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TENSOR DIAGONALIZATION, A USEFUL TOOL IN SIGNAL PROCESSING
Pierre COMON

Thomson-Sintra, B.P.157, F-06903 Sophia-Antipolis cefience
I3S — CNRS, Sophia-Antipolis, F-06560 Valbonne, Franceyara@alto.unice.fr

ABSTRACT Gaussian pdf. If a random variable of dimensigradmits fi-
Tensors appear more and more often in signal processing probnite moments up to ordet then its cumulants of orderexist.
lems, and especially spatial processing, which typically i  In other words, defineTthe second characteristic functiol of
volves multichannel modeling. Evenifitis notalways onwo ~ as¥,(v) = log E{e?" * }, wherey = /—1; this function
that tensor algebra is the best framework to address a pnoble always exists in a neighborhood of the origin. Then cumuslant
there are cases where no choice is left. Blind identificatibn  are coefficients of” v;..v,. in the Taylor expansion o¥ . (v)
multichannel non monic MA models is given as an illustrating about the origin. An alternative way is to define them as a
example of this claim. function of moments [3]:

Key words. Tensor, High-Order Statistics, Identification, Non »
monic MA model, Array processing, Statistical indepengenc  c{x,, .X,} = Z (=)~ (p—1)! H E{ H X,
Information, Parallel algorithms. =1 jew
2

1. INTRODUCTION where the summation extends over all partiti¢ns, ..z/p)(m2
Many techniques in signal processing are based on the knowl{(1,..7), 1 < p < r. Simple expressions can be derived for
edge of the probability density function (pdf) of obserea,  cumulants of moderate orders [14]. Such cumulants will be
possibly conditionnally to some unknown parameters. Onedenoted in shor€;, ;, {X} in the present paper, where in-
may think for instance of the likelihood function. The Gaus- dicesi; may be distinct or not.
sian approximation has been assumed for a long time becauspue to the fact thal 4 x (v) = ¥ x(Afv), cumulants inherit
(i) second-order moments were sufficient to solve most prob-the multilinearity property and may be considered as tensor
lems of interest, and (ii) moments of higher order were compu [14]. For any random variabl& with values inIR", the in-
tationally heavy to handle. Today several problems have bee dicesi, ..i, can be permuted in any manner without changing
pointed out that are not solvable under the Gaussian approxithe value of the cumulant, ; {X}. Therefore, cumulants
mation, and in addition, the increase in computational gpowe aresymmetridensors.
allows the use of more fancy approximations with the help of |n practice, it is more convenient to work with so-called
Higher-Order Statistics (HOS). The survey paper [15] ®int standardized data, because of numerical conditioningngmo
out some advantages in using HOS in signal processing antther reasons. For scalar random variables, this operation
automatic control. See also the indroductory paper [9]. merely reduces to centering and dividing by the standard dev
ation. In the vector case, the standardization operatiogists
of centering, reducing the data by projection onto its range
space, and rotating the subspace onto the eigenvectoidicoor

1.1. Tensors

A tensor of order is an object defined in & -dimensional

coordinates system by a table witlindices,g;, s, 1 <1, < nates system.

N, that follows a particular transformation formula if the-co More precisely, assunig realizationsz(¢) of a random vari-

ordinates system is changed. If the system of coordinates ;o x are available in the form of & x T data matrix,

is changed so that any vectaris transformed into a vector #(1 : T). Denote the SVD of the centered datazd :

U = Au, whereA is aN x N matrix, then the tensor is trans- T) — mean(z) = USVT, whereU is N x p full column

formed into: rank,p < N, andX is square invertible. Then standardized

Girir = Gy = Y AijiAijigi g (1) data are defined by(1 : T') = VT VT, and have zero mean

F1sedr and unit covariance. Cumulants of standardized variabkes a

This property is often referred to as thriltilinearity property calllledstandardlz.ec-j cumulants _
of tensors. Such a tensor will be referred to 4&/ar)-tensor, ~ High-Order Statistics (HOS) are more and more widely used

in short. in various areas including signal processing and automatic
control, as shows the present literature for the last fewsyea
1.2. Cumulants In situations where variables are multidimensional, itssful

Expansions of pdf about some given family of densities lead to point out that cumulants may be considered as tensors. Nev
to objects that are called cumulants. See for instance [P]][ ertheless, very few tools are at disposal to manipulatetsens
for a general framework on density expansions. In geneual, ¢ if we may resort to Cholesky or Eigen-Value decompositions
mulants (by default) are associated with expansions abeutt in case of symmetric matrices, there are unfortunately oh su
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decompositions available for completely symmetric tessor transforms that diagonalize a given covariance matrix;i-add
Some directions are proposed in this paper in sections 3.and 4tional constraints are thus necessary to determine the-tran
form uniquely. Bienvenu and Kopp [1], and independently

2. APPLICATIONS Schmidt [16], proposed in the so-called MUSIC algorithm to
2.1. Non monic MA models fix this indetermination by using the knowledge of the array:
As a working example, consider the non monic multichannel thedirection of arrivalvectors should lie on soraray man-
MA model: ifold in the absence of noise.
q Clearly, if the array manifold is not available, the MUSIG ap
y(t) = Z B w(t — k) + v(t), 3) proa_ch cgnnot succe_ed, and it is necessary to resort to HOS_.
o The idea is now that independent sources should also have di-

_ _ _ _ agonal cumulant tensors, for all orders. By seeking for the
where the ordeq is assumed known;(t) is a nuisance noise,  |inear transform that diagonalizes one or several tensors,
w(t) is a spatially and temporally white noise, i.,(t) and  may identify the linear model, and eventually the source sig

w; (') are statistically independentj, j € {1,..N}, i # j, nals themselves. Nevertheless, it is not possible to recove
andvt,t', t # t'. Assume all matrice#; are unknownf) < thedirections of arrivalwithout some knowledge on the array
k < g, and matrixB, is invertible. manifold. For reasons of space, the application of tensay-di

The problem of identifying the matrice;. from the observa-  onalization to array processing is not developed furthéhim
tions of system outputs only can be easily decomposed intopaper.

two subproblems, as briefly recalled below. Just consider

the (temporally) white process(t) = Bow(t), and denote 3. DIAGONALIZATION ISSUES
By = BBy, for k > 0. Then the model can obviously be Consider in this section the following algebraic problem.
rewritten as: Given a tensot;; j, of orderr, 2 < r < 4, is it possible

q to find a linear change of coordinates defined by an invertible
y(t) = Z By x(t — k) 4+ v(t), z(t) = Bow(t). (4) matrix, A, such tha_t _the _tensortakes a diagonal form ?
P A necessary condition is that the number of free parameters
_ _ S ) _ ) be preserved. A symmetric tensor hag, ,_,) independent

This model is monic, since3, is now the identity matrix. ~ parameters. In the matrix case, we thus haugV + 1)/2
Many algorithms have been proposed to date for the so-calleqyarameters, which is smaller than tNé entries ofA. But in
blind identificationof monic MA models. See for instance the tensor case, it is clear that the number of free parameter
[19] [6] [18]. To give the flavour of these approaches in a few would decrease®(N") in the original symmetric tensor, and
lines, consider the scalar case (N=1) and suppose it is @ishe N2 in the decomposition. This immediate statement proves
to use only fourth order output cumulants. The idea is to re- that only a small subset of symmetric tensors of order larger
mark that output cumulants are linked to each other throughthan2 is (linearly) diagonalizable.
the linear system: On the other hand, this statement does not prove anything if
the transformA is allowed to map theV-dimensional space

Coika{y} Bj = Cojra{y} Bi, ) into a space of possibly larger dimension, gay> N. The
for any triplet of indices(4, j, k) such that) < i < j < ¢ decomposition can now be written as:
and0 < k < g. The coefficientsB;,i > 0, can thus be P
obtained just by solving an overdetermingd + 1)2/2 by q tijn = Z AipAjy. AT, (6)

linear system. The idea extends to the multichannel cageto t
price of some complication in the notation [6], that we do not
want to introduce here. whereT), is a diagonal P; r)-tensor, andd is aN x P matrix.
Of course, there are many other approaches to monic MA blindThe number of free parameters in decomposition (6) is now
identification [15]. However, our goal is not to focus on this NP. In that case the question is to know (1) how to choose
well known problem, but to spend some time on the identifi- P, and (2) how to compute th2 rows of the transformi.
cation of the first matrix coefficient3y. Thus there are two different approaches: one can look for an
exactdiagonal tensor decomposition, but in a space of larger

2.2. Narrow band array processing dimension, or conversely look for an approximate tensag-dia

There are many cases in spatial signal processing where it ig)nalization in a space of same dimension. These two aspects
sought to obtain a diagonal tensor after linear transfoengs, are now commented.

seismics, interception problems in Sonar, blind estinmatib

radiating sources [5] [7] [17] [18], even if it is not stategte  3.1. Exact diagonalization

plicitly in those terms. In fact, the problem in antenna srra There is an obvious bijective relation between the set of
processing is to recover source signals that are statlgtina symmetric (N;r)-tensors, ¢;;.x, and the set of homoge-
dependent. Generally, a linear model is assumed, so that th@eous polynomials of degree in N variables. In fact,
problem amounts to identifying a linear system with mutpall associate each tenserwith the polynomialn(z,y,..2) =
independent inputs. > Zj >k tij.kTiyj..z. This equivalence has been al-
First, independent sources should at least have a diagonaleady utilized in many eighteenth century works.

covariance matrix. But there are infinitely many congruent Consequently, looking for & x P matrix that maps the

p=1
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(N;r)-tensor into a diagonalP;r)-tensor is equivalent to Ghijk = Z QriQimQ inQkoYimno- (10)
looking for P linear forms such that the polynomial is Imno

mapped to a sum of-th powers of linear forms. The exact
diagonalization problem exists in the theory of homogeseou
polynomial forms, but very few results are known today, de-
spite the long history of the subject.

In the case of binary forms (N=2) however, it is known that 4 B IND IDENTIFICATION OF STATIC LINEAR
every binary form of even degreéen can _be put as a sum of SYSTEMS

m perfect powers, provided the determinant of some Hankel
matrix built with the polynomial coefficients is null [13].h1s
determinantis often referred to as the Catalecticant. blae

a general binary form of degr@en can be written as a sum of
m+1 perfect powers. For instance, a binary quartic can still be X X
expressed as a sum of 3 perfect powers, even if its cataactic ndependent. In this framework, only independence up to or-

is non zero. There are also a number of results in the case off€" 3 Or 4 will be required (that is, cross cumulants of com-
forms of odd degree. For instance, a theorem attributed toPOnents o2 are null at orders 2 and 3 or 4). Standardization

Sylvester claims that a binary form of degr@e + 1 can be already insures independence at order 2 (the covariancixmat

written as a sum af-+1 perfect powers of linear forms. These is identity). Yet, standardized data are defined up to a multi
decompositions are generally not unique. plicative orthogonal matrix (in addition to scale and petaau

Now regarding forms with more than 2 variables, the results tion transforms already pointed out). So there is clearipeso
become much more confusing. In fact, it is not possible to degree of freedom left to improve statistical mdepent_dence
state systematically what is the minimal mumber of forims, !t can be sought for an orthogonal mattjksuch that higher-
as a function of the dimensioN and the degree. If P is order correlations of = Q Y are minimized (since the trans-
chosen just in order to satisfy the inequally?® > (v, 1), form is now invertible, we also have
then P turns out to be too small in some cases. Actually, ev- T

. . o gy Y =QTZ (11)
ery case is particular. Additionally, assumifigs known, the
calculation of the decomposition itself is very difficult¢arry
out. That's why this discussion is deferred to a companion pa
per [8], where the case of cubics£ 3) and quarticsi{ = 4)
will be mainly addressed.

In the remaining sections, the optimization criteria wél jois-
tified, and the approximate diagonalization will be desedib
in detail.

4.1. Notation

Given realizationg/(t) of a random vectol” with values in
IRY, it is desired to estimate a matrix such thaty = FZ,
whereZ is a random vector whose composents are statistically

equivalently). For this purpose, define the third and fourth
order sample cumulants &f [11, 12]:

N =
M=

3.2. Approximate diagonalization Gt = — zilt) 23(8) 21(8), (12)
In this section, only invertible transforms are conside(ie=l -

P = N). As pointed out previously, tensors of ordeaind di- Ginl = 1 Z 2i(8) 25 (8) 21 (t) 21(2)
mensionN cannot generically be exactly diagonalized. Thus, “ T pry B

there is first a need to define in what respecighproximation — 50k — indi1 — S0, (13)

will be understood. Carl Jacobi introduced in 1846 a cidteri

dedicated to matrices. In order to diagonalize a symmetsic M  whereg is the Kronecker symbol, and¢) realizations ofZ.

trix by an orthogonal change of coordinates, he proposed topenoteg;,;, andg;;x the corresponding cumulants f de-
minimize the sum of squares of non-diagonal entries. Denotefined in the same manner.

@ the matrix defining the transformation, ap@ given sym-

metric matrix. Since the Froebenius norm of the transformed4.2. Definition of ICA

matrix, G = QgQ' remains the same, one can alternatively LetY be arandom vector with valuesiR ™Y admitting a prob-

maximize the sum of squares of diagonal entries. This definesability densitypy (u), and assumé’ realizationsy(t) are ob-

an optimization criterion for second order symmetric teeso  served (index does not necessarily refer to time). The ICA
of Y consists of searching for& x p matrix, F, N > p, that

N L ..
L 9 minimizes thestatistical dependendmtween the components
T2(Qs9) = Zl Gon- () ofthep x 1 vector,Z, defined by
For tensors of higher order, we define the following criteria Y=FZ (14)

that will find steady justifications in the next section:
in the sense of the maximization otantrast function

N N
Y3(Q;9) = Gl Ya(Q;9)=> G (8)  Definition 4.1 Let&y be the space of real random variables
n=1 n=1

of dimensionV admitting a density. A contrast is a mapping
It must be keptin mind that, because of the multilinearigger ¥ from the set of densitiefp 7, Z ¢ €n} to Ik satisfying the
erty, these criteria are implicit functions of the matf)x 3 requirements:

_ 1. ¥(pz) does not change if the componetis are per-
Gi' c = im«jn oYmno, 9 1
an 2 QunQin Qg ®) muted: ¥ (ppz) = ¥(pz), VP permutation;

mno
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2. U is invariant by scale change¥ (pprz) = ¥(pz), VA the marginal pdf’s,]'[fj:lpxn (un), @ quite natural measure
diagonal invertible; of independence is the distance between two such quantities
If the Kullback divergence is taken as a distance measure [2]

3. U decreases by linear combination:Xf has independent then we obtain the average mutual information:

components, thel (pax) < ¥(px), VA invertible.

For the sake of clarity, let us also give the definition below: I(pz) = /pZ (u) log # du. (16)

. . n=1PZ, (un)
Definition 4.2 The ¥ —ICA of a random vectol” of size N

with finite covariance matri¥y- is the pair of matricegF, A) It can be shown that, ' —I(py) is a contrast, and is dis-
such that: (i) matrixA is diagonal positive and”is N x p criminating over the set of random variables having at most
full column rank, (ii) the covariance df factorizes ad’y = one Gaussian component [7].

FA?FT (i) vectorY writes asY = F Z, whereZ isap x 1

random vectorp < N, with covarianceA? and whose density  Proposition 4.5 With the definitions given in section 1, it can
maximizes a given contrast functioh, be shown [7] that the functional®,. below are also contrasts,
and are discriminating over the subset&§ of random vec-
tors with finite moments up to orderand with at most one
component with null cumulant of order

If requirement (iii) in the definition above is replaced by
FTF = I, then we get the definition of Principal Compo-
nent Analysis (PCA). Other links with PCA are pointed out in

section 4.5. U5 _ G2 - W _ 2
. L s(pz) =Y _Gri 3 Walpz) =) Giy (A7)
Conversely, consider the static linear system: p 7

Y=MX+W, (15) This last property gives steady foundations to the critsuige

. . . gested in section 3.
where vectotX is the input vector and has independent com-

ponents, andV stands for various nuisances (e.g. measure-4.4. Numerical aspects

ment noise). Then ICA can be viewed as a means to obtainSince any orthogonal matrix can be decomposed into a product
estimatesZ,, of the input componentX’,,, when only realiza-  of N(N — 1)/2 plane rotations and a diagonal matrix with
tions of the outputy(t) = Mz(t) + w(t), are observed. Note  entries of unit modulus, it seems natural to look first at the
that the (only) key assumption that may be used in this prob-case of plane rotations. It turns out that in dimensior= 2,

lem is the statistical independence of the compon&hytsfor explicit expressions can be given for contrast functiond an
instance, statistics of the noigg are unknown. their maxima. Denoté the tangent of the rotation angle of
Q, and¢ = 6 — 1/6; then these contrasts are simple rational

4.3. ldentifiability
The first property that can be noticed, is that if a pair ,
F,A) is the U—ICA of Y, then so is any pair of the form 1._ i —
EFA[%P, PTA='AP), whereA is ap x p invertible real posi- vs(bi9) = (0+ 5) ’ Zai (0" (=0)7) (18
tive diagonal scaling matrixy is ap x p diagonal matrix with =1
entries of unit modulus, an#l is ap x p permutation. In other
words,as is the case for PGAolutions need to be considered
modulo this equivalence relation.

functions:

4
Pa(&g) = (E+4)7> big (19)

=0

o . o where coefficients; andb, are given in appendix. I[N = 2,
Definition 4.3 A contrast¥ will be said discriminating over i is consequently easy to find the absolute maximung,of

a set¢if the equality¥ (pax) = ¥(px) holds only whent is In fact, it can be shown that non trivial stationary points/ef
of the formA P, as soon asX is a random vector of having are given by the roots of polynomials of the form:

independent components.
4

Then we have the following identifiability theorem: w3(&9) =do € +d1 & —4do, wy(&9) = Z ¢ & (20)

Proposition 4.4 Let no noise be present in model (15), and =0

defineY = M X andY = F' Z, X beingin some set of £y, Coefficientsc; andd; are given in appendix.
and having independent components and an invertible covari )
ance. Then if¥ is discriminating ove€, ¥ (pz) = ¥(px) if 4.5. The CM algorithm

and only if F = M AP, whereA is invertible diagonal and® Assume standardized data are availalig(t),1 < n <
is a permutation. N,1 <t < T. The algorithm proposed proceeds (pairwise)

as follows, forr equals either 3 or 4:
In other words, the matri¥/ can be uniquely estimated by

matrix 7 modulo the above mentioned equivalence relation. 1. Initialize F = U /T, as defined in section 1, and
The identifiability theorem 4.4 needs some space to be proved ~ #(1: 1) = y(1: T);

and it is referred to [7] for more details. Related results ca
also be found in [10].

Reminding thatN random variablesX,, are independent if 3. Sweep all the pair@, j) in a prescribed ordering, and for
and only if their joint pdfpx (u) is equal to the product of each pair, do:

2. Forsweep =110 S,
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CONTRAST Psi4

15 2 25 35

0.5

NUMBER OF SWEEPS

Fig. 1. Variation of contrast), for 3 different orderings and
with input kurtosis[111110-1-1-1-1].

(@) Compute the + 1 cumulants of order of the pair
(zi,25), denoted herg, with the help of expres-
sions similar to (12) or (13);

(b) Root the polynomial of degreg w,-(£), and retain
the value of yielding the largest,. (£);

(c) Compute the plane rotatio@/) acting in the
plane(i, j), with tangent) defined by the root of:
6% — €6 — 1 = 0 inthe interval(—1, 1];

(d) Apply the plane rotation to rowisandj of z(t) for
everyt: z(t) « QU9 z(t);

(e) Accumulate the transfornk « FQ()T;

4. Stop ifsweep = S, or if all estimated angles have been
small in the last sweep.

It is reasonable to tak€ = 1 + floor(N*),a < 1/2. It can

be checked out that the most computationally heavy step is 3a
the complete algorithm requires approximaﬂ@l@g—1 SNZT)
operations forr = 3, andO(6 S N2 T') operations ifr = 4.

For instance, ifl’ = O(N%/?) andS = O(v/N), the com-
plexity is of orderN* for » = 4. But much larger values af

can be envisaged.

Computer results

Simulations presented now were run with= 10, the mixing
matrix M was defined by\/;; = 1 andM,; = 2 elsewhere.
The contrastW, was used, and fourth order input cumulants
were those given in the figure captions. Figures 1 and 2 give
the behaviour of contragt, as more and more pairs are pro-
cessed. The 3 particular orderings tested have been pediorm
by just swapping input cumulants, and the same cyclic order-
ing was performed afterwards. As expected, the speed of con
vergence depends on the ordering, but not the limit reached i
these examples.

Limitations

The Jacobi algorithm was originally dedicated to the diago-
nalization of symmetric matrices by orthogonal change oef co
ordinates. More precisely, given a matgixvith components
gij, at each step of the algorithm, it is sought for an orthogonal

81

matrix @) such that the criteriog, is maximized:

V2(G) = Z G Giy = Z QipQjqIpq- (21)
i Pya

Stationary points of), can be shown to satisf¢ G, =
GGy, for any pair of indicegg, r), ¢ # r. Next, the rela-
tion d*y, < 0 & G2, < (Ggq — Gyr)? proves (in an original
and elegant manner) that the only maximum corresponds to
G4 = 0, whereasG,, = G, corresponds to a minimum.
Other stationary points are then saddle points.

Similarly, one can look at relations characterizing locaxm
ima of criteria¥s; andWy :

GqeGaqr — GrirGyrr = (22)
4G3¢1T+ 4G3M7 (quq - qur)2 - (Grrr* quT)Q < (23)
quqq quqr - GMMqurr = 024)
4G3qq7' + 4G37'7'r— (quqq - %quw-)Q
—(Grrrr— 3Gqqrr)? < (@25)

for any pair of indicesp, ¢), p # ¢. As a conclusion, contrary

to ¥, in the matrix casey . might have theoretically spurious
local maxima in the tensor case;> 2, even if this has never
been observed (see also computer experiments carried out in
presence of noise [7]).

5. CONCLUDING REMARKS

As tensors are more and more utilized in various areas, in-
cluding signal processing and control, it would be useful to

know what are the decompositions at disposal for completely
symmetric tensors (e.g. Cholesky, Eigenvalue...) and what
algorithms can be resorted to for their effective computa-

tion. The problem of tensor diagonalization can be adddesse

in various manners. It is clear that only a small subset of

symmetric tensors can be exactly diagonalized by orthdgona
change of coordinates. In fact, the number of free parame-
ters is much smaller in a diagonalizable tensor. In pasicul

a diagonalizable tensor of order 4 and dimension 2 satisfies
(Gi112 — G1222)? — G1122(G1111 + Ga222) + 2G3155 = 0.

Psi4

ONTRAST

]

0.5 15 2 25 35

NUMBER OF SWEEPS

Fig. 2. Variation of contrast), for 3 different orderings and
with input kurtosis [54321-1-2-3-4-5].
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More generally, entries of a (linearly) diagonalizablesmriie

on aN2-dimensional manifold, as already pointed out.

The algorithm proposed with = 3 or 4, and N > 2, has
been proved to converge to the absolute maximum of the cri-
teria only for N = 2. Thus convergence needs to be studied
more thoroughly. Besides this key remark, other issues that
have been left aside for the moment include: (i) speed and

memory issues, that can be probably addressed by designing

appropriate sweeping strategies, (ii) the possibilityarfging
out the diagonalization of a symmetric tensor without claitzu
ing its entries explicitly, as is done by the SVD for covadan
matrices (an effort in this direction was made in the aldyonit
proposed in section 4.5), (iii) the exploitation of possisiruc-
tures in tensors (e.g. sparse, banded, Toeplitz...).
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A suboptimal algorithm has been proposed by Cardoso (see 51 j F. CARDOSO. Fourth-order cumulant structure forc-

[5] or the proceedings of SPIE in 1990 pages 361-372), and
considers tensors of order 4 and dimensiéras linear oper-
ators acting on matrices of sizé2. The computation of the
EVD of such operators gives a means to compute the ICA by
resorting to standard reliable codes. But it has the inconve
nience to break symmetry, and to be applicable only for even
orders. In addition, an approximation must be made when the

diagonalization is not exact, and and the approach then also [8]

lacks in convergence proof [4].

The principles used for handling matrices are not as effecti
as expected for handling tensors. Specific tools dedicated t
tensors remain to be developed.

6. APPENDIX

Coefficientsa;, b;, ¢; andd; are polynomial functions of the
standardized cumulants of the observatigfg, andg; ;. For
U3 andws:

2 2
9111 T 9222,

as

az = 6(g122 9222 — g111 g112),

a = 9 (9522 + 9512) + 6 (9112 9222 + 9111 g122);
dy = a2/6 = gi22ga22 — 9111 g112,

dy a1/3 — as.

Next for &4, andwy, it is useful to define:

t 16 (97112 + 91222)s
u = gi11 + ga222 — 6 g1122,
v = 4(g1222 — g1112),
w = 6g1122 (91111 + go202)-
Then : bi = Giin + Gae
b3 = -8 (91111 gi112 — gi1222 92222)7
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ca = 3b3/2—-30b1/8 = 3uwv/4,
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co b1/2 = 2bs — uw.
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