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Abstract

The scheduling of outbound baggage at international d@spiera challenging task in the airport industry. The issuéois
control the incoming baggage flow in order to balance the iwark over the system. The resource consumption of the differ
activities, which have to be scheduled, are depending oratheal process of the baggage. Because of high complexgéy w
suggest a decomposition heuristic to tackle this problem.
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I. INTRODUCTION

We consider the scheduling of outbound baggage at hub &rgesr each flight the baggage arrives through the checkins
as well as by feeding flights. LeF be the set of flights an@ := {0,...,T} be the discrete planning horizon. Then we have
for each flighti € 7 andt = 0,...,7 — 1 an arrival processi; ; which gives the amount of baggage arriving during time
period[t,t 4+ 1[. The incoming baggage is eventually sent to a circulatiotirdeshaped conveyor belt where the baggage is
loaded into bag carts. After loading, the bag carts are paniaed to the outbound plane. Circulations are scarce ressand
we address their efficient use by proper assignment and slihgadf the baggage handling to flights. Central decisiors a
the circulation assigned to a flight, the start time the dation is processing the baggage of the flight and the reltamseof
baggage in the central storage system to the assignedatiorul

Since baggage might arrive quite some time before the fliggatds, the baggage cannot be directly routed to a circaolatio
but is sent to a central storage system with capacitystead. As soon as a circulation is assigned to a flight,nmieg baggage
will be sent to this circulation and not to the central steramymore. However, the baggage which has accumulated in the
central storage so far has also to be sent to the circuldtlence, it has to be decided at what time the baggage of the fligh
in the central storage is released to the circulation. Weottehy S € [ES;, LS;] the time a circulation starts processing a
flight where ES; and LS; give the earliest and latest processing time, respectigtye [S7,SF — pP] denotes the time
the baggage of flight in the storage is released to the circulation whefeis the deadline for the baggage handling of flight
i andpP denotes the duration required to release the baggage of fligom the central storage to the circulation. Duration
pP depends on the transfer rgtewhich gives the number of baggage units transferred peogeri

Let us have a more detailed look at the circulations (seer€igl The conveyor belt of circulatiane C has a capacity of
k. baggage units. Obviously,. depends on the length of the conveyor belt. Circulatios made up ofi¥’, working stations.

At each working station, = 1,..., W, baggage can be unloaded from the conveyor belt to the bagwilt a depletion rate

of a units per period. Each working statienat circulationc consists ofP, ,, parking spaces. The number of all parking spaces
of circulationc is P, := ZZV:Cl P. ... One parking space can accommodate one bag cart. The nufbeag @arts required
for flight ¢ € F is denoted by;. A working station can only be assigned to a flight if at leasé dag cart is placed on a
corresponding parking place. Furthermore, in order toycdre bag carts with a towing vehicle to the aircraft, the bagsc

on the parking places have to be sequentially ordered on sidetof the circulation. Figure 1 shows a feasible assigniogn

3 flights to a circulation, with 4 working stations (WS) and &rking spaces per working station.

II. DECOMPOSITIONPROCEDURE

The problem can be modelled as a generalisation of the resanamstrained project scheduling problem (RCPSP) wigh th
storage and conveyor belt of the circulations as cumulatigeurces, the baggage arriving process of each flight &nisiping
activity, the start of the handling process at the circalatas a depleting activity and the release activity of theagje as,
both, replenishing and depleting (see [1] and [2] for dstafl the general modelling concepts). Note that the depiette of
the handling process at the circulation depends on the nuafhgorkstations assigned to a flight.

A general mixed-integer program (MIP) with on/off variablge.g. [3]) is proposed in [4]. We used the state-of-thevidR
solver CPLEX to solve this MIP formulation and compared tbkigon with the method currently used at Munich Airport.
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Fig. 1. Feasible assignment of 3 flights to 4 working statioha circulation.

For the assignment problem they use a system of rules whéneascheduling problem follows a rule of thumb. For our
experiments, we employed a test instance of 4 flights, orwaleition with 4 working stations and 10 parking places, and a
time horizon of 80. It turned out, that we could improve therivad with our MIP formulation up to 60%. The computing
time for the instance was about 180 sec to get an optimalisolutiowever, if we double the number of flights and working
stations we already got computing times of up to 1 hour if wivesthe problem to optimality. A real instance with up to
370 flights, 22 circulations with about 4 working station al@ parking spaces per circulation seems to be intractahle. O
experiments and the fact that the problem of finding a bamesrkload over all circulations is NP-hard (cf. Lemma 1)eagiv
the need of heuristic procedures. We present a decompohkitioristic to get a balanced workload over all circulatiGngor

SetF* =

Solve Assignment
Problem AP1
(Section 1I-B)

No feasible
solution

|
Introduce Solve Scheduling Introduce
Cuts of [ Problem SR{) «<—| Cuts of
Type (1) Receive solution™ Type (2)
(Section 1I-C)

Return
solution
=

Solve Assignment
Problem 2
Receive solutiow’, setw = w’
(Section 1I-D)

Fig. 2. Scheme of the decomposition heuristic.

the decomposition we separate the problem into a schedptioiglem (see Section 11-C) and two assignment problems (see
Section 1I-B and 1I-D). The connection between these pnoislés shown in figure 2.



In the first step we assign flights to circulations, where wsiag that the starting time of the storage depletion is etguiie
starting time of the baggage handling (see section 1I-Cg dbjective of the assignment problem is to minimize the maxki
workload of each circulation. Next, we schedule the stgrtimes of the baggage handling and starting times of thegéor
depletion for a given assignment vectarof working stations to flights. The objective is to minimizeetmaximal workload
for the given assignment of flights to circulations. If théhadule violates the storage capacity or the restrictiorrgiky
the received assignment in step one we introduce cuts. widiels we solve the scheduling problem again. Finally, ailiéas
schedule in terms of the storage capacity and the givenrassigt is received (see section II-C1). In the second assghm
problem the working stations are assigned to the flights deioto minimize the maximal workload of each circulation. It
turns out that we can formulate this problem as a minimum flosat problem (cf. [5]). With the received assignmenmt of
working stations to flights we optimize scheduling problegaia to smooth the maximal workload again.

A. Definitions

Parameterﬁiyc and gw denote the minimal and maximal required number of workiradi@hs, which can be assigned to
flight ¢ € F on circulationc € C, respectively. The number of assigned working stationsigbtfi will be denoted byw,; € N.
The assignment vector of working stations to the differeghtk is defined byw := (w;);cr.

For each flight: € 7 we set the minimal required number of working stationsug¥” := min.cc {gm}

If we start the baggage handling of flightat time S € [ES;, LS, it takeSp?(S-H) = (ZSiH_l Al-,z) /p time units to

i 2=85
deplete all pieces of baggage stored for flightVe setrest;(SH) (Z SS i Z) mod p.
In the following defintion we use indicator functidiy (¢) W|th ]1 =1if i€ Aand 0 else.
Definition 1: Let S € [ES;, LS;] andSP € [ES;, SF — pP(S] } For eachi € F define:
(i) Workload function

sz(S,L ’S’L 5 ) SH SE t (lew SH SD t_l)

1 M

A Lsp spe o <SH>J](“ g

+
+ Wgp i |yo(sm ] spp(sin] () Testi(ST) = wi o)

gives the amount of baggage on a circulatios C at time¢ by assuming a working rate af; - c.
(i) Storage function

min{t,SfI—l}
G (SzHaSzth) Z Ai,z

z:Sf

—min {(t - S”)*,pP (S} - p
gives the amount of baggage stored for flighat timet € 7.

B. Assignment Problem 1

In the first step of the decomposition heuristic we assigrhdbght i € F to a circulationc € C such that the maximal
workload will be minimized. Assignment problem 1 (AP1) wik called feasible if the an assignment of flights to circafet
doesn't violate the capacity of the parking places and wayldtations of each circulatione C and the storage capacity.

In AP1 each flighti € F needs only his minimal number of required working statiarfé™. The start times of the storage
depletionS? is equal to the start time of the baggage handliig for all flight i € F, e.g.S; := SH¥ = SP. AP1 can now
be stated as follows:

Z ﬂ,w;ni7l (S“ Si, t) N bz c

minimize max ‘€~ (1)
ceCteT K¢
subject to
> bie=1 VieF (3)
ceC
Z Gibic < Fe Veel (4)

i€F:S; <t<SE

VteT



Z Eie bic < W, Yeel (5)

i€EF:9;<t<SF

VteT
Y Gi(Si,Sut) <k VteT (6)
i€ F:57<t<SF
bic€{0,1} VieF (7
VecelC
S; €N VieF. (8)

It is not hard to show that the BIN-PACKING PROBLEM can be reeld to the problem of finding a feasible solution for
the restrictions (1) to (8) in polynomial time. So we can htild following Lemma.

Lemma 1:Problem (1) to (8) is NP-complete.
Despite AP1 is NP-hard we can decompose AP1 by means of Dalvialig into two subproblems: A set convering problem
and a resource—constraint project scheduling problem és@tsubproblems are also NP-hard but there are heuristicg) gi
good approximations of the optimal solution and also exfgiridhm in the literature having good computing times eden
big instances (see [6], [7], [8]). Theasible assignment vectof problem AP1 corresponding to the optimal solution will be
denoted by vectob = (b;);c» with b; = ¢ if flight i € F is assigned to circulation € C. Note, if we can't find a feasible
solution for AP1 there will be no feasible solution for comfa@ problem.

In the followingV,. C F represents the subset of flights which are handled on ctioala e C. On setV, we define relation
=< with i < j fori,j € V. iff SF < SJE. The linear order will be denoted b9, := (V., <).

C. Scheduling Problem

Once we have got a feasible assignment vebtéor AP1 we solve scheduling problem ($R{)) minimizing the maximal
workload on each circulation € C by given assignment vectar and given assignment . If we solve BR¢) for the first
time, we setw; = w™™" for eachi € V. andc € C.

Ls; SE-pl (s

Z Z Z T%.,wi(szyt) *Tiv,z

e i€V, v=ES,; zZ=v
minimize max { =% (9)
ceCteT Re

subject to

Ls; SP-pP(sf)

Z Z Tz =1 VeelC (20)

v=ES;  z=v
Vie),

Tiy s € {0,1} VieF (11)
YV t, € [ES;, LS;]
Viy €

[t1,SF —pP(t1)] .

Given starting time vector of the baggage hand®ig:= (S¥, ..., SE)). we se.;(S")i={jeV. | iz jAnSH <SPASF>SHY
which denotes the subset of flights executed in parallel ¥t i € V..

Example 1:Regard flight setF = {1,2,3,4} with SF = 4,SF = 6,SF = 7 and SF = 10. The time horizon is given
by 7 = {1,...,10}. Assume that we assign all 4 flights to circulation 1 and ttatisig times of the baggage handling is
calculated in SR() to S =2, S =2 SH — 5 SH — 7. We haveQ; ;(S7) = {1,2}, 0, 2(S) = {2,3}, Q1.5(S") = {3}
and; 4(S7) = {4}.

1) Cuts: We introduce cuts to consider the storage capacity, whichbeaviolated by the current sched@e= (SH, sP)
with SP := (SP, ...,Sll}l). If this is the case, we may have to left—shift some flightsceked during the violation of the
storage constraint (Type 1). Furthermore, we have to cheutiver the schedule still satisfies the constraints givethby
assignment of the flights to the circulations. To solve tlusflict we have to right—shift some flights (Type 2) (cf. [1]).



(1.) Storage capacity: Consider subsBfs:= {i € F | S7 <t < ES;} andR} := {i € F | ES; <t < SP +pP(5H)} for
the storage capacity in each time periade 7. If inequality

> GisH sPy<k— > Gi(sH sP.t) (12)
i€ERZ iERL
is not satisfied for somé e 7 we add constraint
> GiSHSP )+ (13)
iER]
LS, SP-pP (s

Z Z Z Gi(v,z,t) i, <K

ieR2v=ES;  z=v

to problem SH{,w).
(2.) Connection to the given assignment: For the constaifiparking places and working stations we regard for eaelC
and: € V, the two inequalities

jchﬂ;(SH)
> w < W (15)
jchﬂ;(SH)

If constraint (14) or (15) is not satisfied for flightwe have to postpone some flightss Q. ;(S) with i # j, e.g. we
have to right—shift a subs&® C D, := gj €Q.:(S") | LS; > Sf}
Lemma 2: If (14) or (15) is not satisfied for somee C andi € V., there exist at least one sub$eiC D, ; such that

Y. <P (16)
JEQ i (ST)\©
Z w; < We. (17)

J€Qe, i (ST)\©

Proof: This follows immediately if we regard step 1, where we gotasfble assignment of the flights to circulations.
]
Let A, ; C 2Pei pe the set of minimal subse®& C D..; such that constraint (16) and (17) hold. These subsets can be
obtained by an enumeration algorithm. If we introduce theitahal constraints

> ye=1 (18)
OcA.;

LS; SjE_p]D(Sz’H)

Z Z V. Vje.(sH) (19)

v=ES; Z=v

> > ye- S/

OEA ;:j€O
to SPp,w) we dissolve the conflict with the parking spaces or workitagisns.

SPp,w) together with the additional cuts (1.) and (2.) can be dta® a mult-mode RCPSP (MMRCPSP) (cf. [1], [6],
[8]): The activities are given by the set of fligtf. The modes are the different starting times of the baggagdlimg and
the starting times of the storage depletion. The mode foh eativity ¢ € F is set in equation (10). The cuts of the storage
capacity in (13) can be regarded as renewable resourceset®ls- D, ; and© € A, ; are delaying alternatives and minimal
delaying alternative, respectively (see [1], [6], [9],)i8Even the described problem represents a special case MMRCPSP
it remains NP-complete.

Lemma 3:The problem of finding a feasible schedule in terms of storag®l assignment constraints is NP-complete.

Proof: Reduction of the KNAPSACK PROBLEM in polynomial time to SFYJ. ]



D. Assignment Problem 2

After getting a feasible schedutkin terms of storage—, parking places— and working statigracity, we finally assign the
remaining working stations of each circulatiere C to the corresponding flights of s&t.
To construct the flow network regard graph = (V., A.) with node set). and arc setd.. Fori,j € V. with i # j we have
(i,7) € Ac iff SF < SH.

Parametey; ; € N denotes theeduction rateof flight ¢ € V. at timet¢ € T if we assign an additional working station to
i. With an enumeration algorithm we can calculate reductaia g; + in O(m%x {SZE — ES; + 1}) foralli eV, andt e T.
1€Ve

With the definitions above we can construct flow netwdfk= (G, a) for eachc € C in order to optimize the assignment

® @%R@
o=

Fig. 3. Flow network of example 1.

of working station to flights. The node set and arc set of netvgraphG. = (N, A.) is given by N. = N, U {q,d, s} and
A= A U{(d,i) | i € V.JU{(3,s) | i € V.}U(q,d), respectiviey. Node represents the source nodethe sink node and
d a dummy node. Figure 3 shows the network graph of example &dtiom 1I-C. Functiona : A. — N gives the upper
capacity of the arcs witl((i, 7)) = £;.. anda((q,d)) = a((i,s)) = W, for all i, € V. U {d} with (i,5) € A..

Assignment problem 2 (AP2) can now be stated as follows:

minimize rtnea%lez‘; (T, (SH, SP 1) (20)
(( Z fj,i) - gzc) “ i)
JEVe:(J,1)EA.
subject to
> fii > &ic VieVe (21)
J€V\{a}:(ji)eA
Z fii < éi,c VielV, (22)
J€V\{a}:(j,i)eA
> = Y. fij=0 VieV.U{d} (23)
JEV.:(j,i)EA JEV.:(i,5)EA
0< fii < &ie v (j,1) € A (24)
U{(d,i) | i € V.}
0< fis < éi,c VieV, (25)
faa=We (26)
0< fas <We. (27)

Problem (20) to (27) represents a minimum cost flow probler@FR) with a non-linear objective function (cf. [10], [11],
[12], [5]).After optimizing problem AP2 for alle € C we receive a feasible solution which approximates the nizech
maximal global workload under the given assignment of probAP1 and schedule of problem 8R{). The corresponding
optimal assignment vector of the optimal solution of AP2l\wi& denoted byw’.

In the last step of our decomposition heuristic we run pnob®&Pp, w’) with the given allocation of working station to
flights of AP2. The new solution of SB(w’) is lower or equal than the objective function value of ISR].



IIl. UPCOMING RESEARCH

In this paper we have presented the problem of planning thigoond baggage at international airports. It turns out that
the problem can be regarded as a generalisation of the R@®P®BR the resource consumption of the different actividies
depending on the arrival process of the baggage. The proisiéiP-hard, which leads to high computing times. To reduce
the computing times we have decomposed the problem into erglezed assignment problem, a multi-mode RCPSP and a
network flow problem with convex cost function. All these blems are also NP-hard to solve, however, they can be handled
easier because of their structural properties. To conhectlifferent subproblems with each other we introduced. cuts

In the next step, we will elaborate efficient solution prases for the different subproblems. Afterwards we will carg
our suggested heuristic with the heuristic currently usedlanich Airport and with the MIP formulation of [4]. For the
experiments we will use real data of Munich Internationaiphit.
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