
HAL Id: hal-00561770
https://hal.science/hal-00561770

Submitted on 1 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Issues on Memory Managemenet for Component-based
Systems

Marius Bozga, Emmanuel Sifakis

To cite this version:
Marius Bozga, Emmanuel Sifakis. Issues on Memory Managemenet for Component-based Systems.
EC2 2010: Workshop on Exploiting Concurrency Efficiently and Correctly, Jul 2010, Edinburgh,
United Kingdom. �hal-00561770�

https://hal.science/hal-00561770
https://hal.archives-ouvertes.fr

Issues on Memory Management for Component-Based Models

Marius Bozga Emmanuel Sifakis

University Grenoble 1 - CNRS - VERIMAG

Centre Equation, 2 av. de Vignate, 38610 Gieres, France

1 Introduction
Memory management has become an extremely important
factor for designing and implementing performant and en-
ergy efficient embedded applications. There are multiple rea-
sons closely related to the execution platform. For instance,
the memory organization and memory model enforced by the
platform influence directly the execution time for any basic
memory operation [1]. In addition, the amount of available
memory may also directly enable/limit the concurrency al-
lowed by particular applications e.g., pipeline or data-flow
applications requiring buffering of intermediate results [2]. Fi-
nally, a considerable impact is due to the programming and
memory model used at the application level. The memory
model together with the programming primitives used to co-
ordinate concurrent execution (e.g., locks, atomic sections,
transactions, etc.) will heavily influence the compilation and
deployment of the application onto the platform [3], [?], [?].
In particular, the placement of data into memory, the inser-
tion of additional memory copy operations, if needed, etc are
usually decided at compile time.

In this paper, we investigate these issues for the BIP –
Behaviour, Interaction, Priority – component framework for
modeling, analysis and implementation of heterogeneous real-
time systems [4]. BIP supports a component construction
methodology based on the assumption that components are
obtained as the superposition of three layers: (1) behavior,
expressed in terms of extended automata, (2) interactions, de-
scribing the cooperation between actions of the behaviour and
(3) priorities, rules specifying scheduling policies for interac-
tions. Layering implies a clear separation between behavior
and architecture (connectors and priority rules).

At the lower level of BIP, atomic components contain be-
haviour characterized by a finite control described by au-
tomata and extended with arbitrary computations (expressed
as C/C++ functions/methods) on arbitrary data structures
(instances of C/C++ data types). Automata transitions are
triggered by ports, that are, actions names used later to spec-
ify interactions. Moreover, ports may be associated with lo-
cal data of atomic components. These data are available for
use (i.e., reading or writing) when interactions involving that
port are executed. Interactions are specified in connectors
as sets of ports and have also associated an arbitrary com-
putation involving port’s data (expressed as C/C++ func-
tions/methods). They can be executed when all atomic com-
ponents involved are ready to interact i.e., every component
reaches some control location enabling a transition labeled
by the required port. Whenever enabled, the execution of an
interaction is done in two steps: first, the interaction code
is executed as an atomic step, then all involved components
execute (concurrently) the local computations of the inter-
acting transitions. When several interactions are enabled for
execution, the choice is restricted according to priority rules.

Despite the use of arbitrary C/C++ for describing data
types and computations, BIP tacitly assumes a private mem-
ory model for atomic components. Data are private/local to

atomic components and never shared between them. This
assumption confers several advantages for constructing and
reasoning about systems in BIP. First of all, it achieves a
separation of concerns between local computation and inter-
action/communication between components. This is a basic
issue for reliable component-based design, as it allows to de-
velop atomic components independently of each other, and
independently from the coordination glue, once the inter-
faces (ports and associated data) have been clearly identi-
fied. Second, the private memory model provides scalable
system analysis using compositional methods. For example,
global deadlock-detection can be breakdown into local analy-
sis of atomic components plus analysis of the interaction glue,
as explained in [5]. Third, a private memory model ensures
maximal parallelism between atomic components at execu-
tion. Once an interaction is completed, local computations
can be carried out independently on atomic components with
no interference. In particular, this model may lead to efficient
distributed implementations [6].

Nevertheless, the advantages obtained from the private
memory model come with a potential overhead for communi-
cation of data between components. In the absence of data
sharing, successive operations on the same data require an ex-
plicit deep copy/transfer of data, if the operations are imple-
mented on different atomic components. Such data transfers
must be actually realized on BIP interactions, however, they
can be very time consuming, in particular for big/complex
data structures. In addition, having long computations tak-
ing place on interactions may drastically decrease the paral-
lelism within the system. This is because all the components
involved in an interaction must wait for it to complete, before
resuming their internal computations. Finally, another incon-
venience of the private memory model is the overall amount
of memory needed for implementation. In fact, providing all
the memory to ensure maximal parallelism for atomic compo-
nents is not justified/needed if the execution platform under-
neath does not allow, or has very limited support, for parallel
execution. Intuitively, a sequential execution platform (e.g.,
one core) implicitly reduces the parallelism within the BIP
system to one executing component at a time. Therefore, the
implementation can be realized in principle with less memory
and still deliver the same time performances.

We have investigated a relaxed memory model for BIP al-
lowing to address the runtime issues above, while partially
preserving the advantages of the private memory model. In
the new model, called SM-BIP (for Shared-Memory BIP)
atomic components are allowed to own and use, temporar-
ily, data placed in a designated/predefined Shared-Memory

component. In addition, atomic components are allowed to
exchange ownership/references of shared memory data on in-
teractions. Consequently, the overhead for communicating
data placed in shared memory is drastically reduced. More-
over, only one atomic component may own (i.e., points-to,
reference) some shared data at a time. Hence, there are no
access conflicts on the shared data, and all components can

1

int a[N]

send(a)

2

send(b)

int b[N]

rec(c)

int c[N]

send(c) rec(d)

int d[N]

22 32 3

rec(b)
b=a

Producer

1

c=b
Divide

d=c
Consumer

1

11

Power

op | b^2;

send
rec

op | gen(a);

rec
op | consume(d);

op | c/17; rec

send send

Figure 1: Pipeline example in BIP

operate concurrently. Finally, the size (e.g., number of data
items) of the Shared-Memory component becomes a param-
eter of the system and can be chosen accordingly to extra
constraints.

We present hereafter a generic transformation of a signif-
icant subset of BIP into SM-BIP. This transformation pre-
serves the functionality of the systems, while systematically
increasing the time performance. Moreover, the resulting SM-
BIP model obtained can be further tuned depending on the
target execution platform. The size of the shared memory is
now a model parameter that can be adapted to match the de-
gree of parallelism exhibited by the system on the execution
platform. That is, one can easily find the minimal/optimal
memory size allowing the system to deliver its functional-
ity with increased time performance on the chosen execution
platform.

The paper is structured as follows. In section 2, we present
the rules of the transformation, from BIP to SM-BIP systems,
and we illustrate them on a simple example. In section 3
we provide some initial experimental results obtained for the
example. Finally, we conclude with a broad discussion on the
tradeoffs of the transformation in section 4.

2 From BIP to SM-BIP

We briefly introduce the transformation of BIP systems into
equivalent SM-BIP systems. For the sake of clarity, we will
illustrate the transformation on a simple example, shown in
Figure 1.

Example 1 The example describes a pipelined operation on
data realized by four concurrent components. Each compo-
nent has a private array of size N. The left-most component
is the Producer. It generates fresh data (i.e., the array con-
tent) which is then sent and processed successively by the mid
components in the chain, and finally discarded by the right-
most component, the Consumer. Data are entirely copied from
the left to the right component through connectors.

The starting point of the transformation are BIP systems
annotated with information about which local data is share-
able or not. The annotations are currently provided by the
user, however, they can also be defined automatically depend-
ing on higher-level information e.g., the type or the concrete
access to data in the system. The transformation is applica-
ble for annotated BIP systems that satisfy a number of sim-
ple (syntactic) feasibility conditions. These conditions ensure
that local data meant to be shared are accessed and commu-
nicated in some restricted way in the original BIP system.
More precisely, the BIP system must behave like an I/O sys-
tem with respect to share-able data. In I/O systems, fresh
data are received on inputs ports, processed locally by the
component, and finally delivered through output ports. Once
a component delivers the modified data, it no longer accesses
it. Here are the syntactic checks in more details:

1. All connectors connected to an input port, copy data to
the component (i.e., the component receives). Dually,
all connectors connected to the output port, copy data
from the component (i.e., the component sends). This
condition is a prerequisite to perform an accurate live
data analysis in atomic components, as required by the
second condition below.

2. To validate every component behaves as an I/O system
on its shared data, we check that every share-able data
is locally dead, both after being sent and before being
received on any port. Live and dead data are computed
locally, on each component, according to the classical
definition used in compiler optimization see e.g., [7]. If
the condition holds, it will further allow to replace the
deep copy/transfer of data on connectors with a reference
copy and a transfer of the ownership.

3. On every connector, share-able data is only copied (i.e.,
neither tested nor modified), moreover, it is copied from
one source to one destination component. In combina-
tion with the previous conditions, this condition allows
to safely replace the deep copy of share-able data in con-
nectors with a simple reference copy and implicitly with
the transfer of ownership.

Example 2 The pipeline example is an I/O system. Let us
assume the user annotated all the local arrays to be share-
able. The conditions we just stated hold, and they can be
easily checked. In Figure 1, we have grayed the states where
arrays are locally dead.

If the BIP system satisfies the condition above, its trans-
formation to SM-BIP is structural. The overall architecture
of the BIP system is preserved, however, atomic components
and connectors are locally modified.

First of all, the SM-BIP system contains a Shared-Memory

component. This component is a simplified memory manager
which manages several memory slots e.g., one for each share-
able data of the initial BIP system. For each slot, it maintains
a boolean value indicating if the slot is currently in use by a
component or not. An abstract view of the Shared-Memory is
given on Figure 2. It can interact on two ports, alloc and free

through which regular components can acquire and release
memory slots. For allocation, if there are slots available, the
Shared-Memory marks one of them as used and provides a
reference of it to the component. Otherwise, the interaction is
postponed until memory slots become available. For release,
atomic components simply provide the reference of the slot
and the Shared-Memory marks them as unused.

Second, atomic components and connectors are locally
transformed, according to the following local rules:

• in every atomic component, every share-able data is re-
placed by a reference (i.e., pointer), while the data them-
selves are migrated as memory slots into the new Shared-

Memory component.

2

&d=&c
&c=null

&b=&a
&a=null

&c=&b
&b=null

&a
&b &c &dalloc(&a)

freealloc

3 322 2

1

1
alloc free

Producer Power ConsumerDivide

rec(&d)send(&c)rec(&c)send(&b)rec(&b)send(&a)

free(&d)

free

op | consume(&d);

SharedMemory

&d=null
freeMemSlot(&d)[haveMemSlot()]

&a = getMemSlot()
s1[N]

s2[N] s4[N]

s3[N]

op | &b^2;

rec

send

op | &c/17;

rec

send
recalloc

send

op | gen(&a);

21

1 1

1

1’
’

Figure 2: Pipeline example transformed in SM-BIP

• in every connector, any deep copy/transfer of share-able
data is replaced by the copy of the reference. Moreover,
the sender component erases its reference, that means,
the ownership on the data is uniquely maintained by the
receiver.

• immediately before a share-able data becomes locally live
by executing any but a receive transition (e.g., the case
of the Producer component), an extra state and an ex-
tra alloc transition is added to request a corresponding
memory slot from the Shared-Memory.

• dually, immediately after a share-able data becomes lo-
cally dead by executing any but a send transition (e.g.,
the case of the Consumer component), an extra state and
an extra free transition is added to release the memory
slot to Shared-Memory.

These transformation rules guarantee that at any moment,
every component holds unique valid references to memory
slots into the Shared-Memory for all its share-able data which
are actually live, and respectively null references for the share-
able which are dead. Consequently, if all share-able data are
entirely migrated to the Shared-Memory component, the func-
tionality of the original BIP system is completely preserved
in the transformed SM-BIP system.

Example 3 Applying the transformation rules above to the
pipeline example we obtain the equivalent SM-BIP system,
depicted in Figure 2. We can notice the addition of the Shared

Memory component, as well as the extra states of the Producer

and Consumer, and the modified connectors.

The centralized control of shared memory enhances the con-
figurability of the system in terms of memory usage. In the
SM-BIP implementation we can easily add or subtract mem-
ory slots. Altering the available memory comes with tradeoffs
on parallelism and system functionality. These issues will be
discussed in more details later.

3 Experimental Results

The BIP and SM-BIP implementation of the pipeline example
presented earlier have been executed on an Intel Core2 Duo
CPU at 2.4 GHz . The size of the arrays has been fixed at
106 integers. The number of iterations of the pipe has been
also fixed at 100. We consider two experimental situations,
respectively light and heavy computation. In the light case,
each component in the pipeline makes one pass over the arrays

elements, while in the heavy case each component makes two
passes.

Figure 3 depicts a plot with the execution time of BIP and
SM-BIP with all the possible numbers of memory slots avail-
able. The plotted data are presented on Table 1. Table 1 con-
tains two sub-tables, one for each situation, light and heavy.
The data presented on each table are, the execution time in
seconds, virtual memory needed in bytes, and the percentage
of the two cores utilization (the max being 200%).

Multi-Threaded execution

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

1

1.5

2

2.5

3

3.5

4

BIP - SM-BIP
BIP 4Mem 3Mem 2Mem 1Mem

 BIP - light computation
 SM-BIP - light computation
 BIP - heavy computation
 SM-BIP - heavy computation

Figure 3: BIP vs SM-BIP, light and heavy computation.

The performance gain of SM-BIP vs BIP is due to replac-
ing deep copies of the data by copy of references. For this
example, the overhead of copying data was approximately
1 second. From the plot of both light and heavy computa-
tion we can observe that the SM-BIP system with the same
number of memory slots (i.e., 4) as the initial BIP system,
performs better. In this case, no parallelism is lost.

For this particular example, if we reduce the number of
memory slots available, we simply restrict the number of par-
allel processing in the pipeline to the number of available
memory slots. Hence, the overall functionality of the pipeline
is ’preserved’ to some extend. In particular, the system pre-
serves its maximal degree of parallelism on two cores using 2
memory slots.

Nevertheless, although we systematically gain 1 second
from memory copies, the lack of parallelism starts impacting
the overall performance. As we can see in the case of heavy
computation with one memory slot, i.e. sequential behavior,
the gain due to memory copies cannot compensate the loss

3

(a) Light computation

Time Mem usage Core utilization%

BIP 4 Mem 1.95 51672 B 143%

4 Mem 1.16 59876 B 153%

SM-BIP 3 Mem 1.13 55968 B 157%

2 Mem 1.05 52060 B 165%

1 Mem 1.77 48152 B 97%

(b) Heavy computation

Time Mem usage Core utilization%

BIP 4 Mem 3.23 51672 B 141%

4 Mem 2.15 59876 B 174%

SM-BIP 3 Mem 2.30 55968 B 161%

2 Mem 2.65 52060 B 136%

1 Mem 3.54 48152 B 99%

Table 1: Experimental results

in parallelism, hence the execution time is worse than for the
initial BIP model.

4 Discussion

We presented a transformation of BIP systems into equiva-
lent SM-BIP systems, which always increases the time per-
formance by replacing the costful deep copies with refer-
ence passing. Moreover, managing the shared memory slots
through a component gives us the flexibility to alter the num-
ber of slots without modifying the rest of the model. In
general, increasing the number of slots is safe. That is, the
systems behavior remains the same. Nevertheless, decreas-
ing the number of memory slots has drawbacks, although it
might be necessary on systems with limited resources. For ex-
ample, it reduces parallelism, since now components can be
blocked while waiting for memory to be freed. Consequently,
the systems behavior can be severely disturbed (restricted)
e.g., deadlocks can occur due to unavailable memory to com-
plete ongoing computations.

Figure 4 gives an overview of the trade-off between memory
and parallelism used for implementation of SM-BIP models.
On the horizontal axis we display the shared memory, in terms
of slots, while on the vertical axis the number of processes
that can operate concurrently on shared data. Concerning
the memory, there exists actually three bounds, nmax, nreal

and ndlk. The upper bound nmax is the memory allocated by
the initial BIP model, i.e., the amount of memory allowing for
maximum parallelism. The second bound nreal is the number
of memory slots that are effectively used in parallel within the
initial BIP model. In fact, the BIP model itself can restrict
the parallel usage of memory, due to specific synchronizations
for instance. The lower bound ndlk, is the minimum amount
of memory needed for the system to continue to work without
deadlock due to memory limitations i.e., to still deliver some
(minimal) functionality.

Between nmax and nreal the SM-BIP model is equivalent
to the initial BIP model. For sizes between nreal and ndlk

the SM-BIP model simulates the BIP model, in particular
the degree of parallelism decreases. For each memory size n,
we can actually obtain the minimal number of processes pn

that are able to work concurrently on shared data, at any
time. Based on these values, we deduce a rough estimation of
the ratio memory/parallelism needed for optimal execution of
shared-memory BIP system. For instance, using memory size
n will perform optimally on pn cores. If the given execution
platform provides more than pn cores, the extra cores may

not be used due to memory limitations. Dually, having less
than pn cores will actually restrict the parallelism, much more
than the memory.

Finally, for memory sizes smaller than ndlk, deadlocks can
occur because of insufficient memory. The system cannot
work anymore, unless an extra execution control is applied
(e.g., a schedule that can coordinate memory allocations to
avoid deadlock situations).

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

0

P

Memory

Concurrency

*

*

*

*

*

*

ndlk n nmaxnreal

pn

Figure 4: Reducing memory resources in SM-BIP

Interesting future work is to identify systems different than
I/O to which this transformation can be applied. Further-
more, lock-based or transactional memory based solutions
can be investigated for managing concurrent access to shared
memory locations in component-based systems.

References

[1] S. Mador-Haim, R. Alur, and M. Martin. Plug and play
components for the exploration of Memory Consistency
Models. In FMCAD09.

[2] Vicki H. Allan, Reese B. Jones, Randall M. Lee, and
Stephen J. Allan. Software pipelining. ACM Comput.
Surv. 1995.

[3] J. Mankin, D. Kaeli, and J. Ardini. Software transactional
memory for multicore embedded systems. In LCTES ’09.

[4] Y. Choi, Y. Lin, N. Chong, S. Mahlke, and T. Mudge.
Stream compilation for real-time embedded multicore sys-
tems. In CGO ’09.

[5] R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedeljkovic,
and J.M. Anderson. Data distribution support on dis-
tributed shared memory multiprocessors. In PLDI ’97.

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling Heteroge-
neous Real-time Systems in BIP. In SEFM06.

[7] S. Bensalem, M. Bozga, T. Nguyen, and J. Sifakis. Com-
positional Verification for Component-based Systems and
Application. In ATVA 2008, volume 5311 of LNCS.

[8] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Dis-
tributed Semantics and Implementation for Systems with
Interaction and Priority. In Proceedings of FORTE’08.

[9] S. Muchnick. Advanced Compiler Design Implementation.
Morgan Kaufmann Publishers, 1997.

4

	Introduction
	From BIP to SM-BIP
	Experimental Results
	Discussion

