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Abstract

In this article, we consider the continuous analog of the celebrated Mandelbrot star equa-
tion with lognormal weights. We show existence and uniqueness of measures satisfying the
aforementioned continuous equation; these measures fall under the scope of the Gaussian
multplicative chaos theory developped by J.P. Kahane in 1985 (or possibly extensions of this
theory). As a by product, we also obtain an explicit characterization of the covariance struc-
ture of these measures.

AMS subject classification: primary 60G57; secondary 28A80,60H10,60G15.
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1. Introduction

Fractality and the related concept of scale invariance is nowadays well introduced in many fields
of applications ranging from physics, finance, information or social sciences. The scale-invariance
property of a stochastic process is usually quantified by the scaling exponents ξ(q) associated
with the power-law behavior of the order q moments of the fluctuations at different scales. More
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precisely, if Xt is a 1-d process with stationary increments, we can consider the q-th moments of
its fluctuations at scale l:

E
[
|Xt+l −Xt|q

]
.

The scaling exponents ξ(q) are defined through the following power-law scaling:

E
[
|Xt+l −Xt|q

]
= Cql

ξ(q) ∀l < T.

When ξ(q) = qH is linear, the process is said to be monofractal. Famous examples of such
processes are (fractional) Brownian motion, α-stable Lévy processes or Hermitte processes. When
ξ is nonlinear, the process is said to be multifractal. The concept of nonlinear power-law scalings
goes back to the Kolmogorov theory of fully developed turbulence in the sixties (see [5, 20, 22, 6, 11]
and references therein), introduced to render the intermittency effects in turbulence. Mandelbrot
[16] came up with the first mathematical discrete approach of multifractality, the now celebrated
multiplicative cascades. Roughly speaking, a (dyadic) multiplicative cascade is a positive random
measure M on the unit interval [0, 1] that obeys the following decomposition rule:

M(dt)
law
= Z01[0, 12 ]

(t)M0(2dt) + Z11[ 12 ,1]
(t)M1(2dt− 1), (1)

where M0,M1 are two independent copies of M and (Z0, Z1) is a random vector with prescribed
law and positive components of mean 1 independent from M0,M1. Such an equation (and it’s
generalisations to b-adic trees for b > 2), the celebrated star equation introduced by Mandelbrot in
[15], uniquely determines the law of the multiplicative cascade. Despite the fact that multiplicative
cascades have been widely used as reference models in many applications, they possess many
drawbacks related to their discrete scale invariance, mainly they involve a particular scale ratio
and they do not possess stationary fluctuations (this comes from the fact that they are constructed
on a dyadic tree structure).

Much effort has been made to develop a continuous parameter theory of suitable stationary
multifractal random measures ever since, stemming from the theory of multiplicative chaos intro-
duced by Kahane [13, 3, 20, 1, 17, 19]. The construction of such measures is now well understood
and they are largely used in mathematical modeling since they obey a so-called stochastic scale
invariance property, namely the property of being equal in law at different scales up to an indepen-
dent stochastic factor. This is some kind of continuous parameter generalization of (1). Stochastic
scale invariance property is observed in many experimental and theoretical problems, like tubu-
lence (see [11, 5] and many others), quantum gravity (see [14, 10, 18]), mathematical finance, etc...
and this is the main motivation for introducing multifractal random measures. However, as far
as we know, the following question has never been solved: are these measures the only existing
stochastic scale invariant object? This is fundamental since a positive answer gives a full justifica-
tion to their intensive use. In this paper, we characterize stochastic scale invariant measures when
the stochastic factor is assumed to be Gaussian. We prove that the class of such objects is made
up of Gaussian multiplicative chaos with a specific structure of the covariation kernel, which turns
out to be larger than described in the literature.

2. Background

Let us first remind the reader of the main definitions we will use throughout the paper. We
denote by B(E) the Borelian sigma field on a topological space E. A random measure M is a
random variable taking values into the set of positive Radon measures defined on B(R) such that
E[M(K)] < +∞ for every compact set K. A random measure M is said to be stationary if for all
y ∈ R the random measures M(·) and M(y + ·) have the same laws.
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2.1 Gaussian multiplicative chaos

We remind the reader of the notion of Gaussian multiplicative chaos as introduced by Kahane [13].
Consider a sequence (Xn)n of independent centered stationary Gaussian processes with associated
nonnegative covariance kernel kn(r) = E[Xn

r X
n
0 ] > 0. For each N > 1, we can define a Radon

measure MN on the Borelian subsets of Rd by

MN(A) =

∫

A

e
∑N

n=0 Xn
r − 1

2E[(X
n
r )2] dr.

For each Borelian set A, the sequence (MN (A))N is a positive martingale. Thus it converges
almost surely towards a random variable denoted by M(A). One can deduce that the sequence of
measures (MN )N weakly converges towards a Radon measure M , commonly denoted by

M(A) =

∫

A

eXr− 1
2E[X

2
r ] dr (2)

and called Gaussian multiplicative chaos associated to the kernel

K(r) =

+∞∑

n=0

kn(r). (3)

Roughly speaking, (2) can be understood as a measure admitting as density the exponential of
a Gaussian process X with covariance kernel K. Of course, this is purely formal because X can
only be understood as a (random Gaussian) distribution (in the sense of Schwartz) because of the
possible singularities of the kernel K.

Of special interest is the situation when the function K can be rewritten as (for some λ2 > 0)

K(r) = λ2 ln+
T

|r| + g(r) (4)

for some bounded function g (and ln+(x) = max(0, ln(x))). In that case, Kahane proved that
the martingale (MN(A))N , for some Borelian set A with finite Lebesgue measure, is uniformly
integrable if and only if λ2 < 2. This condition is necessary and sufficient in order for the limiting
measureM to be non identically null. For kernels of the form (4) which can not be written as a sum
of nonnegative terms as (3), we refer to the extended Gaussian multiplicative theory developped in
[17]. We remind that Gaussian multiplicative chaos with kernel given by (4) has found applications
in many fields in science:

• In dimension 1, the measureM is called the lognormal Multifractal RandomMeasure (MRM).
It is used to model the volatility of a financial asset (see [2], [7]).

• In dimension 2, the measure M is a probabilistic formulation of the quantum gravity measure
(more precisely, the quantum gravity measure is defined as the exponential of the Gaussian
Free Field and therefore is defined in a bounded domain). We refer to references [4], [10],
[18] for probabilistic papers on this topic.

• In dimension 3, the measure M is called the Kolmogorov-Obhukov model (see textbook [11]):
it is a model of energy dissipation in the statistical theory of fully developped turbulence.

3. Main results

3.1 Definitions

In this paper we are interested in stationary random measures in dimension 1 satisfying the fol-
lowing scale invariance property:
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Lognormal scale invariance. A random measure M is said to be lognormal ⋆-scale invariant if
there is a parameter T > 0 such that for all T ′ < T , M obeys the cascading rule

(
M(A)

)
A∈B(R)

law
=
( ∫

A

eωT ′ (r)MT ′

(dr)
)
A∈B(R)

(5)

where ωT ′ is a Gaussian process and MT ′

is a random measure independent from ωT ′ satisfying
the relation (

MT ′

(
T ′

T
A)
)
A∈B(R)

law
=

T ′

T

(
M(A)

)
A∈B(R)

.

Intuitively, this relation means that when you zoom in the measure M , you should observe the
same behaviour up to an independent Gaussian factor.

Remark. In order for a measure M satisfying (5) to be non trivial, it is obvious to check that the
Gaussian process ωT ′ must be normalized so that E[eωT ′ (r)] = 1.

Definition 1. We will say that a stationary random measure M satisfies the good lognormal ⋆-
scale invariance if M is lognormal ⋆-scale invariant and for each T ′ < T , the covariance kernel
kT ′ of the process ωT ′ involved in (5) satisfies, for some positive constants CT ′ , α > 0:

∀|r| > 1, |kT ′(r)| 6 CT ′

1

1 + | ln r|1+α
, (6)

∀r, r′ ∈ R, |kT ′(r) − kT ′(r′)| 6 CT ′

1 + (|r| + |r′|)1+α
|r − r′|. (7)

Let us make a few comments about the above definition, which is all about technical consid-
erations. In order for equation (5) to be tractable, we need a decorrelation property at infinity:
(6) just describes how fast the covariance function of the process ωT ′ decays at infinity. This is
a rather weak assumption. (7) mainly expresses that the kernel kT ′ is Lipschitzian with a local
Lipschitz constant that at most polynomially decays to 0 when approaching infinity. Because of
(7) and the Dudley criterion [9], the process ωT ′ possesses almost surely continuous sample paths.

The well known example of good lognormal ⋆-scale invariant randommeasure was first explicitly
described in [3] (see also [1]). Let us consider the Gaussian multiplicative chaos M with associated
kernel

K(r) =

∫ +∞

|r|

k(u)

u
du with k(u) = λ2(1− u

T
)1[0,T ](u). (8)

For T ′ < T , the measure M can be decomposed as M(dr) = eωT ′(r) MT ′

(dr) where both measures

MT ′

(T
′

T dr) and T ′

T M(dr) have the same law and the covariance kernel of the process ωT ′ is given
by

kT ′(r) =

∫ |r| T
T ′

|r|

k(u)

u
du.

As far as we know, this is the only known example of random measures with such property in the
literature. We further stress that this measure admits a cut-off in the sense described just below.

3.2 Results

It turns out that the set of random measures satisfying (5) is much larger than the above example.
Actually, we have the following description of the solutions to (5), which is the main result of the
paper:

Theorem 2. Let M be a good lognormal ⋆-scale invariant random measure. Assume that

E[M([0, 1])1+δ] < +∞
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for some δ > 0. Then M is the product of a nonnegative random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos

∀A ⊂ B(R), M(A) = Y

∫

A

eXr− 1
2E[X

2
r ] dr (9)

with associated covariance kernel given by the improper integral

K(r) =

∫ +∞

|r|

k(u)

u
du (10)

for some continuous covariance function k such that k(0) 6 2
1+δ .

Conversely, given some datas k and Y as above, the relation (9) defines a good lognormal
⋆-scale invariant random measure with finite moments of order 1 + γ for every γ ∈ [0, δ).

Let us comment on Theorem 2. First we point out that Y is deterministic as soon as the
measure M in Theorem 2 is ergodic. Second, good lognormal ⋆-scale invariant measures exhibit a
multifractal behaviour. More precisely, if we consider a measure M as in Theorem 2, we define its
structure exponent

∀q > 0, ξ(q) = (1 +
k(0)

2
)q − k(0)

2
q2.

Then we have the following asymptotic power-law spectrum, for q 6 1 + δ:

E
[
M([0, t])q

]
≃ Cqt

ξ(q) as t → 0,

for some positive constant Cq.
Finally, Theorem 2 has the following consequence about the regularity of good lognormal ⋆-scale

invariant measures:

Corollary 3. Almost surely, the measure M does not possess any atom on R, that is:

almost surely, ∀x ∈ R, M({x}) = 0.

Now we investigate the long-range independence for good lognormal ⋆-scale invariant measures.
So we introduce the related notion of cut-off:

Definition 4. We will say that a stationary random measure M admits a cut-off d > 0 if, for t < s,
the σ-algebras Ht

−∞ = σ{M(A);A ∈ B(R), A ⊂ (−∞, t]} and H+∞
s = σ{M(A);A ∈ B(R), A ⊂

[s,+∞)} are independent, conditionally to the asymptotic σ-algebra of M , as soon as s− t > d.

Of course, if the measure M is ergodic then the asymptotic σ-algebra of M is trivial and we
can remove the sentence ”conditionally to the asymptotic σ-algebra of M” from the definition. For
instance the measure constructed in (8) admits a cut-off T and is ergodic. It results from the proof
of Theorem 2 that the cut-off property can be read off the cascading rule (5):

Proposition 5. Let M be a good lognormal ⋆-scale invariant random measure with finite 1 + δ
moment. Then M admits a cutoff if and only if, for some T ′ < T (or equivalently for all T ′ < T ),
the covariance kernel kT ′ of the process ωT ′ in (5) reduces to 0 outside a compact set.

Finally, we mention that another notion of exact stochastic scale invariance is given in [1, 5, 19].
More precisely, if the Gaussian multiplicative chaos M admits a covariance kernel K such that
K(x) = λ2 ln T

|x| +C for some constant C and for all x in a ball B(0, R) then M satisfies the ”exact

stochastic scale invariance”:

∀α ∈ (0, 1), (M(αA))A⊂B(0,R)
law
= αdeYα− 1

2E[Y
2
α ](M(A))A⊂B(0,R)

where Yα is a centered Gaussian random variable with variance λ2 ln 1
α . The reader may wonder if

we can construct random measures that are both exactly stochastically scale invariant and good
lognormal ⋆-scale invariant. Theorem 2 shows that this is impossible because, otherwise, the kernel
k in (10) must be constant in the vicinity of 0 and therefore constant on the whole space R. This is
impossible because K would then be infinite or because the function ln T

|x| is not positive definite.
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3.3 Multidimensional results

We stress that our results remain true in higher dimensions without changes in the proofs. For the
sake of completeness, we state the main result:

Theorem 6. Let M be a good lognormal ⋆-scale invariant random measure such that for each
T ′ < T , the covariance kernel kT ′ of the process ωT ′ is differentiable. Assume that

E[M([0, 1])1+δ] < +∞

for some δ > 0. Then M is the product of a nonnegative random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos:

∀A ⊂ B(R), M(A) = Y

∫

A

eXr− 1
2E[X

2
r ] dr (11)

with associated covariance kernel given by the improper integral

∀x ∈ R
d \ {0}, K(x) =

∫ +∞

1

k(xu)

u
du (12)

for some continuous covariance function k such that k(0) 6 2d
1+δ .

Conversely, given some datas k and Y as above, the relation (9) defines a good lognormal
⋆-scale invariant random measure with finite moments of order 1 + γ for every γ ∈ [0, δ).

In dimension greater than 1, it may be interesting to focus on the isotropy properties. In
the same spirit as Proposition 5, for a good lognormal ⋆-scale invariant measure M with a finite
moment of order 1 + δ, the following assertions are equivalent:

1. M is isotropic,

2. its covariance kernel K (or equivalently k in (12)) is isotropic,

3. the covariance kernel kT ′ is isotropic for some T ′ < T ,

4. the covariance kernels kT ′ are isotropic for all T ′ < T .

4. Proofs of the main theorem

This section is devoted to the proof of Theorem 2. For the sake of readability, some proofs of
auxiliary results are gathered in the appendix.

In the following, we suppose, without loss of generality, that T = 1. Let M be a good log-
normal scale invariant random measure defined on a probability space (Ω,F ,P). We introduce as
usually the spaces Lp on (Ω,F ,P) for 1 6 p 6 ∞. The measure M satisfies, for all ǫ ∈ (0, 1)

(
M(A)

)
A∈B(R)

law
=
( ∫

A

eωǫ(r)M ǫ(dr)
)
A∈B(R)

(13)

where ωǫ is a Gaussian process independent from M ǫ, with M ǫ(dr) = ǫM(drǫ ) in law. We denote
by kǫ the covariation kernel of the process ωǫ. Furthermore, we assume that the measure M is non
trivial (M 6= 0) so that the process ωǫ is necessarily normalized, that is E[eωǫ ] = 1.

Now we introduce some definitions and tools that will be used throughout this section. For
each ǫ ∈ (0, 1), define

∀r 6= 0, Kǫ(r) =

+∞∑

n=0

kǫ
( r
ǫn
)
. (14)
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The pointwise convergence of the series is assured by (6). Actually, because of (6) again, the
convergence is uniform on the sets {z ∈ R; |z| > ρ} for any ρ > 0. Furthermore, (7) also ensures
that Kǫ is Lipschitzian over each set {z ∈ R; |z| > ρ} for any ρ > 0.

We let (Xn)n denote a sequence of independent centered stationary Gaussian processes with
respective covariance kernels

E[Xn
r X

n
s ] = kǫ(

r − s

ǫn
)

def
= kn(r − s).

ClearlyXn depends on ǫ but this parameter is omitted from the notations for the sake of readability.
We assume that the whole sequence (Xn)n and the measure M are constructed on the same
probability space and are mutually independent. We further define the measure MN for N > 0 by

∀A ∈ B(R), MN (A) = ǫN+1M
( 1

ǫN+1
A
)
.

By iterating the scale invariance relation (5), it is plain to see that, for each N > 0, the measure

M̃N defined by

M̃N (A) =

∫

A

exp
( N∑

n=0

Xn
r − 1

2
E[(Xn

r )
2]
)
MN(dr) (15)

has the same law as the measure M .

4.1 Ergodic properties

First we investigate the immediate properties of M resulting from the definitions.

Lemma 7. Let M be a stationary random measure on R admitting a moment of order 1 + δ.
There is a nonnegative integrable random variable Y ∈ L1+δ such that, for every bounded interval
I ⊂ R,

lim
T→∞

1

T
M (TI) = Y |I| almost surely and in L1+δ,

where | · | stands for the Lebesgue measure on R. As a consequence, almost surely the random
measure

A ∈ B(R) 7→ 1

T
M(TA)

weakly converges towards Y | · | and EY [M(A)] = Y |A| (EY [·] denotes the conditional expectation
with respect to Y ).

Proof. If M is a stationary random measure, the Birkhoff ergodic theorem implies the following
convergence, for n ∈ N, n → ∞,

1

n
M([0, n]) =

1

n

n∑

i=1

M([i− 1, i]) → Y almost surely and in L1+δ (16)

where Y ∈ L1+δ is a nonnegative random variable. Using monotonicity of the mapping t 7→
M([0, t]), one can show that 1

T M([0, T ]) → Y almost surely and in L1+δ. For a > 0, b > a, it
is clear that 1

T M (T [0, a]) → aY and that 1
T M (T [a, b]) → (b − a)Y almost surely and in L1+δ.

So, for every bounded interval I ⊂ R+, the following convergence holds 1
T M(TI) → |I|Y almost

surely and in L1+δ. Along the same lines, one can show the same convergence for every bounded
interval I ⊂ R− involving some nonnegative random variable Y ′ ∈ L1+δ. Stationarity implies that
1
T M (T [−1, 1]) has the same law as 1

T M (T [0, 2]). By letting T go to ∞, we find that Y + Y ′ has
the same law as 2Y . Stationarity also implies that Y ′ has the same law as Y . Let 0 < α < 1. We
prove

E[Y α] = E

[(
Y + Y ′

2

)α]
>

1

2
(E[Y α] + E[Y ′α]) = E[Y α] (17)

7



by using the Jensen inequality for the concave function x 7→ xα. So the above inequality turns out
to be an equality and thus Y = Y ′ almost surely. We have shown that 1

T M(TI) → |I|Y almost
surely and in L1+δ when T → ∞ for every bounded interval I ⊂ R.

Finally, by the portemanteau theorem, the convergence of the measure A ∈ B(R) 7→ 1
T M(TA)

on the intervals towards Y | · | is enough to ensure the weak convergence.

4.2 Mixing properties

This section is devoted to the mixing properties of the measure M , which can be read off the
structure of the kernel Kǫ.

We first draw attention to the following relation, which will be used throughout the paper:

EY

[
F
(
M(A1), . . . ,M(An)

)]
= EY

[
F
(
M̃N(A1), . . . , M̃

N (An)
)]

a.s.

for every positive measurable function F : Rn → R. The proof is deferred to the appendix A (see
Lemma 20).

Lemma 8. Let A,B be two disjoint sets such that dist(A,B) > 0. Then the random variable
M(A)M(B) is integrable under EY [.] and

EY [M(A)M(B)] = Y 2

∫

A×B

eK
ǫ(r−u)dr du.

Proof. We fix R > 0 and denote by G the σ-field generated by M . Because the function x ∈ R+ 7→
min(R, x) is concave, we have

EY

[
min

(
R,M(A)M(B)

)]
=EY

[
min

(
R, M̃N(A)M̃N (B)

)]

=EY

[
E
[
min

(
R, M̃N(A)M̃N (B)

)
|G
]]

6 EY

[
min

(
R,E

[
M̃N (A)M̃N (B)|G

])]
.

Since M̃N is given by (15), it is straightforward to compute:

E
[
M̃N (A)M̃N (B)|G

]
=

∫

A×B

e
∑N

n=0 k̄n(r−u)MN(dr)MN (du). (18)

Because of the uniform convergence of the series
(∑N

n=0 k̄n(r − u)
)
N

on the set {(r, u) ∈ R
2; |r −

u| > d} towards Kǫ and the weak convergence of the measure MN towards Y | · | (cf. Lemma 7),
the random variable ∫

A×B

e
∑N

n=0 k̄n(r−u)MN (dr)MN (du)

almost surely converges towards

Y 2

∫

A×B

eK
ǫ(r−u)dr du.

The dominated convergence theorem then yields:

EY

[
min

(
R,M(A)M(B)

)]
6 EY

[
min

(
R, Y 2

∫

A×B

eK
ǫ(r−u)dr du

)]
.

By letting R → ∞, the monotone convergence theorem yields

EY

[
M(A)M(B)

]
6 Y 2

∫

A×B

eK
ǫ(r−u)dr du.

8



On the other hand, we also have

EY

[
M(A)M(B)

]
= EY

[
M̃N (A)M̃N (B)

]
= EY

[
E
[
M̃N (A)M̃N (B)|G

]]
. (19)

By gathering (18) and (19) and by using the Fatou’s lemma, we deduce

EY

[
M(A)M(B)

]
> Y 2

∫

A×B

eK
ǫ(r−u)dr du.

This completes the proof.

Lemma 9. We have
sup

|r| > d

|Kǫ(r)| → 0 as d → ∞.

Proof. From (6), we have for r > 1:

|Kǫ(r)| 6
+∞∑

n=0

Cǫ

1 + | ln r + n ln 1
ǫ |1+α

.

Hence the result is an easy consequence of the Lebesgue dominated convergence theorem. Details
are left to the reader.

Proposition 10. The measure M possesses the following mixing property: given two disjoint sets
A,B such that dist(A,B) = d > 0 we have:

∣∣EY

[
M(A)M(B)]− Y 2|A||B|

∣∣ 6 Y 2ξ(d)|A||B| (20)

for some function ξ : R+ → R+ such that limd→∞ ξ(d) = 0.
As a consequence, for any Lebesgue integrable function φ on R

2 and d > 0, we have:

∣∣∣EY

[ ∫

|u−r|>d

φ(u, r)M(dr)M(du)] − Y 2

∫

|u−r|>d

φ(u, r) du dr
∣∣∣ 6 Y 2ξ(d)

∫

|u−r|>d

|φ(u, r)| du dr.

(21)

Proof. From Lemma 8, we have

∣∣EY

[
M(A)M(B)]− Y 2|A||B|

∣∣ = Y 2

∫

A×B

(eK
ǫ(r−u) − 1)dr du

6 Y 2ε(d)|A||B|

where we have set ξ(d) = sup|r| > d |eK
ǫ(r) − 1|. From Lemma 9, we have limd→∞ ξ(d) = 0. It is

then plain to derive (21).
As a direct consequence, we obtain:

Corollary 11. For any Lebesgue integrable function φ on R
2 and d > 0, we have for all N ∈ N\{0}:

∣∣
∫

|u−r|>d

φ(u, r)EY

[
MN (dr)MN (du)]− Y 2

∫

|u−r|>d

|φ(u, r)| du dr
∣∣

6 Y 2ξ
( d

ǫN
) ∫

|u−r|>d

|φ(u, r)| du dr.

9



4.3 Characterization of the measure M

Having in mind that the measure MN weakly converges towards Y | · | as N goes to infinity, it
is very tantalizing to think that the solution of our problem reduces to taking the limit in (15)
as N → ∞. However, multiplicative chaos badly behaves with respect to weak convergence of
measures. So we want to get rid of the measure MN and have the Lebesgue measure instead in
order to deal with a multiplicative chaos in the sense of Kahane. This is the main difficulty of the
proof. For that purpose, it is appropriate to take the conditional expectation of M̃N with respect
to the σ-algebra FN = σ(X0, . . . , XN , Y ). Therefore, for any Borelian subset A of R, we define

GN (A) = E[M̃N (A)|FN ]

and we claim

Lemma 12. The following relation holds for each N > 0:

GN (A) = Y

∫

A

exp
( N∑

n=0

Xn
r − 1

2
E[(Xn

r )
2]
)
dr. (22)

Furthermore, for each bounded Borelian set A, the sequence (GN (A))N is a positive martingale
bounded in L1+δ.

Proof. If A has infinite Lebesgue measure, both sides of (22) are infinite. So we focus on the case
when A has finite Lebesgue measure. First observe that for each s < t and A ∈ FN , we have from
Lemma 7

E[

∫

R

1[s,t](r)1AM
N(dr)|FN ] = 1AEY [M

N ([s, t])] = 1AY (t− s).

By using density arguments and Fatou’s lemma, we establish that, for each positive FN ⊗ B(R)-
measurable function ϕ ∈ L1(Ω× R;P⊗ dt), we have

E
[ ∫

R

ϕ(ω, r)MN (dr)
∣∣FN ] =

∫

R

ϕ(ω, r)Y dr.

So (22) is proved. Finally, for each bounded set A we have E[M(A)1+δ ] < +∞ for some δ > 0.
The Jensen inequality then yields

E[(GN (A))1+δ] = E[(E[M̃N (A)|FN ])1+δ] 6 E[(M̃N (A))1+δ ] = E[M(A)1+δ] < +∞.

The martingale (GN (A))N is thus bounded in L1+δ.

Being bounded in L1+δ, the martingale converges almost surely and in L1+δ towards a random
variable Q(A), which can be formally thought of as

Q(A) = Y

∫

A

exp

(
Xr −

1

2
E[X2

r ]

)
dr

where (Xr)r∈R
is a ”Gaussian process” with covariance kernel Kǫ(r), that is a Gaussian multi-

plicative chaos. The remaining part of our argument can be roughly summed up as follows. First,
we obtain estimates on the kernel Kǫ derived from the fact that the Gaussian multiplicative chaos
Q admits a moment of order 1 + δ. Second, we use these estimates to prove that Q has the same
law as M . Finally, since Q has the same law as M , which does not depend on ǫ, the kernel Kǫ

should not depend on ǫ either. This is a strong constraint on Kǫ, from which we derive the specific
structure of Kǫ given by (10).

So we claim

10



Proposition 13. For each 0 < γ < δ, we can find ρ > 0 such that:

sup
n

n1+ρ
E[M([0,

1

n
])1+γ ] < +∞. (23)

Proof. Since the martingale (GN (A))N is bounded in L1+δ, the Gaussian multiplicative chaos
Q(A) = Y

∫
A exp

(
Xr − 1

2E[X
2
r ]
)
dr with associated kernel Kǫ admits a moment of order 1 + δ.

Then we prove that Kǫ can be decomposed as (see the proof in the appendix A):

Lemma 14. The kernel Kǫ can be written as:

Kǫ(r) =
ln+ r

ln ǫ
kǫ(0) + gǫ(r) (24)

for some function gǫ that is continuous and bounded on R \ {0}.

Multiplicative chaos with such covariance kernels have been intensively studied. For instance in
[13], it is proved that the condition of moment of order 1+δ implies the relation kǫ(0) <

2
1+δ ln

1
ǫ via

a rather complicated connexion with discrete Mandelbrot’s cascades. For the sake of completeness,
we give a direct proof in appendix A:

Lemma 15. The existence of a moment of order 1+ δ for the multiplicative chaos with associated
kernel Kǫ implies the following bound:

kǫ(0) 6
2

1 + δ
ln

1

ǫ
.

Since we have for all r ∈ R: kǫ(r) 6 kǫ(0), the covariance kernel of the process ωǫ is dominated
by that of the constant process ωǫ(0). Hence, by using (5) and Lemma 21, it is plain to see that,
for each γ > 0:

E[M([0,
1

n
])1+γ ] = E

[(∫ 1/n

0

eω1/n(r)M1/n(dr)
)1+γ

]

6 E

[(∫ 1/n

0

eω1/n(0)M1/n(dr)
)1+γ

]

6 E

[
e(1+γ)ω1/n(0)

]
E

[(
M1/n([0,

1

n
])
)1+γ

]

= e
(1+γ)2

2 k1/n(0)− 1+γ
2 k1/n(0)E

[(
M([0, 1])

)1+γ] 1

n1+γ
.

Since k1/n(0) 6
2

1+δ lnn, we deduce

E[M([0,
1

n
])1+γ ] 6 e

(
γ2+γ
1+δ −γ−1

)
lnn

E

[(
M([0, 1])

)1+γ]

=
1

n1+ρ
E

[(
M([0, 1])

)1+γ]

where we have set

ρ
def
= −γ2 + γ

1 + δ
+ γ.

Clearly, we have ρ > 0 provided that 0 < γ < δ. The proof of Proposition 13 is complete.

We are now in position to tackle the main step of the proof:

Proposition 16. The random measures (Q(A))A∈B(R) and (M(A))A∈B(R) have the same law.
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Proof. Let F be some function defined on R+ such that:

• F is convex,

• F (x) 6 Cx1+γ for some constants C > 0 and 0 < γ < δ,

• F ◦
√

is concave, nondecreasing and sub-additive.

Let f be a lower semi-continuous positive function on R with compact support. We have by
Jensen’s inequality:

E

[
F
( ∫

R

f(x)M(dx)
)]

= E

[
F
( ∫

R

f(x) M̃N (dx)
)]

= E

[
E

[
F
( ∫

R

f(x) M̃N (dx)
)
|FN

]]

> E

[
F
( ∫

R

f(x)GN (dx)
)]
.

We let N go to +∞. By using the weak convergence of GN (dr) towards Q(dr), we obtain:

E
[
F
( ∫

R

f(r)M(dr)
)]

> E
[
F
( ∫

R

f(r)Q(dr)
)]
. (25)

Now we want to establish the converse inequality. We set F̃ = F ◦
√

. For any τ > 0, we have
by using the sub-additivity of F̃ :

E
[
F
( ∫

R

f(r)M(dr)
)]

=E

[
F̃
(( ∫

R

f(r) M̃N (dr)
)2)]

=E

[
F̃
( ∫

R

∫

R

f(r)f(u) M̃N (dr)M̃N (du)
)]

6 E

[
F̃
( ∫

|r−u| 6 τ

f(r)f(u) M̃N (dr)M̃N (du)
)]

+ E

[
F̃
(∫

|r−u|>τ

f(r)f(u) M̃N (dr)M̃N (du)
)]

.

Then, by conditioning with respect to FN and by using the Jensen inequality in the second term
of the latter inequality, we deduce:

E
[
F
( ∫

R

f(r)M(dr)
)]

(26)

6 E

[
F̃
( ∫

|r−u| 6 τ

f(r)f(u) M̃N (dr)M̃N (du)
)]

+ E

[
F̃
(∫

|r−u|>τ

f(r)f(u) exp
( N∑

k=0

Xn
r +Xn

u − kn(0)
)
EY [M

N (dr)MN (du)]
)]

def
= C(1, τ, N) + C(2, τ, N). (27)

We claim:

Lemma 17. For each fixed τ > 0, C(2, τ, N) converges as N → ∞ towards

E

[
F̃
(∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

.

12



Furthermore, this latter quantity converges, as τ → 0, towards

E

[
F
( ∫

f(r)Q(dr)
)]

.

Finally, the quantity C(1, τ, N) converges to 0 as τ → 0 uniformly with respect to N ∈ N
∗.

Let us admit for a while the above lemma to finish the proof of Proposition 16. By gathering
(27) and Lemma 17, we deduce

E
[
F
( ∫

R

f(r)M(dr)
)]

6 lim inf
τ→0

E

[
F̃
(∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

=E

[
F
( ∫

f(r)Q(dr)
)]

.

Hence we have proved

E
[
F
( ∫

R

f(r)M(dr)
)]

= E
[
F
( ∫

R

f(r)Q(dr)
)]
. (28)

The basic choice for F is the function x 7→ x1+γ with 0 < γ < δ. Thus we have proved that
the mappings

E
[
exp

(
z ln

∫

R

f(r)M(dr)
)]

and E
[
exp

(
z

∫

R

f(r)Q(dr)
)]

coincide for z ∈]1, 1+δ[. By analycity arguments, we deduce that
∫
R
f(x)M(dx) and

∫
R
f(x)Q(dx)

have the same law. This is enough to prove that the random measures M and Q have the same
law. Indeed, if we consider two families (λi)1 6 i 6 n of positive real numbers and (Ai)1 6 i 6 n of
bounded open subsets of R, we define the lower semi-continuous function

f(x) =

n∑

i=1

λi1Ai(x)

and we obtain
n∑

i=1

λiM(Ai)
law
=

n∑

i=1

λiQ(Ai).

It turns out that the law of a random vector (Y1, . . . , Yn) made up of positive random variables is
characterized by the combinations

n∑

i=1

λiYi

where (λi)1 6 i 6 n is a family of positive real numbers. The proof of Proposition 16 is complete.

Proof of Lemma 17. Let us first investigate the quantity C(1, τ, N). Assume the function f
has its support included in the ball B(0, R) for some R > 0. We can cover the set

{(x, y) ∈ R
2; |x− y| 6 τ and max(|x|, |y|) 6 R}

by the squares

An
j = [tnj , t

n
j+2]× [tnj , t

n
j+2] where tnj = −R+ 2τj, for j = 0, . . . , E(

R

τ
).

13



We set S = sup
R
f . Because F̃ is sub-additive and increasing, we have:

C(1, τ, N) 6 E

[
F̃
( ∑

0 6 j 6 E(R
τ )

∫

An
j

f(r)f(u) M̃N (dr)M̃N (du)
)]

6
∑

0 6 j 6 E(R
τ )

E

[
F̃
(∫

An
j

f(r)f(u) M̃N (dr)M̃N (du)
)]

6
∑

0 6 j 6 E(R
τ )

E

[
F̃
(
S2

∫

An
j

M̃N(dr)M̃N (du)
)]

=
∑

0 6 j 6 E(R
τ )

E

[
F̃
(
S2(M̃N ([tnj , t

n
j+2]))

2
)]

=
∑

0 6 j 6 E(R
τ )

E

[
F
(
SM([tnj , t

n
j+2])

)]
.

By stationarity, we deduce

C(1, τ, N) 6
2R

τ
E

[
F
(
SM([0, 2τ ])

)]

6
2R

τ
S1+γ

E
[
M([0, 2τ ])1+γ

]
.

It results from Proposition 13 that the last quantity converges towards 0 as τ goes to 0 uniformly
with respect to N .

Now we investigate the quantity C(2, τ, N). Since F̃ is sub-additive and increasing, we have

|F̃ (a)− F̃ (b)| 6 F̃ (|b− a|) for all positive real numbers a, b. This together with Corollary 11 yields

∣∣∣C(2, τ, N)−E

[
F̃
(∫

|r−u|>τ

f(r)f(u) exp
( N∑

k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)]∣∣∣

6 E

[
F̃
(
Y 2ξ

( τ

ǫN
) ∫

|r−u|>τ

f(r)f(u) exp
( N∑

k=0

Xn
r +Xn

u − kn(0)
)
dr du

)]

6 E

[
F̃
(
ξ
( τ

ǫN
)
S2GN ([−R,R])2

)]

6 E

[
F
(
Sξ
( τ

ǫN
)1/2

GN ([−R,R])
)]

6 ξ
( τ

ǫN
) 1+γ

2 S1+γ
E

[
GN ([−R,R])1+γ

]
.

Obviously, the last quantity converges to 0 as N goes to ∞. Furthermore, the quantity

F̃
(∫

|r−u|>τ

f(r)f(u) exp
( N∑

k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)

almost surely converges towards

F̃
(∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)

and is uniformly integrable because F (x) 6 Cx1+γ and Q is a multiplicative chaos admitting a
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moment of order 1 + δ with δ > γ. The Lebesgue convergence theorem then yields:

E

[
F̃
(∫

|r−u|>τ

f(r)f(u) exp
( N∑

k=0

Xn
r +Xn

u − kn(0)
)
Y 2dr du

)]

→ E

[
F̃
(∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

as N → ∞.

Gathering the above relations yields

C(2, τ, N) → E

[
F̃
( ∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

as N → ∞.

Similar arguments as those used above allow to establish that

lim inf
τ→0

E

[
F̃
(∫

|r−u|>τ

f(r)f(u)Q(dr)Q(du)
)]

=E

[
F̃
( ∫

R2

f(r)f(u)Q(dr)Q(du)
)]

=E

[
F
( ∫

R

f(r)Q(dr)
)]

.

Indeed, by proceeding as for C(1, τ, N), we can prove that the ”diagonal contribution” goes to 0
as τ → 0. Details are left to the reader. The proof of the Lemma is complete.

The final step of our argument is now to prove that the kernel Kǫ defined by (14) does not
depend on ǫ. Expressing the kernel Kǫ as a function of the marginals of the measure M is enough
for that purpose. So we remind the reader of Lemma 8, which states

EY [M(A)M(B)] = Y 2

∫

A×B

eK
ǫ(r−u) drdu.

We deduce that, for any s 6= 0 and on the set {Y > 0},

Kǫ(s) = lim
h→0

ln
( 1

h2
EY [M([0, h])M([s, s+ h])]

)
− 2 lnY. (29)

As a straightforward consequence, the kernel Kǫ defined by (14) does not depend on ǫ since
the left-hand side in (29) does not either. So we can define the quantity

∀r 6= 0, K(r) = Kǫ(r)

for some ǫ ∈ (0, 1) and this relation is also valid for any ǫ ∈ (0, 1). It is also plain to see that for
each ǫ ∈ (0, 1) we have:

∀r 6= 0, K(r) = kǫ(r) +K(
r

ǫ
) (30)

since Kǫ satisfies such a relation. Such a specific functional equation implies a precise structure
for the function K:

Proposition 18. For r > 0, we have

K(r) =

∫ +∞

r

k(u)

u
du (31)

where k(u) is a continuous function R+ → R.

Proof. Because K is Lipschitzian on the compact subsets of R \ {0}, there exists a locally bounded
measurable function f on (0;+∞) such that for all r, s > 0,

K(s)−K(r) =

∫ s

r

f(t)dt.
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Define, for r ∈ R,
φ(r) = K(er)

It is straightforward to derive from (30) that, for all r ∈ R, α > 0,

φ(r + α) − φ(r) = −ke−α(er) (32)

Note that k1(e
r) = 0. From equation (32), one obtains :

1

α

∫ r+α

r

euf(eu)du = −ke−α(er)

α
(33)

For almost every r, the left-hand side of equation (33) tends to erf(er) when α goes to 0. Thus,
the right-hand side of (33) converges also for almost every r to erf(er) when α goes to 0. We define
the function g by the following limit for almost every r:

g(r) = lim
α→0

− 1

α

∫ r+α

r

euf(eu)du = lim
α→0

ke−α(er)

α
(34)

As defined, the function g is measurable with respect to the Borelian σ-field of R. For almost
every x ∈ (0,+∞), define

h(x) = g(ln(x)),

and h(0) by h(0) =
ke−α (0)

α for some α > 0. Note that the definition of h(0) does not depend on
α in view of lemma 14 because we have

K(r) ≃ kǫ(0)

ln ǫ
ln r as r → 0.

Lemma 19. The function h(|.|) is positive definite (as a tempered distribution in the sense of
Schwartz, see [12] or [21]). One can also find a symmetric positive measure µ on R (with µ(R) <
∞) such that for almost every x ∈ R:

h(|x|) =
∫

R

eixξµ(dξ)

Proof. For almost every x ∈ R, h(|x|) = lim
α→0

ke−α (|x|)
α and

ke−α (|x|)
α 6 h(0) uniformly in α. Thus, if

ϕ is a smooth function with compact support, we get using the dominated convergence theorem:

∫

R

∫

R

h(|y − x|)ϕ(x)ϕ(y)dxdx = lim
α→0

∫

R

∫

R

ke−α(|y − x|)
α

ϕ(x)ϕ(y)dxdx > 0.

We conclude that h(|.|) is positive definite. By the Bochner-Schwartz theorem, the Fourier trans-
form of h(|.|) is a symmetric positive measure µ(dξ) such that there exists p > 0 with:

∫

R

µ(dξ)

(1 + |ξ|)p < ∞.

In order to conclude, it is sufficient to prove that µ(R) < ∞. We note θ(x) = e−x2/2
√
2π

and θǫ =
1
ǫ θ(./ǫ) for ǫ > 0. By the inverse Fourier theorem, we get:

(θǫ ∗ h)(0) =
∫

R

e−ǫ2ξ2/2µ(dξ).

Thus the right hand side of the above equality is bounded by h(0) and we conclude by letting ǫ go
to 0.
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Integrating with respect to the Lebesgue measure the relation g(t) = −etf(et) which is true for
almost every t ∈ R, one gets

K(s)−K(r) = −
∫ s

r

h(u)

u
du.

Because K(s) → 0 as s → +∞, the function u 7→ h(u)
u is integrable at the vicinity of +∞ in the

generalized sense. We deduce:

K(r) =

∫ +∞

r

h(u)

u
du.

By the previous lemma, there exists a finite symmetric positive measure µ on R such that, for
almost every x ∈ R,

h(x) =

∫

R

eixξµ(dξ)

For simplicity, define for all x ∈ R, k(x) =
∫
R
eixξµ(dξ). The function k is continuous on R. We

get finally,

K(r) =

∫ +∞

r

k(u)

u
du. (35)

The proof of Proposition 18 is complete.

Proof of Proposition 5. This is just a direct consequence of Theorem 2 and equation (29).

4.4 Construction of lognormal ⋆-scale invariant random measures

We are given a positive random variable Y ∈ L1+δ (for some δ > 0) and a continuous covariation
kernel k such that k(0) < 2. Ley F be the (symmetric) spectral measure associated to K, that is

k(t) =

∫

R

eiλtF (dλ),

and we assume that the improper integral

K(r) =

∫ +∞

r

k(u)

u
du

converges for r > 0.
We choose a constructive approach. Let µ, ν be two i.i.d. independently scattered Gaussian

measures (independent from Y ) distributed on the half plane R× R
∗
+ such that:

∀A ∈ B(R× R
∗
+), E[eqµ(A)] = e

1
2 q

2θ(A)

where

θ(A) =

∫

λ∈R

∫

y∈R
∗
+

1A(λ, y)
1

y
dyF (dλ).

Fix T > 0 and T ′ < T , we define the centered Gaussian process

∀t ∈ R, XT ′(t) =

∫

λ∈R

∫

y∈[1, T
T ′ [

cos(λty)µ(dλ, dy) +

∫

λ∈R

∫

y∈[1, T
T ′ [

sin(λty)ν(dλ, dy).
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It is plain to compute its covariation kernel, call it kT ′ , by using the symmetry of the spectral
measure F (dλ):

kT ′(t− s) = E[XT ′(s)XT ′(t)]

=

∫

λ∈R

∫

y∈[1, T
T ′ [

cos(λty) cos(λts)
1

y
dyF (dλ) +

∫

λ∈R

∫

y∈[1, T
T ′ [

sin(λty) sin(λsy)
1

y
dyF (dλ)

=

∫

λ∈R

∫

y∈[1, T
T ′ [

cos(λ(t − s)y)
1

y
dyF (dλ)

=

∫

y∈[1, T
T ′ [

∫

λ∈R

eiλ(t−s)yF (dλ)
1

y
dy

=

∫

y∈[1, T
T ′ [

k(|t− s|y)
y

dy

=

∫ T
T ′ |t−s|

|t−s|

k(y)

y
dy.

It is plain to see that for all A ∈ B(R), the process

M1/l(A) = Y

∫

A

exp
(
X1/l(r) −

1

2
E[X2

1/l(r)]
)
dr

is a positive martingale and thus converges as l → ∞ towards a random variable M(A). The
stationary random measure (M(A))A∈B(R) is a Gaussian multiplicative chaos in the sense of [17]
with associated covariance K.

Fix T ′ < T . Note that for l > 1/T ′, we have ∀t ∈ R:

X1/l(t) =XT ′(t) +

∫

λ∈R

∫

y∈[ T
T ′ ,lT [

cos(λty)µ(dλ, dy) +

∫

λ∈R

∫

y∈[ T
T ′ ,lT [

sin(λty)ν(dλ, dy)

def
=XT ′(t) + X̄T ′,1/l(t), (36)

where X̄T ′,1/l is a centered stationary Gaussian process independent from XT ′ with covariance
kernel given by:

k̄T ′,1/l(t− s) = E[X̄T ′,1/l(s)X̄T ′,1/l(t)] =

∫ lT |t−s|

T
T ′ |t−s|

k(y)

y
dy.

As above, we can define the random measure MT ′

as the limit as l → +∞ of the random measures

∀A ∈ B(R), MT ′

1/l(A) = Y

∫

A

exp
(
X̄T ′,1/l(r) −

1

2
E[X̄2

T ′,1/l(r)]
)
dr.

The stationary random measure (MT ′

(A))A∈B(R) is a Gaussian multiplicative chaos in the sense of

[17] with associated covariance K(· TT ′ ). We deduce that T
T ′M

T ′(T ′

T ·
)
is a Gaussian multiplicative

chaos in the sense of [17] with associated covariance K(·). The measure T
T ′M

T ′(T ′

T ·
)
thus has the

same law as M . From (36), we obviously have:

M(A) =

∫

A

exp
(
XT ′(r) − 1

2
E[X2

T ′(r)]
)
MT ′

(dr)

in suh a way that (5) holds. Finally we point out that k(0) < 2 implies that M admits a moment
of order 1 + δ for some δ > 0 (see [13]).
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A. Proofs of some auxiliary lemmas

Lemma 20. Let F : Rn 7→ R be a measurable function. Then, for all bounded Borelian sets
A1, . . . , An ⊂ R, the following relation holds almost surely:

EY [F (M(A), . . . ,M(An))] = EY

[
F (M̃N (A), · · · , M̃N (An))

]

Proof. By using the Jensen inequality, we have by

E

[∣∣∣ 1
T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣
]

=E

[(∣∣∣ 1
T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣
2)1/2]

6 E

[(
E

[∣∣∣ 1
T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣
2

|M
])1/2]

=E

[( 1

T 2

∫ T

0

∫ T

0

E

[(
e
∑N

n=0 Xn
r − 1

2E[(X
n
r )2] − 1

)(
e
∑N

n=0 Xn
u− 1

2E[(X
n
u )2] − 1

)]
MN(dr)MN (du)

)1/2]

=E

[( 1

T 2

∫ T

0

∫ T

0

(
e
∑N

n=0 k̄n(r−u) − 1
)
MN (dr)MN (du)

)1/2]

The integrand in the above expectation converges almost surely towards 0 because, for each
0 6 n 6 N , k̄n is bounded and converges to 0 in the vicinity of ∞. Furthermore, it is uniformly
integrable because

sup
T

E

[( 1

T
MN ([0;T ])

)1+δ]
< +∞.

We deduce that

E

[∣∣∣ 1
T
M̃N [0;T ]− 1

T
MN [0;T ]

∣∣∣
]
→ 0 as T → +∞.

As a consequence, 1
T M̃

N [0;T ] converges almost surely along a subsequence towards Y .
One has, for all function h bounded and continuous,

E

[
F (M(A1), . . . ,M(An))h

(
1

T
M [0;T ]

)]
= E

[
F (M̃(A1), . . . , M̃(An))h

(
1

T
M̃N [0;T ]

)]

Sending T to +∞ along the subsequence, we get by the bounded convergence theorem

E [F (M(A1), . . . ,M(An))h (Y )] = E

[
F (M̃(A1), . . . , M̃(An))h (Y )

]

and the lemma is proved.

Lemma 21. Let F : R+ → R be some convex function such that

∀x ∈ R+, |F (x)| 6 M(1 + |x|β),

for some positive constants M,β, and σ be a Radon measure on the Borelian subsets of R. Given
a < b, let (Xr)a 6 r 6 b, (Yr)a 6 r 6 b be two continuous centered Gaussian processes with continuous
covariance kernels kX and kY such that

∀u, v ∈ [a, b], kX(u, v) 6 kY (u, v).

Then

E

[
F
(∫ b

a

eXr− 1
2E[X

2
r ] σ(dr)

)]
6 E

[
F
(∫ b

a

eYr− 1
2E[Y

2
r ] σ(dr)

)]
.
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Proof. For each N ∈ N, we define the smooth subdivision tNp = a + p b−a
N , p = 0, . . . , N , of the

interval [a, b]. We also introduce the random variables

SX
N =

N−1∑

p=0

e
X

tNp
− 1

2E[X
2

tNp
]
σ([tNp , tNp+1)) and SY

N =
N−1∑

p=0

e
Y
tNp

− 1
2E[Y

2

tNp
]
σ([tNp , tNp+1)).

By classical Gaussian inequalities (see [17, corollary 6.2] for instance), we have

∀N > 1, E

[
F
(
SX
N

)]
6 E

[
F
(
SY
N

)]
.

So it just remains to pass to the limit as N → ∞ by using the dominated convergence theorem. By
continuity of the processes X,Y the random variables SX

N , SY
N converge almost surely respectively

towards
∫ b

a eXr− 1
2E[X

2
r ] σ(dr),

∫ b

a eYr− 1
2E[Y

2
r ] σ(dr). Clearly, we have:

|F (SX
N )| 6 M

(
1 + |SX

N |β
)
,

so that we just have to prove that |SX
N |β is uniformly integrable (the same argument holds for

|SY
N |β). It is enough to establish that for each d ∈ N,

sup
N

E
[
(SX

N )d
]
< +∞.

We have

E
[
(SX

N )d
]
=E

[(N−1∑

p=0

e
XtNp

− 1
2E[X

2

tNp
]
σ([tNp , tNp+1))

)d]

=

N−1∑

p1,...,pd=0

E

[
e
X

tNp1
+···+X

tNpd

]
e
− 1

2 (E[X
2

tNp1

]+···+E[X2

tNpd

])
σ([tNp1

, tNp1+1))× · · · × σ([tNpd
, tNpd+1))

=

N−1∑

p1,...,pd=0

e
1
2

∑d
i,j=1 kX (tNpi

,tNpj
)
e
− 1

2 (E[X
2

tNp1

]+···+E[X2

tNpd

])
σ([tNp1

, tNp1+1))× · · · × σ([tNpd
, tNpd+1))

→
∫ b

a

. . .

∫ b

a

e
1
2

∑d
i6=j kX(ui,uj)σ(du1) · · ·σ(dud)

as N → ∞. This completes the proof.

Proof of Lemma 14. First observe that we have:

Kǫ(r) =
ln+ r

ln ǫ
kǫ(0) + gǫ(r),

where we have set

gǫ(r) = Kǫ(r) − ln+ r

ln ǫ
kǫ(0).

Because of (7), it is readily seen that gǫ is continuous on R \ {0} (or even locally lipschitz). Then
proving the boundedness of gǫ over R \ {0} boils down to proving the boundedness of gǫ over a

20



neighbourhood of 0. By using (6) and (7), we have for any |r| 6 1:

|gǫ(r)| = |Kǫ(r) − ln r

ln ǫ
kǫ(0)|

6
∣∣

ln r
ln ǫ −1∑

n=0

kǫ
( r
ǫn
)
− kǫ

(
0
)∣∣+

∣∣ ln r
ln ǫ

kǫ(0)−
ln r
ln ǫ−1∑

n=0

kǫ
(
0
)∣∣+

∣∣
+∞∑

ln r
ln ǫ

kǫ
( r
ǫn
)∣∣

6

ln r
ln ǫ−1∑

n=0

Cǫ

1 +
∣∣ r
ǫn

∣∣1+α

∣∣ r
ǫn

∣∣+
∣∣kǫ(0)

∣∣+
+∞∑

ln r
ln ǫ

Cǫ

1 + | ln r − n ln ǫ|1+α

6
Cǫ

1− ǫα
+ |kǫ(0)|+ Cǫ

∫ +∞

ln r
ln ǫ

1

1 + | ln r − u ln ǫ|1+α
du.

Note that the last integral matches Cǫ

| ln ǫ|
∫ +∞
0

| ln r|
1+|y ln r|1+α dy and is thus easily seen to be bounded

in a neighbourhood of 0.

Proof of Lemma 15. Let n ∈ N.

E
[
M [0; t]1+δ

]
= E

[(
M [0;

t

n
] +M [

t

n
;
2t

n
] + · · ·+M [

(n− 1)t

n
; t]

)1+δ
]

(37)

> E

[(
M [0;

t

n
]

)1+δ

+

(
M [

t

n
;
2t

n
]

)1+δ

+ · · ·+
(
M [

(n− 1)t

n
; t]

)1+δ
]

(38)

= nE

[(
M [0;

t

n
]

)1+δ
]

(39)

We used the stationarity of the measure M in the second line. Now write, for h > 0:

g(h) = sup
r 6 h

| k1/n(0)− k1/n(r) | (40)

We have, for every r ∈ (0, t/n] and n large enough:

| k1/n(0)− g(t/n) | 6 k1/n(r).

So, using classical gaussian inequality (see Lemma 21):

E

[
M [0;

t

n
]1+δ

]
= E



(∫ t/n

0

eω1/n(r)M1/n(dr)

)1+δ



> E



(∫ t/n

0

e
√

|k1/n(0)−g(t/n)|Zn− 1
2 |k1/n(0)−g(t/n)|M1/n(dr)

)1+δ



= E

[(
e
√

|k1/n(0)−g(t/n)|Zn− 1
2 |k1/n(0)−g(t/n)|

)1+δ
]
E

[(
M1/n[0;

t

n
]

)1+δ
]

= e−
1+δ
2 |k1/n(0)−g(t/n)|e

(1+δ)2

2 |k1/n(0)−g(t/n)| 1

n1+δ
E

[
(M [0; t])

1+δ
]

(41)

We used Lemma 13 in the second line. Using equations (39) and (41), one gets

e−
1+δ
2 |k1/n(0)−g(t/n)|e

(1+δ)2

2 |k1/n(0)−g(t/n)| 1

nδ
6 1 (42)
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As h goes to 0, g(h) goes to 0 (the function k1/n is continuous). Letting t goes to 0 in (42), one
gets

k1/n(0) 6
2

1 + δ
lnn.

and the lemma is proved.
Proof of Corollary 3. By stationarity, it is enough to prove that, almost surely, the measure M
does not possess any atom on the segment [0, 1]. From [8, Corollary 9.3 VI], it is enough to check
that for each α > 0:

n∑

k=1

P

(
M [

k − 1

n
;
k

n
] > α

)
= nP

(
M [

0

n
;
1

n
] > α

)
→ 0 as n → ∞.

This is a direct consequence of the Markov inequality and Lemma 13:

nP
(
M [

0

n
;
1

n
] > α

)
6

n

α1+γ
E[M([0,

1

n
])1+γ ] → 0 as n → ∞.
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