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Abstract. With the emergence of XML as a standard for representing
business data, new decision support applications are being developed.
These XML data warehouses aim at supporting On-Line Analytical Pro-
cessing (OLAP) operations that manipulate irregular XML data. To en-
sure feasibility of these new tools, important performance issues must be
addressed. Performance is customarily assessed with the help of bench-
marks. However, decision support benchmarks do not currently support
XML features. In this paper, we introduce the XML Warehouse Bench-
mark (XWeB), which aims at filling this gap. XWeB derives from the
relational decision support benchmark TPC-H. It is mainly composed
of a test data warehouse that is based on a unified reference model for
XML warehouses and that features XML-specific structures, and its as-
sociate XQuery decision support workload. XWeB’s usage is illustrated
by experiments on several XML database management systems.

Keywords: benchmark, XML data warehouse, OLAP, TPC-H

1 Introduction

With the increasing volume of XML data available, and XML now being a stan-
dard for representing complex business data [2], XML data sources that are per-
tinent for decision support are ever more numerous. However, XML data bear
irregular structures (e.g., optional and/or diversely ordered elements, ragged
hierarchies, etc.) that would be intricate to handle in a relational Database
Management System (DBMS). Therefore, many efforts toward XML data ware-
housing have been achieved [14,17,29], as well as efforts for extending the XQuery
language with On-Line Analytical Processing (OLAP) capabilities [9,12,26].

XML-native DBMSs supporting XQuery should naturally form the basic stor-
age component of XML warehouses. However, they currently present relatively
poor performances when dealing with the large data volumes and complex an-
alytical queries that are typical in data warehouses, and are thus challenged
by relational, XML-compatible DBMSs. A tremendous amount of research is
currently in progress to help them become a credible alternative, though. Since
performance is a critical issue in this context, its assessment is primordial.



Database performance is customarily evaluated experimentally with the help
of benchmarks. However, existing decision support benchmarks [7,15,16,24] do
not support XML features, while XML benchmarks [4,5,20,28] target transac-
tional applications and are ill-suited to evaluate the performances of decision-
oriented applications. Their database schemas do not bear the multidimensional
structure that is typical in data warehouses (i.e., star schemas and derivatives
bearing facts described by dimensions [11]); and their workloads do not feature
typical, OLAP-like analytic queries.

Therefore, we present in this paper the first (to the best of our knowledge)
XML decision support benchmark. Our objective is to propose a test XML
data warehouse and its associate XQuery decision support workload, for perfor-
mance evaluation purposes. The XML Warehouse Benchmark (XWeB) is based
on a unified reference model for XML data warehouses [14]. An early version of
XWeB [13] was derived from the standard relational decision support benchmark
TPC-H [25]. In addition, XWeB’s warehouse model has now been complemented
with XML-specific irregular structures, and its workload has been both adapted
in consequence and expanded.

The remainder of this paper is organized as follows. In Section 2, we present
and discuss related work regarding relational decision support and XML bench-
marks. In Section 3, we recall the XML data warehouse model XWeB is based
on. In Section 4, we provide the full specifications of XWeB. In Section 5, we
illustrate our benchmark’s usage by experimenting on several XML DBMSs. We
finally conclude this paper and provide future research directions in Section 6.

2 Related Work

2.1 Relational Decision Support Benchmarks

The OLAP APB-1 benchmark has been very popular in the late nineties [15].
Issued by the OLAP Council, a now inactive organization founded by four OLAP
solution vendors, APB-1’s data warehouse schema is structured around Sale facts
and four dimensions: Customer, Product, Channel and Time. Its workload of ten
queries aims at sale forecasting. Although APB-1 is simple to understand and
use, it proves limited, since it is not “differentiated to reflect the hurdles that
are specific to different industries and functions” [22].

Henceforth, the Transaction Processing Performance Council (TPC) defines
standard benchmarks and publishes objective and verifiable performance evalu-
ations to the industry. The TPC currently supports one decision support bench-
mark: TPC-H [25]. TPC-H’s database is a classical product-order-supplier model.
Its workload is constituted of twenty-two SQL-92, parameterized, decision sup-
port queries and two refreshing functions that insert tuples into and delete tuples
from the database, respectively. Query parameters are randomly instantiated fol-
lowing a uniform law. Three primary metrics are used in TPC-H. They describe
performance in terms of power, throughput, and a combination of these two cri-
teria. Power and throughput are the geometric and arithmetic mean values of
database size divided by workload execution time, respectively.



Although decision-oriented, TPC-H’s database schema is not a typical star-
like data warehouse schema. Moreover, its workload does not include any explicit
OLAP query. The TPC-DS benchmark, which is currently in its latest stages of
development, fixes this up [24]. TPC-DS’ schema represents the decision sup-
port functions of a retailer under the form of a constellation schema with several
fact tables and shared dimensions. TPC-DS’ workload is constituted of four
classes of queries: reporting queries, ad-hoc decision support queries, interactive
OLAP queries, and extraction queries. SQL-99 query templates help randomly
generate a set of about five hundred queries, following non-uniform distribu-
tions. The warehouse maintenance process includes a full Extract, Transform
and Load (ETL) phase, and handles dimensions with respect to their nature
(non-static dimensions scale up while static dimensions are updated). One pri-
mary throughput metric is proposed in TPC-DS to take both query execution
and the maintenance phase into account.

More recently, the Star Schema Benchmark (SSB) has been proposed as a
simpler alternative to TPC-DS [16]. As our early version of XWeB [13], it is
based on TPC-H’s database remodeled as a star schema. It is basically archi-
tectured around an order fact table merged from two TPC-H tables. But more
interestingly, SSB features a query workload that provides both functional and
selectivity coverages.

As in all TPC benchmarks, scaling in TPC-H, TPC-DS and SSB is achieved
through a scale factor SF that helps define database size (from 1 GB to 100 TB).
Both database schema and workload are fixed. The number of generated queries
in TPC-DS also directly depends on SF . TPC standard benchmarks aim at
comparing the performances of different systems in the same experimental con-
ditions, and are intentionally not very tunable. By contrast, the Data Warehouse
Engineering Benchmark (DWEB) helps generate various ad-hoc synthetic data
warehouses (modeled as star, snowflake, or constellation schemas) and workloads
that include typical OLAP queries [7]. DWEB targets data warehouse design-
ers and allows testing the effect of design choices or optimization techniques in
various experimental conditions. Thus, it may be viewed more like a benchmark
generator than an actual, single benchmark. DWEB’s main drawback is that its
complete set of parameters makes it somewhat difficult to master.

Finally, to be complete, TPC-H and TPC-DS have recently be judged insuf-
ficient for ETL purposes [21] and specific benchmarks for ETL workflows are
announced [21,27].

2.2 XML Benchmarks

XML benchmarks may be subdivided into two families. On one hand, micro-
benchmarks, such as the Michigan Benchmark (so-named in reference to the
relational Wisconsin Benchmark developed in the eighties) [19] and MemBeR [1],
help XML documents storage solution designers isolate critical issues to optimize.
More precisely, micro-benchmarks aim at assessing the individual performances
of basic operations such as projection, selection, join and aggregation. These low-



level benchmarks are obviously too specialized for decision support application
evaluation, which requires testing complex queries at a more global level.

On the other hand, application benchmarks help users compare the global
performances of XML-native or compatible DBMSs, and more particularly of
their query processor. For instance, X-Mach1 [4], XMark [20], XOO7 (an exten-
sion of the object-oriented benchmark OO7) [5] and XBench [28] are application
benchmarks. Each implements a mixed XML database that is both data-oriented
(structured data) and document-oriented (in general, random texts built from a
dictionary). However, except for XBench that proposes a true mixed database,
their orientation is either more particularly focused on data (XMark, XOO7) or
documents (X-Mach1).

These benchmarks also differ in: the fixed or flexible nature of the XML
schema (one or several Document Type Definitions – DTDs – or XML Schemas);
the number of XML documents used to model the database at the physical level
(one or several); the inclusion or not of update operations in the workload. We
can also underline that only XBench helps evaluate all the functionalities of-
fered by the XQuery language. Unfortunately, none of these benchmarks exhibit
any decision support feature. This is why relational benchmarks presented in
Section 2.1 are more useful to us in a first step.

3 Reference XML Warehouse Model

Existing XML data warehouse architectures more or less converge toward a uni-
fied model. They mostly differ in the way dimensions are handled and the number
of XML documents that are used to store facts and dimensions. Searching for
the best compromise in terms of query performance and modeling power, we
proposed a unified model [14] that we reuse in XWeB. As XCube [10], our ref-
erence XML warehouse is composed of three types of XML documents at the
physical level: document dw-model.xml defines the multidimensional structure
of the warehouse (metadata); each factsf .xml document stores information re-
lated to set of facts f (several fact documents allow constellation schemas); each
dimensiond.xml document stores a given dimension d’s member values for any
hierarchical level.

More precisely, dw-model.xml ’s structure (Figure 1) bears two types of nodes:
dimension and FactDoc nodes. A dimension node defines one dimension, its
possible hierarchical levels (Level elements) and attributes (including types), as
well as the path to the corresponding dimensiond.xml document. A FactDoc

element defines a fact, i.e., its measures, references to the corresponding dimen-
sions, and the path to the corresponding factsf .xml document. The factsf .xml

documents’ structure (Figure 2(a)) is composed of fact subelements that each
instantiate a fact, i.e., measure values and dimension references. These identifier-
based references support the fact-to-dimension relationships.

Finally, the dimensiond.xml documents’ structure (Figure 2(b)) is composed
of Level nodes. Each of them defines a hierarchy level composed of instance
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Fig. 1. dw-model.xml graph structure

nodes. An instance defines the member attributes of a hierarchy level as well as
their values.

4 XWeB Specifications

4.1 Principle

XWeB derives from TPC-H, modified in a number of ways explained in the
following sections, for three reasons. First, we acknowledge the importance of
TPC benchmarks’ standard status. Hence, our goal is to have XWeB inherit
from TPC-H’s wide acceptance and usage (whereas TPC-DS is still under devel-
opment). Second, from our experience in designing the DWEB relational data
warehouse benchmark, we learned that Gray’s simplicity criterion for a good
benchmark [8] is primordial. This is again why we preferred TPC-H, which is
much simpler than TPC-DS or DWEB. Third, from a sheer practical point of
view, we also selected TPC-H to benefit from its data generator, dbgen, a feature
that does not exist in TPC-DS yet.

The main components in a benchmark are its database and workload models.
XWeB’s are described in Sections 4.2 and 4.3, respectively. In a first step, we
do not propose to include ETL features in XWeB, although XQuery has been
complemented with update queries recently [6]. ETL is indeed a complex process
that presumably requires dedicated benchmarks [21]. Moreover, the following
specifications already provide a raw loading evaluation framework. The XWeB
warehouse is indeed a set of XML documents that must be loaded into an XML
DBMS, an operation that can be timed.



Fig. 2. factsf .xml (a) and dimensiond.xml (b) graph structures

4.2 Database Model

Schema. At the conceptual level, like O’Neil et al. in SSB, we remodel TPC-H’s
database schema as an explicit multidimensional (snowflake) schema (Figure 3),
where Sale facts are described by the Part/Category, Customer/Nation/Region,
Supplier/Nation/Region and Day/Month/Year dimensions.

The Part/Category hierarchy, which is not present in TPC-H, is of partic-
ular interest. It is indeed both non-strict and non-covering [23]. Beyer et al.
would term it ragged [2]. We prefer the term complex since ragged hierarchy has
different meanings in the literature; e.g., Rizzi defines it as non-covering only
[18]. More precisely, in our context, non-strictness means relationships between
parts and categories, and between categories themselves, are many-to-many.
Non-coveringness means parts and subcategories may roll up to categories at
any higher granularity level, i.e., skipping one or more intermediary granularity
levels. Complex hierarchies do exist in the real world, are easy to implement in
XML, whereas they would be intricate to handle in a relational system [2].

At the logical level, the UML class diagram from Figure 3 translates into an
instance of dw-model.xml (Figure 4). Attributes (fact measures and dimension
members) are not mentioned in Figure 4 for brevity, but they are present in the
actual document.

Finally, at the physical level, fact and dimension instances are stored in
a set of XML documents, namely facts1.xml = f sale.xml, dimension1 =
d date.xml, dimension2 = d part.xml, dimension3 = d customer.xml and
dimension4 = d supplier.xml. To introduce further XML-specific features in
XWeB, f sale.xml’s DTD allows missing dimension references and measures, as



Fig. 3. XWeB warehouse’s conceptual schema

well as any order in fact subelements. Our aim here is to introduce a measure of
“dirty data” in the benchmark.

Parameterization. XWeB’s main parameters basically help control data ware-
house size. Size (S) depends on two parameters: the scale factor (SF ) inherited
from TPC-H, and density D. When D = 1, all possible combinations of dimen-
sion references are present in the fact document (Cartesian product), which is
very rare in real-life data warehouses. When D decreases, we progressively elim-
inate some of these combinations. D actually helps control the overall size of
facts independently from the size of dimensions.

S can be estimated as follows: S = Sdimensions +Sfacts, where Sdimensions is
the size of dimensions, which does not change when SF is fixed, and Sfacts is the
size of facts, which depends on D. Sdimensions =

∑
d∈D |d|SF × nodesize(d) and



<?xml version="1.0" encoding="UTF-8"?>

<xweb-dw-model>

<fact id="Sale" path="f_sale.xml"/>

<dimension id="Date" path="d_date.xml">

<level id="Day" rollup="Month" drilldown=""/>

<level id="Month" rollup="Year" drilldown="Day"/>

<level id="Year" rollup="" drilldown="Month"/>

</dimension>

<dimension id="PartDim" path="d_part.xml"/>

<level id="Part" rollup="Category" drilldown=""/>

<level id="Category" rollup="Category" drilldown="Part Category"/>

</dimension>

<dimension id="CustomerDim" path="d_customer.xml">

<level id="Customer" rollup="C_Nation" drilldown=""/>

<level id="C_Nation" rollup="C_Region" drilldown="Customer"/>

<level id="C_Region" rollup="" drilldown="C_Nation"/>

</dimension>

<dimension id="SupplierDim" path="d_supplier.xml">

<level id="Supplier" rollup="S_Nation" drilldown=""/>

<level id="S_Nation" rollup="S_Region" drilldown="Supplier"/>

<level id="S_Region" rollup="" drilldown="S_Nation"/>

</dimension>

</xweb-dw-model>

Fig. 4. XWeB warehouse’s logical schema

Sfacts =
∏

d∈D |hd
1|SF ×D × fact size, where D is the set of dimensions, |d|SF

the total size of dimension d (i.e., all hierarchy levels included) w.r.t. SF , |hd
1|SF

the size of the coarsest hierarchy level in dimension d w.r.t. SF , nodesize(d) the
average node size in dimensiond.xml, and fact size the average fact element
size. For example, when SF = 1 and D = 1, with node sizes all equal to 220
bytes, the size of f sale.xml is 2065 GB. Eventually, two additional parameters
control the probability of missing values (Pm) and element reordering (Po) in
facts, respectively.

Schema Instantiation. The schema instantiation process is achieved in two
steps: first, we build dimension XML documents, and then the fact document.
Dimension data are obtained from dbgen as flat files. Their size is tuned by SF .
Dimension data are then matched to the dw-model.xml document, which contains
dimension specifications, hierarchical levels and attribute names, to output the
set of dimensiond.xml (d ∈ D) documents. d part.xml, which features a complex
hierarchy, is a particular case that we focus on.

Algorithm from Figure 5 describes how categories are assigned to parts from
d part.xml. First, category names are taken from TPC-H and organized in three
arbitrary levels in the cat table. Moreover, categories are interrelated through
rollup and drill-down relationships to form a non-strict hierarchy. For example,



level-2 category BRUSHED rolls up to level-1 categories NICKEL and STEEL,
and drills down to level-3 categories ECONOMY, STANDARD and SMALL. The
whole hierarchy extension is available on-line (Section 6). Then, to achieve non-
coveringness, we assign to each part p several categories at any level. p.catset
denotes the set of categories assigned to p. Each “root” category (numbering
from 1 to 3) is selected from a random level lvl. Then, subcategories may be
(randomly) selected from subsequent levels. Non-coveringness is achieved when
initial level is lower than 3 and there is no subcategory. ncat and nsubcat refer
to category and subcategory numbers, respectively. cand denotes a candidate
category or subcategory. |cat[i]| is the number of elements in table cat’s ith

level.

cat := [[BRASS, COPPER, NICKEL, STEEL, TIN], // level 1

[ANODIZED, BRUSHED, BURNISHED, PLATED, POLISHED], // level 2

[ECONOMY, LARGE, MEDIUM, PROMO, SMALL, STANDARD]] // level 3

FOR ALL p IN d_part DO

p.catset := EMPTY_SET

ncat := RANDOM(1, 3)

FOR i := 1 TO ncat DO

lvl := RANDOM(1, 3)

REPEAT

cand := cat[lvl, RANDOM(1, |cat[lvl]|)]

UNTIL cand NOT IN p.catset

p.catset := p.catset UNION cand

nsubcat := RANDOM(0, 3 - lvl)

FOR j := 1 TO nsubcat DO

cand := cat[lvl + j, RANDOM(1, |cat[lvl + j]|)]

IF cand NOT IN p.catset THEN

p.catset := p.catset UNION cand

END IF

END FOR

END FOR

END FOR

Fig. 5. Part category selection algorithm

Facts are generated randomly with respect to the algorithm from Figure 6.
The number of facts depends on D, and data dirtiness on Pm and Po (Sec-
tion 4.2). D, Pm and Po are actually used as Bernouilli parameters. val is
a transient table that stores dimension references and measure values, to al-
low them to be nullified and/or reordered without altering loop index values.
The SKEWED RANDOM() function helps generate “hot” and “cold” values for mea-
sures Quantity and TotalAmount, which influences range queries. Finally, the
SWITCH() function randomly reorders a set of values.



FOR ALL c IN d_customer DO

FOR ALL p IN d_part DO

FOR ALL s IN d_supplier DO

FOR ALL d IN d_date DO

IF RANDOM(0, 1) <= D THEN

// Measure random generation

Quantity := SKEWED_RANDOM(1, 10000)

TotalAmount := Quantity * p.p_retailprice

// Missing values management

val[1] := c.c_custkey; val[2] := p.p_partkey

val[3] := s.s_suppkey; val[4] := d.d_datekey

val[5] := Quantity; val[6] := TotalAmount

FOR i := 1 TO 6 DO

IF RANDOM(0, 1) <= Pm THEN

val[i] := NULL

END IF

END FOR

// Dimension reordering

IF RANDOM(0, 1) <= Po THEN

SWITCH(val)

END IF

WRITE(val) // Append current fact into f_sale.xml

END IF

END FOR

END FOR

END FOR

END FOR

Fig. 6. Fact generation algorithm

4.3 Workload Model

Workload Queries and Parameterization. The XQuery language [3] allows
formulating decision support queries, unlike simpler languages such as XPath.
Complex queries, including aggregation operations and join queries over multiple
documents, can indeed be expressed with the FLWOR syntax. However, we are
aware that some analytic queries are difficult to express and execute efficiently
with XQuery, which does not include an explicit grouping construct compara-
ble to the GROUP BY clause in SQL [2]. Moreover, though grouping queries are
possible in XQuery, there are many issues with the results [2]. We nonetheless
select XQuery for expressing XWeB’s workload due to its standard status. Fur-
thermore, introducing difficult queries in the workload aims to challenge XML
DBMS query engines.

Although we do take inspiration from TPC-H and SSB, our particular XML
warehouse schema leads us to propose yet another query workload. It is cur-
rently composed of twenty decision support queries labeled Q01 to Q20 that
basically are typical aggregation queries for decision support. Though we aim



to provide the best functional and selectivity coverages with this workload, we
lack experimental feedback, thus it is likely to evolve in the future. Workload
specification is provided in Table 1. Queries are presented in natural language
for space constraints, but their complete XQuery formulation is available on-line
(Section 6).

XWeB’s workload is roughly structured in increasing order of query com-
plexity, starting with simple aggregation, then introducing join operations, then
OLAP-like queries such as near-cube (with superaggregates missing) calcula-
tion, drill-downs (e.g., Q06 drills from Q05’s Month down to Day granularity)
and rollups (e.g., Q09 rolls from Q08’s Customer up to Nation granularity),
while increasing the number of dimensions involved. The last queries exploit the
Part/Category complex hierarchy. We also vary the type of restrictions (by-value
and range queries), the aggregation function used, and the ordering applied to
queries. Ordering labeled by −1 indicates a descending order (default being as-
cending). Finally, note that Q20, though apparently identical to Q19, is a further
rollup along the Category complex hierarchy. Actually, Q19 rolls up from Q18’s
product level to the category level, and then Q20 rolls up to the “supercategory”
level, with supercategories being categories themselves.

Moreover, workload queries are subdivided into five categories: simple re-
porting (i.e., non-grouping) queries; 1, 2, and 3-dimension cubes; and complex
hierarchy cubes. We indeed notice in our experiments (Section 5) that com-
plex queries are diversely handled by XML DBMSs: some systems have very
long response times, and even cannot answer. Subdividing the workload into
blocks allows us to adjust workload complexity, by introducing boolean execu-
tion parameters (RE, 1D, 2D, 3D and CH , respectively) that define whether a
particular block of queries must be executed or not when running the benchmark
(see below).

Execution Protocol and Performance Metrics. Still with TPC-H as a
model, we adapt its execution protocol along two axes. First, since XWeB does
not currently feature update operations (Section 4.1), the performance test can
be simplified to executing the query workload. Second, as in DWEB, we allow
warm runs to be performed several times (parameter NRUN) instead of just
once, to allow averaging results and flattening the effects of any unexpected out-
side event. Thus, the overall execution protocol may be summarized as follows:

1. load test: load the XML warehouse into an XML DBMS;
2. performance test:

(a) cold run executed once (to fill in buffers), w.r.t. parameters RE, 1D,
2D, 3D and CH ;

(b) warm run executed NRUN times, still w.r.t. workload parameters.

The only performance metric in XWeB is currently response time, as in SSB
and DWEB. Load test, cold run and warm runs are timed separately. Global, av-
erage, minimum and maximum execution times are also computed, as well stan-
dard deviation. This kind of atomic approach for assessing performance allows



Table 1. XWeB workload specification

Group Query Specification Restriction Ordering

Reporting Q01 Min, Max, Sum, Avg of

f quantity and f totalamount

Q02 f quantity for each p partkey p retailprice ≤ 1000 p retailprice

Q03 Sum of f totalamount n name = ”FRANCE”

1D cube Q04 Sum of f quantity per p partkey p retailprice > 1500 p retailprice−1

Q05 Sum of f quantity and f total- Quarter(m monthkey) = 1 m monthname

amount per m monthname

Q06 Sum of f quantity and f total- Quarter(m monthkey) = 1 d dayname

amount per d dayname

Q07 Avg of f quantity and f total- r name = ”AMERICA”

amount per r name

2D cube Q08 Sum of f quantity and f total- p brand = ”Brand#25” c name,

amount per c name and p name p name

Q09 Sum of f quantity and f total- p brand = ”Brand#25” n name,

amount per n name and p name p name

Q10 Sum of f quantity and f total- p brand = ”Brand#25” r name,

amount per r name and p name p name

Q11 Max of f quantity and f total- s acctbal < 0 s name,

amount per s name and p name p name

3D cube Q12 Sum of f quantity and f total- c name,

amount per c name, p name p name,

and y yearkey y yearkey

Q13 Sum of f quantity and f total- y yearkey > 2000 c name,

amount per c name, p name and c acctbal > 5000 p name,

and y yearkey y yearkey

Q14 Sum of f quantity and f total- c mktsegment = ”AUTO- c name,

amount per c name, p name MOBILE” p name,

and y yearkey and y yearkey = 2002 y yearkey

Complex Q15 Avg of f quantity and f total- t name

hierarchy amount per t name

Q16 Avg of f quantity and f total- t name = ”BRUSHED” t name

amount per t name

Q17 Avg of f quantity and f total- t name = ”BRUSHED” p name

amount per p name

Q18 Sum of f quantity and f total- p size > 40 p name

amount per p name

Q19 Sum of f quantity and f total- p size > 40 t name

amount per t name

Q20 Sum of f quantity and f total- p size > 40 t name

amount per t name



to derive any more complex, composite metrics, such as TPC-H’s throughput
and power if necessary, while remaining simple.

5 Sample Experiments

To illustrate XWeB’s usage, we compare in this section a sample of XML-native
DBMSs, namely BaseX3, eXist4, Sedna5, X-Hive6 and xIndice7. We focus on
XML-native systems in these experiments because they support the formulation
of decision support XQueries that include join operations, which are much more
difficult to achieve in XML-compatible relational DBMSs. In these systems, XML
documents are indeed customarily stored in table rows, and XQueries are em-
bedded in SQL statements that target one row/document, making joins between
XML documents difficult to express and inefficient.

Our experiments atomize the execution protocol from Section 4.3, on one
hand to separately outline how its steps perform individually and, on the other
hand, to highlight performance differences among the studied systems. Moreover,
we vary data warehouse size (expressed in number of facts) in these experiments,
to show how the studied systems scale up. Table 2 provides the correspondence
between the number of facts, parameters SF and D, and warehouse size in kilo-
bytes. Note that warehouse sizes are small because most of the studied systems
do not scale up on the hardware configuration we use (a Pentium 2 GHz PC
with 1 GB of main memory and an IDE hard drive running under Windows XP).
The possibility of missing values and element reordering is also disregarded in
these preliminary experiments, i.e., Pm = Po = 0.

5.1 Load Test

Figure 7 represents loading time with respect to data warehouse size. We can
cluster the studied systems in three classes. BaseX and Sedna feature the best
loading times. BaseX is indeed specially designed for full-text storage and al-
lows compact and high-performance database storage, while Sedna divides well-
formed XML documents into parts of any convenient size before loading them
into a database using specific statements of the Data Manipulation Language.
Both these systems load data about twice faster than X-Hive and xIndice, which
implement specific numbering schemes that optimize data access, but require
more computation at storage time, especially when XML documents are bulky.
Finally, eXist performs about twice worse than X-Hive and xIndice because, in
addition to the computation of a numbering scheme, it builds document, element
and attribute indexes at load time.

3 http://www.inf.uni-konstanz.de/dbis/basex/
4 http://exist.sourceforge.net
5 http://www.modis.ispras.ru/sedna/
6 http://www.emc.com/domains/x-hive/
7 http://xml.apache.org/xindice/



Table 2. Total size of XML documents

SF D Number of facts Warehouse size (KB)

1 1/14 × 10−7 500 1710

1 1/7 × 10−7 1000 1865

1 2/7 × 10−7 2000 2139

1 3/7 × 10−7 3000 2340

1 4/7 × 10−7 4000 2686

1 5/7 × 10−7 5000 2942

1 6/7 × 10−7 6000 3178

1 10−7 7000 3448

5.2 Performance Test

In this set of experiments, we measure query execution time with respect to
data warehouse size. Since we rapidly test the limits of the studied systems, we
only and separately evaluate the response of reporting, 1-dimension cube, and
complex hierarchy-based queries, respectively. In terms of workload parameters,
RE = 1D = CH = TRUE and 2D = 3D = FALSE. Moreover, we stop time
measurement when workload execution time exceeds three hours. Finally, since
we perform atomic performance tests, they are only cold runs (i.e., NRUN = 0).

Figure 8 represents the execution time of reporting queries (RE) with respect
to warehouse size. Results clearly show that X-Hive’s claimed scalability capa-
bility is effective, while the performance of other systems degrades sharply when
warehouse size increases. We think this is due to X-Hive’s specifically designed
XProc query Engine (a pipeline engine), while Sedna and BaseX are specially
designed for full-text search and do not implement efficient query engines for
structural query processing. Finally, eXist and xIndice are specifically adapted
to simple XPath queries processed on a single document and apparently do not
suit complex querying needs.

In Figure 9, we plot the execution time of 1D cube queries (1D) with respect
to warehouse size. We could only test Sedna and X-Hive here, the other systems
being unable to execute this workload in a reasonable time (less than three
hours). X-Hive appears the most robust system in this context. This is actually
why we do not push toward the 2D and 3D performance tests. Only X-Hive
is able to execute these queries. With other systems, execution time already
exceeds three hours for one single query. The combination of join and grouping
operations (which induce further joins in XQuery) that are typical in decision
support queries should thus be the subject of dire optimizations.

Finally, Figure 10 features the execution time of complex hierarchy-based
queries (CH) with respect to warehouse size. In this test, we obtained results
only with X-Hive, Sedna and BaseX. Again, X-Hive seems the only XML-native



0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8

Number of facts

L
o

a
d

in
g

 t
im

e
 (

m
s
)

eXistX-HiveSedna Xindice BaseX

Fig. 7. Load test results

DBMS to be able to scale up with respect to warehouse size when multiple join
operations must be performed.

6 Conclusion and Perspectives

When designing XWeB, which is to the best of our knowledge the first XML
decision support benchmark, we aimed at meeting the four key criteria that
make a “good” benchmark according to Jim Gray [8]. Relevance means the
benchmark must answer various engineering needs. This is why we chose to base
our work on a TPC standard. We also introduced more tunability, both at schema
and workload levels, to adapt to the reality of XML DBMSs. Portability means
the benchmark must be easy to implement on different systems. To this aim, we
implemented XWeB with the Java language that allows connecting to most XML
DBMSs through APIs (we used the very popular XML:DB8). Scalability means
it must be possible to benchmark small and large databases, and to scale up
the benchmark, which is achieved by inheriting from the SF parameter. Further
tuning is achieved through the density (D) parameter. Eventually, simplicity
means that the benchmark must be understandable, otherwise it will not be
credible nor used. This is why we elected to base XWeB on TPC-H rather than
TPC-DS or DWEB.

In this paper, we also illustrated XWeB’s relevance through several exper-
iments aimed at comparing the performance of five native-XML DBMSs. Al-
though basic and more focused on demonstrating XWeB’s features than com-
paring the studied systems in depth, they highlight X-Hive as the most scalable

8 http://xmldb-org.sourceforge.net/xapi/
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Fig. 8. RE performance test results

system, while full-text systems such as BaseX seem to feature the best data stor-
age mechanisms. Due to equipment limitations, we remain at small scale factors,
but we believe our approach can be easily followed for larger scale factors. We
also show the kind of decision support queries that require urgent optimization:
namely, cubing queries that perform join and grouping operations on a fact doc-
ument and dimension documents. In this respect, XWeB had previously been
successfully used to experimentally validate indexing and view materialization
strategies for XML data warehouses [13].

Eventually, a raw, preliminary version of XWeB (warehouse, workload, Java
interface and source code) is freely available online9 as an Eclipse10 project. A
more streamlined version is in the pipe and will be distributed under Creative
Commons licence11.

After having designed a benchmark modeling business data (which XWeB
aims to be), it would be very interesting in future research to also take into
account the invaluable business information that is stored into unstructured
documents. Hence, including features from, e.g., XBench into XWeB would help
improve a decision support benchmark’s XML specificity.

Since the XQuery Update Facility has been issued as a candidate recommen-
dation by the W3C [6] and is now implemented in many XML DBMSs (e.g.,
eXist, BaseX, xDB, DB2/PureXML, Oracle Berkeley DB XML...), it will also
be important to include update operations in our workload. The objective is not

9 http://ena-dc.univ-lyon2.fr/download/xweb.zip
10 http://www.eclipse.org
11 http://creativecommons.org/licenses/by-nc-sa/2.5/
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Fig. 9. 1D performance test results

necessarily to feature full ETL testing capability, which would presumably neces-
sitate a dedicated benchmark (Section 4.1), but to improve workload relevance
with refreshing operations that are casual in data warehouses, in order to chal-
lenge system response and management of redundant performance optimization
structures such as indexes and materialized views.

The core XWeB workload (i.e., read accesses) shall also be given attention.
It has indeed been primarily designed to test scaling up. Filter factor analysis of
queries [16] and experimental feedback should help tune it and broaden its scope
and representativity. Moreover, we mainly focus on cube-like aggregation queries
in this version. Working on the output cubes from these queries might also be
interesting, i.e., by applying other usual XOLAP operators such as slice & dice
or rotate that are easy to achieve in XQuery [9].

Finally, other performance metrics should complement response time. Beyond
composite metrics such as TPC benchmarks’, we should not only test system
response, but also the quality of results. As we underlined in Section 4.3, complex
grouping XQueries may return false answers. Hence, query result correctness
or overall correctness rate could be qualitative metrics. Since several XQuery
extension proposals do already support grouping queries and OLAP operators
[2,9,12,26], we definitely should be able to test systems in this regard.
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