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Reductions for branching coefficients

N. Ressayre

February 1, 2011

Abstract

Let G be a connected reductive subgroup of a complex connected
reductive group Ĝ. We are interested in the branching problem. Fix
maximal tori and Borel subgroups of G and Ĝ. Consider the cone
LR(G, Ĝ) generated by the pairs (ν, ν̂) of dominant characters such
that V ∗

ν
is a submodule of Vν̂ . It is known that LR(G, Ĝ) is a closed

convex polyhedral cone. In this work, we show that every regular
face of LR(G, Ĝ) gives rise to a reduction rule for multiplicities. More
precisely, we prove that for (ν, ν̂) on such a face, the multiplicity of
V ∗

ν
in Vν̂ equal to a similar multiplicity for representations of Levi

subgroups of G and Ĝ. This generalizes, by different methods, results
obtained by Brion, Derksen-Weyman, Roth. . .

1 Introduction

Let G be a connected reductive subgroup of a complex connected reductive
group Ĝ. We are interested in the branching problem:

Decompose irreducible representations of Ĝ as sum of irreducible
G-modules.

We fix maximal tori T ⊂ T̂ and Borel subgroups B ⊃ T and B̂ ⊃ T̂
of G and Ĝ. Let X(T ) denote the group of characters of T and let X(T )+

denote the set of dominant characters. For ν ∈ X(T )+, we denote by Vν the
irreducible representation of highest weight ν. Similarly, we use notation
X(T̂ ), X(T̂ )+, Vν̂ relatively to Ĝ. For any G-module V , we denote by V G

the subspace of G-fixed vectors. Consider the following integers

cν ν̂(G, Ĝ) = dim(Vν ⊗ Vν̂)
G. (1)
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Sometimes we simply write cν ν̂ for cν ν̂(G, Ĝ). Let V ∗
ν denote the dual

representation of Vν . The branching problem is equivalent to knowledge of
these coefficients since we have

Vν̂ =
∑

ν∈X(T )+

cν ν̂V
∗
ν . (2)

The set LR(G, Ĝ) of pairs (ν, ν̂) ∈ X(T )+ × X(T̂ )+ such that cν ν̂ 6= 0 is
a finitely generated subsemigroup of the free abelian group X(T ) ×X(T̂ ).
Consider the convex cone LR(G, Ĝ) generated in (X(T ) × X(T̂ )) ⊗ Q by
LR(G, Ĝ). It is a closed convex polyhedral cone in (X(T ) ×X(T̂ ))⊗Q.

Let F be a face of LR(G, Ĝ). We assume that F is regular that is, that
it contains regular dominant weights (ν, ν̂). Let Ŵ be the Weyl group of Ĝ
and T̂ . If S is a torus in G and H is a subgroup of G containing S then we
will denote by HS the centralizer of S in H. By [Res10b], the regular face
F corresponds to a pair (S, ŵ) where S is a subtorus of T and ŵ ∈ Ŵ such
that

ĜS ∩ ŵB̂ŵ−1 = B̂S, (3)

and the span of F is the set of pairs (ν, ν̂) ∈ (X(T )×X(T̂ ))⊗Q such that

ν|S + ŵν̂|S = 0 ∈ X(S)⊗Q. (4)

Now, we can state our main result

Theorem 1 Let (ν, ν̂) ∈ X(T )+ × X(T̂ )+ be a pair of dominant weights.
We assume that (ν, ν̂) belongs to the span of F (equivalently that it satisfies
condition (4)). Then

cν ν̂(G, Ĝ) = cν ŵν̂(G
S , ĜS).

Let X = G/P × Ĝ/P̂ be a flag manifold of the group G × Ĝ. Let λ be
a one-parameter subgroup of G and C be an irreducible component of the
fixed point set Xλ of λ in X. Let Gλ be the centralizer of the image of λ in
G. We assume that (C, λ) is a (well) covering pair in the sense of [Res10a,
Definition 3.2.2] (see also Definition 1 below). Theorem 1 will be a direct
consequence of the more geometric

Theorem 2 Let L be a G-linearized line bundle on X generated by its global
sections such that λ acts trivially on the restriction L|C. Then the restriction
map induces an isomorphism

H0(X,L)G −→ H0(C,L|C)
Gλ

.
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Several particular cases of Theorems 1 and 2 was known. If G = T is a
maximal torus of G = GLn, our theorem is equivalent to [KTT07, Theorem
5.8]. If Ĝ = G×G (or more generally Ĝ = Gs for some integer s ≥ 2) and G
is diagonally embedded in Ĝ then cν ν̂(G, Ĝ) (resp. cν ŵν̂(G

S , ĜS)) are tensor
product multiplicities for the group G (resp. GS). This case was recently
proved independently by Derksen and Weyman in [DW10, Theorem 7.4] and
King, Tollu and Toumazet in [KTT09, Theorem 1.4] if G = GLn and for
any reductive group by Roth in [Rot11]. If ν is regular then Theorem 2 can
be obtained applying [Bri99, Theorem 3] and [Res10a]. Similar reductions
can be found in [Bri93, Man97, Mon96].

Note that our proof is new and uses strongly the normality of the Schu-
bert varieties. For example, in Roth’s proof (which may be the closest from
our) the normality of Schubert varieties play no role. In [DW10], the case
GLn ⊂ GLn×GLn is obtained as a consequence of a more general result on
quivers. The Derksen-Weyman’s theorem on quivers can be proved by the
method used here.

In Section 4, we apply Theorem 2 to recover known results.

2 Proof of Theorem 2

Let us consider the variety X = G/P × Ĝ/P̂ endowed with the diagonal
G-action: g′.(gP/P, ĝP̂ /P̂ ) = (g′gP/P, g′ĝP̂ /P̂ ).

Let λ be a one-parameter subgroup of G. Let us consider the centralizer
Gλ of λ in G. We associate to λ the parabolic subgroup (see [MFK94]):

P (λ) =
{

g ∈ G : lim
t→0

λ(t).g.λ(t)−1 exists in G
}

.

Let C be an irreducible component of the fixed point set Xλ of λ in X.
We set:

C+ := {x ∈ X : lim
t→0

λ(t)x belongs to C}. (5)

Now, C+ is P (λ)-stable and locally closed in X.
Consider the subvariety Y of G/P (λ) ×X defined by

Y = {(gP (λ)/P (λ), x) : g−1x ∈ C+}.

The morphism π : G×C+ −→ Y, (g, x) 7−→ (gP (λ)/P (λ), gx) identifies Y
to the quotient ofG×C+ by the action of P (λ) given by p.(g, x) = (gp−1, px).
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We will denote Y by G×P (λ)C
+ and we set [g : x] = π(g, x) . Consider now

the G-equivariant map

η : G×P (λ) C
+ −→ X

[g : x] 7−→ g.x.

We now recall from [Res10a] the following

Definition 1 The pair (C, λ) is said to be covering if η is birational. The
pair (C, λ) is said to be well covering if there exists a P (λ)-stable open subset
Ω of C+ intersecting C such that η induces an isomorphism from G×P (λ)Ω
onto an open subset of X.

Proof.[of Theorem 2] Consider the closure C+ of C+ in X. Since (C, λ) is
covering the map

η : G×P (λ) C+ −→ X

[g : x] 7−→ gx.

is proper and birational. Hence it induces a G-equivariant isomorphism

H0(X,L) ≃ H0(G×P (λ) C+, η∗(L)).

In particular, we have

H0(X,L)G ≃ H0(G×P (λ) C+, η∗(L))G.

We embed C+ in G ×P (λ) C+, by x 7−→ [e : x]. Note that the composition

of the immersion of C+ in G×P (λ) C+ with η is the immersion of C+ in X.
In particular, η∗(L)

|C+ = L
|C+ Now, the restriction induces the following

isomorphism (see for example [Res10a, Lemma 4])

H0(G×P (λ) C+, η∗(L))G ≃ H0(C+,L
|C+)

P (λ).

Since once more, the composition of the immersion of C+ in G ×P (λ) C+

with η is the immersion of C+ in X, we just proved that the restriction
induces the following isomorphism

H0(X,L)G ≃ H0(C+,L
|C+)

P (λ). (6)

On the other hand, it is proved in [Res10a, Lemma 5] that since λ acts
trivially on L|C , the restriction induces the following isomorphism
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H0(C+,L|C+)P (λ) ≃ H0(C,L|C)
Gλ

. (7)

By isomorphisms (6) and (7), it remains to prove that the restriction
induces the following isomorphism

H0(C+,L
|C+)

P (λ) ≃ H0(C+,L|C+)P (λ);

that is, that any regular P (λ)-invariant section σ of L on C+ extends to
C+.

Note that, λ is also a one-parameter subgroup of Ĝ and that we can
define P̂ (λ). Let us fix a maximal torus T of G containing the image of λ
and a maximal torus T̂ of Ĝ containing T . Note that P and P̂ have not
been fixed up to now; we have only considered the G × Ĝ-variety X. In
other words, we can change P and P̂ by conjugated subgroups. Let us fix
a T × T̂ -fixed point x0 in C, and let us denote by P × P̂ its stabilizer in
G× Ĝ.

It is well known that C+ = P (λ)P/P × P̂ (λ)P̂ /P̂ . In particular, C+ is
a product of Schubert varieties and is normal. So, it is sufficient to proved
that σ has no pole. Since σ is regular on C+, we have to prove that σ has
no pole along any irreducible component D of codimension one of C+−C+.
We are going to compute the order of the pole of σ along D by a quite
explicit computation in a neighborhood of D in C+.

If β is a root of (T,G), we denote by sβ the associated reflection in the

Weyl group. Now, D is the closure of P (λ).sβP/P × P̂ (λ)P̂ /P̂ for some root

β or of P (λ)P/P × P̂ (λ)sβ̂P̂ /P̂ for some root β̂. Consider the first case.
The second one works similarly.

Set y = (sβP/P, P̂ /P̂ ); it is a point in D. Consider be the unipotent
radical U− of the parabolic subgroup of G containing T and opposite to
P . Similarly, we define Û−. Consider the groups Uy = P (λ) ∩ sβU

−sβ and

Ûy = P̂ (λ) ∩ Û−. Let δ be the T -stable line in G/P containing P/P and
sβP/P . Consider the map

θ : Uy × Ûy × (δ − {P/P}) −→ X

(u, û, x) 7−→ (ux, ûP̂ /P̂ ).

The map θ is an immersion and its image Ω is open in C+. But Ω intersects
D; so, it is sufficient to prove that σ extends on Ω. Equivalently, we are
going to prove that θ∗(σ) extends to a regular section of θ∗(L).
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The torus T acts on Uy×Ûy×(δ−{x0}) by t.(u, û, x) = (tut−1, tût−1, tx).
This action makes θ equivariant. The curve (δ − {x0}) is isomorphic to C.
The group Uy is unipotent and so isomorphic to its Lie algebra. It follows
that Uy × Ûy × (δ − {x0}) is isomorphic as a T -variety to an affine space V
with linear action of T .

Fix root (for the action of T × T̂ ) coordinates ξi on the Lie algebra of
Uy × Ûy. Fix a T -equivariant coordinate ζ on δ−{P/P}. So that (ξi, ζ) are
coordinates on V . Let (ai, a) be the opposite of the weights of the variables
for the action of λ. The weights of T corresponding to the part Uy are roots
of P (λ) and the weights of T̂ corresponding to the part Ûy are roots of P̂ (λ).
The weight of the action of T on TsβP/P δ is a root of G but not of P (λ).
Then we have

ai ≥ 0 and a < 0. (8)

Note that (ι ◦ θ)−1(D) is the divisor ζ = 0 on V .
Consider now, the C∗-linearized line bundle θ∗(L) on V . It is trivial as

a line bundle (the Picard group of V is trivial) and so, it is isomorphic to
V × C linearized by

t.(v, τ) = (λ(t)v, tµτ) ∀t ∈ C∗,

for some integer µ.

We first admit that

µ ≤ 0 (9)

and end the proof. The section θ∗(σ) corresponds to a polynomial in the
variables ξi, ζ and ζ−1; that is, a linear combination of monomials m =
∏

i ξ
ji
i .ζ

j for some ji ∈ Z≥0 and j ∈ Z. The opposite of the weight of m for
the action of C∗ is

∑

i jiaj + ja. The fact that σ is C∗-invariant implies that
the monomials occurring in the expression of (ι ◦ θ)∗(σ) satisfy

∑

i

jiaj + ja = µ.

So, we have:

j =
−1

a
(
∑

i

jiai − µ).

Now, inequalities (8) and (9) imply that j ≥ 0. In particular, (ι ◦ θ)∗(σ)
extends to a regular function on V . It follows that σ has no pole along D.
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It remains to prove inequality (9). Consider the restriction of L to δ.
Note that δ is isomorphic to P1 and L|δ to O(d) as a line bundle for some
integer d. Since L is semiample, d is nonnegative. The group C∗ acts on
Tx0

δ by the weight −a and on Tyδ be the weight a. By assumption, the
group C∗ acts trivially on the fiber Lx0

(recall that x0 belongs to C). It acts
on the fiber Ly by the weight µ. Now, the theory of P1 implies that:

d =
µ− 0

a
.

But, d ≥ 0 and a < 0. It follows that µ ≤ 0. �

3 Proof of Theorem 1

Let T , B, T̂ and B̂ be like in the introduction. To any character ν of B
we associate a G-linearized line bundle Lν on G/B such that B acts on the
fiber in Lν over B/B with the weight −ν. By Borel-Weil’s theorem, the line
bundle Lν is generated by its global sections if and only if ν is dominant
and in this case H0(G/B,Lν) is isomorphic to the dual V ∗

ν of the simple
G-module Vν with highest weight ν.

Consider the complete flag variety X = G/B× Ĝ/B̂ of the group G× Ĝ.
Let now ν and ν̂ be like in Theorem 1. Let L be the exterior product on X
of Lν and Lν̂ . By Borel-Weil’s theorem, we have

V ∗
ν ⊗ V ∗

ν̂ = H0(X,L).

In particular, cν ν̂(G, Ĝ) is the dimension of H0(X,L)G.
Let C = GSB/B× ĜSŵB̂/B̂. By [Res10b], there exists a one-parameter

subgroup λ of S such that (C, λ) is well covering and GS = Gλ. More-
over, assumption (4) implies that λ acts trivially on L|C . So, we can apply
Theorem 2 to get

H0(X,L)G ≃ H0(C,L|C)
GS

.

However, C is isomorphic to the complete flag manifold of the groupGS×ĜS .
By condition (3), L|C is the line bundle Lν ⊗ Lŵν̂ . Hence Borel-Weil’s

theorem implies that H0(C,L|C) is isomorphic to V ∗
ν (G

S) ⊗ V ∗
ŵν̂(Ĝ

S). In

particular, cν ŵν̂(G
S , ĜS) is the dimension of H0(C,L|C)

GS
. The theorem is

proved.
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4 Examples

4.1 Tensor product decomposition

In this subsection, we consider the case when Ĝ = G×G and G is diagonally
embedded in Ĝ. Let us also assume that B̂ = B ×B and T̂ = T × T . Then
a dominant weight ν̂ of T̂ is a pair (λ, µ) of dominant weights of T and
Vν̂ = Vλ ⊗ Vµ. For short, we denote by cλµ ν(G) the coefficient cν ν̂(G, Ĝ).
We have

Vλ ⊗ Vµ =
∑

ν

cλµ ν(G) V ∗
ν , (10)

and cλ µ ν(G) is a tensor product multiplicity for G. Using the notation

of Theorem 1, we have ĜS = GS × GS . In particular, the coefficient
cν ŵν̂(G

S , ĜS) is a tensor product multiplicity for the Levi subgroup GS

of G. In this case, Theorem 1 is equivalent to the main result of [Rot11].

We now consider the case when G = GLn(C), T consists in diagonal
matrices and B in upper triangular matrices. In this case a dominant weight
λ is a nonincreasing sequence (λ1, · · · , λn) of n integers and cλµ ν(G) is a
Littlewood-Richardson coefficient denoted by cnλµ ν .

Let us introduce notation to describe LR(G, Ĝ) in this case. Let G(r, n)
be the Grassmann variety of r-dimensional subspaces of Cn. Let F•: {0} =
F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V be the standard flag of Cn. Let P(r, n)
denote the set of parts of {1, · · · , n} with r elements. Let I = {i1 < · · · <
ir} ∈ P(r, n). The Schubert variety ΩI(F•) in G(r, n) is defined by

ΩI(F•) = {L ∈ G(r, n) : dim(L ∩ Fij ) ≥ j for 1 ≤ j ≤ r}.

The Poincaré dual of the homology class of ΩI(F•) is denoted by σI . The
σI form a Z-basis for the cohomology ring of G(r, n). The class associated
to [1; r] is the class of the point; it will be denoted by [pt].

By [Kly98] , [KT99] and finally [Bel01], we have the following statement.

Theorem 3 Let (λ, µ, ν) be a triple of nonincreasing sequences of n inte-
gers. Then cnλµ ν 6= 0 if and only if

∑

i

λi +
∑

j

µj +
∑

k

νk = 0 (11)
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and for any r = 1, · · · , n− 1, for any (I, J,K) ∈ P(r, n)3 such that

σI .σJ .σK = [pt] ∈ H∗(G(r, n),Z), (12)

we have
∑

i∈I

λi +
∑

j∈J

µj +
∑

k∈K

νk ≤ 0. (13)

Knutson, Tao and Woodward proved in [KTW04] that this statement is
optimal in the following sense:

Theorem 4 In Theorem 3, no inequality can be omitted.

In other words, each inequality (13) corresponds to a regular face FIJK

of the cone LR(G, Ĝ). For I = {i1 < · · · < ir} ∈ P(r, n) and λ a sequence of
n integers, we set λI = (λi1 , · · · , λir ) ∈ Zr.We also denote by Ic ∈ P(n−r, n)
the complement of I in {1, · · · , n}. It is easy to check that Theorem 1 gives
in this case the following

Theorem 5 Let (λ, µ, ν) be a triple of nonincreasing sequences of n inte-
gers. Let (I, J,K) ∈ P(r, n) such that

σI .σJ .σK = [pt]. (14)

If
∑

i∈I

λi +
∑

j∈J

µj +
∑

k∈K

νk = 0, (15)

then

cnλµ ν = crλI µJ νK
. cn−r

λIc µJc νKc
. (16)

Theorem 5 has been proved independently in [KTT09] and [DW10]. Note
that if equation (15) does not hold then crλI µJ νK

= 0.
It is known that Theorem 3 also holds if condition (12) is replaced by

σI .σJ .σK = d[pt] ∈ H∗(G(r, n),Z), (17)

for some positive integer d. The following example shows that condition
(14) cannot be replaced by condition (17) in Theorem 5.

Example. Here, n = 6, r = 3 and I = J = K = {1, 3, 5}. Set λ = µ = ν =
(1 1 0 0 − 1 − 1). We have λI = µJ = νK = λIc = µJc = νKc = (1 0 − 1).
We have cnλµ ν = 3 and crλI µJ νK

= cn−r
λIc µJc νKc

= 2. In this case, we have
σI .σJ .σK = 2[pt].

Note that Knutson and Purbhoo proved in [KP10] some equalities (16)
with assumptions different from Theorem 5.
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4.2 Kronecker coefficients

Let α = (α1 ≥ α2 ≥ . . .) be a partition. We set |α| =
∑

i αi, we say that α is
a partition of |α|. Consider the symmetric group Sn acting on n letters. The
irreducible representations of Sn are parametrized by the partitions of n, let
[α] denote the representation corresponding to α. The Kronecker coefficients
kαβ γ , depending on three partitions αβ and γ of the same integer n, are
defined by the identity

[α]⊗ [β] =
∑

γ

kαβ γ [γ]. (18)

We will prove the following well known result due to Murnaghan and
Littlewood (see [Mur55]).

Corollary 1 (i) If kαβ γ 6= 0 then we have

(n− α1) + (n− β1) ≥ n− γ1. (19)

(ii) We now assume that equality holds in formula (19) but not necessarily
that kαβ γ 6= 0. Let us define ᾱ = (α2 ≥ α3 · · ·) and similarly β̄ and γ̄.
Then we have

kαβ γ = cγ̄
ᾱ β̄

, (20)

where cγ̄
ᾱ β̄

is the Littlewood-Richardson coefficient.

Proof. Let us first introduce some notation on linear group. Let V be a
complex finite dimensional vector space and let GL(V ) be the corresponding
linear group. If α is a partition with at most dim(V ) parts, SαV denotes
the Schur power of V ; it is an irreducible GL(V )-module. Let F l(V ) denote
the variety of complete flags of V . Given integers ai such that 1 ≤ a1 <
· · · < as ≤ dim(V ) − 1, we denote by F l(a1, · · · , as; V ) the set of flags
V1 ⊂ · · · ⊂ Vs ⊂ V such that dim(Vi) = ai for any i.

Let us choose integers e and f such that







l(α) ≤ e,
l(β) ≤ f,
l(γ) ≤ e+ f − 1.

(21)
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Let E and F be two complex vector spaces of dimension e and f . Con-
sider the group G = GL(E) ×GL(F ). The Kronecker coefficient kαβ γ can
be interpreted in terms of representations of G. Namely (see for example
[Mac95, Ful91]) kαβ γ is the multiplicity of SαE ⊗ SβE in Sγ(E ⊗ F ). To
interpret this multiplicity geometrically, we consider the variety

X = F l(E)×F l(F )×F l(1, · · · , e+ f − 1;E ⊗ F )

endowed with its natural G-action. Consider the GL(E)-linearized line bun-
dle Lα on F l(E) associated to α, and respectively Lβ on F l(F ). Because of
assumption (21), to γ we can associate a GL(E ⊗ F )-linearized line bundle
Lγ on F l(1, · · · , e+f−1;E⊗F ). Consider the line bundle L = Lα⊗Lβ⊗Lγ

on X endowed with its natural G-action. Then

kαβ γ = dim(H0(X,L)G). (22)

Let HE, HF , lE and lF be hyperplanes and lines respectively in E and F
such that E = HE ⊕ lE and F = HF ⊕ lF . Let λ be the one-parameter
subgroup of G acting on HE and HF with weight 1 and on lE and lF with
weight 0. Let CE be the set of complete flags of E whose the hyperplane
is HE. Note that, CE is an irreducible component of F l(E)λ. Similarly, we
define CF . Let CE⊗F be the set of points V1 ⊂ · · · ⊂ Ve+f−1 in F l(1, · · · , e+
f − 1;E ⊗F ) such that V1 = lE ⊗ lF and Ve+f−1 = (lE ⊗ lF )⊕ (HE ⊗ lF )⊕
(lE⊗HF ). Note that, CE⊗F is an irreducible component of F l(1, · · · , e+f−
1;E ⊗F )λ isomorphic to F l(HE ⊕HF ). Finally, set C = CE ×CF ×CE⊗F .

Note that C+
E⊗F is open in F l(1, · · · , e+f−1;E⊗F ), (CE , λ) and (CF , λ)

are covering in F l(E) and F l(F ) for the actions of GL(E) and GL(F ). It
follows that (C, λ) is covering.

Let x be a point in C. Let µL(x, λ) be the opposite of the weight of
the action of λ on the fiber of L over x. Now, [Res10a, Lemma 3] implies
that if dim(H0(X,L)G) > 0 then µL(x, λ) ≤ 0 which is the inequality of the
corollary. We now assume that µL(x, λ) = 0, that is that λ acts trivially on
L|C . Theorem 1 shows that

dim(H0(X,L)G) = dim(H0(C,L|C)
Gλ

).

Moreover, dim(H0(C,L|C)
Gλ

) is the multiplicity of the simple GL(HE) ×

GL(HF )-module SᾱHE⊗Sβ̄HF in the GL(HE⊕HF )-module Sγ̄(HE⊕HF ).
By for example [Mac95, Chapter I, 5.9], this multiplicity is precisely cγ̄

ᾱ β̄
. �
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