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Spatial and temporal prediction 3

1 Spatial and temporal prediction

The main goal in classical video coding techniques is the minimization of the bit-rate
required to obtain a certain quality of the video. Good spatial and temporal prediction
techniques can provide a high data compression balanced by a loss of information that
slightly affects the video quality. The spatial prediction techniques are mostly inherited
from images compression techniques. On the other hand the temporal prediction can
be obtained by using motion estimation techniques.

1.1 Temporal prediction

As mentioned in the article by Dufaux and Moscheni [28], we can distinguish four main
groups of motion estimation techniques:

• gradient techniques

• pel-recursive techniques

• block matching techniques

• frequency-domain techniques

Gradient techniques have been developed for image sequence analysis applications.
They solve the optical flow and results in a dense motion field.

Pel-recursive techniques can be considered as a subset of gradient techniques. The
recursion is usually carried out on a pel-by-pel basis leading to a dense motion vector
field. This approach was proposed by Cafforio and Rocca in [8].

Frequency domain techniques are based on the relationship between transformed
coefficients of shifted images. This technique never reached a widespread use.

As explained in the paper by Jain [46] block matching algorithms are based on
matching of blocks between two images, the aim being to minimize a disparity mea-
sure. Specifically developed for image sequence coding, they are widely used. In
block matching motion estimation, the image is partitioned into blocks and the same
displacement vector is assigned to all pixel within a block.

For each block, the displacement vector is evaluated by matching the content of a
block of pixel with a corresponding block within a certain search range, placed in the
previous frame (or in any refererence frame), and by searching the spatial location
minimizing the matching criterion (e.g. MSE).

Block matching was initially designed to estimate displacements with a precision of
one pixel in the H.261 standard, but since MPEG-1 half-pixel precision begun to be
used, and nowadays a fourth-pixel precision can be achieved, as it happens in the most
widely used standard H2641.

The importance of tepmoral and spatial prediction is witnessed by the fact that the
best performing video standard, H.264 [89], heaviliy relies on prediction to achieve its
high compression performance.

1Eighth-pixel precision is possible using the Key Technical Area (KTA) tools.
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Reference frames Current frame

Figure 1: Single or multiple references in H.264 temporal prediction of the current
block.

Temporal prediction is realized with a block-matching based technique. The motion
estimation and motion compensation techniques are realized in order to provide both
predicted (P) and bi-predicted (B) frames. For the first ones the motion estimation
is performed referring to the previous I or P frame, while for te second ones, the
prediction comes from both direction, from the previous and the following I or P
frame. In the paper by Wiegand, Zhang and Girod [90], the prediction is enhanced by
using up to 16 reference frames. This is in contrast to prior standards, where the limit
was typically one or, in the case of B pictures, two. Moreover for the prediction of B-
frames is possible to use any macroblock type, including I-macroblocks. This standard
also introduces variable block-size motion compensation with block sizes as large as
16×16 and as small as 4×4, enabling precise segmentation of moving regions. The
ability to use multiple motion vectors per macroblock was developed and the motion
vectors for each 8×8 or larger partition region can point to different reference pictures.
Motion prediction has also been improved by introducing quarter pixel precision and
weighted prediction for both B and P frames. Temporal prediction in H.264 is depicted
in Fig. 1.

Recently research in video compression has showed several deficiency in block based
models: first of all it fails to capture the true motion in natural video as explained
in the paper by Han and Podilchuck [42]. Another intrinsic problem with existing
motion-compensated predictive coders is the coding of the residual frame or displaced
frame difference. Typically, it is encoded by applying transform coding techniques
(such as the discrete cosine transform) which work well on still images. However, such
methods are quite inefficient on the displaced frame difference (DFD), which consists
predominantly of high-frequency data.

In the same paper, a motion estimation method that exploits a dense motion vector
field is proposed taking into account the problem of coding both the motion and the
subsequent DFD frame. First a dense motion field estimation is computed during the
encoding process. It is possible to take advantage of the dense motion information to

2D Representation and Compression D3.1
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Figure 2: H.264 spatial prediction, INTRA 4×4.

model and encode the DFD frame: the dense motion field is a much more accurate
representation of the true motion. Since it is impractical to transmit one unique motion
vector for every single pixel in an image, a variable-depth motion field is found from
the original motion field. The DFD encoding scheme utilizes the dense motion field in
predicting where the DFD energy will be significant, and only coding the DFD values
in these regions.

1.2 Spatial prediction

Intra prediction is an effective method for reducing the coded information of an image
or an intra frame within a video sequence by exploiting spatial correlation witin a pic-
ture. The conventional method today is to create a sample predictor block by extrap-
olating the reconstructed pixels surrounding the target block to be coded. The sample
predictor block is subtracted from the target block and the resulting residual coded
using transformation, quantization and entropy coding. This is an effective method for
sample predictor block creation in most sequences. However the extrapolation method
is not able to represent sample prediction blocks with complex texture. Furthermore,
pixels that are far from the surrounding pixels are usually badly predicted.

In H.264 [88], the spatial prediction is improved with a new technique of extrapo-
lating the edges of the previously-decoded parts of the current picture. It’s applied in
regions of pictures that are coded as intra. This improves the quality of the prediction
signal, and also allows prediction from neighboring areas that were not coded using
intra coding.

In particular, two classes of intra coding types are supported, which are denoted
as INTRA-4×4 and INTRA-16×16. When using the INTRA-4×4 mode, each block
of the luminance component can choice one out of nine prediction modes, as shown
in Fig. 1.1. Beside DC prediction, eight directional prediction modes are specified.
When utilizing the INTRA-16×16 mode, (see Fig. 3) which is well suited for smooth

2D Representation and Compression D3.1
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Figure 3: H.264 spatial prediction, INTRA 16×16. (a) Horizontal prediction; (b) Ver-
tical preditction; (c) Average prediction; (a) Planar prediction.

image areas, a uniform prediction is performed for the whole luminance component of
a macroblock. Four prediction modes are supported: horizontal, vertical, average and
planar.

2 Transformation

2.1 Anisotropic transforms

The classical scheme of image compression is based on three steps: transform, quan-
tization and lossless coding. Recently, research efforts have focused on the choice of
the transform that best represents a natural image. As a matter of fact, in spite of
its great success, wavelet transform is not the optimal basis for an image. Indeed, it
is very effective in representing smooth signals with pointwise discontinuities (like an
image row), but fails in representing discontinuities along curves, like the contours be-
tween neighboring visual objects, which typically characterize images. We analyze in
the followint three main approaches for the new generation image coding scheme: the
object-based paradigm, the directional transforms, and the adaptive lifting schemes.

The object-based paradigm is a first tentative solution to this problem. To begin
with, considering an image as composed by objects, and not by pixels, is more intuitive
and natural. Object-based coding offers a large number of high level functionalities,
for example, the user can choose to decode only objects of interest, or to assign them

2D Representation and Compression D3.1
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different coding resources and different error-protection levels. Furthermore an object-
based description can be used for subsequent classification tasks, and it is more suited
to quality-driven compression schemes. An example of oject based approach is the
shape-adaptive wavelet transform, proposed by Li and Li [54], and adopted in MPEG-
4 for the arbitrarly-shaped object coding. The main assumption is that, with an
object-based approach, the wavelet works only on the interior of the objects, that
is, almost stationary signals, and can therefore provide near-optimal performance.
This approach requires an adapted coding algorithm, like the shape-adaptive version
[12] of the well-knonw SPIHT algorithm [69], and it has shown good performances
when the segmentation task is relatively easy [13], like for satellite multispectral and
hyperspectral images [10, 11]. On the other hand, the object-based approach has
mixed results when applied to natural images [9]: in this case it is profitable only if
the segmentation is very accurate, and if the coding cost of the segmentation map
(which has to be sent along with transform coefficients) is not too high.

New directional transforms represent a more direct solution to wavelet ineffi-
ciency on image contours. While in object-based coding the transform remains the
wavelet and the intelligence is put on the scheme, here the wits is in the transform.
Recent studies have shown that wavelet’s inability to adequately describe image con-
tours is due to its separability which (while allowing for a simple implementation) cuts
it away from two fundamental properties: directionality and anisotropy [26]. The new
directional transforms try to overcome these limits by adding these characteristics to
that of wavelet transform, such as multiresolution, localization and critical sampling.
Many transforms have been proposed in the last few years, and we show here the
most relevant of them. Curvelets, introduced by Candès and Donoho [14], provide
stable, efficient, and near-optimal representation of otherwise smooth objects having
discontinuities along smooth curves. By applying naive thresholding to the curvelet
transform of such an object, one can form approximations with rate rivaling the rate
obtainable by complex adaptive schemes which attempt to ‘track’ the discontinuity set.
The contourlets have been proposed by Do and Vetterli in 2005 [26]. The contourlets
framework has many desirable characteristics, such as directionality, anisotropy, an al-
most optimal NLA2 behavior for simple classes of images and, unlike other directional
transforms, it is easily implemented by a filter bank. Its main drawback is a slight
redundancy which, however, is not really a problem in the context of low bit-rate cod-
ing. Bandelets, introduced by Le Pennec and Mallat [65], decompose the image along
multiscale vectors that are elongated in the direction of a geometric flow. This geo-
metric flow indicates directions in which the image grey levels have regular variations.
The image decomposition in a bandelet basis is implemented with a fast subband filter-
ing algorithm. Bandelet bases lead to optimal approximation rates for geometrically
regular images. For image compression and noise removal applications, the geometric
flow is optimized with fast algorithms, so that the resulting bandelet basis produces a
minimum distortion. Comparisons with wavelet image compression algorithms show
PSNR improvements from 0.5dB to 1.5dB with respect to classical Daubechies filters
[3]. Directionlets are a a lattice-based perfect-reconstruction and critically sampled

2Non-linear approximation; see the extensive review by DeVore for more information [23].

2D Representation and Compression D3.1
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anisotropic multi-directional wavelet transform [81]. The transform retains the sepa-
rable filtering and subsampling and the simplicity of computations and filter design
from the standard two-dimensional WT, unlike in the case of some other directional
transform constructions (e.g. curvelets, contourlets or edgelets). The corresponding
anisotropic basis functions (directionlets) have directional vanishing moments along
any two directions with rational slopes. Furthermore, this novel transform provides
an efficient tool for nonlinear approximation of images, achieving the approximation
power O(N−1.55), which, while slower than the optimal rate O(N−2), is much better
than O(N−1) achieved with wavelets, but at similar complexity.

Another possible approach for new generation transforms are the adaptive lift-
ing schemes. The lifting scheme [22] is an efficient and flexible implementation of
the wavelet transform. One of the main advantages of the lifting structure is to pro-
vide a totally time domain interpretation of the wavelet transform and this feature
makes simpler to design new wavelets and content-adaptive wavelets. Adaptive lifting
schemes can be use to deal with the problem of contour representation, for example,
by constructing directional wavelets, with the filtering direction chosen according to
the local orientation of image edges [35, 15, 25], or changing the filters according to
the regularity of input signal [34, 21, 43] in order to utilize different and more fit
filters when contours or singularities are encountered. A major problem of adaptive
lifting schemes is that they are strongly non-isometric transforms, which bars from
computing the distortion in the transform domain. On the other hand, this is would
be highly desirable in order to perform efficient resource allocation [79]. This problem
has been recently adressed by Parrilli et al., both in the case of update-adaptive [63]
and prediction-adaptive [64] lifting scheme. The strategy adopted is based on the ob-
servation that, although adaptive lifting schemes are nonlinear operators, they can be
considered equivalent to suitable time-varying linear filters, which eventually allows us
to generalize the traditional distortion computation methods.

3 Oriented Wavelets

This section presents an adaptive oriented wavelet transform introduced in [17], in
which the lifting steps of a 1D wavelet are oriented along a discrete set of orienta-
tions. The geometry of the image is explicitly described by an orientation map. The
orientations are chosen to minimize the energy of the wavelet coefficients in the high-
frequency subbands [17], so as to pack the energy of the image as much as possible
in the low-frequency subbands. Each level of decomposition consists in splitting the
sampling grid in two complementary quincunx cosets and applying the lifting steps
along the chosen orientations. The orientation map is coded using two independent
interleaved quad-trees. One is used to encode the horizontal and vertical orientations
across even levels, while the other is used to encode the diagonal and antidiagonal
orientations across odd levels.

2D Representation and Compression D3.1
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3.1 Oriented Wavelets on Quincunx Grid

3.1.1 Quincunx sampling

Let us now consider a 2D lattice defined from an integer matrix M as

L(M) = {m ∈ Z
2, m = Mn, n ∈ Z

2}.
A quincunx lattice L0

L
can be generated from the matrix

M =

(
1 1
1 −1

)
.

By translating this lattice with the vector e =
(

0 1
)⊤

, another complementary
quincunx lattice L0

H
is obtained. The square sampling grid Z

2 can then be decomposed
in these two quincunx lattices as

Z
2 = L0

L ∪ L0
H.

By iterating this decomposition on the L0
L

grid (Fig. , the following multiresolution
structure is obtained:

{
Lk
L

= L(Mk+1),
Lk
H

= L(Mk+1) + Mke.

The lattices Lk
L

and Lk
H

are either square or quincunx, for even or odd levels k

respectively (L(M2) = L(2I) = 2Z
2). In the following, we will call quincunx level a

level for which the grids Lk are quincunx grids (k even), whereas a square level will
denote a level for which the grids Lk are square grids (k odd). Moreover, a quincunx
lattice L(Mk) for k odd can be seen as a square lattice rotated by π

4 where the distance

between samples is 2
k
2 . Thus, this recursive partitioning defines an l-level quincunx

sampling pyramid (L0
H

, ..., Ll−1
H

, Ll−1
L

) where the downsampling factor at each scale is

| det(M)| 12 =
√

2.
This l-level quincunx pyramid gives a multiresolution representation of the 2D signal.

This type of representation has been used previously to define quincunx wavelet bases
[31] [37]. However, notice that here and unlike the separable case, only one mother
wavelet instead of three is needed to represent the signal. Also, as the downsampling
factor is

√
2 instead of 2, twice the number of decomposition levels are necessary to

obtain the same low-frequency subband resolution as in a separable decomposition.

3.1.2 Oriented lifting

Rather than using quincunx wavelets, our approach consists in applying a 1D wavelet
transform along directions selected adaptively for each wavelet coefficient according to
an orientation map. In this section, we assume that the map is known and only the
adaptation of the lifting steps is presented. In Section IV.A and V we will present how
the map is obtained depending on the application.

2D Representation and Compression D3.1
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The wavelet coefficients, corresponding to the prediction errors at the successive
levels, are computed on the Lk

H grids. The approximation images are computed on the
Lk
L

grids on which the decomposition is iterated. Each point in Lk
H

, has four neighbors
in Lk

L
. Therefore, a point n ∈ Lk

H
can be predicted from any combination of these

neighbors. For instance, in the case of lifted quincunx wavelets, the sample S[n] is
predicted from an average of all four neighbors. Here, this same sample is instead
predicted from either its neighbors in the same line or in the same row . This requires
the knowledge of the orientation map which defines which direction of prediction is
used at location n. Since only two choices are allowed, this map is binary. Generally,
the orientation which minimizes the prediction error is chosen, defining a binary map
mLk

H

on Lk
H

.
To compute the wavelet coefficient at location n, the predict steps of a 1D biorthog-

onal wavelet are applied in the orientation chosen in n. Thus, the predict steps of the
1D wavelet defined in Eq. 1

P (αi) : S[n1]← S[n1] + αi(S[n1 − 1] + S[n1 + 1]), n1 odd, (1)

P (αi) : S[n1]← S[n1] + αi

∑

n∈Rn1

S[n], (2)

where Rn1
is the set of the two horizontal neighbors of n1 in Lk

L
, or:

P (αi) : S[n1]← S[n1] + αi

∑

n∈Cn1

S[n], (3)

where Cn1
is the set of the two vertical neighbors of n1 in Lk

L
.

Note that more orientations could be defined by either interpolating samples in Lk
L

(as done e.g. in [24] for the separable wavelet) or by considering further neighbors.
However, the increased flexibility in orientation comes at the expense of an increased
cost for the orientation map. Having a larger set of orientations would also increase
the complexity of the transform as all modes of coding have to be tested. The problem
of finding the optimal balance between the number of allowed orientations and the
cost of the geometric side information is a complex question, which is not addressed
here and left open for future work.

The update steps have to be modified according to the predict steps. A sample at
location n2 in Lk

L
may indeed be used zero to four times to predict its neighbors in Lk

H
,

unlike in the 1D case where it is used exactly twice. The factors β∗
i used in the modified

update steps are obtained by weighting the original factors βi of the 1D wavelet given in
Eq. 4. Since the orthogonality property is lost due to this varying number of predictors,
the aim of the update step is rather to ensure that some statistical properties of
the original signal are preserved in the low frequency band. Another criterion for
determining the proper β∗

i could be to minimize globally the scalar product between
the wavelet basis functions, so as to obtain a close to orthogonal transform. This
possibility has not been investigated here. Instead, the following empirical modification
is proposed. For the 5/3 wavelet, this modification ensures the mean of the original

2D Representation and Compression D3.1



Oriented Wavelets 11

image is preserved in the low-frequency band. Depending on the number v of neighbors
predicted from a sample at location n2, the update factors β∗

i are defined as

β∗
i =

{
2
v βi if v 6= 0,

0 otherwise.

Hence, the update step is modified as follows:

U(βi) : S[n2]← S[n2] + β∗
i

∑

n∈Un2

S[n], (4)

where Un2
⊂ Lk

H is the set of neighbors of n2 using the sample S[n2] as a predictor.
When the direction of prediction is the same for all points in Lk

H
, the decomposition

is equivalent to the 1D wavelet applied along that direction on Lk
H

.
All these modifications translate directly in square levels (k odd) when viewed as

quincunx levels (k even) rotated by π
4 . The orientations are then diagonal or antidi-

agonal instead of horizontal or vertical, but the lifting steps apply similarly

3.1.3 Representation of the Orientation Map with Quad-Trees

In order to pack the energy as much as possible in the lower frequency subbands,
the orientation map is chosen so as to minimize the prediction error at each level.
Without entropy coding, the orientation map would cost slightly less than 1 bpp,
which is prohibitive. However, this binary information on the filtering direction is not
always relevant. Indeed, when the distortion obtained by predicting in either one or
the other direction is similar, the choice of the proper orientation does not impact the
distortion significantly. This happens mainly in uniform regions, where both predictors
are similar, or in textured regions where the pixels are less correlated, hence where the
prediction fails. Thus, the orientation information is only important on edges, which
concerns a small proportion of the pixels in natural images. It is therefore possible
to propagate the orientation information from edges to other regions to reduce the
entropy of the map substantially with a negligible impact on the overall distortion.

In order to do so, the orientation map is coded using two independent interleaved
quad-trees. One is used to encode the horizontal and vertical orientations across even
levels, while the other is used to encode the diagonal and antidiagonal orientations

3.2 Edge driven oriented wavelets transform

In the context of still image compression, G. Jeannic[47] also developed a new rep-
resentations based on the 2D discrete wavelet transform. This transform belongs to
those that adapt the wavelet basis to the local content of the image, and that are
implemented via oriented lifting schemes.

In his thesis G. Jeannic compared the ability of three of these oriented representa-
tions at minimizing the energy of the reconstructed high frequencies sub-band along
the filtering orientation. Two successive oriented lifting schemes are applied on the
image. The first one along the local direction of regularity, the second one along the

2D Representation and Compression D3.1
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further horizontal or vertical orientation. In order to match the image content, the
first direction has to be estimated. He proposed two methods. The first one extracts
the significant edges of the image. The second one maximizes the mean probability
of the gradient measure. Along with those methods, the regions of the images are
classified into four structural categories: the uniform areas, the mono-oriented areas
where only one dominant orientation is detected, the multi-oriented areas where more
than one dominant orientation is detected, and the isotropic textured areas where no
dominant orientation is detected.

He thus proposed a structural representation based on oriented lifting schemes which
decomposes the image on sub-bands that can be interpreted in different manners de-
pending on the structural classes of its elements. For example for mono-oriented areas,
the high frequencies along the direction of regularity do not have the same meaning
than the high frequencies across it.

The geometric information needs to be coded, along with the oriented wavelet co-
efficients, for the synthesis (image reconstruction). The reduced representation of the
geometrical features in the images can be represented by the extracted edges for the
first method of estimation, and by quad-trees for both methods. For chain coding,
he proposed a new method that exploits the gradient orientation of the previous res-
olution decoded image, and shows improvement over a markovian approach using the
past coded edge elements at the current resolution. However the quad-trees cost,
with adaptive arithmetic coding and using the spatial coded/decoded context, is less
expensive than the associated extracted edges one.

An adaptive quantization is performed taking into account the structural properties
of the image, and by exploiting some proprieties of the human visual system On one
hand the elements of the isotropic textured areas can be roughly quantized because of
induced masking effect, while the opposite case appears for the uniform areas. On the
other hand the sub-bands of the mono-oriented and multi-oriented areas are similarly
quantized. The high frequencies along the direction of regularity can be neglected
in comparison with the high frequencies across it, exploiting the anisotropy of the
structural representation.

3.3 Dictionaries adapted to sparse representations

The use of sparse dictionaries can help in image and video compression. The quality
of the sparse expansion, in term of sparsity and approximation, depends on the al-
gorithm used to create it. It is also related to the dictionary in which the expansion
is performed. The more the dictionary will be adapted to the characteristics of the
signal and promote sparsity of the expansion, the “best” the sparse expansion will be.
The definition of dictionaries constitutes thus an important issue and is the subject of
numerous contributions.

Two different types of dictionaries can be distinguished:

• dictionaries made up of a predefined set of functions,

• dictionaries learned from a set of signals.

2D Representation and Compression D3.1
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Predefined dictionaries have the advantage to be simple to use. However their
“success” depends on their well-adaptation to a sparse description of the considered
signals. For example a dictionary well-adapted to textured-image signals do probably
not encourage a good sparse decomposition of homogenous-image signals.

Learning enables to define a dictionary particular to a certain type of given signals
(the training set) under some criteria we can control. Particularized to sparse decom-
positions, the problem can be formalized as follows. Given a set of training signals
{yj}Kj=1, we want to find D⋆ which leads to the best distortion-sparsity compromise:

D⋆ = argmin
D





∑

j

min
xj

‖yj −Dxj‖22 + λ‖xj‖0




 ,

where xj is the sparse decomposition of signal yj in dictionary D.
The approaches to dictionary design that have been proposed so far have a common

two-step process:

• Find the sparse coefficients given the dictionary,

• Update the dictionary assuming known and fixed sparse vectors.

Their main differences rely on the methods used to successively estimate the sparse
vectors and the dictionary. We present some of them in the next subsection.

3.3.1 Dictionary learning

The learning methods for dictionary adapted to sparse expansions can be divided into
4 classes: the Bayesian approaches, the Method of Optimal Directions (MOD), the
K-SVD algorithm and the learning of structured dictionaries, such as unions of bases.

Bayesian approaches
The Bayesian approaches place the optimization of dictionaries into a probabilistic
framework. Each training signal yj is seen as a noisy combination of atoms chosen
from a dictionary D.

yj = Dxj + n, (5)

where n is a white Gaussian noise.
Two approaches can then be distinguished.
The first one considers the following ML estimation problem:

D⋆ = arg max
D

K∑

j=1

log p(yj |D), (6)

where

p(yj |D) =

∫

XM

p(yj ,xj |D)dxj =

∫

XM

p(yj |xj ,D)p(xj)dxj . (7)
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Several different probability distributions are proposed in the literature. We find thus
Cauchy distributions and Laplace distributions ([58] et [53]), supposed to encourage
sparsity (the Laplace distribution actually implements the ℓ1-norm measure).

The marginalization (7) is untractable. Olshausen and Field propose in [58] to
replace it by a maximization:

D⋆ = argmax
D

K∑

j=1

max
xj

log p(yj ,xj |D). (8)

A gradient descent is then use to estimate the sparse vectors xj and the dictionary D.
This solution tends to increase the values of the dictionary atoms, the authors propose
thus to constraint the ℓ2-norm of the atoms.

Confronted to the same integration (7), Lewicki and Sejnowski ([53]) choose to ap-
proximate the joint probability distribution p(yj |D) instead of maximizing on the
variables xj . They resort to a Laplace approximation, which approximates a complex
probability distribution with a Gaussian. This technique enables to solve analytically
the integration (7) and thus to take into account the uncertainties we have on the
probability distribution of the xj ’s. It presents also the advantage to avoid the defi-
nition of constraints of the norms of the dictionary atoms. A simple gradient descent
can then be used to estimate the dictionary without any other consideration.

The second approach considers the following MAP estimation problem:

(D⋆, {x⋆
j}) = arg max

D

K∑

j=1

log p(yj ,xj ,D). (9)

This is the approach adopted by Murray and Kreutz-Delgado dans [57] and Kreutz-
Delgado and Rao dans [50]. A gradient descent is used to estimate the dictionary.
Confronted to the same problem of increasing values of the atoms as Olshausen and
Field, the authors choose a prior which constraints the dictionary to have a unitary
Frobenius norm. But the main contribution of their work is the use of the FOCUSS
algorithm to perform the estimation of the sparse vectors. This choice improves dra-
matically the performance of the learning algorithm in comparison with other previous
Bayesian algorithms.

Method of Optimal Directions (MOD)
The Method of Optimal Directions, introduced by Engan et al. in [29], is explicitely
inspired by the Lloyd-Max algorithm used for the quantization dictionary learning
([36]). The estimation of the sparse vectors is performed, as in the algorithm proposed
by Kreutz-Delgado and Rao, by a sparse decomposition algorithm (OMP is here pref-
ered to a ℓ1-norm). The estimation of the dictionary constitutes the main contribution
of the MOD method and resides in the minimization of the global approximation error∑

j ‖yj −Dxj‖22. Although resulting in an update equation close to the one proposed
by Olshausen and Field in [58], a fast implementation is made possible and the per-
formance is improved. However, in this method, as well as in Olshausen and Field’s
one, an atom normalization is required.
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K-SVD algorithm
Proposed by Aharon et al. in [1], this method relies on a singular value decompo-
sition (SVD) to estimate the dictionaty D. After estimating the sparse vectors by a
sparse decomposition algorithm like OMP, the dictionary atoms are updated succes-
sively. The algorithm proceeds as follows. The contribution of the considered atom,
denoted dk, in the description of the signals is evaluated by a representation error
matrix corresponding to the difference between the signals yj ’s “using” the atom dk

and their “troncated” sparse approximations (i.e., in which we removed the atom dk).
The obtained vectors form a matrix on which a SVD decomposition is applied. The
atom dk is then estimated as the first singular vector. The K-SVD algorithm achieves
good performance in comparison with other algorithms in literature.

Learning of structured dictionaries: union of bases
In the context of transform coding, the use of redundant dictionaries can have im-
portant repercussions in the coding cost of the atoms indices chosen for the sparse
decomposition. A way to reduce this cost is to introduce some structure in the dictio-
nary. This can be simply done by considering a set of bases. Several contributions deal
thus with learning of unions of bases. We present here two of them, which propose
different approaches although based on same techniques: the one optimizes the union
of bases together, the other considers each basis independently.

A first method is introduced by Lesage et al. in [52]. Based on a SVD as Aharon’s
algorithm, the algorithm proposes another use of it. It proceeds by estimating at the
same time all atoms of one basis and not successively as K-SVD does. The sparse
vectors are also estimated in a different way, using the Block Coordinate Relaxation
method (BCR) introduced in [70]. This method extends the soft-thresholding pre-
sented previously to union of orthonormal bases.

Another algorithm is proposed by Sezer et al. in [72]. Instead of considering the
entire dictionary, the authors assume that each signal has a sparse decomposition in
a unique basis. The algorithm presents thus an additional step of classification: each
signal is classified according to the basis which minimizes the approximation error, re-
sulting in several “training subsets”. The algorithm proceeds then in a classical way by
estimating the sparse vectors and the bases successively on each corresponding subset.
The sparse vectors are calculated by a hard-thresholding (presented previously). The
bases are updated with a SVD-based method similar to the one used by Lesage et al.
.

4 Rate-quality optimization

The rate-quality optimization (RQO) problem consists essentially in finding the best
coding technique for each set of data into which the input signal can be partitioned.
This approach is a underlying common element to many compression techniques, from
EBCOT [76] to the video coding techniques [74].

In the RQO context therefore, one usually chooses the coding technique (or “mode”)

2D Representation and Compression D3.1



Rate-quality optimization 16

maximazing the quality for a given rate. However, while defining and computing the
coding rate is rather easy (it is defined in terms of number of bits per pixel or per
second, and usually computed by actually performing the encoding operation), the
quality definition and computation is much more vague.

Broadly speaking, there are two classes of quality measures for visual data (images
and video): subjective and objective measures. The first ones are obtained by inter-
viewing a set of people looking at the decoded images (and possibly at the original
one) and judging about the perceived quality. This kind of measure is supposed to be
the most representative one, but of course it cannot be integrated into a compression
algorithm.

On the other hand, objective measures can be computed as a mathematical function
of the original image, say f(n, m) and the decoded one, say f̂(n, m), an operation that
can be performed by an automatic system (a coding algorithm). A very common class
of objective measures is based on the mean square error (MSE):

MSE =
1

MN

N∑

n=1

M∑

m=1

[
f(n, m)− f̂(n, m)

]2

,

like the peak signal-to-noise ratio (PSNR):

PSNR = 10 log10

2552

MSE
.

However these measures are commonly regarded as not accurately representative of
perceived quality [30]. For this reason, a huge quantity of perceptual objective quality
measures have flourished in recent years. A common factor to these measures is the
attempt to model the complex human visual system (HVS).

In the following, we review QRO methods using objective measures, both non-
perceptual (i.e., MSE-based) and perceptual. The first have the merit to be very
simple to compute and to analyze; the second can gain from a more accurate model
of HSV.

4.1 The optimization problem

As told in the previous paragraph, the optimization problem ends up in finding the
best coding mode for each data block, within a given set of coding technique [74].
Sometimes this problem is referred to as operational control. In the case of video this
means a jointly optimal choice of

• the so-called coding mode, which can be chosen among compensated and non-
compensated ones;

• for the motion-compensated modes, the motion information, i.e. all the infor-
mation needed in order to compute the motion compensated prediction of the
current block (motion vector(s) and segmentation information if present);

• the quantization step.
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This choice is performed with a Lagrangian technique. The three free parameters
related to modes, quantization, and motion information are tied together by experi-
mental relationship which nevertheless depend on the video coder model, and which
allow to perform the optimization over a single parameter.

To better illustrate the problem, let us consider a source producing K samples
S1, S2, . . . , SK . Each sample can be a scalar or a vector, for example it can be a
macroblock (MB) in a video sequence. Let us suppose that there exist several ways to
encode each sample. Let M be the set of all possible coding modes.

The operational control of the encoder consists in choosing the best set of encoding
modes according to a cost function and given a rate constraint. Let I = I1, I2, . . . , IK

be the coding modes of all the source samples. Let D(S, I) and R(S, I) respectively the
distortion associated to the coding of S in mode I. The target of the RD optimization
is to minimize D(S, I) given that the rate R(S, I) is below an assigned value Rc.
This constrained problem can be changed into an unconstrained one by the use of a
Lagrangian parameter:

I∗ = argmin
I

J(S, I|λMODE) (10)

where
J(S, I|λMODE) = D(S, I) + λMODER(S, I) (11)

We observe that a rigorous optimization would require a joint minimization of all the
source symbols. If we use a simplifying hypothesis, i.e. we suppose for the moment
that each symbol coding mode can be optimized independently, we arrive to a different
formulation. In this case we can obtain the optimal mode for the i-th source symbol
just by solving the unconstrained problem:

I∗i = arg min
I

J(Si, I|λMODE) (12)

where
J(S, I|λMODE = D(S, I) + λMODER(S, I) (13)

In the video coding case, the source symbols Si are the MB of a video sequence. For the
moment, let us suppose that the optimal quantization step Q is given. The criterion
to minimize is:

JMODE(Sk, Ik|Q, λMODE) = DREC(Sk, Ik|Q) + λMODERREC(Sk, Ik|Q) (14)

where DREC and RREC have to be suitably computed according to the coding mode, as
shown in the following. It is important to observe that for a given total rate Rc, could
give several couples (Q, λrmMODE) which attain the same value of the criterion J, so
a joint optimization would be needed. However, in [74] authors show an experimental
relationship between the best values of Q and λMODE. So an operative strategy could
be to tune the rate by choosing Q, and using the value of λMODE according to Q and
to the relationship (which in turns, depends on the model of the video coder).

An important issue is how to compute this criterion for each motion compensated
mode. Once the best motion information has been chosen, we can compute the “best”
motion-compensated prediction of the current block according to a given mode. Then
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we use the same paradigm (transform-quantization-inverse transform) to compute
DREC, while in the computation of RREC we have to consider both the cost of the
transformed coefficient and that of the motion information, encoded by the techniques
that we are introducing. The second issue is how to choose λMODE.

In facts, some experimental relationships have been found between Q and λMODE

[74, 87]: for the H.263 coder, λMODE = 0.85Q2
H.263; while for H.264, λMODE = 0.85 ·

2(QH.264−12)/3).
Most of the currently used RD optimization problems are based on a classical MSE-

based quality measure. This means that the mean square error is used as the function
D in the previous equations. Unfortunately as pointed many times in literature (see
for example the article by Wang and Bovik [86]), even though the MSE possesses
many favorable properties for application and analysis, tests have demonstrated that
the main square error cannot easy predict the human perception of image fidelity and
quality.

Sometimes the quality perceived by human visual system is badly evaluated by the
classical MSE-based quality measures. Moreover, for 2D and most of all for 3D video
coding it is not completely known the correlation between the calculated MSE and the
perception for human visual system. This issue opens the way to a new research branch
for the development of coding algorithms in order to improve perceptual coding. It
is possible to introduce perceptually-based block coding or quantization in classical
video coding architectures, such as in the H.264 architecture.

A possible perception-based technique for MPEG [59] takes into account the differ-
ent levels of distortion that are tolerable by viewers in different parts of a picture by
segmenting the scene into flat, edge, and textured regions and quantizing these regions
differently. The visually important areas are represented by Importance Maps. These
maps are generated by combining factors known to influence human visual attention
and eye movements. Lower quantization is assigned to visually important regions,
while areas classified as being of low visual importance are more harshly quantized.
Results indicate a subjective improvement in picture quality.

Another possibility is using a method based on a perceptual quality measure called
the MND (maximum noticeable distortion) and computes the quantization matrix
depending on specific statistics of the picture and the viewing condition as showed in
the paper by Chen and Challapali [18].

It is known that human eyes cannot sense any changes below the just noticeable
distortion (JND) threshold around a pixel due to their underlying spatial/temporal
sensitivity and masking properties. Obviously, any un-noticeable signal difference need
not to be coded in the bitstream and reflected in the distortion measure. An appro-
priate (even imperfect) JND model can significantly help to improve the performance
of video coding algorithms.

In the paper by Yang, Ling, Lu, Ong and Yao [91] it is explained a new perceptually-
adaptive video coding scheme for hybrid video compression, in order to achieve better
perceptual coding quality and operational efficiency. A new estimator for color video
is first devised in the image domain. How to efficiently integrate masking effects to-
gether is a key issue of JND modeling. Spatial masking factors are integrated with
the nonlinear additivity model for masking (NAMM). The JND estimator applies to
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all color components and accounts for the compound impact of luminance masking,
texture masking and temporal masking. Extensive subjective viewing confirms that
it is capable of determining a more accurate visibility threshold that is close to the
actual JND bound in human eyes. Secondly, the image-domain JND profile is in-
corporated into hybrid video encoding via the JND-adaptive motion estimation and
residue filtering process. The scheme works with any prevalent video coding standards
and various motion estimation strategies. To demonstrate the effectiveness of the pro-
posed scheme, it has been implemented in the MPEG-2 TM5 coder and demonstrated
to achieve average improvement of over 18% in motion estimation efficiency, 0.6 dB in
average peak signal-to perceptual-noise ratio (PSPNR) and most remarkably, 0.17 dB
in the objective coding quality measure (PSNR) on average. Theoretical explanation
is presented for the improvement on the objective coding quality measure. With the
JND-based motion estimation and residue filtering process, hybrid video encoding can
be more efficient and the use of bits is optimized for visual quality.

Recently another metric has been proposed by Wang and Bovik [5] in order to achieve
a better correlation between the percieved quality and the rate distortion optimization:
the structural similarity index (SSIM). A formulation for the SSIM index can be:

SSIM(x, y) =

(
2µxµy + C1

µ2
x + µ2

y + C1

)
·
(

2σxy + C2

σ2
x + σ2

y + C1

)
(15)

For example, in the paper [82] by Wang, Ma and Gao has been proposed a SSIM
based Lagrangian perceptual distortion rate optimization method. This method is
then followed by a dynamic adaptive Lagrangian multiplier selection scheme based on
the proprieties of the input sequences. Experiments demonstrate that this approach
can achieve a better perceptual distortion rate performances and better visual quality
compared to classical SAD/SSD based RDO coding.

The same SSIM index is exploited also in the paper [61] by Ou, Huang and Chen in
order to provide a perceptually optimized bit allocation for H.264. Here the authors
propose a novel rate distortion model to characterize the relationship between rate
and structural similarity index. The distortion metric is defined as: DSSIM(R) =
1− SSIM(R)

Experiments show that an exponential function can describe the relationship be-
tween DSSIM and bit allocation; so it is possible to characterize the relationship
between rate and SSIM index this way:

D(R) = αe−βR (16)

where α and β are positive parameters. Optimum bit allocation is then possible by
solving the following constrained problem:

min
ri

Nb∑

i=1

αie
−βiri , (17)

Np∑

i=1

ri ≤ T0, (18)
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Li ≤ ri ≤ Ui, i = 1, ..., Nb (19)

4.2 Use of saliency maps

In the context of lossy video coding context, the bit budget has to be shared according
to a rate vs. distortion tradeoff. An appropriate distribution of the resources improves
the overall perceived quality. The idea is simple, it consists in promoting the quality of
the regions of interest (ROI) in the videos (namely the regions that are more important
visually), this method is also known as selective compression. This implies to have
(a priori) informations about the scene to be coded, these ROI can be obtained by
modeling the visual attention and by computing saliency maps. There are two ways
to achieve a selective compression.

The first one is called indirect because it consists in filtering the video before its
encoding in order to reduce the amount of information of the regions with lesser vi-
sual interest So the filter smoothes these regions with less interest, but the ROI are
unchanged. The choice of the pre-processing is important, because it has to be comple-
mentary to the coding, and in particular to the quantization step, a non-linear filtering
seems to be more efficient. In his thesis O. Le Meur[51] proposed to use a filter called
"leveling"[55], it is the combination of two morphological operators (an opening and a
closing by reconstruction), they have the advantage of preserving the spatial structures
of the video.

The second one is called direct because it adapts directly the core of the encoder
according to the knowing of the ROI. In the case of a classical encoding (block based)
the goal is then to control the distribution of the bit budget according to the visual
interest of each encoded macro-block, in order to improve the overall visual quality.
A. Bradley[6] has shown that selective compression of still images is able to increase
the subjective quality when in one hand the ROI are relatively small, and when in the
other hand the rate constraint causes artifacts on the salient areas. In most cases, the
encoding parameter that we control is the quantization step. Typically a macro-block
of low visual interest will be quantized more coarsely than a macro-block visually im-
portant. W. Osberg[60] proposed a method to control the quantization in a MPEG
coder using saliency maps. It also used a model of spatial masking spatial to redis-
tribute the coding errors. Then the ROI and the areas where the artifacts are easily
visible are finely quantized, while visually less important regions and areas capable
of spatial masking are coarsely quantized. The method improves the perceived sub-
jective quality of the decoded video compared to a classical coding method. O. Le
MeurLemeur2005 also proposed a method of direct selective compression in two steps.
First he determines the quantization step of each macro block satisfying a minimal
cost, this stage should provide a decoded image with an homogeneous quality. Sec-
ondly he redistributes the exceeded bits to the salient areas. So the method improves
the PSNR of the ROI. He observed the same results as those given by A. Bradley[6]
and L. Huguenel[45] i.e the direct selective compression approach is relevant for ROI
with small sizes and when the background has a visual masking capabilities of the
quantization noise. O. Brouard[7] proposed a method of pre-analysis of the HD video
before its encoding. The pre-analysis module incorporates a visual attention model.
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This model aims at analyzing the video by taking into account its high level informa-
tions in order to transmit to the encoder an optimal set of parameters and to exploit
efficiently the coding tools. He illustrated the method through two coding applications.
The first one proposes to adapt the GOP structure according to the spatio-temporal
content of the video. The second is a compression scheme with a visual differentiated
quality guided by the saliency maps.

5 Multiple description coding

Multiple description (MD) coding involves the transmission of several correlated rep-
resentations of the source signal over independent channels. In the simplest case, two
representations (called descriptions) are generated by the MD encoder and sent over
(logically) different channels. The MD decoder handles two different situations: in the
first one, errors have occurred on one of the channels and the decoder ignores the data
coming from it, delivering an approximate version of the orignal signal using the other
channel output (side decoding); in the second situation both channels were unaffected
by errors and a decoder produces a better version of the original signal (central de-
coding). The question is now: what should these two different representations of the
signal be and how can the reconstructions (central and side reconstructions) be best
obtained?

The beginnings of this new coding strategy date as far as 1979 when El Gabel, Ger-
sho, Ozarow formulated the following question: What are the achievable distortions
for a memoryless source at fixed given transmission bitrates when this source is de-
scribed by several bitstreams [62],[33]?. This problem was tackled from an information
theoretic point of view. In this period the problem was mostly cast in the literature
as a source coding technique, probably because of the rate-distortion optimization
philosophy. Later on, Goyal, Vaishampayan and others included MDC in the class of
joint source-channel coding but consensus has not yet been completely reached among
researchers. Nowadays, we are leaning toward the latter classification, since the MDC
strategy takes simultaneously into account the possibility of losses in the encoding
process.

MDC has known a spectacular regain of interest when researchers such as Vaisham-
payan, [80], Wang, Orchard, Reibman [83], Kovacevic and Goyal [39] proposed viable
methods for error resilience via multiple description coding. These works were moti-
vated by the important advances in multimedia communications.

In the following we will consider different approaches to MDC: MD by quantization,
by correlating transforms, by filter banks and by unequal error protection. An excellent
survey on MDC issues can be found in the paper by Goyal [38].

5.1 MD by quantization

The first practical approach to Multiple Description Coding is proposed by Vaisham-
payan, [80]. This technique relies on quantization and the idea is to build two discrete
descriptions for a source, each of them belonging to a certain dictionary of symbols.

2D Representation and Compression D3.1



Multiple description coding 22

The imposed criterion is that the resulting quadratic distortion when both channels
work correctly is smaller than the individual side distortions. The solution is based on
scalar quantization. Two uniform quantizers are involved and the second one is shifted
by half a quantization interval with respect to the first one. Thus if one description
is lost the source is recovered from a description quantized with the original step size,
whereas if both descriptions are received the resulting quantization step is halved.

Besides this scalar quantization approach, vector quantization solutions have been
proposed, using lattice vectors. The lattice vector quantizers are quite similar to scalar
quantizers, but the source is split into vectors of length L. A first lattice leads to a
finely quantized vector which is subdivided into two descriptions, each in a coarser sub-
lattice. Such a representation will be decoded simply by inversing the indexation at
the central decoder. As in the scalar case, the index assignment is obtained by solving
the rate-distortion optimization of the central distortion under side rate constraints
[49].

5.2 MD by correlating transforms

Multiple Description Correlating Transform (MDCT) has been introduced in the liter-
ature by Wang, Orchard and Reibman in [83] for two variables. The results have been
generalized later on by Goyal and Kovacevic to the case of n variables [39]. The lat-
ter introduced in [39] the notion of Multiple Description Transform Coding (MDTC),
which is an extension of the Wang, Orchard and Reibman’s work. In their method
the source vector is first quantized with a uniform scalar quantizer. The obtained
vector is then transformed with a discrete invertible transform and the coefficients are
independently entropy coded after being grouped into m ≤ n subsets to be sent over
the m channels.

A second method that generates correlation into the transmitted signal was also
proposed by Goyal et al. [41]. In this case the signal is expanded by the means of a
frame decomposition.

5.3 Filter banks

Another case of MD methods with transform coding, which can be viewed as a par-
ticular case of discrete-time frame decomposition is based on filter banks.

The first application of filter banks to multiple descriptions is proposed by Yang and
Ramchandran in [92]. Here, the analysis filters are orthonormal. At the reconstruction,
the associated synthesis filters are used. The filtered signals obtained at the analysis
stage are decimated by a factor of two, quantized and entropy coded for transmission
over each of the channels.

The same problem of designing optimal filter banks for MDC has also been ap-
proached by Dragotti et al. in [27]. The difference between the two approaches resides
in the place of the quantizer in the transmission chain. The advantage of this approach
is that the quantization cells are not changing shape and the quantization error is not
increased by the use of non-orthogonal transforms.
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5.4 Unequal Error Protection (UEP)

Researchers propose to transform a scalable source bitstream into an M -description
packet stream in which each packet contains approximately the same amount of infor-
mation. A strategy for prioritized encoding mainly designed for video conferencing-
type applications over lossy packet networks is given in [2] and serves as a starting
point in this new class of MD methods.

Puri and Ramchandran, [67], combine these considerations with Forward Error Cor-
rection in order to add redundancy to a given source. They propose to split the in-
formation bitstream into several layers in decreasing order of importance and each of
those layers is further protected by progressively weaker channel codes.

An important issue for this MD encoder is the optimal partitioning of the bitstream
into layers. A general framework for a variety of transmission scenarios in the pack-
etized media streaming context is proposed in [19]. The combination of MD with
layered coding is also reported for correlating transforms MDC in [85].

5.5 Image coding

The first applications of multiple description coding to images are investigated by
Wang et al. [83], Goyal et al. [40], Jiang and Ortega [48], Servetto et al. [71] and they
are closely related to the general methods we have already enumerated.

The pairwise correlating transform is applied to different blocks of an image, [83],
after classifying these blocks into four classes in order to ensure similar statistical prop-
erties of the transformed coefficients. The selection is made upon geometrical/image
regularity considerations such as smoothness, edge orientation for the first three classes,
whereas the fourth is assigned to what is left after this classification. This is due to the
fact that real images are not statistically stationary, therefore the correlating transform
applied globally could introduce large estimation errors.

The transform coding approach to images of Goyal et al. [40] uses the generalized
multiple description method proposed before and applies it to a four-channel coding
scenario similar to JPEG.

Another technique for MD image transmission was proposed by Jiang and Ortega
[48] and it uses the polyphase transform for description generation followed by selective
quantization in order to introduce the desired amount of redundancy.

A similar method to Jiang and Ortega’s is introduced by Miguel et al. in [56]. The
evolution of the PSNR with the description number is studied, aiming to prove that
the descriptions are balanced.

Methods that also use wavelet transforms when building MD schemes are those by
Servetto et al. [71], Pereira et al. [66], Channappayya et al. [16], Tillo et al. [78]).
Other applications are based on lapped orthogonal transforms in [20].

Matching-pursuit like methods have been proposed by Radulovic and Frossard [68].
They are building multiple descriptions based on redundant dictionaries.
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5.6 Video coding

Building MD schemes for the transmission of video sequences offers more degrees of
freedom as compared with images since the source has an additional dimension in this
case, which is given by the temporal axis (the “frame” direction). Several directions
have been investigated for video MDC.

Before going into the details of these practical schemes, we present two very simple
strategies that are more or less the founding stones to the further considered directions
when it comes to dealing with video sequences. The temporal splitting involves, in
some sense, reducing the frame-rate of the video source by a factor of two in each
description. A second simple technique for building two or more descriptions involves
the partitioning of each individual frame in the video sequence, and this has come to
be known as spatial splitting.

A very good survey on MD for hybrid video coders is provided by Wang, Reibman
and Lin in [84]. Video schemes are classified here according to the solution to drift
effect they are proposing (or not) and the introduced redundancy. Thus the existing
coders involving prediction loops belong to one of the three classes, according to the
use of mismatch in side decoders.

One application of MD to video coding is presented by Tang and Zakhor in [75].
Here the structure given by the discrete cosine transform is modified in order to allow
the use of matching pursuits and the MD system is built upon a three-loop structure.

Gallant et al. have developed a standard compliant MDVC scheme based on spatial
oversampling of the video signal by the means of an inverse zero-padded DCT, [32]
and a polyphase transform that generates two descriptions. Tillier et al. [77] presented
in 2007 a wavelet-based video coder both progressive and MD, using a polyphase
redundant decomposition of the video signal. The missing frames at the decoder are
recovered by applying different types of linear and non-linear interpolations and a
post-processing step is performed in order to eliminate a visual artefact of granularity
in the decoded sequence. In these works, H.264/AVC codecs are used.

Starting from the idea that the tradeoff between error resilience and compression
efficiency of most existing MDC methods is dependent on the targeted quality, network
capabilities as well as the characteristics of the video itself, Heng et al. introduced an
adaptive multiple description scheme [44]. Different simple MD modes are defined and
the system chooses between them based on a rate-distortion optimization. The authors
consider the following four modes: single description (SD) coding, temporal splitting
(TS), spatial splitting (SS) and repetition coding (RC). Among these modes the most
efficient in terms of coding is obviously the SD mode, whereas the most efficient in
terms of error resilience is the RC mode.

Aside with techniques which aim to design a MD coder ex-novo, Shirani et al. [73]
pointed out that an MD coder based only on pre-/post-processing and use of legacy
coders reduces significantly the development time, hence the development cost. How-
ever, this benefit comes at the price of sub-optimal performance with respect to the
from-scratch solutions. The idea of reusing information from the lower fidelity version
of a frame in central decoding by means of a convex combination has been originally
proposed by Zhu et al. [93]; in their work, the lower fidelity frame (i.e. the side-decoded

2D Representation and Compression D3.1



References 25

one) was a transmitted B-frame of lower hierarchical level.
Another approach which is not multiple description coding but follows similar guide-

lines is proposed by Apostolopoulos in [4] for video communication over unreliable
networks. In this work multiple states are created at the encoder by temporal split-
ting. However, there is no explicit redundant coding of video frames, the higher rate
resulting when putting together two states encoded individually coming from the fact
that the frames are further apart and thus the motion compensation is less effec-
tive. The proposed encoding strategy is combined with path diversity which means
explicitly sending different packets on different paths. This idea has some important
benefits: the burst losses are transformed into individual losses, the outage proba-
bility decreases and smaller fluctuations in transmission quality are encountered by
averaging the number of paths.
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