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ABSTRACT
Tensors appear more and more often in signal processing prob-
lems, and especially spatial processing, which typically in-
volves multichannel modeling. Even if it is not always obvious
that tensor algebra is the best framework to address a problem,
there are cases where no choice is left. Blind identificationof
multichannel non monic MA models is given as an illustrating
example of this claim.

Key words. Tensor, High-Order Statistics, Identification, Non
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1.. INTRODUCTION
Many techniques in signal processing are based on the knowl-
edge of the probability density function (pdf) of observations,
possibly conditionnally to some unknown parameters. One
may think for instance of the likelihood function. The Gaus-
sian approximation has been assumed for a long time because
(i) second-order moments were sufficient to solve most prob-
lems of interest, and (ii) moments of higher order were compu-
tationally heavy to handle. Today several problems have been
pointed out that are not solvable under the Gaussian approxi-
mation, and in addition, the increase in computational power
allows the use of more fancy approximations with the help of
Higher-Order Statistics (HOS). The survey paper [15] points
out some advantages in using HOS in signal processing and
automatic control. See also the indroductory paper [9].

1.1. Tensors
A tensor of orderr is an object defined in aN -dimensional
coordinates system by a table withr indices,gi1,..ir , 1 ≤ ik ≤
N , that follows a particular transformation formula if the co-
ordinates system is changed. If the system of coordinates
is changed so that any vectoru is transformed into a vector
U = Au, whereA is aN ×N matrix, then the tensor is trans-
formed into:

gi1,..ir → Gi1,..ir =
∑

j1,..jr

Ai1j1 ..Airjrgj1,..jr (1)

This property is often referred to as themultilinearity property
of tensors. Such a tensor will be referred to as a(N ; r)-tensor,
in short.

1.2. Cumulants
Expansions of pdf about some given family of densities lead
to objects that are called cumulants. See for instance [11] [12]
for a general framework on density expansions. In general, cu-
mulants (by default) are associated with expansions about the

Gaussian pdf. If a random variable of dimensionN admits fi-
nite moments up to orderr, then its cumulants of orderr exist.
In other words, define the second characteristic function ofX
asΨx(v) = logE{ evTX }, where =

√
−1; this function

always exists in a neighborhood of the origin. Then cumulants
are coefficients ofr v1..vr in the Taylor expansion ofΨx(v)
about the origin. An alternative way is to define them as a
function of moments [3]:

C{X1, ..Xr} =
∑

(−1)p−1 (p− 1)!





p
∏

i=1

E{
∏

j∈νi

Xj}



 ,

(2)
where the summation extends over all partitions(ν1, ..νp) of
(1, ..r), 1 ≤ p ≤ r. Simple expressions can be derived for
cumulants of moderate orders [14]. Such cumulants will be
denoted in shortCi1,..ir{X} in the present paper, where in-
dicesik may be distinct or not.
Due to the fact thatΨAX(v) = ΨX(A†v), cumulants inherit
the multilinearity property and may be considered as tensors
[14]. For any random variableX with values inIRN , the in-
dicesi1, ..ir can be permuted in any manner without changing
the value of the cumulantsCi1,..ir{X}. Therefore, cumulants
aresymmetrictensors.
In practice, it is more convenient to work with so-called
standardized data, because of numerical conditioning, among
other reasons. For scalar random variables, this operation
merely reduces to centering and dividing by the standard devi-
ation. In the vector case, the standardization operation consists
of centering, reducing the data by projection onto its range
space, and rotating the subspace onto the eigenvectors coordi-
nates system.
More precisely, assumeT realizationsx(t) of a random vari-
ableX are available in the form of aN × T data matrix,
x(1 : T ). Denote the SVD of the centered data asx(1 :
T ) − mean(x) = UΣV T , whereU is N × ρ full column
rank,ρ ≤ N , andΣ is square invertible. Then standardized
data are defined bỹx(1 : T ) =

√
T V T , and have zero mean

and unit covariance. Cumulants of standardized variables are
calledstandardized cumulants.

High-Order Statistics (HOS) are more and more widely used
in various areas including signal processing and automatic
control, as shows the present literature for the last few years.
In situations where variables are multidimensional, it is useful
to point out that cumulants may be considered as tensors. Nev-
ertheless, very few tools are at disposal to manipulate tensors;
if we may resort to Cholesky or Eigen-Value decompositions
in case of symmetric matrices, there are unfortunately no such
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decompositions available for completely symmetric tensors.
Some directions are proposed in this paper in sections 3 and 4.

2.. APPLICATIONS
2.1. Non monic MA models
As a working example, consider the non monic multichannel
MA model:

y(t) =

q
∑

k=0

Bk w(t − k) + v(t), (3)

where the orderq is assumed known,v(t) is a nuisance noise,
w(t) is a spatially and temporally white noise, i.e.,wi(t) and
wj(t

′) are statistically independent,∀i, j ∈ {1, ..N}, i 6= j,
and∀t, t′, t 6= t′. Assume all matricesBk are unknown,0 ≤
k ≤ q, and matrixB0 is invertible.
The problem of identifying the matricesBk from the observa-
tions of system outputs only can be easily decomposed into
two subproblems, as briefly recalled below. Just consider
the (temporally) white processx(t) = B0w(t), and denote
B̄k = BkB

−1
0 , for k > 0. Then the model can obviously be

rewritten as:

y(t) =

q
∑

k=0

B̄k x(t− k) + v(t), x(t) = B0w(t). (4)

This model is monic, sincēB0 is now the identity matrix.
Many algorithms have been proposed to date for the so-called
blind identificationof monic MA models. See for instance
[19] [6] [18]. To give the flavour of these approaches in a few
lines, consider the scalar case (N=1) and suppose it is wished
to use only fourth order output cumulants. The idea is to re-
mark that output cumulants are linked to each other through
the linear system:

C0ikq{y}Bj = C0jkq{y}Bi, (5)

for any triplet of indices(i, j, k) such that0 ≤ i < j ≤ q
and 0 ≤ k ≤ q. The coefficientsBi, i > 0, can thus be
obtained just by solving an overdeterminedq(q + 1)2/2 by q
linear system. The idea extends to the multichannel case to the
price of some complication in the notation [6], that we do not
want to introduce here.
Of course, there are many other approaches to monic MA blind
identification [15]. However, our goal is not to focus on this
well known problem, but to spend some time on the identifi-
cation of the first matrix coefficient,B0.

2.2. Narrow band array processing
There are many cases in spatial signal processing where it is
sought to obtain a diagonal tensor after linear transforms,e.g.,
seismics, interception problems in Sonar, blind estimation of
radiating sources [5] [7] [17] [18], even if it is not stated ex-
plicitly in those terms. In fact, the problem in antenna array
processing is to recover source signals that are statistically in-
dependent. Generally, a linear model is assumed, so that the
problem amounts to identifying a linear system with mutually
independent inputs.
First, independent sources should at least have a diagonal
covariance matrix. But there are infinitely many congruent

transforms that diagonalize a given covariance matrix; addi-
tional constraints are thus necessary to determine the trans-
form uniquely. Bienvenu and Kopp [1], and independently
Schmidt [16], proposed in the so-called MUSIC algorithm to
fix this indetermination by using the knowledge of the array:
thedirection of arrivalvectors should lie on somearray man-
ifold in the absence of noise.
Clearly, if the array manifold is not available, the MUSIC ap-
proach cannot succeed, and it is necessary to resort to HOS.
The idea is now that independent sources should also have di-
agonal cumulant tensors, for all orders. By seeking for the
linear transform that diagonalizes one or several tensors,one
may identify the linear model, and eventually the source sig-
nals themselves. Nevertheless, it is not possible to recover
thedirections of arrivalwithout some knowledge on the array
manifold. For reasons of space, the application of tensor diag-
onalization to array processing is not developed further inthis
paper.

3.. DIAGONALIZATION ISSUES
Consider in this section the following algebraic problem.
Given a tensortij..k of order r, 2 ≤ r ≤ 4, is it possible
to find a linear change of coordinates defined by an invertible
matrix,A, such that the tensor takes a diagonal form ?
A necessary condition is that the number of free parameters
be preserved. A symmetric tensor has

(

r
N+r−1

)

independent
parameters. In the matrix case, we thus haveN(N + 1)/2
parameters, which is smaller than theN2 entries ofA. But in
the tensor case, it is clear that the number of free parameters
would decrease:O(N r) in the original symmetric tensor, and
N2 in the decomposition. This immediate statement proves
that only a small subset of symmetric tensors of order larger
than2 is (linearly) diagonalizable.
On the other hand, this statement does not prove anything if
the transformA is allowed to map theN -dimensional space
into a space of possibly larger dimension, sayP ≥ N . The
decomposition can now be written as:

tij..k =

P
∑

p=1

AipAjp..AkpTp, (6)

whereTp is a diagonal(P ; r)-tensor, andA is aN×P matrix.
The number of free parameters in decomposition (6) is now
NP . In that case the question is to know (1) how to choose
P , and (2) how to compute theP rows of the transformA.
Thus there are two different approaches: one can look for an
exactdiagonal tensor decomposition, but in a space of larger
dimension, or conversely look for an approximate tensor diag-
onalization in a space of same dimension. These two aspects
are now commented.

3.1. Exact diagonalization
There is an obvious bijective relation between the set of
symmetric (N ; r)-tensors, tij..k, and the set of homoge-
neous polynomials of degreer in N variables. In fact,
associate each tensort with the polynomialπ(x, y, ..z) =
∑

i

∑

j ..
∑

k tij..k xi yj..zk. This equivalence has been al-
ready utilized in many eighteenth century works.
Consequently, looking for aN × P matrix that maps the
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(N ; r)-tensor into a diagonal(P ; r)-tensor is equivalent to
looking for P linear forms such that the polynomialπ is
mapped to a sum ofr-th powers of linear forms. The exact
diagonalization problem exists in the theory of homogeneous
polynomial forms, but very few results are known today, de-
spite the long history of the subject.
In the case of binary forms (N=2) however, it is known that
every binary form of even degree2m can be put as a sum of
m perfect powers, provided the determinant of some Hankel
matrix built with the polynomial coefficients is null [13]. This
determinant is often referred to as the Catalecticant. Moreover,
a general binary form of degree2m can be written as a sum of
m+1 perfect powers. For instance, a binary quartic can still be
expressed as a sum of 3 perfect powers, even if its catalecticant
is non zero. There are also a number of results in the case of
forms of odd degree. For instance, a theorem attributed to
Sylvester claims that a binary form of degree2m + 1 can be
written as a sum ofm+1 perfect powers of linear forms. These
decompositions are generally not unique.
Now regarding forms with more than 2 variables, the results
become much more confusing. In fact, it is not possible to
state systematically what is the minimal mumber of forms,P ,
as a function of the dimensionN and the degreer. If P is
chosen just in order to satisfy the inequalityNP ≥

(

r
N+r−1

)

,
thenP turns out to be too small in some cases. Actually, ev-
ery case is particular. Additionally, assumingP is known, the
calculation of the decomposition itself is very difficult tocarry
out. That’s why this discussion is deferred to a companion pa-
per [8], where the case of cubics (r = 3) and quartics (r = 4)
will be mainly addressed.

3.2. Approximate diagonalization
In this section, only invertible transforms are considered(i.e.
P = N ). As pointed out previously, tensors of orderr and di-
mensionN cannot generically be exactly diagonalized. Thus,
there is first a need to define in what respect theapproximation
will be understood. Carl Jacobi introduced in 1846 a criterion
dedicated to matrices. In order to diagonalize a symmetric ma-
trix by an orthogonal change of coordinates, he proposed to
minimize the sum of squares of non-diagonal entries. Denote
Q the matrix defining the transformation, andg a given sym-
metric matrix. Since the Froebenius norm of the transformed
matrix,G = QgQ† remains the same, one can alternatively
maximize the sum of squares of diagonal entries. This defines
an optimization criterion for second order symmetric tensors:

Υ2(Q; g) =

N
∑

n=1

G2
nn. (7)

For tensors of higher order, we define the following criteria,
that will find steady justifications in the next section:

Υ3(Q; g) =
N
∑

n=1

G2
nnn,Υ4(Q; g) =

N
∑

n=1

G2
nnnn. (8)

It must be kept in mind that, because of the multilinearity prop-
erty, these criteria are implicit functions of the matrixQ:

Gijk =
∑

mno

QimQjnQkogmno, (9)

Ghijk =
∑

lmno

QhlQimQjnQkoglmno. (10)

In the remaining sections, the optimization criteria will be jus-
tified, and the approximate diagonalization will be described
in detail.

4.. BLIND IDENTIFICATION OF STATIC LINEAR
SYSTEMS

4.1. Notation
Given realizationsy(t) of a random vectorY with values in
IRN , it is desired to estimate a matrixF such thatY = FZ,
whereZ is a random vector whose composents are statistically
independent. In this framework, only independence up to or-
der 3 or 4 will be required (that is, cross cumulants of com-
ponents ofZ are null at orders 2 and 3 or 4). Standardization
already insures independence at order 2 (the covariance matrix
is identity). Yet, standardized data are defined up to a multi-
plicative orthogonal matrix (in addition to scale and permuta-
tion transforms already pointed out). So there is clearly some
degree of freedom left to improve statistical independence.
It can be sought for an orthogonal matrixQ such that higher-
order correlations ofZ = QY are minimized (since the trans-
form is now invertible, we also have

Y = QT Z (11)

equivalently). For this purpose, define the third and fourth
order sample cumulants ofZ [11, 12]:

Gijk =
1

T

T
∑

t=1

zi(t) zj(t) zk(t), (12)

Gijkl =
1

T

T
∑

t=1

zi(t) zj(t) zk(t) zl(t)

−δijδkl − δikδjl − δilδjk, (13)

whereδ is the Kronecker symbol, andz(t) realizations ofZ.
Denotegijk andgijkl the corresponding cumulants ofY de-
fined in the same manner.

4.2. Definition of ICA
LetY be a random vector with values inIRN admitting a prob-
ability densitypY (u), and assumeT realizationsy(t) are ob-
served (indext does not necessarily refer to time). The ICA
of Y consists of searching for aN × ρ matrix,F ,N ≥ ρ, that
minimizes thestatistical dependencebetween the components
of theρ× 1 vector,Z, defined by

Y = F Z, (14)

in the sense of the maximization of acontrast function:

Definition 4.1 Let EN be the space of real random variables
of dimensionN admitting a density. A contrast is a mapping
Ψ from the set of densities{pZ , Z ∈ EN} to IR satisfying the
3 requirements:

1. Ψ(pZ) does not change if the componentsZi are per-
muted:Ψ(pPZ) = Ψ(pZ), ∀P permutation;
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2. Ψ is invariant by scale change:Ψ(pΛZ) = Ψ(pZ), ∀Λ
diagonal invertible;

3. Ψ decreases by linear combination: ifX has independent
components, thenΨ(pAX) ≤ Ψ(pX), ∀A invertible.

For the sake of clarity, let us also give the definition below:

Definition 4.2 TheΨ−ICA of a random vectorY of sizeN
with finite covariance matrixVY is the pair of matrices(F,∆)
such that: (i) matrix∆ is diagonal positive andF is N × ρ
full column rank, (ii) the covariance ofY factorizes asVY =
F∆2FT , (iii) vectorY writes asY = F Z, whereZ is aρ×1
random vector,ρ ≤ N , with covariance∆2 and whose density
maximizes a given contrast function,Ψ.

If requirement (iii) in the definition above is replaced by
FTF = I, then we get the definition of Principal Compo-
nent Analysis (PCA). Other links with PCA are pointed out in
section 4.5.
Conversely, consider the static linear system:

Y =M X +W, (15)

where vectorX is the input vector and has independent com-
ponents, andW stands for various nuisances (e.g. measure-
ment noise). Then ICA can be viewed as a means to obtain
estimatesZn of the input componentsXn, when only realiza-
tions of the output,y(t) =Mx(t) + w(t), are observed. Note
that the (only) key assumption that may be used in this prob-
lem is the statistical independence of the componentsXn; for
instance, statistics of the noiseW are unknown.

4.3. Identifiability
The first property that can be noticed, is that if a pair
(F,∆) is theΨ−ICA of Y , then so is any pair of the form
(FΛDP,PTΛ−1∆P ), whereΛ is aρ×ρ invertible real posi-
tive diagonal scaling matrix,D is aρ×ρ diagonal matrix with
entries of unit modulus, andP is aρ×ρ permutation. In other
words,as is the case for PCA, solutions need to be considered
modulo this equivalence relation.

Definition 4.3 A contrastΨ will be said discriminating over
a setE if the equalityΨ(pAX) = Ψ(pX) holds only whenA is
of the formΛP , as soon asX is a random vector ofE having
independent components.

Then we have the following identifiability theorem:

Proposition 4.4 Let no noise be present in model (15), and
defineY =M X andY = F Z,X being in some setE of EN ,
and having independent components and an invertible covari-
ance. Then ifΨ is discriminating overE, Ψ(pZ) = Ψ(pX) if
and only ifF = MΛP , whereΛ is invertible diagonal andP
is a permutation.

In other words, the matrixM can be uniquely estimated by
matrix F modulo the above mentioned equivalence relation.
The identifiability theorem 4.4 needs some space to be proved,
and it is referred to [7] for more details. Related results can
also be found in [10].
Reminding thatN random variablesXn are independent if
and only if their joint pdfpX(u) is equal to the product of

the marginal pdf’s,
∏N

n=1 pXn
(un), a quite natural measure

of independence is the distance between two such quantities.
If the Kullback divergence is taken as a distance measure [2],
then we obtain the average mutual information:

I(pZ) =

∫

pZ(u) log
pZ(u)

∏N
n=1 pZn

(un)
du. (16)

It can be shown thatΨ0
def
= −I(pZ) is a contrast, and is dis-

criminating over the set of random variables having at most
one Gaussian component [7].

Proposition 4.5 With the definitions given in section 1, it can
be shown [7] that the functionalsΨr below are also contrasts,
and are discriminating over the subset ofEN of random vec-
tors with finite moments up to orderr and with at most one
component with null cumulant of orderr:

Ψ3(pZ) =
∑

i

G2
iii ; Ψ4(pZ) =

∑

i

G2
iiii. (17)

This last property gives steady foundations to the criteriasug-
gested in section 3.

4.4. Numerical aspects
Since any orthogonal matrix can be decomposed into a product
of N(N − 1)/2 plane rotations and a diagonal matrix with
entries of unit modulus, it seems natural to look first at the
case of plane rotations. It turns out that in dimensionN = 2,
explicit expressions can be given for contrast functions and
their maxima. Denoteθ the tangent of the rotation angle of
Q, andξ = θ − 1/θ; then these contrasts are simple rational
functions:

ψ3(θ; g) = (θ +
1

θ
)−3

3
∑

i=1

ai
(

θi − (−θ)−i
)

(18)

ψ4(ξ; g) = (ξ2 + 4)−2
4

∑

i=0

bi ξ
i. (19)

where coefficientsai andbi are given in appendix. IfN = 2,
it is consequently easy to find the absolute maximum ofψr.
In fact, it can be shown that non trivial stationary points ofψr

are given by the roots of polynomials of the form:

ω3(ξ; g) = d2 ξ
2 + d1 ξ − 4 d2, ω4(ξ; g) =

4
∑

i=0

ci ξ
i. (20)

Coefficientsci anddj are given in appendix.

4.5. The CM algorithm
Assume standardized data are available,yn(t), 1 ≤ n ≤
N, 1 ≤ t ≤ T . The algorithm proposed proceeds (pairwise)
as follows, forr equals either 3 or 4:

1. Initialize F = U Σ /
√
T , as defined in section 1, and

z(1 : T ) = y(1 : T );

2. Forsweep = 1 to S,

3. Sweep all the pairs(i, j) in a prescribed ordering, and for
each pair, do:
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Fig. 1. Variation of contrastψ4 for 3 different orderings and
with input kurtosis [1 1 1 1 1 0 -1 -1 -1 -1].

(a) Compute ther + 1 cumulants of orderr of the pair
(zi, zj), denoted hereg, with the help of expres-
sions similar to (12) or (13);

(b) Root the polynomial of degreer, ωr(ξ), and retain
the value ofξ yielding the largestψr(ξ);

(c) Compute the plane rotationQ(i,j) acting in the
plane(i, j), with tangentθ defined by the root of:
θ2 − ξθ − 1 = 0 in the interval(−1, 1];

(d) Apply the plane rotation to rowsi andj of z(t) for
everyt: z(t)← Q(i,j)z(t);

(e) Accumulate the transform:F ← FQ(i,j)T ;

4. Stop ifsweep = S, or if all estimated angles have been
small in the last sweep.

It is reasonable to takeS = 1 + floor(Nα), α ≤ 1/2. It can
be checked out that the most computationally heavy step is 3a;
the complete algorithm requires approximatelyO(112 S N

2 T )
operations forr = 3, andO(6S N2 T ) operations ifr = 4.
For instance, ifT = O(N3/2) andS = O(

√
N), the com-

plexity is of orderN4 for r = 4. But much larger values ofT
can be envisaged.

Computer results
Simulations presented now were run withN = 10, the mixing
matrixM was defined byMii = 1 andMij = 2 elsewhere.
The contrastΨ4 was used, and fourth order input cumulants
were those given in the figure captions. Figures 1 and 2 give
the behaviour of contrastΨ4 as more and more pairs are pro-
cessed. The 3 particular orderings tested have been performed
by just swapping input cumulants, and the same cyclic order-
ing was performed afterwards. As expected, the speed of con-
vergence depends on the ordering, but not the limit reached in
these examples.

Limitations
The Jacobi algorithm was originally dedicated to the diago-
nalization of symmetric matrices by orthogonal change of co-
ordinates. More precisely, given a matrixg with components
gij , at each step of the algorithm, it is sought for an orthogonal

matrixQ such that the criterionψ2 is maximized:

ψ2(G) =
∑

i

G2
ii; Gij =

∑

p,q

QipQjqgpq. (21)

Stationary points ofψ2 can be shown to satisfyGqqGqr =
GrrGqr, for any pair of indices(q, r), q 6= r. Next, the rela-
tion d2ψ2 < 0⇔ G2

qr < (Gqq −Grr)
2 proves (in an original

and elegant manner) that the only maximum corresponds to
Gqr = 0, whereasGqq = Grr corresponds to a minimum.
Other stationary points are then saddle points.
Similarly, one can look at relations characterizing local max-
ima of criteriaΨ3 andΨ4 :

GqqqGqqr−GrrrGqrr = 0,(22)

4G2
qqr+ 4G2

qrr− (Gqqq −Gqrr)
2− (Grrr−Gqqr)

2 < 0;(23)

GqqqqGqqqr−GrrrrGqrrr = 0,(24)

4G2
qqqr+ 4G2

qrrr− (Gqqqq− 3
2Gqqrr)

2

−(Grrrr− 3
2Gqqrr)

2 < 0.(25)

for any pair of indices(p, q), p 6= q. As a conclusion, contrary
toΨ2 in the matrix case,Ψr might have theoretically spurious
local maxima in the tensor case,r > 2, even if this has never
been observed (see also computer experiments carried out in
presence of noise [7]).

5.. CONCLUDING REMARKS

As tensors are more and more utilized in various areas, in-
cluding signal processing and control, it would be useful to
know what are the decompositions at disposal for completely
symmetric tensors (e.g. Cholesky, Eigenvalue...) and what
algorithms can be resorted to for their effective computa-
tion. The problem of tensor diagonalization can be addressed
in various manners. It is clear that only a small subset of
symmetric tensors can be exactly diagonalized by orthogonal
change of coordinates. In fact, the number of free parame-
ters is much smaller in a diagonalizable tensor. In particular,
a diagonalizable tensor of order 4 and dimension 2 satisfies
(G1112 − G1222)

2 − G1122(G1111 + G2222) + 2G2
1122 = 0.
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Fig. 2. Variation of contrastψ4 for 3 different orderings and
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More generally, entries of a (linearly) diagonalizable tensor lie
on aN2-dimensional manifold, as already pointed out.
The algorithm proposed withr = 3 or 4, andN ≥ 2, has
been proved to converge to the absolute maximum of the cri-
teria only forN = 2. Thus convergence needs to be studied
more thoroughly. Besides this key remark, other issues that
have been left aside for the moment include: (i) speed and
memory issues, that can be probably addressed by designing
appropriate sweeping strategies, (ii) the possibility of carrying
out the diagonalization of a symmetric tensor without calculat-
ing its entries explicitly, as is done by the SVD for covariance
matrices (an effort in this direction was made in the algorithm
proposed in section 4.5), (iii) the exploitation of possible struc-
tures in tensors (e.g. sparse, banded, Toeplitz...).
A suboptimal algorithm has been proposed by Cardoso (see
[5] or the proceedings of SPIE in 1990 pages 361–372), and
considers tensors of order 4 and dimensionN as linear oper-
ators acting on matrices of sizeN2. The computation of the
EVD of such operators gives a means to compute the ICA by
resorting to standard reliable codes. But it has the inconve-
nience to break symmetry, and to be applicable only for even
orders. In addition, an approximation must be made when the
diagonalization is not exact, and and the approach then also
lacks in convergence proof [4].
The principles used for handling matrices are not as effective
as expected for handling tensors. Specific tools dedicated to
tensors remain to be developed.

6.. APPENDIX
Coefficientsai, bj , ci anddj are polynomial functions of the
standardized cumulants of the observations,gijk andgijkl. For
Ψ3 andω3:

a3 = g2111 + g2222,

a2 = 6 (g122 g222 − g111 g112),
a1 = 9 (g2122 + g2112) + 6 (g112 g222 + g111 g122);

d2 = a2/6 = g122 g222 − g111 g112,
d1 = a1/3− a3.

Next forΨ4 andω4, it is useful to define:

t = 16 (g21112 + g21222),

u = g1111 + g2222 − 6 g1122,

v = 4 (g1222 − g1112),
w = 6 g1122 (g1111 + g2222).

Then : b4 = g21111 + g22222,

b3 = −8 (g1111 g1112 − g1222 g2222),
b2 = 4 b4 + t+ 2w,

b1 = 4 b3 − 2 u v,

b0 = 2 (b4 + t+ 2w + 36 g21122 + 2 g1111 g2222
+ 32 g1112 g1222);

c4 = −b3/8 = g1111 g1112 − g2222 g1222,
c3 = 2 b4 − b2/4 = b4 − (t+ 2w)/4,

c2 = 3 b3/2− 3 b1/8 = 3 u v/4,

c1 = b2 − b0/2,
c0 = b1/2 = 2 b3 − u v.
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