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Abstract

The scheduling of outbound baggage at international airports is a challenging task in the airport industry. The issue isto
control the incoming baggage flow in order to balance the workload over the system. The resource consumption of the different
activities, which have to be scheduled, are depending on thearrival process of the baggage. Because of high complexity we
suggest a decomposition heuristic to tackle this problem.
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I. I NTRODUCTION

We consider the scheduling of outbound baggage at hub airports. For each flight the baggage arrives through the checkins
as well as by feeding flights. LetF be the set of flights andT := {0, . . . , T } be the discrete planning horizon. Then we have
for each flighti ∈ F and t = 0, . . . , T − 1 an arrival processAi,t which gives the amount of baggage arriving during time
period [t, t+ 1[. The incoming baggage is eventually sent to a circulation, acircleshaped conveyor belt where the baggage is
loaded into bag carts. After loading, the bag carts are transported to the outbound plane. Circulations are scarce resources and
we address their efficient use by proper assignment and scheduling of the baggage handling to flights. Central decisions are
the circulation assigned to a flight, the start time the circulation is processing the baggage of the flight and the releasetime of
baggage in the central storage system to the assigned circulation.

Since baggage might arrive quite some time before the flight leaves, the baggage cannot be directly routed to a circulation
but is sent to a central storage system with capacityκ instead. As soon as a circulation is assigned to a flight, incoming baggage
will be sent to this circulation and not to the central storage anymore. However, the baggage which has accumulated in the
central storage so far has also to be sent to the circulation.Hence, it has to be decided at what time the baggage of the flight
in the central storage is released to the circulation. We denote bySH

i ∈ [ESi, LSi] the time a circulation starts processing a
flight whereESi andLSi give the earliest and latest processing time, respectively. SD

i ∈
[

SH
i , SE

i − pDi
]

denotes the time
the baggage of flighti in the storage is released to the circulation whereSE

i is the deadline for the baggage handling of flight
i andpDi denotes the duration required to release the baggage of flight i from the central storage to the circulation. Duration
pDi depends on the transfer rateρ which gives the number of baggage units transferred per period.

Let us have a more detailed look at the circulations (see Figure 1). The conveyor belt of circulationc ∈ C has a capacity of
κc baggage units. Obviously,κc depends on the length of the conveyor belt. Circulationc is made up ofWc working stations.
At each working stationu = 1, . . . ,Wc baggage can be unloaded from the conveyor belt to the bag carts with a depletion rate
of α units per period. Each working stationu at circulationc consists ofPc,u parking spaces. The number of all parking spaces
of circulation c is Pc :=

∑Wc

u=1 Pc,u. One parking space can accommodate one bag cart. The number of bag carts required
for flight i ∈ F is denoted byςi. A working station can only be assigned to a flight if at least one bag cart is placed on a
corresponding parking place. Furthermore, in order to carry the bag carts with a towing vehicle to the aircraft, the bag carts
on the parking places have to be sequentially ordered on eachside of the circulation. Figure 1 shows a feasible assignment of
3 flights to a circulation, with 4 working stations (WS) and 5 parking spaces per working station.

II. D ECOMPOSITIONPROCEDURE

The problem can be modelled as a generalisation of the resource-constrained project scheduling problem (RCPSP) with the
storage and conveyor belt of the circulations as cumulativeresources, the baggage arriving process of each flight as replenishing
activity, the start of the handling process at the circulation as a depleting activity and the release activity of the storage as,
both, replenishing and depleting (see [1] and [2] for details of the general modelling concepts). Note that the depletion rate of
the handling process at the circulation depends on the number of workstations assigned to a flight.

A general mixed-integer program (MIP) with on/off variables (e.g. [3]) is proposed in [4]. We used the state-of-the-artMIP
solver CPLEX to solve this MIP formulation and compared the solution with the method currently used at Munich Airport.
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Fig. 1. Feasible assignment of 3 flights to 4 working stationsof a circulation.

For the assignment problem they use a system of rules whereasthe scheduling problem follows a rule of thumb. For our
experiments, we employed a test instance of 4 flights, one circulation with 4 working stations and 10 parking places, and a
time horizon of 80. It turned out, that we could improve the worload with our MIP formulation up to 60%. The computing
time for the instance was about 180 sec to get an optimal solution. However, if we double the number of flights and working
stations we already got computing times of up to 1 hour if we solve the problem to optimality. A real instance with up to
370 flights, 22 circulations with about 4 working station and10 parking spaces per circulation seems to be intractable. Our
experiments and the fact that the problem of finding a balanced workload over all circulations is NP-hard (cf. Lemma 1) give
the need of heuristic procedures. We present a decomposition heuristic to get a balanced workload over all circulationsC. For
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Fig. 2. Scheme of the decomposition heuristic.

the decomposition we separate the problem into a schedulingproblem (see Section II-C) and two assignment problems (see
Section II-B and II-D). The connection between these problems is shown in figure 2.



In the first step we assign flights to circulations, where we assume that the starting time of the storage depletion is equalto the
starting time of the baggage handling (see section II-C). The objective of the assignment problem is to minimize the maximal
workload of each circulation. Next, we schedule the starting times of the baggage handling and starting times of the storage
depletion for a given assignment vectorw of working stations to flights. The objective is to minimize the maximal workload
for the given assignment of flights to circulations. If the schedule violates the storage capacity or the restriction given by
the received assignment in step one we introduce cuts. Afterwards we solve the scheduling problem again. Finally, a feasible
schedule in terms of the storage capacity and the given assignment is received (see section II-C1). In the second assignment
problem the working stations are assigned to the flights in order to minimize the maximal workload of each circulation. It
turns out that we can formulate this problem as a minimum costflow problem (cf. [5]). With the received assignmentw′ of
working stations to flights we optimize scheduling problem again to smooth the maximal workload again.

A. Definitions

Parameteršξi,c and ξ̂i,c denote the minimal and maximal required number of working stations, which can be assigned to
flight i ∈ F on circulationc ∈ C, respectively. The number of assigned working stations to flight i will be denoted bywi ∈ N.
The assignment vector of working stations to the different flights is defined byw := (wi)i∈F .
For each flighti ∈ F we set the minimal required number of working stations aswmin

i := minc∈C

{

ξ̌i,c
}

.

If we start the baggage handling of flighti at time SH
i ∈ [ESi, LSi], it takespDi (SH

i ) =
(

∑SH
i −1

z=SS
i

Ai,z

)

/ρ time units to

deplete all pieces of baggage stored for flighti. We setresti(SH
i ) :=

(

∑SH
i −1

z=SS
i

Ai,z

)

mod ρ.

In the following defintion we use indicator function1A(t) with 1A(t) = 1 if t ∈ A and 0 else.
Definition 1: Let SH

i ∈ [ESi, LSi] andSD
i ∈

[

ESi, S
E
i − pDi (SH

i )
]

. For eachi ∈ F define:
(i) Workload function

Ti,wi
(SH

i , SD
i , t) := 1[SH

i
,SE

i ]
(t) ·

(

Ti,wi
(SH

i , SD
i , t− 1)

+Ai,t + 1[SD
i
,SD

i
+⌊pD

i
(SH

i
)⌋](t) · ρ

+ 1]SD
i
+⌊pD

i
(SH

i
)⌋,SD

i
+pD

i
(SH

i
)](t) · resti(S

H
i )− wi · α

)+

gives the amount of baggage on a circulationc ∈ C at time t by assuming a working rate ofwi · α.
(ii) Storage function

Gi(S
H
i , SD

i , t) :=







min{t,SH
i −1}

∑

z=SS
i

Ai,z







−min
{

(t− SD
i )+, pDi (S

H
i )

}

· ρ

gives the amount of baggage stored for flighti at time t ∈ T .

B. Assignment Problem 1

In the first step of the decomposition heuristic we assign each flight i ∈ F to a circulationc ∈ C such that the maximal
workload will be minimized. Assignment problem 1 (AP1) willbe called feasible if the an assignment of flights to circulations
doesn‘t violate the capacity of the parking places and working stations of each circulationc ∈ C and the storage capacity.
In AP1 each flighti ∈ F needs only his minimal number of required working stationswmin

i . The start times of the storage
depletionSD

i is equal to the start time of the baggage handlingSH
i for all flight i ∈ F , e.g.Si := SH

i = SD
i . AP1 can now

be stated as follows:

minimize max
c∈C,t∈T

∑

i∈F

Ti,wmin
i

(Si, Si, t) · bi,c

κc

(1)

subject to

ESi ≤ Si ≤ LSi ∀ i ∈ F (2)
∑

c∈C

bi,c = 1 ∀ i ∈ F (3)

∑

i∈F :Si≤t≤SE
i

ςi · bi,c ≤ Pc ∀ c ∈ C (4)

∀ t ∈ T



∑

i∈F :Si≤t≤SE
i

ξ̌i,c · bi,c ≤ Wc ∀ c ∈ C (5)

∀ t ∈ T
∑

i∈F :SS
i
≤t≤SE

i

Gi(Si, Si, t) ≤ κ ∀ t ∈ T (6)

bi,c ∈ {0, 1} ∀ i ∈ F (7)

∀ c ∈ C

Si ∈ N ∀ i ∈ F . (8)

It is not hard to show that the BIN-PACKING PROBLEM can be reduced to the problem of finding a feasible solution for
the restrictions (1) to (8) in polynomial time. So we can holdthe following Lemma.

Lemma 1:Problem (1) to (8) is NP-complete.
Despite AP1 is NP-hard we can decompose AP1 by means of Danzig-Wolfe into two subproblems: A set convering problem
and a resource–constraint project scheduling problem (. These subproblems are also NP-hard but there are heuristics giving
good approximations of the optimal solution and also exact algorithm in the literature having good computing times evenfor
big instances (see [6], [7], [8]). Thefeasible assignment vectorof problem AP1 corresponding to the optimal solution will be
denoted by vectorb = (bi)i∈F with bi = c if flight i ∈ F is assigned to circulationc ∈ C. Note, if we can’t find a feasible
solution for AP1 there will be no feasible solution for complete problem.

In the followingVc ⊂ F represents the subset of flights which are handled on circulation c ∈ C. On setVc we define relation
� with i � j for i, j ∈ Vc iff SE

i ≤ SE
j . The linear order will be denoted byOc := (Vc,�).

C. Scheduling Problem

Once we have got a feasible assignment vectorb for AP1 we solve scheduling problem (SP(b,w)) minimizing the maximal
workload on each circulationc ∈ C by given assignment vectorw and given assignment . If we solve SP(b,w) for the first
time, we setwi = wmin

i for eachi ∈ Vc andc ∈ C.

minimize max
c∈C,t∈T























∑

i∈Vc

LSi
∑

ν=ESi

SE
i −pD

i (SH
i )

∑

z=ν

Ti,wi
(ν, z, t) · xi,ν,z

κc























(9)

subject to

LSi
∑

ν=ESi

SE
i −pD

i (SH
i )

∑

z=ν

xi,ν,z = 1 ∀ c ∈ C (10)

∀ i ∈ Vc

xi,t1,t2 ∈ {0, 1} ∀ i ∈ F (11)

∀ t1 ∈ [ESi, LSi]

∀ t2 ∈
[

t1, S
E
i − pDi (t1)

]

.

Given starting time vector of the baggage handlingSH := (SH
1 , . . . , SH

|F|), we setΩc,i(S
H) :=

{

j ∈ Vc | i � j ∧ SH
j < SE

i ∧ SE
j > SH

i

}

,
which denotes the subset of flights executed in parallel withflight i ∈ Vc.

Example 1:Regard flight setF = {1, 2, 3, 4} with SE
1 = 4, SE

2 = 6, SE
3 = 7 andSE

4 = 10. The time horizon is given
by T = {1, ..., 10}. Assume that we assign all 4 flights to circulation 1 and the starting times of the baggage handling is
calculated in SP(w) to SH

1 = 2, SH
2 = 2, SH

3 = 5, SH
4 = 7. We haveΩ1,1(S

H) = {1, 2}, Ω1,2(S
H) = {2, 3}, Ω1,3(S

H) = {3}
andΩ1,4(S

H) = {4}.
1) Cuts: We introduce cuts to consider the storage capacity, which can be violated by the current scheduleS := (SH , SD)

with SD := (SD
1 , ..., SD

|F|). If this is the case, we may have to left–shift some flights executed during the violation of the
storage constraint (Type 1). Furthermore, we have to check whether the schedule still satisfies the constraints given bythe
assignment of the flights to the circulations. To solve this conflict we have to right–shift some flights (Type 2) (cf. [1]).



(1.) Storage capacity: Consider subsetsR1
t :=

{

i ∈ F | SS
i ≤ t < ESi

}

andR2
t :=

{

i ∈ F | ESi ≤ t ≤ SD
i + pDi (SH

i )
}

for
the storage capacity in each time periodet ∈ T . If inequality

∑

i∈R2

t

Gi(S
H
i , SD

i , t) ≤ κ−
∑

i∈R1

t

Gi(S
H
i , SD

i , t) (12)

is not satisfied for somet ∈ T we add constraint
∑

i∈R1

t

Gi(S
H
i , SD

i , t)+ (13)

∑

i∈R2

t

LSi
∑

ν=ESi

SE
i −pD

i (SH
i )

∑

z=ν

Gi(ν, z, t) · xi,ν,z ≤ κ

to problem SP(b,w).
(2.) Connection to the given assignment: For the constraints of parking places and working stations we regard for eachc ∈ C

and i ∈ Vc the two inequalities
∑

j∈Ωc,i(SH)

ςj ≤ Pc (14)

∑

j∈Ωc,i(SH)

wj ≤ Wc. (15)

If constraint (14) or (15) is not satisfied for flighti we have to postpone some flightsj ∈ Ωc,i(S
H) with i 6= j, e.g. we

have to right–shift a subsetΘ ⊆ Dc,i :=
{

j ∈ Ωc,i(S
H) | LSj ≥ SE

i

}

.
Lemma 2: If (14) or (15) is not satisfied for somec ∈ C and i ∈ Vc, there exist at least one subsetΘ ⊆ Dc,i such that

∑

j∈Ωc,i(SH)\Θ

ςj ≤ Pc (16)

∑

j∈Ωc,i(SH)\Θ

wj ≤ Wc. (17)

Proof: This follows immediately if we regard step 1, where we got a feasible assignment of the flights to circulations.

Let ∆c,i ⊆ 2Dc,i be the set of minimal subsetsΘ ⊆ Dc,i such that constraint (16) and (17) hold. These subsets can be
obtained by an enumeration algorithm. If we introduce the additional constraints

∑

Θ∈∆c,i

yΘ = 1 (18)

LSj
∑

ν=ESj

SE
j −pD

j (SH
i )

∑

z=ν

ν · xj,ν,z ∀ j ∈ Ωc,i(S
H) (19)

≥
∑

Θ∈∆c,i:j∈Θ

yΘ · SE
i

to SP(b,w) we dissolve the conflict with the parking spaces or working stations.

SP(b,w) together with the additional cuts (1.) and (2.) can be stated as a multi–mode RCPSP (MMRCPSP) (cf. [1], [6],
[8]): The activities are given by the set of flightF . The modes are the different starting times of the baggage handling and
the starting times of the storage depletion. The mode for each activity i ∈ F is set in equation (10). The cuts of the storage
capacity in (13) can be regarded as renewable resources. SubsetΘ ⊆ Dc,i andΘ ∈ ∆c,i are delaying alternatives and minimal
delaying alternative, respectively (see [1], [6], [9], [8]). Even the described problem represents a special case of the MMRCPSP
it remains NP-complete.

Lemma 3:The problem of finding a feasible schedule in terms of storage– and assignment constraints is NP-complete.
Proof: Reduction of the KNAPSACK PROBLEM in polynomial time to SP(·, ·).



D. Assignment Problem 2

After getting a feasible scheduleS in terms of storage–, parking places– and working station capacity, we finally assign the
remaining working stations of each circulationc ∈ C to the corresponding flights of setVc.
To construct the flow network regard graphGc = (Vc,Ac) with node setVc and arc setAc. For i, j ∈ Vc with i 6= j we have
(i, j) ∈ Ac iff SE

i ≤ SH
j .

Parameterµi,t ∈ N denotes thereduction rateof flight i ∈ Vc at time t ∈ T if we assign an additional working station to
i. With an enumeration algorithm we can calculate reduction rateµi,t in O(max

i∈Vc

{

SE
i − ESi + 1

}

) for all i ∈ Vc andt ∈ T .

With the definitions above we can construct flow networkNc = (Ḡc, α) for eachc ∈ C in order to optimize the assignment

1 3

q d s

2 4

Fig. 3. Flow network of example 1.

of working station to flights. The node set and arc set of network graphḠc = (N̄c, Āc) is given byN̄c = Nc ∪ {q, d, s} and
Āc := Ac ∪ {(d, i) | i ∈ Vc} ∪ {(i, s) | i ∈ Vc} ∪ (q, d), respectivley. Nodeq represents the source node,s the sink node and
d a dummy node. Figure 3 shows the network graph of example 1 in section II-C. Functionα : Āc 7→ N gives the upper
capacity of the arcs withα((i, j)) = ξ̂j,c andα((q, d)) = α((i, s)) = Wc for all i, j ∈ Vc ∪ {d} with (i, j) ∈ Āc.
Assignment problem 2 (AP2) can now be stated as follows:

minimize max
t∈T

∑

i∈Vc

(

Ti,wi
(SH

i , SD
i , t)− (20)









∑

j∈Vc:(j,i)∈Āc

fj,i



− ξ̌i,c



 · µi,t)

subject to
∑

j∈V̄c\{q}:(j,i)∈Ā

fj,i ≥ ξ̌i,c ∀ i ∈ Vc (21)

∑

j∈V̄c\{q}:(j,i)∈Ā

fj,i ≤ ξ̂i,c ∀ i ∈ Vc (22)

∑

j∈V̄c:(j,i)∈Ā

fj,i −
∑

j∈V̄c:(i,j)∈Ā

fi,j = 0 ∀ i ∈ Vc ∪ {d} (23)

0 ≤ fj,i ≤ ξ̂i,c ∀ (j, i) ∈ Ac (24)

∪ {(d, i) | i ∈ Vc}

0 ≤ fi,s ≤ ξ̂i,c ∀ i ∈ Vc (25)

fq,d = Wc (26)

0 ≤ fd,s ≤ Wc. (27)

Problem (20) to (27) represents a minimum cost flow problem (MCFP) with a non–linear objective function (cf. [10], [11],
[12], [5]).After optimizing problem AP2 for allc ∈ C we receive a feasible solution which approximates the minimized
maximal global workload under the given assignment of problem AP1 and schedule of problem SP(b,w). The corresponding
optimal assignment vector of the optimal solution of AP2 will be denoted byw′.

In the last step of our decomposition heuristic we run problem SP(b, w′) with the given allocation of working station to
flights of AP2. The new solution of SP(b, w′) is lower or equal than the objective function value of SP(b,w).



III. U PCOMING RESEARCH

In this paper we have presented the problem of planning the outbound baggage at international airports. It turns out that
the problem can be regarded as a generalisation of the RCPSP,where the resource consumption of the different activitiesare
depending on the arrival process of the baggage. The problemis NP-hard, which leads to high computing times. To reduce
the computing times we have decomposed the problem into a generalized assignment problem, a multi–mode RCPSP and a
network flow problem with convex cost function. All these problems are also NP-hard to solve, however, they can be handled
easier because of their structural properties. To connect the different subproblems with each other we introduced cuts.

In the next step, we will elaborate efficient solution procedures for the different subproblems. Afterwards we will compare
our suggested heuristic with the heuristic currently used at Munich Airport and with the MIP formulation of [4]. For the
experiments we will use real data of Munich International Airport.

ACKNOWLEDGMENT
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