ ‖F0‖2
∫ t

r

‖Hs‖γds
)
, t ∈ [r,∞)

where

En(t) = 4A0

∫ t

r

‖Fs‖γ
(∫

RN

(〈v〉2 − 〈v〉2n)〈v〉γdFs
)
ds.

Since, by moment estimate (1.14),
∫ t

r

‖Fs‖γ
(∫

RN

〈v〉2+γdFs(v)
)
ds ≤ ‖F0‖2

∫ t

r

‖Fs‖2+γds <∞ , t ∈ [r,∞) ,
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it follows from dominated convergence that lim
n→∞

En(t) = 0 and thus

‖Ht‖2 ≤ ‖Gt‖2 − ‖Ft‖2 + 2‖(Hr)
+‖2

+4A0

(∫ t

r

‖Fs‖2+γ‖Hs‖0ds+ ‖F0‖2
∫ t

r

‖Hs‖γds
)
, ∀ t ∈ [r,∞) .

By assumption on Ft and Gt we have ‖Gt‖2 − ‖Ft‖2 ≤ ‖Gτ‖2 − ‖Fτ‖2 and ‖Fs‖2+γ ≤
K2+γ(F0)(1 + 1/s). This proves (5.19).

Step 2. Suppose τ > 0. Then taking r = τ in (5.19) and using ‖Gτ‖2 − ‖Fτ‖2 +
2‖(Hτ )

+‖2 = ‖Hτ‖2 we obtain

‖Ht‖2 ≤ ‖Hτ‖2 + cτ

∫ t

τ

‖Hs‖2ds ∀ t ∈ [τ,∞)

with cτ = 4A0(K2+γ(F0) + ‖F0‖2)(1 + 1
τ
). This gives (1.31) by Gronwall lemma.

The remaining steps deal with the case τ = 0 and prove (1.30).

Step 3. If ‖H0‖2 ≥ 1, then using ‖Ft‖2 = ‖F0‖2, ‖Gt‖2 ≤ ‖G0‖2 we have

‖Ht‖2 ≤ (1 + 2‖F0‖2)‖H0‖2 ∀ t ∈ [0,∞) .

So in the following we assume that ‖H0‖2 < 1 . Note that in this case we have

‖Ft ±Gt‖2 ≤ 1 + 2‖F0‖2 =: C0 ∀ t ≥ 0 .(5.20)

Using Proposition 1.4 we have

‖Ht‖0 ≤ ‖H0‖0 +
∫ t

0

‖Q(Fs, Fs)−Q(Gs, Gs)‖0ds

≤ ‖H0‖0 + 4A0

∫ t

0

(
‖Fs +Gs‖γ‖Hs‖0 + ‖Fs +Gs‖0‖Hs‖γ

)
ds

and thus by 0 < γ ≤ 2 and (5.20) we obtain

‖Ht‖0 ≤ ‖H0‖0 + 8A0C0

∫ t

0

‖Hs‖2ds , ∀ t ≥ 0.(5.21)

Step 4. Let r > 0 satisfy ‖H0‖2 ≤ r ≤ 1. We prove that

U(r) := sup
0≤t≤r

‖Ht‖2 ≤ 4(1 + 9A0C
2
0)ΨF0(r) .(5.22)

First of all using (5.1) and ‖Gt‖2 − ‖Ft‖2 ≤ ‖G0‖2 − ‖F0‖2 ≤ r we have

‖Ht‖2 = ‖Gt‖2 − ‖Ft‖2 + 2‖(Ht)
+‖2 ≤ r + 2‖(Ht)

+‖2(5.23)

and for any R ≥ 1

2‖(Ht)
+‖2 ≤ 4R2‖Ht‖0 + 2

∫

|v|>R

〈v〉2dFt(v) .(5.24)

Next by (5.21),(5.20) and ‖H0‖2 ≤ r we have

4R2‖Ht‖0 ≤ 4(1 + 8A0C
2
0 )R

2 r ∀ t ∈ [0, r].(5.25)
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Using the conservation of mass and energy we compute
∫

|v|>R

〈v〉2dFt(v) =

∫

RN

〈v〉2dFt(v)−
∫

|v|≤R

〈v〉2dFt(v)

=

∫

RN

〈v〉2dF0(v)−
∫

|v|≤R

〈v〉2dF0(v)−
∫ t

0

ds

∫

|v|≤R

〈v〉2dQ(Fs, Fs)

≤
∫

|v|>R

〈v〉2dF0(v) +

∫ t

0

ds

∫

|v|≤R

d〈v〉2Q−(Fs, Fs) .

For the last term we use |v − v∗|γ ≤ 〈v〉γ〈v∗〉γ ≤ 〈v〉2〈v∗〉2 to get for all t ∈ [0, r]
∫ t

0

ds

∫

|v|≤R

〈v〉2dQ−(Fs, Fs) ≤ 2R2

∫ t

0

ds

∫

RN

dQ−(Fs, Fs) ≤ 2A0‖F0‖22R2 r .

Thus
∫

|v|>R

〈v〉2dFt(v) ≤
∫

|v|>R

〈v〉2dF0(v) + 2A0 ‖F0‖22R2 r ∀ t ∈ [0, r] .(5.26)

Combining (5.24)-(5.25)-(5.26) gives

2‖(Ht)
+‖2 ≤ 4(1 + 9A0C

2
0)R

2r + 4

∫

|v|>R

|v|2dF0(v) , t ∈ [0, r] .(5.27)

Now choose R = r−1/3. Then from (5.23), (5.27) we obtain

‖Ht‖2 ≤ r + 4(1 + 9A0C
2
0 )r

1/3 + 4

∫

|v|>r−1/3

|v|2dF0(v) , t ∈ [0, r] .

This gives (5.22) by definition of ΨF0(r) in (1.29).

Step 5. In the following we denote Ci = Ri(γ, A0, A2, ‖F0‖0, ‖F0‖2) for (i = 1, 2, . . . , 6),
where Ri(x1, x2, . . . , x5) are some explicit positive continuous functions in (R+)

⊗5.
In (5.19) setting τ = 0, r = 1 we have

‖Ht‖2 ≤ ‖H0‖2 + 2‖H1‖2 + C1

∫ t

1

‖Hs‖2ds , t ≥ 1

so that Gronwall Lemma applies to get

‖Ht‖2 ≤
(
‖H0‖2 + 2‖H1‖2

)
exp(C1(t− 1)) , t ≥ 1 .(5.28)

Now we concentrate our estimate for t ∈ [0, 1] . In what follows we assume r satisfy

r > 0 , ‖H0‖2 ≤ r < 1 .(5.29)

Using (5.19) (with τ = 0), ‖G0‖2 − ‖F0‖2 ≤ ‖H0‖2 ≤ r, and ‖Hr‖2 ≤ U(r) we have

‖Ht‖2 ≤ r + 2U(r) + C2

(∫ t

r

1

s
‖Hs‖0ds+

∫ t

r

‖Hs‖γds
)
, t ∈ [r, 1] .
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Further, using (5.21) we compute for all t ∈ [r, 1]
∫ t

r

1

s
‖Hs‖0ds ≤ r log(t/r) + 8A0C0

∫ t

r

1

s

∫ s

0

‖Hτ‖2dτds

≤ r| log r|+ 8A0C0

∫ t

0

‖Hτ‖2| log τ |dτ .

Thus for all t ∈ [r, 1]

‖Ht‖2 ≤ r + 2U(r) + C2r| log r|+ C3

∫ t

0

‖Hs‖2(1 + | log s|)ds .(5.30)

Since ‖Ht‖2 ≤ U(r) for all t ∈ [0, r], the inequality (5.30) holds for all t ∈ [0, 1].
Therefore by Gronwall Lemma we conclude

‖Ht‖2 ≤ C4(r + U(r) + r| log r| ) ∀ t ∈ [0, 1] .(5.31)

In particular taking t = 1 yields the estimate for ‖H1‖2 and thus from (5.28)-(5.29) we
obtain

‖Ht‖2 ≤ C5(r + U(r) + r| log r| ) exp(C1(t− 1)) , ∀ t ∈ [1,∞) .(5.32)

Combining (5.31)-(5.32) and the inequality r| log r| ≤ r1/3 we conclude

‖Ht‖2 ≤ ΨF0(r) exp(C6(1 + t)) ∀ t ≥ 0 .(5.33)

Finally if ‖H0‖2 = 0, then in (5.33) letting r → 0+ leads to ‖Ht‖2 ≡ 0; if ‖H0‖2 > 0,
we take r = ‖H0‖2. This proves (1.30) and completes the proof of the lemma. �

Part (e). Let dF0 = f0dv with 0 ≤ f0 ∈ L1
2(R

N), and let Ft be the unique conservative
measure strong solution of Eq. (1.1) with the initial datum F0. By the Lebesgue-Radom-
Nikodym theorem, for every t ≥ 0 we have a decomposition dFt = ftdv + dµt where
0 ≤ ft ∈ L1

2(R
N), µt ∈ B+

2 (R
N) and µt concentrates on a Lebesgue null set. We can

assume that ‖f0‖L1 > 0. Let

fn0 (v) = min{f0(v), n}e−|v|2/n , and dF n
0 (v) = fn0 (v)dv .

By Step 2 of the proof of Theorem 1.2, for every n there is a conservative measure weak
solution F n

t with the initial datum F n
0 and dF n

t = fnt dv, 0 ≤ fnt ∈ L1
2(R

N) for all t ≥ 0.
By part (a), F n

t is also a measure strong solution. Since d(Ft−F n
t ) = (ft− fnt )dv+dµt

we have ‖Ft − F n
t ‖2 = ‖ft − fnt ‖L1

2
+ ‖µt‖2. It is clear that

‖F0 − F n
0 ‖2 = ‖f0 − fn0 ‖L1

2
→ 0 (n→ ∞)

since

‖F0 − F n‖2 = ‖f0 − fn0 ‖L1
2

≤
∫

f0(v)>n

f0(v)〈v〉2dv +
∫

RN

f0(v)(1− e−|v|2/n)〈v〉2dv → 0 (n→ ∞) .

Thus it follows from the stability estimate that for every fixed t ≥ 0

‖ft − fnt ‖L1
2
+ ‖µt‖2 = ‖Ft − F n

t ‖2 ≤ eC(1+t)ΨF0(‖F0 − F n
0 ‖2) −−→

n→0
0
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and therefore µt ≡ 0. Thus dFt = ftdv for all t ≥ 0 where ft is the unique conservative
mild solution of Eq. (1.1) associated with the initial datum f0. This proves part (d).

Part (f). Suppose F0 ∈ B+(RN) is not a Dirac mass. We can assume that ‖F0‖0 > 0.
Let fn0 (v) be defined by (4.23)-(4.24) (the Mehler transform of F0). By part (d), for
every n ≥ 1 there exists a unique conservative L1-solution fnt of Eq.(1.1) associated with
the initial datum fnt |t=0 = fn0 . If we define F n

0 , F
n
t by dF n

0 = fn0 (v)dv, dF
n
t = fnt (v)dv,

then by uniqueness and Theorem 1.2 we see that F n
t satisfies the moment production

estimates. Thus it is easily checked that the Step 3 (where there is no need of introducing

f̃n0 for the present case) within the proof of Theorem 1.2 is totally valid (and is in fact
easier) for the present case. Therefore there is a subsequence of {fnt }∞n=1, which we
still denote as {fnt }∞n=1, such that for the unique measure solution Ft of Eq. (1.1) with
Ft|t=0 = F0, the weak convergence (1.33) holds true. This completes the proof of
Theorem 1.6. �
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