Diarmuid Grimes

Emmanuel Hebrard
email: hebrard@laas.fr

Job shop scheduling with setup times and maximal time-lags: A simple constraint programming approach

In previous work we introduced a simple constraint model that combined generic AI strategies and techniques (weighted degree heuristic, geometric restarts, nogood learning from restarts) with naive propagation for job shop and open shop scheduling problems. Here, we extend our model to handle two variants of the job shop scheduling problem: job shop problems with setup times; and job shop problems with maximal time lags. We also make some important additions to our original model, including a solution guidance component for search. We show empirically that our new models often outperform the state of the art techniques on a number of known benchmarks for these two variants, finding a number of new best solutions and proving optimality for the first time on some problems. We provide some insight into the performance of our approach through analysis of the constraint weighting procedure.

Introduction

Scheduling problems have proven fertile research ground for constraint programming and other combinatorial optimization techniques. There are numerous such problems occurring in industry, and whilst relatively simple in their formulation -they typically involve only Sequencing and Resource constraints -they remain extremely challenging to solve. After such a long period as an active research topic (more than half a century back to Johnson's seminal work [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]) it is natural to think that methods specifically engineered for each class of problems would dominate approaches with a broader spectrum. However, it was recently shown [START_REF] Tamura | Compiling finite linear csp into sat[END_REF][START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF][START_REF] Schutt | Why cumulative decomposition is not as bad as it sounds[END_REF] that generic SAT or constraint programming models can approach or even outperform state of the art algorithms for open shop scheduling and job shop scheduling. In particular, in a previous work [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom[END_REF] we introduced a constraint model that advantageously trades inference strength for brute-force search speed and adaptive learning-based search heuristics combined with randomized restarts and a form of nogood learning.

Local search algorithms are generally the most efficient approach for solving job shop scheduling problems. The best algorithms are based on tabu search [?], or on a CP/local search hybrid [START_REF] Watson | A Hybrid Constraint Programming / Local Search Approach to the Job-Shop Scheduling Problem[END_REF]. Pure CP approaches can also be efficient, especially when guided by powerful search strategies that can be thought of as metaheuristics [START_REF] Beck | Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling[END_REF]. The best CP approach uses inference from the Edge-finding algorithm [START_REF] Carlier | An Algorithm for Solving the Job-shop Problem[END_REF][START_REF] Nuijten | Time and Resource Constraint Scheduling: A Constraint Satisfaction Approach[END_REF] and dedicated variable ordering heuristics such as Texture [START_REF] Beck | Texture-Based Heuristics for Scheduling Revisited[END_REF]. On the other hand, we take a minimalistic approach to modelling the problem. In particular, whilst most algorithms consider resource constraints as global constraints, devising specific algorithms to filter them, we simply decompose them into primitive disjunctive constraints ensuring that two tasks sharing a resource do not run concurrently. To this naive propagation framework, we combine slightly more sophisticated, although generic heuristics and restart policies. In this work, we have also incorporated the idea of solution guided search [START_REF] Beck | Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling[END_REF].

We showed recently that this approach can be very effective with respect to the state of the art. However, it is even more evident on variants of these archetypal problems where dedicated algorithms cannot be applied in a straightforward manner. In the first variant, running a task on a machine requires a setup time, dependent on the task itself, and also on the previous task that ran on the same machine. In the second variant, maximum time lags between the starting times of successive tasks of each job are imposed. In both cases, most approaches decompose the problem into two subproblems, for the former the traveling salesman problem with time windows [START_REF] Artigues | A branch and bound method for the job-shop problem with sequence-dependent setup times[END_REF][START_REF] Balas | Job shop scheduling with setup times, deadlines and precedence constraints[END_REF] is used, while the latter can be decomposed into sequencing and timetabling subproblems [START_REF] Framinan | An enhanced timetabling procedure for the no-wait job shop problem: a complete local search approach[END_REF]. On the other hand, our approach can be easily adapted to handle these additional constraints. Indeed, it found a number of new best solutions and proved optimality for the first time on some instances from a set of known benchmarks.

It may appear surprising that such a method, not reliant on domain specific knowledge, and whose components are known techniques in discrete optimization, could be so effective. We therefore devised some experiments to better understand how the key component of our approach, the constraint weighting, affects search on these problems. These empirical results reveal that although the use of constraint weighting is generally extremely important to our approach, it is not always so. In particular on no-wait job shop scheduling problems (i.e. problems with maximal time-lag of 0 between tasks), where our approach often outperforms the state of the art, the weight even seems to be detrimental to the algorithm.

In Section 2, we describe our approach. In Section 3, after outlining the experimental setup, we provide an experimental comparison of our approach with the state-of-theart on standard benchmarks for these two problems. Finally we detail the results of our analysis of the impact of weight learning in these instances in Section 4.

A Simple Constraint Programming Approach

In this section we describe the common ground of constraint models we used to model the variants of JSP tackled in this paper. We shall consider the minimization of the total makespan (C max) as the objective function in all cases.

Job Shop Scheduling Problem

An n × m job shop problem (JSP) involves a set of nm tasks

T = {t i | 1 ≤ i ≤ nm}, partitioned into n jobs J = {J x | 1 ≤ x ≤ n}, that need to be scheduled on m machines M = {M y | 1 ≤ y ≤ m}. Each job J x ∈ J is a set of m tasks J x = {t (x-1) * m+y | 1 ≤ y ≤ m}.
Conversely, each machine M y ∈ M denotes a set of n tasks (to run on this machine) such that: T = (1≤x≤n J x) = (1≤y≤m M y).

Each task t i has an associated duration, or processing time, p i . A schedule is a mapping of tasks to time points consistent with: sequencing constraints which ensure that the tasks of each job run in a predefined order; and resource constraints which ensure that no two tasks run simultaneously on any given machine.

In this paper we consider the standard objective function defined as the minimization of the makespan C max , that is, the total duration to run all tasks. If we identify each task t i with its start time in the schedule, the job shop scheduling problem (JSP) can thus be written as follow:

(JSP) minimise C max subject to :

C max ≥ t i + p i ∀t i ∈ T (2.1) t i + p i ≤ t i+1 ∀J x ∈ J , ∀t i , t i+1 ∈ J x (2.2) t i + p i ≤ t j ∨ t j + p j ≤ t i ∀M y ∈ M, t i = t j ∈ M y (2.3)

Constraint model

The objective to minimise (total makespan) is represented by a variable C max and the start time of each task t i is represented by a variable

t i ∈ [0, . . . , max(C max) -p i].
Next, for every pair of tasks t i , t j sharing a machine, we introduce a Boolean variable b ij which represents the relative ordering between t i and t j . A value of 0 for b ij means that task t i precedes task t j , whilst a value of 1 stands for the opposite ordering. The variables t i , t j and b ij are linked by the following constraint:

b ij = 0 ⇔ t i + p i ≤ t j 1 ⇔ t j + p j ≤ t i
Bounds consistency (BC) is maintained on these constraints. A range support of a constraint C(x 1 , . . . , x k) is an assignment of {x 1 , . . . , x k } satisfying C, and where the value assigned to each variable x i is an integer taken in the interval [min(x i)..max(x i)]. A constraint C(x 1 , . . . , x k) is bounds consistent (BC) iff, for every variable x i in the scope of C, min(x i) and max(x i) have a range support. Here, the scope of the constraint involves three variables, b ij , t i and t j , therefore BC can be achieved in constant time for a single constraint, by applying simple rules. For n jobs and m machines, this model involves nm(n -1)/2 Boolean variables and as many ternary disjunctive constraints. Using an AC3 type constraint queue, the wort case time complexity for achieving bounds consistency on the whole network is therefore O(C max * nm(n-1)/2) since in the worst case bounds can be reduced by one unit at a time. For instance, consider three tasks t i , t j and t k such that p i = p j = p k = 1 and assume that b ij = b jk = 0 (hence t i ≤ t j ≤ t k). Moreover, suppose that the domain of b ik is reduced to the value 1, so that the cycle is closed. Since the domains are reduced by a constant amount at each propagation, the number of iterations necessary to obtain a failure is in O(C max). However, it rarely reaches this bound in practice. Observe, moreover, that artificially increasing the size of the instance by a fixed amount will not affect the propagation loop as long as the durations increase proportionally to the horizon.

Search Strategy

We use the model described above in two different ways. Initially the lower bound on C max is set to the duration of the longest job/machine, whilst the upper bound ub is initialised by a greedy algorithm in one case (Section 3.1), or by simply summing the durations of every task (Section 3.2). Since this starting upper bound is often very poor, especially in the latter case, we reduce the gap by performing a dichotomic search. We repeatedly solve the decision problem with a makespan fixed to ub+lb 2 , updating lb and ub accordingly, until they have collapsed. Each dichotomic step has a fixed time cutoff, if the problem is unsolved the lb is updated, although not stored as the best proven lb. Moreover, we observed that in many cases, the initial upper bound is so overestimated that it helps to slightly bias the dichotomic pivot toward lower values until a first solution is found.

If the problem has not been solved to optimality during the dichotomic search, we perform a branch & bound search with the best makespan from the dichotmic search as our upper bound, and the best proven lb as our lower bound. Branch & bound search is performed until either optimality is proven or an overall cutoff is reached.

Branching: Instead of searching by assigning a starting time to a single value on the left branches, and forbidding this value on the right branches, it is common to branch on precedences. An unresolved pair of tasks t i , t j is selected and the constraint t i +p i ≤ t j is posted on the left branch whilst t j + p j ≤ t i is posted on the right branch. In our model, branching on the Boolean variables precisely simulates this branching strategy and thus significantly reduces the search space. Indeed, the existence of a partial ordering of the tasks (compatible with start times and durations, and such that its projection on any job or machine is a total order) is equivalent to the existence of a solution. In other words, if we successfully assign all Boolean variables in our model, the existence of a solution is guaranteed. Assigning each task variable to its lowest domain value gives the minimum C max for this solution.

Variable Selection: We use the domain/weighted-degree heuristic [START_REF] Boussemart | Boosting Systematic Search by Weighting Constraints[END_REF], which chooses the variable minimising the ratio of current domain size to total weight of its neighboring constraints (initialised to 1). A constraint's weight is incremented by one each time the constraint causes a failure during search. It is important to stress that the behaviour of this heuristic is dependent on the modelling choices. Indeed, two different, yet logically equivalent, sets of constraints may distribute the weights differently. In this model, every constraint involves at most one search variable. Moreover, the relative light weight of the model allows the search engine to explore many more nodes than would a method relying on stronger inference, thus learning weights quicker.

However, at the start of the search, this heuristic is completely uninformed since every Boolean variable has the same domain size and the same degree. We therefore use an augmented version of the heuristic, where, instead of the domain size of b ij , we use the domain size of the two associated task variables t i , t j . We denote dom(t i) = (max(t i) -min(t i) + 1) the domain size of task t i , that is, the residual time windows of its starting time. Moreover, we denote w(i, j) the number of times the search failed while propagating the constraint between t i , t j and b ij . We choose the variable minimising the sum of the tasks' domain size divided by the weighted degree:

dom(t i) + dom(t j) w(i, j) (2.4)
Moreover, one can also use the weighted degree associated with the task variables. Let Γ (t j) denote the set of tasks sharing a resource with t j . We call w(t j) = ti∈Γ (tj) w(i, j) the sum of the weights of every ternary disjunctive constraint involving t j . Now we can define an alternative variable ordering as follows:

dom(t i) + dom(t j) w(t i) + w(t j) (2.5)
We refer to these heuristics as tdom/bweight and tdom/tweight, tdom refers to the sum of the domain sizes of the tasks associated with the Boolean variable, and bweight (tweight) refers to the weighted degree of the Boolean (tasks). Ties were broken randomly.

Value Selection: Our value ordering is based on the solution guided approach (SGM-PCS) proposed by Beck for JSPs [START_REF] Beck | Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling[END_REF]. This approach involves using previous solution(s) as guidance for the current search, intensifying search around a previous solution in a similar manner to i-TSAB [START_REF] Nowicki | An Advanced Tabu Search Algorithm for the Job Shop Problem[END_REF]. In SGMPCS, a set of elite solutions is initially generated. Then, at the start of each search attempt, a solution is randomly chosen from the set and is used as a value ordering heuristic for search. When an improving solution is found, it replaces the solution in the elite set that was used for guidance. The logic behind this approach is its combination of intensification (through solution guidance) and diversification (through maintaining a set of diverse solutions).

Interestingly Beck found that the intensification aspect was more important than the diversification. Indeed, for the JSPs studied, there was little difference in performance between an elite set of size 1 and larger elite sets (although too large a set did result in a deterioration in performance). We use an elite set of 1 for our approach, i.e. once an initial solution has been found this solution is used, and updated, throughout our search.

Furthermore, up until the first solution is found during dichotomic search, we use a value ordering working on the principle of best promise [START_REF] Geelen | Dual viewpoint heuristics for binary constraint satisfaction problems[END_REF]. The value 0 for b ij is visited first iff the domain reduction directly induced by the corresponding precendence (t i + p i ≤ t j) is less than that of the opposite precedence (t j + p j ≤ t i).

Restart policy: It has previously been shown that randomization and restarts can greatly improve systematic search performance on combinatorial problems [START_REF] Gomes | Boosting combinatorial search through randomization[END_REF]. We use a geometric restarting strategy [START_REF] Walsh | Search in a Small World[END_REF] with random tie-breaking. The geometric strategy is of the form s, sr, sr 2 , sr 3 , ... where s is the base and r is the multiplicative factor. In our experiments the base was 64 failures and the multiplicative factor was 1.3. We also incorporate the nogood recording from restarts strategy of Lecoutre et al. [START_REF] Lecoutre | Nogood Recording from Restarts[END_REF], where nogoods are generated from the final search state when the cutoff has been reached. To that effect, we use a global constraint which essentially simulates the unit propagation procedure of a SAT solver. After every restart, for every minimal subset of decisions leading to a failure, the clause that prevents exploring the same path on subsequent restarts is added to the base. This constraint is not weighted when a conflict occurs.

We compare our model with state-of-the-art solvers (both systematic and non-sysytematic) on 2 variants of the JSP, job shop problems with sequence dependent setup times and job shop problems with time lags. All our experiments were run on an Intel Xeon 2.66GHz machine with 12GB of ram on Fedora 9. Due to the random component of our algorithm, each instance was solved ten times and we report our results in terms of both best and average makespan found per problem. Each algorithm run on a problem had an overall time limit of 3600s.

The number of algorithms we need to compare against makes it extremely difficult to run all experiments on a common setting. 3 We therefore decided to compare with the results taken from their associated papers. Since they were obtained on different machines with overall cutoffs based on different criteria, a direct comparison of cpu time is not possible. However, an improvement on the best known makespan is sufficient to observe that our approach is competitive. Therefore, we focus our analysis of the results on the objective value (although we do include average cpu time over the 10 runs for problems where we proved optimality).

Job Shop Scheduling Problem with Sequence Dependent Setup-times

A job shop problem with sequence-dependent setup times, involves, as in a regular JSP, m machines and nm tasks, partitioned into n Jobs of m tasks. As for a JSP, the tasks have to run in a predefined order for every job and two tasks sharing a machine cannot run concurrently, that is, the starting times of these tasks should be separated by at least the duration of the first. However, for each machine and each pair of tasks running on this machine, the machine needs to be setup to accommodate the new task. During this setup the machine must stand idle. The duration of this operation depends on the sequence of tasks, that is, for every pair of tasks (t i , t j) running on the same machine we are given the setup time s(i, j) for t j following t i and the setup time s(j, i) for t i following t j . The setup times respect the triangular inequality, that is ∀i, j, k s(i, j) + s(j, k) ≥ s(i, k). The objective is to minimise the makespan. More formally:

(SDST -JSP) minimise C max subject to :

C max ≥ t i + p i ∀t i ∈ T (3.1) t i + p i ≤ t i+1 ∀J x ∈ J , ∀t i , t i+1 ∈ J x (3.2) t i + p i + s i,j,y ≤ t j ∨ t j + p j + s j,i,y ≤ t i ∀M y ∈ M, ∀t i = t j ∈ M y (3.3)

State of the art:

This problem represents a challenge for CP and systematic approaches in general, since the inference from the Edge-finding algorithm is seriously weakened as it cannot easily take into account the setup times. Therefore there are two main approaches to this problem. The first by Artigues et al. [START_REF] Artigues | A branch and bound method for the job-shop problem with sequence-dependent setup times[END_REF] (denoted AF08 in Table 1) tries to adapt the reasoning for simple unary resources to unary resources with setup times. The approach relies on solving a TSP with time windows to find the shortest permutation of tasks, and is therefore computationally expensive.

The second type of approach relies on metaheuristics. Balas et al. [START_REF] Balas | Job shop scheduling with setup times, deadlines and precedence constraints[END_REF] proposed combining a shifting bottleneck algorithm with guided local search (denoted BSV08 in Table 1 4), where the problem is also decomposed into a TSP with time windows. Hybrid genetic algorithms have also been proposed by González et al. for this problem, firstly a hybrid GA with local search [START_REF] González | A new hybrid genetic algorithm for the job shop scheduling problem with setup times[END_REF] and more recently GA combined with tabu search [START_REF] González | Genetic algorithm combined with tabu search for the job shop scheduling problem with setup times[END_REF] (denoted GVV08 and GVV09 resp. in Table 1). For both GA hybrids, the problem is modeled using the disjunctive graph representation. Specific Implementation Choices: Our model is basically identical to the generic scheduling model introduced in Section 2. However, the setup time between two tasks is added to the duration within the disjunctive constraints. That is, given two tasks t i and t j sharing a machine, let s i,j (resp. s j,i) be the setup time for the transition between t i and t j (resp. between t j and t i), we replace the usual disjunctive constraint with:

b ij = 0 ⇔ t i + p i + s i,j ≤ t j 1 ⇔ t j + p j + s j,i ≤ t i
Evaluation: Table 1 summarizes the results of the state-of-the-art and our approach on a set of benchmarks proposed by Brucker and Thiele [START_REF] Brucker | A branch and bound method for the general-shop problem with sequence-dependent setup times[END_REF]. The problems are grouped based on the number of jobs and machines (nxm), *01-05 are of size 10x5, *06-10 are of size 15x5, while *11-15 are of size 20x5. Each step of the dichotomic search had a 30 second cutoff, the search heuristic used was tdom/bweight. We use the following notation for Table 1 (we shall reuse it for Tables 3 and4): underlined values denote the fact that optimality was proven, bold face values denote the best value achieved by any method and finally, values * marked with a star denote instances where our approach improved on the best known solution or built the first proof of optimality. We also include the average time over the 10 runs when optimality was proven (a dash means optimality wasn't proven before reaching the 1 hour cutoff). We report the first proof of optimality for four instances (t2-ps09, t2-pss06, t2-pss07, t2-pss10) and 8 new upper bounds for t2-pss* instances (however it should be noted that there is no comparison available for GVV09 on these 8 instances). In general, our approach is competitive with the state-of-the-art (GVV09) and outperforms both dedicated systematic and non-systematic solvers.

Job Shop Scheduling Problem with Time Lags

An n × m job shop problem with time lags (JTL) involves the same variables and constraints as a JSP of the same order. However, there is an additional upper bound on the time lag between every pair of successive tasks in every job. Let l i denote the maximum amount of time allowed between the completion of task t i and the start of task t j . More formally:

(T L -JSP) minimise C max subject to :

C max ≥ t i + p i ∀t i ∈ T (3.4) t i + p i ≤ t i+1 ∀J x ∈ J , ∀t i , t i+1 ∈ J x (3.5) t i+1 -(p i + l i) ≤ t i ∀J x ∈ J , ∀t i , t i+1 ∈ J x (3.6) t i + p i ≤ t j ∨ t j + p j ≤ t i ∀M y ∈ M, ∀t i = t j ∈ M y (3.7)
This type of constraint arises in many situations. For instance, in the steel industry, the time lag between the heating of a piece of steel and its moulding should be small. Similarly when scheduling chemical reactions, the reactives often cannot be stored for a long period of time between two stages of a process to avoid interactions with external elements. This problem was not only studied within the steel and chemical industries [START_REF] Rajendran | A no-wait flowshop scheduling heuristic to minimize makespan[END_REF] but also in the food industry and the pharmaceutical industry. [START_REF] Caumond | A memetic algorithm for the job-shop with time-lags[END_REF]. However most of the algorithms introduced in the literature have been designed for a particular case of this problem: the no-wait job shop. In this case, the maximum time-lag is null, i.e. each task of a job must start directly after its preceding task has finished.

State of the art: Caumond et al. introduced in 2008 a genetic algorithm able to deal with general time lag constraints

For the no-wait job shop problem, the best methods are a tabu search method by Schuster (TS [START_REF] Schuster | No-wait job shop scheduling: Tabu search and complexity of problems[END_REF]), another metaheuristic introduced by Framinian and Schuster (CLM [START_REF] Framinan | An enhanced timetabling procedure for the no-wait job shop problem: a complete local search approach[END_REF]) and a hybrid constructive/tabu search algorithm introduced by Bozėjko and Makuchowski in 2009 (HTS [START_REF] Bozejko | A fast hybrid tabu search algorithm for the no-wait job shop problem[END_REF]). We report the best results of each paper. It should be noted that for HTS, the authors reported two sets of results, the ones we report for the "hard" instances were "without limit of computation time". Specific Implementation Choices: The constraint to represent time lags between two tasks of a job are simple precedences in our model. For instance, a time lag l i between t i and t i+1 , will be represented by the following constraint:

t i+1 -(p i + l i) ≤ t i .
Although our generic model was relatively efficient on these problems, we made a simple improvement for the no-wait class based on the following observation: if no delay is allowed between any two consecutive tasks of a job, then the start time of every task is functionally dependent on the start time of any other task in the job. The tasks of each job can thus be viewed as one block. In other words we really need only one task in our model to represent all the tasks of a job. We therefore use only n variables standing for the jobs:

{J x | 1 ≤ x ≤ n}.
Let h i be the total duration of the tasks coming before task t i in its job. That is, if job J = {t 1 , . . . , t m }, we have: h i = k<i p k . For every pair of tasks t i ∈ J x , t j ∈ J y sharing a machine, we use the same Boolean variables to represent disjuncts as in the original model, however linked by the following constraints:

b ij = 0 ⇔ J x + h i + p i -h j ≤ J y 1 ⇔ J y + h j + p j -h i ≤ J x
Notice that while the variables and constants are different, these are still exactly the same ternary disjuncts used in the original model.

The no-wait job shop scheduling problem can therefore be reformulated as follows, where the variables J 1 , . . . , J n represent the start time of the jobs, J x(i) stands for the job of task t i , and f (i, j) = h i + p i -h j .

(N W -JSP) minimise C max subject to :

C max ≥ J x + ti∈Jx p i ∀J x ∈ J (3.8) J x(i) + f (i, j) ≤ J x(j) ∨ J x(j) + f (j, i) ≤ J x(i) ∀M y ∈ M, t i , t j ∈ M y (3.9)
Evaluation: On general JTL problems, it is difficult to find comparable results in the literature. To the best of our knowledge, the only one available is the genetic algorithm by Caumond et al. [START_REF] Caumond | A memetic algorithm for the job-shop with time-lags[END_REF] that we shall denote CLT. In Table 2a, we report the results from our model on the instances used in that paper, where instances are grouped based on type (car (4 instances) / la (3 instances)) and maximum time lag (0.5 / 1 / 2). For the no-wait job shop problem, we first present our results in terms of each solver's average percentage relative deviation (PRD) from the reference values given in [START_REF] Bozejko | A fast hybrid tabu search algorithm for the no-wait job shop problem[END_REF] per problem set in Table 2b. The PRD is given by the following formula:

P RD = ((C Alg -C Ref)/C Ref) * 100 (3.10)
where C Alg is the best makespan found by the algorithm and C Ref is the reference makespan for the instance given in [START_REF] Bozejko | A fast hybrid tabu search algorithm for the no-wait job shop problem[END_REF]. There are 82 instances overall. Interestingly, the search heuristic tdom/tweight performed much better with our no-wait model than tdom/bweight, thus we report the results for this heuristic. This was somewhat surprising because this heuristic is less discriminatory as the task weights for a Boolean are the weights of the two jobs, which will be the same for all Booleans between these two jobs. Further investigation revealed that ignoring the weight yielded better results on a number of problems. Thus we also include the heuristic tdom. Our approach was better than the local search approaches on the smaller problem sets, and remained competitive on the larger problem sets. In Table 3 we provide results for the instances regarded as easy in [START_REF] Bozejko | A fast hybrid tabu search algorithm for the no-wait job shop problem[END_REF], these had been proven optimal by Mascis [START_REF] Mascis | Job-shop scheduling with blocking and no-wait constraints[END_REF]. We proved optimality on all these instances, in under 10s for most cases. It is of interest to note that tdom was nearly always quicker than tdom/tweight at proving optimality. In Table 4, we report results for the "hard" instances where our approach found an improving solution, and the first proofs of optimality for 10 (la12, la21-25, la36 and la38-40) of the 53 open problems.

Weight learning analysis

We have previously shown that the weighted degree is a key element of our approach [START_REF] Grimes | Closing the Open Shop: Contradicting Conventional Wisdom on Disjunctive Temporal Problems[END_REF]. In particular the gap in performance between tdom/bwdeg and tdom was quite large for open shop scheduling problems. Here we try to give a more precise characterization of the importance of learning weights, by gradually reducing the influence of these weights in the variable selection heuristic. We observe that the impact of the weights is very much problem-dependent. It is extremely important for job shop with setup times model and for the standard model for job shop with time lags. However, for the specific model for no-wait job shop problems, it can be detrimental in some cases.

Evaluation of weighted degree

In order to evaluate the effect of weight learning on search, we devised the following variable ordering heuristic, that we denote tdom/(K + bweight), and that selects first the variable b ij minimising the value of:

dom(t i) + dom(t j) w(i, j) + K (4.1)
Observe that when K = 0, this heuristic is equivalent to tdom/(bweight), whereas, when K tends toward infinity, the weights become insignificant in the variable selection. For K = ∞ the next variable is selected with respect to tdom only.

We can therefore tune the impact of the weights in the variable choice, by setting the constant K. As K increases, the role of the weights is increasingly restricted to a tie breaker. We selected a subset of instances small enough to be solved by tdom/(∞ + bweight). For the selected subset of small instances, we ran each version of the heuristic ten times with different random seeds. We report the average cpu time across the ten runs in Table 5. When the run went over a one hour time cutoff, we report the deviation to the optimal solution (in percentage) instead.

Table 5: Weight evaluation: cpu-time or deviation to the optimal for increasing values of K. For job shop with setup times, the best compromise is for K = 10. For very large values of K, the domain size of the tasks takes complete precedence on the weights, and the performance degrades. However, as long as the weights are present in the selection process, even simply as tie breaker, the cpu time stays within one order of magnitude from the best value for K. On the other hand, when the weights are completely ignored, the algorithm is not able to solve any of the instances. Indeed the gap to optimality is quite large, around 9% to 15%.

Instance tdom/(K + bweight) K = 0 K = 10 K = 100 K = 1000 K = 10000 K = 100000 K = ∞ t2-ps07 26
For job shop with time lags, the situation is a little bit different. As in the previous case, the best compromise is for K = 10 and the performance degrades slowly when K increases. However, even when the weights are completely ignored, the gap stays within a few orders of magnitude from the best case. Finally, for the no-wait job shop, we observe that the opposite is true. Rather than increasing with K, the cpu time actually decreases when K grows.

One important feature of a heuristic is its capacity to focus the search on a small subset of variables that would constitute a backdoor of the problem. It is therefore interesting to find out if there is a correlation between a high level of inequality in the weight distribution and the capacity to find small backdoors. We used the Gini coefficient to characterize the weight distribution. The Gini coefficient is a metric of inequality, used for instance to analyse distribution of wealth in social science.

The Gini coefficient is based on the Lorenz curve, mapping the cumulative proportion of income y of a fraction x of the poorest population. When the distribution is perfectly fair, the Lorenz curve is y = x. The Gini coefficient is the ratio of the area lying between the Lorenz curve and x = y, over the total area below x = y. We consider only search trees for unsatisfiable instances. In an ideal situation, when the search converges immediately toward a given set of variables from which a short proof of unsatisfiability can be extracted, the Gini coefficient of the weight distribution typically increases rapidly and monotonically. In Figure 1 we plot the Gini coefficient of the proofs for the instance t2-ps07; for an instance of random CSP with 100 variables, a domain size of 15, 250 binary constraints of tightness 0.53 uniformly distributed; and a pigeon holes instance.

After each geometric restart, the Gini coefficient is computed and plotted against the current number of explored nodes. We observe that the weight distribution is quickly and significantly biased on the job shop instance. On the other hand, there is much less discrimination on the random CSP instance, where constraints are uniformly distributed, and almost no discrimination at all on the pigeon hole problem. We were interested in checking if one could predict, from the fairness of the weight distribution, how beneficial the weighted degree heuristic is for the considered problem. However, when comparing two proofs that required a comparably large amount of search, but for which we showed that, in one case the weights are beneficial, and in the other case detri-mental, it is in fact extremely difficult to differentiate the evolution of the coefficient. It took 11 million nodes to prove that C max = 1357 is unsatisfiable for la09 0 0 and 24 million nodes to prove that C max = 1059 is unsatisfiable for t2-ps09. It is clear from the results in Table 5 however, that the weights helped in the latter case, whereas they did not in the former case. We report two statistics collected during search showing some clear differences: the ratio of (Boolean) variables that are selected at a choice point up to each depth in the search tree, over the total number of (Boolean) variables; the ratio of the number of choice points, that is nodes of the search tree, at each depth, over the total number of explored nodes.

Clearly for t2-ps09, where the weights are useful, the search is more focused on lower depth, and on a smaller ratio of variables. Indeed, the cumulative ratio of searched variables tops at 0.3 (See Figure 2a). On the other hand, for la09 0 0, even very deep in the tree, new choice points are opened (the ratio of choice points is more spread out), and they involve a large proportion of new variables (the cumulative number of searched variables increases almost linearly up to 0.6). The evolution of the Gini coefficient during search is, however, very similar in both cases (See Figure 2b).

One possibility is that the build up of contention is more important for the no wait problems due to the stronger propagation between tasks of the one job. Preliminary results suggest that both tdom tdom/bweight initially select Booleans between the same pair of jobs once a pair has been selected. The heuristics diverge when search backs up from deep in search, tdom will still often choose Booleans from the same pair of jobs as the variable above the choice point, while the weights learnt deep in search may result in the heuristics that use bweight and tweight choosing variables associated with a different pair of jobs. Obviously, this effect will be stronger for bweight as the weights are individual.

Conclusions

We have shown how our constraint model can be easily extended to handle two variants of the job shop scheduling problem. In both cases we found our approach to be competitive with the state-of-the-art, most notably in proving optimality on some of the open problems of both problem types.

Whereas it appeared to uniformly improve search efficiency for standard job shop and open shop scheduling problems, our analysis of constraint weighting revealed that it can actually be detrimental for some variants of these problems.

Fig. 1 :

 1 Fig. 1: Weight distribution bias: Gini coefficient over the (normalised) number of searched nodes.

Fig. 2 :

 2 Fig.2: Search tree and weight distribution for t2-ps09 and la09 0 0.

Table 1 :

 1 SDST-JSP: Comparison vs state-of-the-art (best & mean Cmax, 10 runs).

	Instance	AF08 BSV08 GVV08 Best Best Best Avg Best Avg Best GVV09	tdom/bweight Avg Time
	t2-ps01	798	798 798 798	798	798.0	0.1
	t2-ps02	784	784 784 784	784	784.0	0.2
	t2-ps03	749	749 749 749	749	749.0	0.2
	t2-ps04	730	730 730 730	730	730.0	0.1
	t2-ps05	691	693 691 692	691	691.0	0.1
	t2-ps06 1009 1018 1026 1026	1009 1009.0	20.3
	t2-ps07	970 1003 970 971	970	970.0	46.1
	t2-ps08	963	975 963 966	963	963.0	86.1
	t2-ps09 1061 1060 1060 1060	1060 * 1060.0 1025.1
	t2-ps10 1018 1018 1018 1018	1018 1018.0	11.0
	t2-ps11 1494 1470 1438 1439 1438 1441 1443 1463.6	-
	t2-ps12 1381 1305 1269 1291 1269 1277 1269 1322.2	-
	t2-ps13 1457 1439 1406 1415 1415 1416 1415 1428.8	-
	t2-ps14 1483 1485 1452 1489 1452 1489 1452 1470.5	-
	t2-ps15 1661 1527 1485 1502 1485 1496 1486 1495.8	-
	t2-pss06		1126	1114 * 1114.0 600.9
	t2-pss07		1075	1070 * 1070.0 274.1
	t2-pss08		1087	1072 * 1073.0	-
	t2-pss09		1181	1161 * 1161.0	-
	t2-pss10		1121	1118 * 1118.0	47.2
	t2-pss11		1442	1412 * 1425.9	-
	t2-pss12		1290	1258 1266 1269 1287.6	-
	t2-pss13		1398	1361 1379 1365 1388.0	-
	t2-pss14		1453	1452 * 1453.0	-
	t2-pss15		1435	1417 * 1427.4	-

Table 2 :

 2 Results summary for JTL-and NW-JSP.

	(a) JTL-JSP: Cmax & Time.		(b) NW-JSP: Summary of APRD per problem set
	Instance Sets	CLT Cmax	Time	tdom/bweight Cmax Time	Instance	TS	HTS CLM CLT tdom/ tdom twdeg
	car[5-8] 0 0,5	7883.25 322.19 7883.25	2.16	ft	-8.75 -10.58		-10.58 -9.79
	car[5-8] 0 1	7731.25 273.75 7731.25	4.16	abz	-20.77 -25.58		-25.89 -25.1
	car[5-8] 0 2	7709.25 297.06 7709.25	6.31	orb	2.42	0.77	1.44	0.00	0.00
	la[06-08] 0 0,5 1173.67 2359.33 980.00 2044.77	la01-10	4.43	1.77	3.31 4.53	0.00	0.00
	la[06-08] 0 1	1055.33 1870.92 905.33 2052.41	la11-20	9.52 -5.40	5.14 29.14 -6.32 -6.36
	la[06-08] 0 2	1064.33 1853.67 904.67 2054.81	la21-30	-33.93 -39.96 -34.62	-39.85 -39.04
						la31-40	-36.69 -42.39 -36.87	-41.65 -40.36
						swv01-10 -34.41 -37.22 -34.39	-36.88 -35.33
						swv11-20 -40.62 -42.25		-39.17 -33.87
						yn	-34.87 -41.84		-38.78 -39.03

Table 3 :

 3 NW-JSP: Comparison vs state-of-the-art on easy instances (best & mean Cmax, 10 runs).

	Instance	Size Ref TS HTS CLM CLT tdom/tweight nxm Best Best Best Best Best Avg Time Best Avg Time tdom
	ft06	6x6	73	73	73	73	73	73	0.01	73	73	0.02
	ft10	10x10 1607 1620 1607 1619	1607 1607	4.08 1607 1607	2.49
	abz5		2150 2233 2182		2150 2150	9.28 2150 2150	8.87
	abz6		1718 1758 1760		1718 1718	1.25 1718 1718	0.71
	orb01		1615 1663 1615 1646	1615 1615	1.65 1615 1615	1.45
	orb02		1485 1555 1518 1518	1485 1485	1.16 1485 1485	1.12
	orb03		1599 1603 1599 1603	1599 1599	4.22 1599 1599	3.10
	orb04		1653 1653 1653 1653	1653 1653	1.56 1653 1653	1.11
	orb05		1365 1415 1367 1371	1365 1365	3.91 1365 1365	4.43
	orb06		1555 1555 1557 1555	1555 1555	0.31 1555 1555	0.26
	orb07		689 706 717 706	689 689	6.10 689 689	3.34
	orb08		1319 1319 1319 1319	1319 1319	2.22 1319 1319	2.12
	orb09		1445 1535 1449 1515	1445 1445	1.02 1445 1445	0.68
	orb10		1557 1618 1571 1592	1557 1557	4.55 1557 1557	4.78
	la01	10x5 971 1043 975 1031 975 971 971	0.13 971 971	0.11
	la02		937 990 975 937 937 937 937	0.24 937 937	0.19
	la03		820 832 820 832 820 820 820	0.14 820 820	0.15
	la04		887 889 889 889 911 887 887	0.28 887 887	0.17
	la05		777 817 777 797 818 777 777	0.30 777 777	0.22
	la06	15x5 1248 1299 1248 1256 1305 1248 1248 115.19 1248 1248 81.70
	la07		1172 1227 1172 1253 1282 1172 1172 66.96 1172 1172 57.30
	la08		1244 1305 1298 1307 1312 1244 1244 50.35 1244 1244 38.63
	la09		1358 1450 1415 1451 1547 1358 1358 181.55 1358 1358 102.10
	la10		1287 1338 1345 1328 1333 1287 1287 54.14 1287 1287 30.78
	la16	10x10 1575 1637 1575 1637 1833 1575 1575	2.09 1575 1575	1.37
	la17		1371 1430 1384 1389 1591 1371 1371	2.34 1371 1371	1.70
	la18		1417 1555 1417 1555 1790 1417 1417	1.38 1417 1417	1.31
	la19		1482 1610 1491 1572 1831 1482 1482	3.14 1482 1482	3.08
	la20		1526 1705 1526 1580 1828 1526 1526	0.70 1526 1526	0.66

Table 4 :

 4 NW-JSP: Improvement on hard instances (best & mean Cmax, 10 runs).

	Instance	Size Ref TS HTS CLM nxm Best Best Best Best tdom/tweight Avg Time	Best	tdom Avg	Time
	swv06	20x15 3291 3502 3290 3291 3278 * 3378.0	-3391 3500.4	-
	la11	20x5 2821 1737 1621 1714 1619 * 1646.9	-1622 1632.2	-
	la12	2434 1550 1434 1507 1414 1432.7	-1414 * 1414.0 2892.37
	la14	2662 1771 1610 1773 1578 * 1628.5	-1578 * 1611.1	-
	la15	2765 1808 1686 1771 1679 * 1693.2	-1681 1691.9	-
	la21	15x10 2092 2242 2030 2149 2030 2030.0	-2030 * 2030.0 579.69
	la22	1928 2008 1852 1979 1852 1854.3	-1852 1852.0 1013.45
	la23	2038 2093 2021 2038 2021 2033.2	-2021 2021.0 1160.13
	la24	2061 2061 1972 2133 1972 1982.7	-1972 1972.0 1128.55
	la25	20x10 2034 2072 1906 2050 1906 1906.0 1336.92 1906 1906.0 218.60
	la27	2933 2968 2675 2933 2671 * 2750.3	-2675 2743.0	-
	la36	15x15 2810 2993 2685 2810 2685 2715.5	-2685 2685.0 1530.39
	la37	3044 3171 2831 3161 2937 2974.0	-2831 2930.4	-
	la38	2726 2734 2525 2726 2525 2556.9	-2525 2525.0 2898.77
	la39	2752 2804 2687 2784 2660 * 2686.0	-2660 * 2662.7 3564.28
	la40	2838 2977 2580 2880 2564 * 2660.8	-2564 * 2591.9 2879.08

The code may be written for different OS, not publicly available, or not open source.

Results for t2-pss-*06-11 and 14-15 are from http://www.andrew.cmu.edu/user/neils/tsp/outt2.txt