Julien Groslambert
email: groslambert@lifc.univ-fcomte.fr

Jacques Julliand
email: julliand@lifc.univ-fcomte.fr

Olga Kouchnarenko

JML-based Verification of Liveness Properties on a Class in Isolation *

This paper proposes a way to verify temporal properties of a Java class in an extension of JML (Java Modeling Language) called JTPL (Java Temporal Pattern Language). We particularly address the verification of liveness properties by automatically translating the temporal properties into JML annotations for this class. This automatic translation is implemented in a tool called JAG (JML Annotation Generator). Correctness of the generated annotations ensures that the temporal property is established for the executions of the class in isolation.

INTRODUCTION

Recently, significant progresses have been made in the field of smart card application verifications. The development of the Java Modeling Language project 1 (JML) is a part in these results [START_REF] Breunesse | Formal methods for smart cards: an experience report[END_REF]. The JML project defines a specification language which is syntactically and semantically close to Java, thus making specifications more accessible to Java programmers. JML allows adding to the Java class traditional formal annotations like method pre-and postconditions and class invariants. However, it is difficult to directly specify complex dynamic properties in JML, like temporal properties [START_REF] Lamport | Proving the Correctness of Multiprocess Programs[END_REF] that are often needed to express the security policies that the Java implementation has to ensure. For example, no JML clause permits easy expression of the fol-lowings properties "After the invocation of the method m the property P must be satisfied in all the states". (S) "After the non-exceptional termination of the method m a state where P holds must inevitably be reached in the future".

(L)

Following [START_REF] Lamport | Proving the Correctness of Multiprocess Programs[END_REF], Property S is a safety property, expressing that something bad -a state where ¬P holds after the invocation of m -must never happen whereas L is a liveness property, expressing that, under certain conditions -an invocation of m -, something good -a state where P holdsmust inevitably happen in the future.

A key concept for reasoning modularly about safety properties is the notion of class invariant, i.e., a predicate over the variables of the class that must hold along all the history of all the instances of the class. Reasoning in a modular way about invariant consists in: (a) considering only the class in isolation [START_REF] Andronick | Using Coq to verify Java Card Applet Isolation Properties[END_REF], i.e., without regarding the program using the class, we show that the constructor of the class establishes the invariant and that each method of the class preserves it. (b) showing that under certain conditions on the program, the invariant is still satisfied.

We propose to address the expression and the verification of liveness properties following the same approach. Therefore, this paper particularly focuses on the first task, i.e., the verification of liveness properties in isolation.

For that, we provide in the paper [START_REF] Andronick | Using Coq to verify Java Card Applet Isolation Properties[END_REF] an execution path semantics of a Java Class in isolation and a semantics of the main JML annotations; (2) a primitive liveness operator Loop, inspired from [START_REF] Burstall | Program Proving as Hand Simulation with a Little Induction[END_REF], for expressing liveness properties;

(3) a way to verify on a class in isolation liveness properties expressed with the Loop primitive, by generating JML annotations ensuring their satisfaction; (4) a tool, called JAG [START_REF] Giorgetti | JAG: JML Annotation Generation for Verifying Temporal Properties[END_REF] (for JML Annotation Generator) implementing an automatic translation of liveness properties into standard JML annotations that ensure the satisfaction of these properties. Translation of liveness properties is done through the primitive Loop operator.

We particularly focus on Java card applet. So, this paper focus on single Java Class in isolation and the problem of inheritance and sub-typing is not addressed.

The paper is outlined as follows. Section 2 quickly presents JML on an example. Section 3 presents the semantics frame-work of the paper. In particular, Section 3.1 defines a semantics for the class C in isolation whereas Section 3.2 gives the semantics of JML main annotations. Section 4 presents the verification of liveness properties on a class in isolation, through appropriate annotation generation. Section 5 presents the JAG tool, implementing this automatic generation of annotations. Section 6 concludes and presents the perspectives of future work.

Nota Bene: The proofs of propositions and theorems are not included in this paper, but can be found in [START_REF] Kouchnarenko | JML-based Verification of Liveness Properties on a Class[END_REF].

OVERVIEW OF JML AND EXAMPLE

JML (Java Modeling Language) [START_REF] Leavens | JML Reference Manual[END_REF] is a specification language especially tailored for Java applications. Originally, JML was proposed by G.T. Leavens and his team; the development of JML is now a community effort. JML has been successfully used in several case studies to specify Java applications, and notably to specify smart card applications, written in Java Card [START_REF] Breunesse | Formal methods for smart cards: an experience report[END_REF][START_REF] Jacobs | Formal Verification of a Commercial Smart Card Applet with Multiple Tools[END_REF]. JML is developed following the Design by Contract approach [START_REF] Meyer | Object-Oriented Software Construction[END_REF], where classes are annotated with class invariants and method pre-and postconditions. The predicates are written as (side-effect-free) boolean Java expressions, extended with specific constructs. Specifications are written as Java comments marked with a @, i.e., annotations follow //@ or are enclosed between /*@ and @*/. Below, we give a brief introduction to the main specification constructs of JML, by means of the example in Fig. 1.

The class Buffer works as follows. A method storeData() personalizes the application by setting the length of the transaction. One can initialize a new transaction with the method begin(), creating a new temporary buffer. Then, a write() method fills the modifications in the temporary buffer, that is validated, i.e., assigned to the attribute status, by an invocation of commit. It is also possible to abort the transaction (abort()).

Figure 1 presents the main JML annotations on the simple example of a buffer. It shows a declaration of a class invariant, denoting a predicate that has to hold before and after every method call, i.e., in so-called JML visible states. History constraints allow expressing a relation between the pre-and post-state of all methods. Pre-state values of expressions are denoted by the JML keyword \old. Using the clause for, one may specify the list of the methods for which the history constraint must be satisfied. When this clause is omitted, the constraint must hold for all the methods of the class. The clause requires denotes the precondition of the method, i.e., a predicate that must be true when the method is called. A postcondition is expressed with an ensures clause. A method may terminate exceptionally by throwing an exception and satisfying the exceptional postcondition (signals clause). The assignable clause gives the list of variables that can be potentially modified by the method. A method without side-effect is denoted by the keyword pure. The specification of a method can also contain a diverges clause (not displayed in this example). If the predicate of a diverges clause of a method m is satisfied by the pre-state of m, then the execution of m may not terminate. Otherwise the method must terminate. By default, the JML diverges clause is set to false. A method with a helper modifier may not preserve the invariant. JML also introduces its own variables -declared with the keyword ghost. A special set annotation exists to assign their value.

In the rest of the paper, given a method m, we denote by requires(m) (resp. diverges(m)), the predicate of the requires clause of m (resp. the diverges clause). The correctness of a Java class C w.r.t. a JML annotation A, denoted C : A in the rest of the paper, can be established by model-checking [START_REF] Robby | Checking Strong Specifications Using an Extensible Software Model Checking Framework[END_REF] or by a prover (B or Coq) via a proof obligation generator (Jack [START_REF] Burdy | Java Applet Correctness: a Developer-Oriented Approach[END_REF] or Krakatoa [START_REF] Marché | The Krakatoa tool for certification of Java/Java Card programs annotated in JML[END_REF]).

A JAVA EXECUTION SEMANTICS

Linear temporal properties [START_REF] Pnueli | The Temporal Logic of Program[END_REF] have a semantics over infinite executions of a program. So, to express such properties in terms of equivalent JML annotations, we need a path semantics of the JML. This semantics is presented in this section.

Class in Isolation Semantics

In this section, we define, in term of execution paths the semantics of a class C in isolation. A class C is the description of a set of objects IC , called the instances of C. Definition 1 (Java Class) A class C is a tuple (VC, MC) where VC is the set of attributes of the class, MC is the set of methods of the class. Within the set MC of methods, we consider the following particular subsets:

• ConsC ⊆ MC the set of constructors of the class.

• HelperC ⊆ MC the set of helper methods of the class.

• PMC the set of progress (side-effect) methods. The set of non-progress (pure) methods is denoted by PMC.

Notice that MC = PMC ∪ PMC.

Notice that, as said before, we do not consider in this paper the problem of inheritance. Intuitively, an execution path of a Java statement is the sequence of memory states reached during the execution of the statement. The structure of the memory model is not in the scope of the paper, but has been formally specified in [START_REF] Van Den Berg | A Type-Theoretic Memory Model for Verification of Sequential Java Programs[END_REF] or [START_REF] Marché | The Krakatoa tool for certification of Java/Java Card programs annotated in JML[END_REF]. Intuitively, it is composed of a heap, mapping variables to memory addresses and a store, mapping addresses to their values. JML predicates are pre/post predicates, therefore they are evaluated on two memory states. Let P ∈ Pred be a JML predicate and let spre and scur be two memory states, we denote by (spre, scur) |= P the satisfaction of P at these memory states. The values of the variables with an \old are in spre and the others are in scur. If P does not contain variables relating to a preceding state, i.e., no \old, then we simply denote scur |= P . Given a state s and a variable a, s(a) returns the value of a in the state s. The Java memory contains also an execution stack [START_REF] Lindholm | The Java Virtual Machine Specification[END_REF]. As in Logozzo [START_REF] Logozzo | Class Invariants as Abstract Interpretation of Trace Semantics[END_REF], we do not explicitly use the execution stack, heap and store but we assume to have special variables to observe it.

Definition 2 (Special Variables)

Let s be a memory state, assume to have the following special variables:

• s(excp), a flag denoting that an exception has been thrown.

• s(stackHeight), the height of the execution stack.

public class Buffer { int len; byte [] status; byte [] buffer; int position = 0; boolean perso = false; //@ ghost boolean trDepth = false; //@ invariant position >= 0; /*@ constraint position > \old(position) @ for write; @*/ /*@ normal_behavior @ requires perso == false; @ requires l > 0; @ assignable len,perso; @*/ void storeData(int l){ len = l; perso = true; } /*@pure@*/ byte [] getStatus(){ return status; } /*@pure@*/ int getBufferLess(){ return len -buffer.length; } /*@ normal_behavior @ requires trDepth == false; @ requires perso == true; @ assignable buffer; @ also @ exceptional_behavior @ requires perso == false; @ assignable \nothing; @ signals (Exception e) true; @*/ void begin() throws Exception{ if (perso == false) { throw new Exception(); } buffer = new byte[len]; //@ set trDepth = true; } /*@ normal_behavior @ requires trDepth == true; @ requires perso == true; @ assignable status,position; @*/ void commit(){ status = buffer; position = 0;

//@ set trDepth = false; } /*@ normal_behavior @ requires trDepth == true; @ requires perso == true; @ assignable position; @*/ void abort(){ position = 0; //@ set trDepth = false; } /*@ normal_behavior @ requires trDepth == true; @ requires perso == true; @ requires position < len; @ assignable position; @ assignable buffer[position-1]; @ ensures position <= len; @ ensures position == \old(position)+1; @*/ void write(byte b){ buffer • s(curMethod), the current method (the method on the top of the stack).

• s(curInstance), the pointer on the current object.

Intuitively, we define a path of a Java statement T as a sequence of states that are reached during the execution of T . For that, we assume a transition relation → associated to each Java statement T . Readers can find an example of such a relation in [START_REF] Igarashi | Featherweight Java: A minimal core calculus for Java and GJ[END_REF] for a sequential Java core. Definition 3 (Java Statement Path) Let s0 be a Java state and let T be a Java statement, the path of T , denoted s0[T] is either:

• if T terminates, the finite sequence σ of states s0, s1, s2, . . . , sn such that ∀i.(0 ≤ i < n ⇒ (si → si+1)); or

• if T diverges, the infinite sequence σ of states s0, s1, s2, ... such that ∀i ≥ 0.(si → si+1).

In the rest of the paper, we denote by si the i th state of the execution path σ. We denote by the empty path and given an execution path σ the path suffix σi denotes the infinite path si, si+1, si+2 . . . and the path segment σ j i denotes the finite path si, si+1, si+2 . . . sj . A predicate P without \old holds on σi and σ j i if si |= P as in LTL logic [START_REF] Pnueli | The Temporal Logic of Program[END_REF]. Given a finite path σ = s0, . . . , sn and another path σ = sa, s b , . . . , the sequential composition of σ and σ , denoted σ, σ is equal to the path s0, . . . , sn, sa, s b , As explained in Section 1, we aim at verifying that a property of a class C is satisfied by any instances of C and by any programs using the class C.

Therefore, we introduce a class in isolation semantics, handling all potential executions of all instances of a class C.

As explained in Sect. 2, JML considers only visible states, i.e., states before the invocation of a non-helper method or after the termination of a non-helper method. Therefore, we define the notions of pre-and post-states for a method m as follows.

Definition 4 (Pre-, Post-, Matching Post-and Innerstate of a Method) Let σ be a path, let si be its i th state (with i > 0) and let m be a method. We say that si is a pre-state of m, denoted si |= pre(m) if:

si(curMethod) = m and si(stackHeight) = si-1(stackHeight) + 1 si is a post-state of m, denoted si |= post(m) if: si(curMethod) = m and si(stackHeight) -1 = si+1(stackHeight)
Given a pre-state si of m, a state sj, where j > i is its matching post-state sj, denoted sj |= post s i (m), if:

sj |= post(m) ∧ sj(stackHeight) = si(stackHeight) ∧∀k.(i < k < j ⇒ (s k (stackHeight) ≥ si(stackHeight))).
Let i be the index of the pre-state of m, let j be the index of its matching post-state, a state s k is an visible inner-state of m, denoted

s k |= inners i (m) if i ≥ k ≥ j. If m does not terminate, s k is an inner-state if i ≥ k.
Then, we define the notion of visible states following [START_REF] Leavens | JML Reference Manual[END_REF].

Definition 5 (Visible States)

Given a Java execution path σ, the state si is a visible state for an instance iC of the class C, denoted si |= visible(iC) either if

• si is the post-state of a constructor of iC , si |= post(m) ∧ m ∈ ConsC ∧ si(curInstance) = iC , or
• si is the pre-state of a non-helper method invoked on iC ,

si |= pre(m) ∧ m ∈ MC ∧ m ∈ ConsC ∧ m ∈ HelperC ∧ si(curInstance) = iC , or
• si is the post-state of a non-helper method invoked on iC .

si |= post(m) ∧ m ∈ MC ∧ m ∈ ConsC ∧ m ∈ HelperC ∧ si(curInstance) = iC .
Therefore, for easily reasoning about JML, we define the notion of visible state execution path as follows:

Definition 6 (Visible State Abstraction and Visible State Execution Path) Let σ be an execution, we define the visible state abstraction for an instance iC , denoted vsai C (σ), by:

• vsai C () = • if s0 |= visible(iC) then vsai C (σ) = s0, vsai C (σ1) else vsai C (σ) = vsai C (σ1).
Given a Java statement S, we define the visible state execution path of S on a state s0, denoted s0[S]i C , as follows:

s0[S]i C = def vsai C (s0[S])
Notice that the visible state abstraction hides:

• The details of the C method's body execution.

• The invocations of helper methods.

• The invocations of methods of other classes (both methods of other classes invoked by C and by the environment of C).

Let Σ be a set of paths, the visible state abstraction of Σ w.r.t. an instance iC, denoted vsai C (Σ) is defined as the set of all the abstractions of the paths of Σ, i.e.,

vsai C (Σ) = {vsai C (σ)|σ ∈ Σ}.
Then, we define the semantics of an instance iC in isolation, denoted Σi C . The semantics of iC captures all the potential executions of iC. So, it is intuitively the set of all paths Σi C starting at invocation of a constructor creating iC , followed by an arbitrary number of invocations on iC of the methods of C within their preconditions.

Definition 7 (Instance Semantics) Let iC be an instance of C = (VC, MC), we denote Σi C the set of executions iteratively defined as follows:

• ∈ Σi C . • Let s0 be a state, let m ∈ ConsC . If s0 |= requires(m) then s0[(m, iC)]i C ∈ Σi C .
• Let σ ∈ Σi C be a finite execution and sn be its last state. Let sn+1 be a state such that ∀v ∈ VC .(sn

(v) = sn+1(v)). Let m such that m ∈ MC ∧m ∈ ConsC ∧m ∈ HelperC. If sn+1 |= requires(m) then: (σ, (sn+1[(m, iC)]i C)) ∈ Σi C .
The class semantics of a class C is defined as the set of all executions of its instances.

Definition 8 (Class semantics) Given a class C, let IC be the set of instances of C. We define ΣC , the semantics of the class C, by:

ΣC = def i C ∈I C Σi C

JML Semantics

To express temporal properties by JML annotations, we need an execution semantics of JML annotations. To our knowledge, JML semantics has been given in terms of wpcalculus (see for example [START_REF] Marché | The Krakatoa tool for certification of Java/Java Card programs annotated in JML[END_REF]), but never in terms of properties of the execution paths. We propose in this section a semantics for the invariant clauses, constraint clauses and a behavior specification.

Definition 9 (Path Execution Semantics of JML annotations) Given a set of executions ΣC of a class in isolation, the path execution semantics of JML annotations is displayed in Fig. 2.

The semantics is given w.r.t. the definition in [START_REF] Leavens | JML Reference Manual[END_REF]. It must be understood as follows 2 .

• Invariant: The invariant must be satisfied by each visible state.

• Constraint: For the body of each method included in the for clause, the constraint must hold between the pre-state and the post-state, but also between all visible states that arise during the execution of the method, i.e., all inner states of the method.

• Behavior method specification: each specification of a method can be desugared as a behavior specification [START_REF] Leavens | JML Reference Manual[END_REF]. This JML specification is interpreted on a path as follows. i If the predicate P of the requires clause is satisfied by the pre-state of the method m, that implies:

-If the predicate D of the diverges is satisfied on the pre-state, then if the method terminates, i.e., the method has a post-state, the predicate Q of the ensures clause must be satisfied between the pre-state and the post-state if it is a normal termination (sj(excp) = f alse). Otherwise, i.e., if it is an exceptional termination, the predicate R must be satisfied.

-If the predicate D of the diverges is not satisfied on the pre-state, then the method must terminate, i.e., the method must have a post-state. Moreover, if it is a normal termination the predicate Q must be satisfied, and the predicate R must be satisfied otherwise. Notice that in each case, only attributes within the list A of the assignable clause can be modified (∀a.(a ∈ VS ∧ a ∈ A ⇒ (si(a) = sj(a)))).

//@ invariant I;

≡ def ∀σ ∈ ΣC . ∀i ≥ 0 . σi |= I //@ constraint H for M ; ≡ def ∀σ ∈ ΣC . ∀i ≥ 0 . ∀m ∈ M. (si |= pre(m) ⇒ (∀k1, k2.(i ≤ k1 < k2 ∧s k 1 |= inners i (m) ∧ s k 2 |= inners i (m)-⇒ (s k 1 , s k 2) |= H)))
/*@ behavior; @ requires P ; @ diverges D; @ assignable A; @ ensures Q; @ signals @ (Exception e) R; @*/ m()

≡ def ∀σ ∈ ΣC . ∀i ≥ 0 .(((σi |= (P ∧ ¬D) ∧ σi |= pre(m)) ⇒ ∃j > i.((sj |= post s i (m) ∧ sj(excp) = f alse ∧(si, sj) |= Q ∧∀a.(a ∈ VS ∧ a ∈ A ⇒ (si(a) = sj (a)))) ∨ (sj |= post s i (m) ∧ sj(excp) = true ∧(si, sj) |= R ∧∀a.(a ∈ VS ∧ a ∈ A ⇒ (si(a) = sj (a))))) ∧ ((σi |= (P ∧ D) ∧ σi |= pre(m)) ⇒ ∀j > i.((sj |= post s i (m) ∧ sj(excp) = f alse ⇒ (si, sj) |= Q ∧∀a.(a ∈ VS ∧ a ∈ A ⇒ (si(a) = sj (a)))) ∧ (sj |= post s i (m) ∧ sj(excp) = true ⇒ (si, sj) |= R. ∧∀a.(a ∈ VS ∧ a ∈ A ⇒ (si(a) = sj (a))))))))

LIVENESS PROPERTIES VERIFICATION

This section deals with the verification of liveness properties on the execution semantics ΣC of a class C. For that, we presents in Section 4.1 a liveness primitive operator Loop. Under a progress hypothesis on the environment presented in Section 4.2, the satisfaction of the Loop operator can be ensured by appropriates JML annotations. This result is established in a theorem given in Section 4.3.

The Loop Primitive

In this section, Q denotes a JML predicate, M denotes a subset of PMC , and V denotes a JML expression returning an integer. The Loop(Q, V, M) primitive is satisfied by an execution if, after any states of the execution satisfying Q, a state where ¬Q holds must eventually be reached. Besides the predicate Q marking the loop entry condition we also require, to prove the termination of the loop, a variant V and a set of methods M ⊆ PMC .

Definition 10 (Loop Primitive) Loop(Q, V, M) 3 holds on an execution σ, written σ |= Loop(Q, V, M), if ∀i.((i ≥ 0 ∧ σi |= Q) ⇒ (∃j.j > i ∧ σj |= ¬Q)). If σ is a finite execution of length n, σ |= Loop(Q, V, M) if ∀i.((0 ≤ i ≤ n ∧ σi |= Q) ⇒ (∃j.i < j ≤ n ∧ σj |= ¬Q)).
Notice that the variant V and the set M of methods do not appear in the above expression since they are only used to generate the appropriate proof obligations for the termination of the loop. For the verification of the Loop operator, finite executions are viewed as infinite executions by infinitely 3 Notice that Loop(Q,V,M) semantics corresponds to LTL property GF¬Q.

repeating the last state of the execution. The infinite extension of a finite execution is the following.

Definition 11 (Infinite Extension of Finite Execution)

Let σ be a finite execution s0, s1, s2 . . . , sn. We extend it to the infinite sequence σ such that σ is s0, s1, s2 . . . , sn, sn,

The infinite extensions of finite executions are suitable for verifying the Loop primitive.

Lemma 1 Let σ be a finite execution, σ be the infinite extension of σ. We have

σ |= Loop(Q, V, M) ⇔ σ |= Loop(Q, V, M)
Notice that ΣC contains all potential executions of instances of C. We address the verification of a particular subset of ΣC that satisfies a progress hypothesis.

Progress Hypothesis PH

Using the semantics of LTL [START_REF] Pnueli | The Temporal Logic of Program[END_REF], Hypothesis P H(Q, M) is expressed by the LTL operators G ∞ ("almost everywhere") and F ∞ ("infinitely often").

Intuitively, G ∞ P means that after a finite number of states, the property P holds forever. The semantics of G ∞ is the following

σi |= G ∞ P ≡ def ∃j ≥ i.(∀k.(k ≥ j ⇒ σ k |= P)).
Given a predicate P , the formula F ∞ P means that at any state of the execution, there always exists a future state verifying P . Formally,

σi |= F ∞ P ≡ def ∀j ≥ i.(∃k.(k ≥ j ∧ σ k |= P)).
In order to verify ΣC |= Loop(Q, V, M), we need to assume progress of the environment, i.e., the environment invokes the methods of the subset M of the progress methods. Two behaviors of the environment are allowed:

• The environment calls methods in M infinitely often.

• The environment performs a finite number of invocations of methods in M until a state i such that any state of σi satisfies ¬Q.

Therefore, we define the progress hypothesis P H(Q, M) as follows.

Definition 12 (Progress Hypothesis

P H(Q, M)) (G ∞ ¬Q) ∨ (F ∞ pre(M)) (PH(Q,M))
where pre(M) denotes the predicate m∈M pre(m).

We denote Σ C/P H(Q,M) the subset of executions of ΣC satisfying P H(Q, M). Definition 13 (Class under P H(Q, M)) Σ C/P H(Q,M) is the set of execution defined as follows.

Σ C/P H(Q,M) = {σ|σ ∈ ΣC ∧ σ |= P H(Q, M)}.
In the next section we show how to use appropriate JML annotations for establishing that Σ C/P H(Q,M) |= Loop(Q, V, M).

Annotations for the Loop operator

Verification of the Loop primitive is quite similar to a termination proof, since we have to show that as long as Q it must always be possible to invoke a method of M and methods in M must decrease a well founded variant V . Here we propose proof obligations -inspired from [START_REF] Burstall | Program Proving as Hand Simulation with a Little Induction[END_REF] -expressed as JML annotations. These proof obligations guarantee the satisfaction of the Loop primitive by an execution satisfying the hypothesis P H(Q, M).

Let Loop(Q, V, M) be the Loop primitive. Let A1-5 be the following set of JML annotations.

//@ invariant V >= 0;

(A 1)

//@ constraint Q ==> V < \old(V) for M ; (A 2) //@ constraint Q ==> V <= \old(V) ; (A 3) //@ invariant Q ==> m∈M requires(m) (A 4) //@ invariant Q ==> m∈M C (requires(m) ==> !diverges(m)); (A 5)
Intuitively, A1-5 could be understood as follows.

A1 The variant V actually is greater than zero, i.e., it is an expression over a well-founded set.

A2 As long as Q holds, when a method in M is executed, the variant V must decrease. It ensures the progress when the environment satisfies P H(Q, M) (livelockfreeness).

A3 As long as Q holds, when a method of C is executed, the variant V must not increase.

A4 As long as Q holds there always should be a method in M that might be called, i.e., its precondition holds. This ensures the deadlock-freeness of the system.

A5 As long as Q holds, all callable methods must not diverge. This ensures the non-divergence of the system.

Hypothesis P H(Q, M) is the disjunction of (F ∞ pre(M) and G ∞ (¬Q), therefore, for each of these hypothesis, we show respectively in Lemma 2 and Lemma 3 that, assuming that the code of the class is correct w.r.t. the annotations A1-5 (C : A1-5), the satisfaction of Loop (Q, V, M) is established on ΣC . A consequence of Lemma 2 and Lemma 3 is the following theorem.

Theorem 1

If C : A1-5 then Σ C/P H(Q,M) |= Loop(Q, V, M).
An interesting property is obtained when M = PMC. In this particular case, Hypothesis P H(Q, M) is not only sufficient, but also necessary.

Proposition 1 When M = PMC, given σ ∈ ΣC , σ |= Loop(Q, V, M) and C : A1-5 imply that σ |= P H(Q, M).
We now show how liveness properties (expressed here in JTPL) can be embedded into a Loop primitive.

JML ANNOTATION GENERATOR TOOL

The generation of annotations for safety properties in [START_REF] Trentelman | Extending JML Specifications with Temporal Logic[END_REF] and of liveness properties presented in Sect. 4 is implemented in a tool, called JAG (for JML Annotation Generator) [START_REF] Giorgetti | JAG: JML Annotation Generation for Verifying Temporal Properties[END_REF].

The JAG tool takes as an input a formula expressed in JML Temporal Pattern Logic (JTPL), first introduced in [START_REF] Trentelman | Extending JML Specifications with Temporal Logic[END_REF]. A JTPL formula is a combination of JML predicates, events and temporal operators. Using JTPL formulae, one can express, on the example of the Buffer (see Fig. 1 Sect. 2), the following properties:

1. After the invocation of storeData (after storeData called), the variable perso is always true, expressed in JTPL as follows.

after storeData called always perso;

(S) 2. After starting a transaction, i.e., the normal termination of the method begin (after begin normal), a state where trDepth is false must eventually be reached.

after begin normal eventually !trDepth under variant getBufferLess() for begin, commit, abort, write .

(L)

Notice that in Property L, the event is begin normal and not begin called since a buffer transaction starts only when the method begin terminates normally. Notice also that since Property L is a liveness property, the user gives a variant and a set of progress methods with the JTPL clause under variant ... for.

The result of the translation of Properties S and L is displayed in Fig. 3.

public class Buffer { //@ ghost boolean witness S = false; (Sa) //@ ghost boolean witness L = false; (La) /*@ invariant witness S @ ==> perso; @*/ (Sc) //@ invariant getBufferLess() > 0; /*@ constraint witness L ==> @ getBufferLess() < \old(getBufferLess()) @ for begin,comit, abort, write; @*/ /*@ constraint witness L ==> @ getBufferLess() <= \old(getBufferLess()) @*/ /*@ invariant witness L ==> (@ (trDepth == false && perso == true) @ (trDepth == true && perso == true) @ (trDepth == true && perso == true @ && position < len)) @*/ 1. First, JAG generates a ghost boolean variable for observing the occurrences of the events of the temporal properties. These ghost variables are assigned w.r.t. the events occurring in the formula.

Example 1 (Ghost Variables Generation for S)

The ghost variable witness S, corresponds to the event storeData called of S. It is initially declared with the value false (see Annotation Sa in Fig. 3) and it is set to true when the method storeData is called (see annotation S b). So, in each state after the event storeData called, the value of the ghost variable witness S is true, i.e., witness S is true exactly with the scope of the property.

Example 2 (Ghost Variables Generation for L)

The ghost variable witness L, corresponding to the event begin normal of the temporal property L is also declared with the value false (Annotation La in Fig. 3). The ghost variable witness L is assigned using a try...catch...finally statement (see annotation L b). Notice that, in case of exception, the caught exception is re-thrown, the execution does not go into the finally block, the reader can see that witness L is set to true only when begin normal occurs. The ghost variable witness L is set to false again by adding to each method a set statement (annotation Lc).

2. Second, it generates an invariant to ensure the satisfactions of a safety property.

Example 3 (Invariant Generation for S) The invariant for S is displayed in Fig. 3 (annotation Sc). It means that when the variable witness S is true, i.e., after the first occurrence of storeData called, the predicate (perso == true) must be true -the definition of Property S.

Finally JAG translates each liveness property into a

Loop primitive and generates the corresponding JML annotations.

Example 4 (Generation of annotations for L)

The JML primitive corresponding to L is Loop(witness L, getBufferLess(), {begin, commit, abort, write})

The corresponding annotations are displayed in Fig. 3 (see Annotations L loop).

Notice that, since no method of Buffer diverges, Annotation A5 does not appear.

The tool is able to keep the trace of the generated annotations, i.e., it is possible, given a generated annotation, to find the original intermediate primitive and the original temporal property. Since the generated output file contains standard JML annotations, it can be used with other JML tools [START_REF] Burdy | An Overview of JML Tools and Applications[END_REF] to validate or prove the temporal formulae. In particular, we have successfully used it for the following purposes.

• Verification of the correctness of the Java code w.r.t. the JML annotations with the proof obligation generators Jack [START_REF] Burdy | Java Applet Correctness: a Developer-Oriented Approach[END_REF] and Krakatoa [START_REF] Marché | The Krakatoa tool for certification of Java/Java Card programs annotated in JML[END_REF].

• Validation of a JML model with JML-TT [START_REF] Bouquet | JML-Testing-Tools: a symbolic animator for JML specifications using CLP[END_REF];

• Formal verification of a JML model with the JML2B method [START_REF] Bouquet | Checking JML specifications with B machines[END_REF];

• Test generation and Runtime Assertion Checking with the test generators Tobias [START_REF] Ledru | Filtering TOBIAS Combinatorial Test Suites[END_REF], Jartege [START_REF] Oriat | Jartege: A Tool for Random Generation of Unit Tests for Java Classes[END_REF] and JML-TT [START_REF] Bouquet | Automated Boundary Test Generation from JML Specifications[END_REF].

Test generation and Runtime Assertion Checking using JAG has been studied on a industrial Javacard application [START_REF] Bouquet | Safety property driven test generation from JML specifications[END_REF].

CONCLUSION AND FUTURE WORKS

This paper presents a way to verify liveness properties on Java classes in isolation by generating appropriate JML annotations. This requires that the user specifies a variant for the verification of a Loop primitive to which liveness properties are reduced. The generated JML annotations are verified (or validated) with any tools handling JML. The JAG tool implements this translation. It has been used for several toy examples and a Java Card Electronic Purse Specification (over 500 lines of JML).

To the best of our knowledge, this is the first attempt to verify liveness properties for potentially infinite-state systems using a translation into JML. For finite state systems, liveness properties expressed in LTL are usually verified automatically by model checkers such as SPIN [START_REF] Holzmann | The Model Checker SPIN[END_REF]. For infinite state systems, model checking is used on liveness preserving abstractions.

Currently we are working on extensions of JAG to other temporal properties. In particular, we currently address the verification of properties expressed by Büchi automata. Then, the Büchi acceptance condition is checked using Loop primitives introduced in this paper. The second challenge is, assuming that a liveness is established on the class in isolation, to provide techniques for verifying that the (single-or multi-threaded) environment effectively satisfies P H(Q, M).

Figure 1 :

 1 Figure 1: Class Buffer

Figure 2 :

 2 Figure 2: Path execution semantics of JML annotations

Lemma 2 Lemma 3

 23 If C : A1-5 and σ ∈ ΣC and σ |= (F ∞ pre(M)) then σ |= Loop(Q, V, M). If C : A1-5 and σ ∈ ΣC and σ |= G ∞ (¬Q) then σ |= Loop(Q, V, M).

(Figure 3 :

 3 Figure 3: Buffer with generated annotations

The definitions of constraint and assignable are proposed accordingly to the semi-formal description in[START_REF] Leavens | JML Reference Manual[END_REF]. Notice that, for technical reasons, an alternative semantics of these clauses has been implemented in some tools

Acknowledgment: We like to thank Marieke Huisman for her interesting and helpful comments and suggestions to improve this work. Further, we acknowledge all the anonymous referees for their corrections, comments and advices.

Research partially funded by French Research ACI Geccoo. 1 See http://www.jmlspecs.org.