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The aim of this paper is to derive a general model for the reduced resistive MagnetoHydroDynamics and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The stability of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Introduction

Strong magnetic field are used to confine a plasma in Tokamaks, so that the conditions needed for thermonuclear fusion are reachable [START_REF] Freidberg | Plasma physics and fusion energy[END_REF].

Reduced resistive magnetohydrodynamic (MHD) models have been proposed [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF] to investigate a special type of instability appearing in Tokamaks, see Figure 1: this instability is called the "Current Hole". Essentially one observes that a stationary physical current profile becomes unstable and is replaced by a profile with almost zero amplitude, as described schematically in Figure 2. The "Current Hole" phenomena has been indirectly observed in JET [START_REF] Huysmans | MHD Stability of Advanced Tokamak Scenarios with Reversed Central Current: An Explanation of the "Current Hole[END_REF] and JT-60 [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF] and is a scenario for the ITER machine. It has therefore of major physical interest to better understand the Current Hole in view of the ITER project. In this work we focus on mathematical aspects of reduced resistive magnetohydrodynamic (MHD) models.

These models are obtained from a 2D simplification of full 3D MHD models with resistivity following the seminal work [START_REF] Kadomtsev | Non linear helical perturbations of a plasma in a Tokamak[END_REF]: we refer to [START_REF] Strauss | Dynamics of high β plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] for cylindrical models and to [START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF] for models in toroidal geometry. In all cases the unknowns are some scalar potentials which are defined in a cut R Z θ Ω Wall of the tokamak chamber [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. The exterior part of the grey region is still the wall of the tokamak chamber. At t = 0 the plasma current is negative inside the center region of the domain Ω and positive around. In some specific circumstances, it appears to be unstable: the negative internal current is replaced by an almost zero current.

of the initial 3D domain: the cut is planar in [START_REF] Strauss | Dynamics of high β plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] and it is a poloidal section of a torus in [START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF]. Other generalized reduced MHD models may be found in [START_REF] Kruger | Generalized reduced magnetohydrodynamic equations[END_REF].

The first aim of this work is to derive an original and more general reduced resistive MHD model. With respect to the usual reduced resistivity models [START_REF] Strauss | Dynamics of high β plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF], we need less severe assumptions on the density profile, as it is explained in Figure 3. In our work the density profile is a general given function. To our knowledge all previous models are special cases of our model. In [START_REF] Strauss | Dynamics of high β plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF] the density is constant and this means that the flow is assumed to be incompressible. In [START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF] the density is scaled as R -2 and it corresponds to a flow in rotation and in inertial equilibrium (see Remark 4). Traditionally [START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF], the family of 2D reduced MHD models is derived using an assumption of small curvature (ε << 1) and an assumption of small ratio of fluid pressure over magnetic pressure (β << 1). For the ITER project the curvature is moderate (ε ≈ 0.3), so it is better to derive the model without using expansion with respect to ε: this is precisely what we do in Section 3, even if it is possible to recover the basic reduced MHD model as a limit of our model (see Remark 6). Since the fluid pressure does not show up in the final model, it means that we implicitly assume a small β regime.

The second aim is to study some mathematical properties of this general model: in this work we focus on the stability analysis of solutions because this issue seems to be important in order to establish a mathematical foundation for the simulations reported in [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF][START_REF] Deriaz | Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole, Report of the EMAFF project at the CEMRACS[END_REF]. The model is endowed with an important energy identity, see [START_REF] Kadomtsev | Non linear helical perturbations of a plasma in a Tokamak[END_REF] and further generalization. The stability results of this work are based on this energy estimate. Two types of stability are observed: stability of unsteady weak solutions and stability of particular stationary solutions which are constructed from the first eigenvector of the Grad-Shafranov operator.
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Figure 3: Cut of the density profile inside the Tokamaks chamber. The abscisse is R ∈ [R -R + ] with 0 < R -< R + . The Strauss profile refers to the incompressible model [START_REF] Strauss | Dynamics of high β plasmas[END_REF][START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF][START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]; the Briguglio profile refers to the ρR 2 constant profile used in [START_REF] Briguglio | Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes[END_REF][START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF][START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]; the arbitrary profile corresponds to the new model proposed in this work. We believe that this profile is closer to the real situation in Tokamaks because the density of the plasma is higher in the core of the Tokamak.

Geometry and notations

The toroidal geometry of a generic tokamak is depicted in figure 1. The geometry is a torus obtained by the rotation of a poloidal section around the axis Z. We will use the cylindrical coordinates (R, θ, Z) which are related to the standard Cartesian coordinates (X, Y, Z) through

 X = R cos θ, Y = R sin θ.
We assume that the interesting part of the plasma is confined in a two dimensional poloidal domain Ω (see Figure 1). It means that the plasma is confined in the three dimensional domain

(R, Z, θ) ∈ Ω × [0, 2π[.

System of resistive MHD equations

The starting point of the modelling is the full system of resistive MHD equations 8 <

:

∂tρ + ∇ • (ρu) = 0, ∂tB = ∇ ∧ (u ∧ B) -∇ ∧ (η∇ ∧ B), ∂t(ρu) + ∇ • (ρu ⊗ u) + ∇p = J ∧ B, J = ∇ ∧ B. (1) 
In the equation ( 1), ρ is the density, u is the velocity, B is the magnetic field and J is the current. The Grad-Shafranov operator is defined by

Reduced resistive model with general density

∆ ⋆ ψ = R " ∂Z " ∂Z ψ R « + ∂R " ∂Rψ R «« = ∂RRψ + ∂ZZ π - 1 R ∂Rψ.
The diffusion operator ∆ρ is defined by

∆ρΦ = ρR " ∂Z " ∂Z ψ ρR « + ∂R " ∂Rψ ρR «« = ∆ ⋆ Φ - 1 ρ (∂Rρ∂RΦ + ∂Z ρ∂Z Φ).

Definition 1. Reduced resistivity MHD model with general density

The model writes

( ∂tψ = 1 ρR [ψ, Φ] + η∆ ⋆ ψ, ∂tω = 1 ρR [ω, Φ] -2 1 (ρR) 2 [ρR, Φ] ω + ρR h ψ, 1 ρR 2 ∆ ⋆ ψ i , (2) 
with ∆ρΦ = ω. The domain is (R, Z) ∈ Ω. The density profile is given. It is a time-independent and smooth function:

ρ ∈ W 1,∞ (Ω), 0 < ρ-≤ ρ ≤ ρ+. ( 3 
)
The resistivity is ν ≥ 0. The system is supplemented with natural Dirichlet boundary conditions ψ = Φ = 0 on ∂Ω.

The scalar potential ψ is the magnetic flux. The scalar potential Φ is the velocity potential and ρ is a given density profile. The magnetic field is derived from the magnetic flux

B = ∇ψ ∧ ∇θ. ( 4 
) Since ∇θ = 1 R e θ then B = ∇ψ ∧ ∇θ = 1 R ∇ψ ∧ e θ .
Here the ∇ operator is defined in the X, Y, Z system of coordinates. By definition

B = ∇ ∧ (ψ∇θ) =⇒ ∇ • B = 0.

And also

B • e θ = 0 which means that the magnetic field is poloidal.

Remark 2. In Section 5 we will consider another boundary condition, just for the simplicity of the mathematical analysis. In the numerical simulation of the Current Hole [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF][START_REF] Deriaz | Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole, Report of the EMAFF project at the CEMRACS[END_REF] the numerical solution is negligible at the boundary so that the boundary conditions is of very little importance in this paper.

Remark 3. An important simplification has been made in [START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF]. Indeed a more general representation formula [START_REF] Czarny | MHD stability in X-point geometry: simulation of ELMs[END_REF] would be

B = F0(t)∇θ + ∇ψ ∧ ∇θ
with a given F0(t). It means that the toroidal main magnetic field F0(t)∇θ is neglected in [START_REF] Briguglio | Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks[END_REF]. If one does not neglect this contribution, additional terms appear in the equations but we do not take it into account in this work. In some sense the source term Jc in (28) is a way to reintroduce this contribution.

Flows such that the density is unchanged correspond to ∇ • (ρu) = 0. It is therefore convenient to assume that the velocity is represented in the form u = 1 ρ ∇Φ ∧ ∇θ = 1 ρR ∇Φ ∧ e θ so that ∇ • (ρu) = 0 holds true. Note that the velocity is also poloidal, that is u • e θ = 0. One has by construction that

∂tρ + ∇ • (ρu) = 0.
That is why the density in (2) a given constant function ρ(R, Z) and independent of the time variable.

Derivation of the model

This section is devoted to the derivation of (2) from (1) after convenient simplifications.

The magnetic equation

Consider the magnetic equation of ( 1)

∂tB = ∇ ∧ (u ∧ B) -∇ ∧ (η∇ ∧ B). ( 5 
)
Since B is a rotational, we get

∂tψ∇θ = u ∧ B -η∇ ∧ B + a gradient
This gradient is set to zero and we will consider solutions of

1 R ∂tψe θ = u ∧ B -η∇ ∧ B.
Let us make two more hypotheses. Assume that the potentials are independent of the angle variables, that is

ψ = ψ(R, Z) and Φ = Φ(R, Z). Then u = 1 ρR ∇Φ ∧ e θ = 1 ρR (-∂Z ΦeR + ∂RΦeZ )
and similarly

B = 1 R (-∂Z ψeR + ∂RψeZ ) , so that u ∧ B = 1 ρR 2 (∂Rψ∂Z Φ -∂Z ψ∂RΦ) e θ = 1 ρR 2 [ψ, Φ]e θ .
To compute ∇ ∧ B we first notice that ∇ ∧ eR = ∇ ∧ (∇R) = 0 and that ∇ ∧ eZ = 0. Therefore

∇ ∧ B = " -∇ " ∂Z ψ R « ∧ eR + ∇ " ∂Rψ R « ∧ eZ « .
The first term is

∇ " ∂Z ψ R « ∧ eR = " ∂R " ∂Z ψ R « eR + ∂Z " ∂Z ψ R « eZ + 1 R ∂ θ " ∂Z ψ R « e θ « ∧ eR = ∂Z " ∂Z ψ R « e θ .
The second term is

∇ " ∂Rψ R « ∧ eZ = " ∂R " ∂Rψ R « eR + ∂Z " ∂Rψ R « eZ + 1 R ∂ θ " ∂Rψ R « e θ « ∧ eZ = -∂R " ∂Rψ R « e θ .
So

∇ ∧ B = - " ∂Z " ∂Z ψ R « + ∂R " ∂Rψ R «« e θ = - 1 R ∆ ⋆ ψe θ .
The equation ( 5) writes

1 R ∂tψe θ = 1 ρR 2 [ψ, Φ]e θ + η 1 R ∆ ⋆ ψe θ .
After simplification we obtain the scalar equation

∂tψ = 1 ρR [ψ, Φ] + η∆ ⋆ ψ. (6) 

The impulse equation

We start from the impulse equation

∂tu + ∇u u + 1 ρ ∇p = J ∧ B ρ , J = ∇ ∧ B.
Define the vectorial vorticity

Ω = ∇ ∧ u with the equation ∂tΩ + ∇ ∧ (∇u u) = ∇ ∧ " J ∧ B ρ «
where we have assume either that ∇p is small with respect to all other terms (it is a low β assumption) or that the pressure is a function of the density so that 1 ρ ∇p = ∇q(ρ) has zero vorticity. One has

Ω = ∇ ∧ " 1 ρ ∇Φ ∧ ∇θ « = 1 ρ ∇ ∧ (∇Φ ∧ ∇θ) - 1 ρ 2 ∇ρ ∧ (∇Φ ∧ ∇θ) = 1 ρ " - 1 R ∆ ⋆ Φe θ « - 1 ρ 2 ((∇ρ • ∇θ)∇Φ -(∇ρ • ∇Φ)∇θ) = " - 1 ρR ∆ ⋆ Φ + 1 ρ 2 R (∇ρ • ∇Φ) « e θ .
The equation rewrites

Ω = - 1 ρR ∆ρΦe θ .
Notice that by construction ∆ρΦ = ρR

" ∂R " 1 ρR ∂RΦ « + ∂Z " 1 ρR ∂Z Φ «« and ∆ ⋆ = ∆ρ≡1.
Next, since (∇ψ • e θ ) = 0, the computation of the right hand side ∇ ∧ ( J∧B ρ ) gives

J ∧ B ρ = - " ∆ ⋆ ψe θ ρR « ∧ " ∇ψ ∧ e θ R « = - 1 ρR 2 ∆ ⋆ ψ∇ψ. Therefore J ∧ B ρ = - " ∆ ⋆ ψ∂Rψ ρR 2 eR + ∆ ⋆ ψ∂Z ψ ρR 2 eZ « ,
and then

∇ ∧ " J ∧ B ρ « = - " ∇ " ∆ ⋆ ψ∂Rψ ρR 2 « ∧ eR + ∇ " ∆ ⋆ ψ∂Z ψ ρR 2 « ∧ eZ « = - " ∂Z " ∆ ⋆ ψ∂Rψ ρR 2 « -∂R " ∆ ⋆ ψ∂Z ψ ρR 2 «« e θ = - » ψ, 1 ρR 2 ∆ ⋆ ψ - e θ .
Finally we analyze ∇ ∧ (∇u u). One has

u = - 1 ρR ∂Z ΦeR + 1 ρR ∂RΦeZ = αeR + βeZ
where we have set α = -1 ρR ∂Z Φ and β = 1 ρR ∂RΦ. Therefore ∇u = α∇eR + eR ⊗ ∇α + eZ ⊗ ∇β.

Noticing that ∇eR = 1 R e θ ⊗ e θ , one obtains ∇uu = (α∂Rβ + β∂Z β) eR + (α∂Rα + β∂Z α) eZ and ∇ ∧ (∇uu) = ∇ (α∂Rβ + β∂Z β) ∧ eR + ∇ (α∂Rα + β∂Z α) ∧ eZ = (∂Z (α∂Rβ + β∂Z β) -∂R (α∂Rα + β∂Z α)) e θ = Ae θ .

One has the identity

A = α∂R (∂Z α -∂Rβ) + β∂Z (∂Z α -∂Rβ) + (∂Rα + ∂Z β) (∂Z α -∂Rβ) .

By definition

∂Z α -∂Rβ = -∂R " 1 ρR ∂RΦ « -∂Z " 1 ρR ∂Z Φ « = - 1 ρR ∆ρΦ.
One also has

∂Rα + ∂Z β = -∂R " 1 ρR ∂Z ΦeR « + ∂Z " 1 ρR ∂RΦeR « = ∂R(ρR) (ρR) 2 ∂Z Φ - ∂Z (ρR) (ρR) 2 ∂RΦ = 1 (ρR) 2 [ρR, Φ] . Therefore A = ∂Z Φ ρR ∂R " ∆ρΦ ρR « - ∂RΦ ρR ∂Z " ∆ρΦ ρR « - 1 (ρR) 3 [ρR, Φ] = 1 (ρR) 2 [∆ρΦ, Φ] + 2 1 (ρR) 3 [ρR, Φ] ∆ρΦ.
For convenience we define ω = ∆ρΦ.

The equation rewrites

- 1 ρR ∂tωe θ + 1 (ρR) 2 [ω, Φ] e θ + 2 1 (ρR) 3 [ρR, Φ] ωe θ = - » ψ, 1 ρR 2 ∆ ⋆ ψ - e θ .
We finally deduce the scalar equation

∂tω = 1 ρR [ω, Φ] -2 1 (ρR) 2 [ρR, Φ] ω + ρR » ψ, 1 ρR 2 ∆ ⋆ ψ - . (7) 
The reduced resistive MHD model ( 1) corresponds to ( 6) and ( 7).

Remark 4. Cylindrical geometry with a constant ρR 2 .

It is described in [20,[START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. In our case it is sufficient to set

ρ = K R 2 (8)
in the general model [START_REF] Czarny | MHD stability in X-point geometry: simulation of ELMs[END_REF][START_REF] Deriaz | Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole, Report of the EMAFF project at the CEMRACS[END_REF]. It corresponds to a situation [16] where the plasma in the torus is in uniform rotation with a constant angular velocity ωc. In this case the centrifugal acceleration is

ρv 2 = ρR 2 ω 2 c .
If this centrifugal force is constant, then the plasma is in some kind of mechanical equilibrium. It corresponds precisely to [START_REF] Feireisl | Dynamics of viscous compressible fluids[END_REF].

Non dimensional system

It is convenient to write the equations (1) with non dimensional variables. One rescales the time τ = t T0 .

The radius is 0 < R -≤ R ≤ R + . Define the small parameter

ε = R + -R - R + + R -.
The parameter ε controls the curvature of the torus. If ε = 0 the torus degenerates to a infinite cylinder. Set

a = R + -R - 2 and R0 = R + + R - 2 .
This parameter a is the half small axis of the poloidal section of the chamber of the tokamak. Notice that

R0ε = a.
Since a is considered as a constant, it means that R0 has a ε -1 dependency.

Proposition 5. The non-dimensional version of (1) writes

( ∂τ ψ = 1 ρ(1+εx) [ ψ, Φ] + η∆ ⋆ ψ, ∂τ ω = 1 ρ(1+εx) [ω, Φ] - 2 ρ 2 (1+εx) 2 [ρ(1 + εx), Φ]ω + ρ(1 + εx) h ψ, 1 ρ(1+εx) 2 ∆ ⋆ ψ i . (9) 
Proof. One has

 R = a ε (1 + εx), x ∈ [-1, 1], Z = ay, y ∈ ˆ-b a , b a ˜.
We use the variables (x, y) instead of (R, Z). The reference density is ρ0 so that b ρ is the rescaled density

ρ = ρ0 b ρ.
We consider a reference velocity

u0 = a T0
and a reference magnetic field

B 2 0 = ρ0u 2 0 = ρ0D 2 T 2 0 .
We rescale the potentials

( ψ = B 0 a 2 ε b ψ, Φ = u 0 ρ 0 a 2 ε b Φ. The rescaled Poisson bracket corresponds to [u, v] = ∂xu∂yv -∂yu∂xv = a 2 [a, b].
The rescaled Grad-Shafranov operator is

c ∆ ⋆ = ∂xx + ∂yy - ε 1 + εx ∂x = a 2 ∆ ⋆ .
The rescaled density operator is

c ∆ρ = a 2 ∆ρ.
We finally obtain, defining the rescaled resistivity η = Du0 b η, the model in non-dimensional variables 8 > < > :

∂τ b ψ = 1 b ρ(1+εx) [ b ψ, b Φ] + b η c ∆ ⋆ b ψ, ∂τ b ω = 1 b ρ(1+εx) h b ω, b Φ i - 2 b ρ 2 (1+εx) 2 h b ρ(1 + εx), b Φ i b ω + b ρ(1 + εx) h b ψ, 1 b ρ(1+εx) 2 c ∆ ⋆ b ψ i .

Remark 6. Planar geometry with incompressibility

We set ρ = 1 and ε = 0 in [START_REF] Freidberg | Plasma physics and fusion energy[END_REF]. The model corresponds to the seminal reduced resistive incompressible model [START_REF] Strauss | Dynamics of high β plasmas[END_REF] in a cylinder.

A general viscous model

From that point we are interested in proving some regularity results about the following system

( ∂tψ = 1 ρR [ψ, Φ] + η∆ ⋆ ψ, ∂tω = ρR " 1 (ρR) 2 [ω, Φ] + h 1 (ρR) 2 , Φ i ω " + ρR h ψ, 1 ρR 2 ∆ ⋆ ψ i + ν∆ρω, (10) 
with ∆ρΦ = ω, with Dirichlet boundary conditions for all unknowns

ψ = Φ = ∂Φ ∂n = 0 on ∂Ω, (11) 
and corresponding to the initial data

(Φ, ψ)t=0 = (Φ0, ψ0). ( 12 
)
With respect to (2) we have added a viscous term ν∆ρω in the second equation. This term models the viscosity of the fluid. In the sequel we will study the mathematical consequences of this choice. In case of a constant ρR 2 (cf Remark 4), then ∆ρω is equal to the viscous operator considered in [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF]. Further investigations are needed to establish the optimal expression of this viscous term. We have also made another modifications in the boundary condition which now contains an homogeneous Neumann condition for the variable Φ. This is for mathematical convenience because it slightly simplifies the analysis.

Identities

We quote several formal identities which are true for regular solutions of the preceding system (10-11).

Preservation of the total magnetic flux

Lemma 7. Assume η = ν = 0. Then regular solutions of [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] satisfy

d dt Z Ω ρRψdRdZ = 0. Proof. It comes from d dt Z Ω ρRψ = Z Ω [ψ, Φ] = Z Ω (∂R(ψ∂Z Φ) -∂Z (ψ∂RΦ)) = Z ∂Ω ψ∂tanΦdσ = 0.
In this formula ∂tan is the tangential derivative. The boundary integral vanishes thanks to the Dirichlet boundary condition.

Preservation of the cross-helicity

Lemma 8. Assume η = ν = 0. Then regular solutions of [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] satisfy

d dt Z Ω 1 ρR ψωdRdZ = 0.
Proof. It comes from

d dt Z Ω 1 ρR ψω = Z Ω 1 ρR (ω∂tψ + ψ∂tω) = Z Ω 1 (ρR) 2 ω[ψ, Φ] + Z Ω ψ " 1 (ρR) 2 [ω, Φ] + » 1 (ρR) 2 , Φ - ω « + Z Ω ψ » ψ, 1 ρR 2 ∆ ⋆ ψ - = Z Ω 1 (ρR) 2 [ωψ, Φ] + Z Ω » 1 (ρR) 2 , Φ - ωψ + Z Ω » ψ 2 2 , 1 ρR 2 ∆ ⋆ ψ - = 0
after integration and use of the Dirichlet boundary condition.

The energy identity

This energy identity will have fundamental consequences in the sequel.

Proposition 9. Assume η ≥ 0 and ν ≥ 0. Then regular solutions of [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] satisfy

1 2 d dt Z Ω " |∇ψ| 2 R + |∇Φ| 2 ρR « + η Z Ω |∆ * ψ| 2 R + ν Z Ω |∆ρΦ| 2 ρR = 0 (13) 
Proof.

• By multiplying the first equation of ( 10) by

∆ * ψ R , we get Z Ω ∂tψ ∆ * ψ R = Z Ω 1 ρR 2 [ψ, Φ]∆ * ψ + η Z Ω |∆ * ψ| 2 R .
Integrating by parts and using properties of the Poisson brackets, we obtain

- Z Ω ∂t∇ψ • " ∇ψ R « = - Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ + η Z Ω |∆ * ψ| 2 R
and then

- 1 2 d dt Z Ω |∇ψ| 2 R = - Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ + η Z Ω |∆ * ψ| 2 R . (14) 
• By multiplying the second equation of ( 10) by Φ ρR , we get

Z Ω ∂tω Φ ρR = Z Ω 1 (ρR) 2 [ω, Φ]Φ - Z Ω 2 (ρR) 3 [ρR, Φ]ωΦ + Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ + ν Z Ω ∆ρω Φ ρR .
By similar calculations, we successively get

- Z Ω ∂t " ∇Φ ρR « ∇Φ = Z Ω » Φ, 1 (ρR) 2 Φ - ω - Z Ω 2 (ρR) 3 [ρR, Φ]ωΦ + Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ -ν Z Ω ∇ω • ∇Φ ρR and - 1 2 d dt Z Ω |∇Φ| 2 ρR = =0 z }| { Z Ω » Φ, 1 (ρR) 2 - Φω - Z Ω 2 (ρR) 3 [ρR, Φ]ωΦ + Z Ω [Φ, Φ] | {z } =0 1 (ρR) 2 ω + Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ +ν Z Ω ω ∆ρΦ ρR = Z Ω » ψ, 1 ρR 2 ∆ * ψ - Φ + ν Z Ω |∆ρΦ| 2 ρR . (15) 
• We conclude by summing ( 14) and ( 15).

Stability of weak solutions

In this section the stability of weak solutions is investigated. Our goal is to assess that variable density profiles are compatible with the standard theory of such systems for which we refer the reader to the seminal contributions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF][START_REF] Temam | Navier-Stokes Equations, Theory and Numerical Analy-sis[END_REF]. We refer to [START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] for a modern presentation of the theory in the context of liquid metals. Essentially it amounts to showing that the a priori estimates ( 16) controls the continuity of the non linear terms of the general model. We will assume in this section that ν > 0, η > 0, that (3) holds, and that 0 < R -< R < R + .

Main result

Definition 10. We define as a weak solution of the system [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF], any couple of functions (ψ, Φ) such that -the following properties of regularity are satisfied:

∇Φ, ∇ψ ∈ L ∞ `0, T ; L 2 (Ω) ´and ∆Φ, ∆ψ ∈ L 2 `0, T ; L 2 (Ω) ´, (16) 
-the system [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF] holds in D ′ ((0, T ) × Ω), for any time T > 0, -the homogeneous Dirichlet boundary conditions [START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] are satisfied in D ′ (∂Ω):

Φ = ψ = ∂Φ ∂n = 0 on ∂Ω,
-the initial conditions [START_REF] Huysmans | MHD Stability of Advanced Tokamak Scenarios with Reversed Central Current: An Explanation of the "Current Hole[END_REF] hold with the associated regularities

ψ0, Φ0 ∈ H 1 0 (Ω).
Theorem 11. Consider a suitable sequence of regular solutions (Φ n , ψ n ) n∈N of equations [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] satisfying

Φ n | t=0 = Φ0 ∈ H 1 0 (Ω) and ψ n | t=0 = ψ0 ∈ H 1 0 (Ω).
Then this sequence converges to a weak solution (Φ, ψ) of [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] in the sense of Definition 10.

Proof of theorem 11

We consider a sequence of regular solutions (ψ n , Φ n ) of (10-11) associated to the initial data (ψ n 0 , Φ n 0 ) ∈ H 1 0 (Ω) × H 1 0 (Ω).

A priori estimates

Following the proof of Proposition 9, we notice that the boundary conditions ( 11) make all boundary terms, appearing in the integrations by parts, vanish. Then we can recall here the energy identity, integrated on [0, t], t > 0, satisfied by (ψ n , Φ n ):

Z Ω " |∇ψ n | 2 2R + |∇Φ n | 2 2ρR « + η Z t 0 Z Ω |∆ * ψ n | 2 R + ν Z t 0 Z Ω |∆ρΦ n | 2 ρR = Z Ω " |∇ψ n 0 | 2 2R + |∇Φ n 0 | 2 2ρR « < +∞ ( 17 
)
Lemma 12. Any sequence of solutions ψ n and Φ n of [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF][START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF] satisfy

ψ n , Φ n bounded in H = L ∞ `0, T ; H 1 0 (Ω) ´∩ L 2 `0, T ; H 2 (Ω) ´( 18 
)
independently of n and for any time T > 0.

Moreover, for all ξ ∈]0, 1[, independently of n and for any time T > 0, we have

∇ψ n , ∇Φ n bounded in K ξ = L 2 1-ξ (0, T ; L s (Ω)) , for all s ∈ - 2, 2 ξ » , (19 
) Therefore, there exists functions (ψ, Φ) such that ψ n ⇀ ψ and Φ n ⇀ Φ weakly in H, ∇ψ n ⇀ ∇ψ and ∇Φ n ⇀ ∇Φ weakly in K ξ , for all ξ ∈]0, 1[,

∆ * ψ n ⇀ ∆ * ψ and ω n ⇀ ω weakly in L 2 `0, T ; L 2 (Ω)
´.

Proof. The bounds [START_REF] Strauss | Dynamics of high β plasmas[END_REF] are straightforward from [START_REF] Rosenbluth | Dynamics of high β plasmas[END_REF], since ρ and R are bounded from above and from below and since the Poincaré inequality is guaranteed by the homogeneous Dirichlet boundary conditions. The bounds [START_REF] Strauss | Nonlinear Three-Dimensional Magnetohydrodynamics of Noncircular Tokamaks[END_REF] are obtained by interpolation. Indeed, the bounds (18), together with the Sobolev embedding in 2-dimension H 1 (Ω) ⊂ L p (Ω) for all 1 < p < +∞, imply that ∇ψn and ∇Φn are bounded in L ∞ `0, T ; L 2 (Ω) ánd L 2 (0, T ; L p (Ω)) for all 1 < p < +∞. The conclusion comes from the embedding

L ∞ `0, T ; L 2 (Ω) ´∩ L 2 (0, T ; L p (Ω)) ⊂ L r (0, T ; L s (Ω))
for all r, s such that

1 r = 1 -ξ 2 , 1 s = ξ 2 + 1 -ξ p ,
with any ξ ∈]0, 1[ and any 1 < p < +∞.

Compactness properties

In order to have some compactness properties, we want to use the following theorems.

Theorem 

vn → v in C `O; X * weak ´as n → ∞
passing to a subsequence as the case may be.

To do so, we have to find good bounds on the time derivative of the magnetic and velocity potentials.

For the magnetic potential:

∂tψ n = 1 ρR [ψ n , Φ n ] | {z } S n 1 + η∆ ⋆ ψ n | {z } S n 2 . (20) 
By [START_REF] Strauss | Dynamics of high β plasmas[END_REF], we know that S n 2 belongs to L 2 `0, T ; L 2 (Ω) ´and that S n 1 =

1 ρR ∇ψ n • ∇ ⊥ Φ n belongs to L ∞ `0, T ; L 2 (Ω) ´× L 2 `0, T ; H 1 0 (Ω)
´, which is included in L 2 (0, T ; L s (Ω)), for all 1 < s < 2 (since H 1 0 (Ω) ⊂ L p (Ω), for all 1 < p < +∞).

Through (20) and thinking that ρ and R are bounded from below, we can conclude that ∂tψ n is bounded in L 2 (0, T ; L s (Ω)), for all 1 < s < 2.

Then, using Theorem 13, we can insure that

ψ n → ψ in L 2 `0, T ; W 1,p (Ω) ´, for all 1 < p < +∞, (21) 
and, using Theorem 14, we also get

ψ n → ψ in C ([0, T ]; L p (Ω)) , for all 1 < p < +∞, (22) 
thanks to the compact injection of H 1 0 (Ω) in L p (Ω), for any 1 < p < +∞. For the velocity potential:

∂tω n = 1 ρR [ω n , Φ n ] | {z } T n 1 -2 1 (ρR) 2 [ρR, Φ n ] ω n | {z } T n 2 + ρR » ψ n , 1 ρR 2 ∆ ⋆ ψ n - | {z } T n 3 + ν∆ρω n | {z } T n 4 . (23) 
Let's deal with the bounds on T n 1 , T n 2 , T n 3 and T n 4 . Notice that we will sometimes forget ρ and R coefficients which are bounded from above and from below.

We first can rewrite the Poisson brackets as

[a, b] = div(a∇ ⊥ b), (24) 
where ∇ ⊥ = (-∂y, ∂x).

On the one hand, we write

8 > > > > > < > > > > > : T n 1 = div " 1 ρR ∆ρΦ n ∇ ⊥ Φ n « + ∆ρΦ n ∇ ⊥ Φ n • ∇ " 1 ρR « , T n 2 = 1 ρR 2 ∆ρΦ n ∇ ⊥ Φ n • ∇(ρR), T n 3 = div " 1 R ∆ ⋆ ψ n ∇ ⊥ ψ n « + 1 ρR 2 ∆ ⋆ ψ n ∇ ⊥ ψ n • ∇ (ρR) .
We can say that ∆ρΦ n ∇ ⊥ Φ n and ∆ ⋆ ψ n ∇ ⊥ ψ n belong to the product space L 2 `0, T ; L 2 (Ω) ´× K ξ , which is included in L 2 2-ξ (0, T ; L s (Ω)), for all 1 < s < 2 1+ξ , and for any ξ ∈]0, 1[. Therefore, if there exists q > 2 such that ∇(ρR) belongs to L q (Ω), then there exists r > 1 such that

T n 2 is bounded in L 2 2-ξ (0, T ; L r (Ω)), whereas T n 1 and T n 3 are bounded in L 2 2-ξ `0, T ; W -1,s (Ω) ´+ L 2 2-ξ (0, T ; L r (Ω)
), for all 1 < s < 2 1+ξ . But, in 2-dimension, L r (Ω) ⊂ H -1 (Ω), for all r > 1, so we can summarize as follows: T n 1 , T n 2 and T n 3 are all bounded in L 2 2-ξ `0, T ; W -1,s (Ω)

´, for all 1 < s < 2 1+ξ . On the other hand, since ω n is bounded in L 2 `0, T ; L 2 (Ω) ´, we conclude that T n 4 is bounded in L 2 `0, T ; H -2 (Ω)

´.

As a consequence, by the equation ( 23), the time derivative ∂tω n is bounded in L 2 `0, T ; H -2 (Ω) ´, what allows us to use Theorem 13 to conclude

ω n → ω in L 2 `0, T ; W -1,p (Ω) ´, for all 1 < p < +∞, (25) 
or, equivalently

Φ n → Φ in L 2 `0, T ; W 1,p (Ω)
´, for all 1 < p < +∞.

Moreover, using Theorem 14, we get

Φ n → Φ in C ([0, T ]; L p (Ω)) , for all 1 < p < +∞, (27) 
thanks to the compact injection of H 1 0 (Ω) in L p (Ω), for any 1 < p < +∞.

Convergences

-Equations (10) -

The only difficulties concern the quadratic terms S n 1 , T n 1 , T n 2 and T n 3 . Since the Poisson brackets can be rewritten as in (24), we only need to get the convergence in the sense of distributions for the terms of "a∇ ⊥ b"-type.

• In order to pass to the limit in the first equation of ( 10), we just have to deal with the term ψ n ∇ ⊥ Φ n .

We know that ψ n strongly converges to ψ in C ([0, T ]; L p (Ω)), for all 1 < p < +∞ and that ∇ ⊥ Φ n weakly converges to ∇ ⊥ Φ in K ξ , for all ξ ∈]0, 1[, and this is enough to conclude the convergence for S n 1 :

ψ n ∇ ⊥ Φ n → ψ∇ ⊥ Φ in D ′ ((0, T ) × Ω)) .
• For the second equation of ( 10), three terms are concerned. Since ∇ ⊥ Φ n strongly converges to ∇ ⊥ Φ in L 2 (0, T ; L p (Ω)), for all 1 < p < +∞ and since ω n weakly converges to ω in L 2 `0, T ; L 2 (Ω) ´, we get the expected convergence for T n 1 :

ω n ∇ ⊥ Φ n → ω∇ ⊥ Φ in D ′ ((0, T ) × Ω) .
Analogous arguments can be expressed for the convergence of T n 3 :

∆ * ψ n ∇ ⊥ ψ n → ∆ * ψ∇ ⊥ ψ in D ′ ((0, T ) × Ω) .
The term T n 2 is a little bit different, it can be written

T n 2 = ω n ∇(ρR) • ∇ ⊥ Φ n . The weak convergence of ω n to ω in L 2 `0, T ; L 2 (Ω) ´and the strong convergence of ∇ ⊥ Φ n to ∇ ⊥ Φ in K ξ , for all ξ ∈]0, 1[, gives the convergence: [ρR, Φ n ]ω n → [ρR, Φ]ω in D ′ ((0, T ) × Ω) .
-Boundary conditions (11) -By Lemma 12, we know that ψ n ⇀ ψ, Φ n ⇀ Φ and ∇Φ n ⇀ ∇Φ in L 2 `0, T ; H 1 (Ω) ´. Since the trace operator T : H 1 (Ω) → L 2 (∂Ω) is linear and continuous, it is also weakly continuous and then we can deduce that

ψ n ⇀ ψ, Φ n ⇀ Φ, ∇Φ n ⇀ ∇Φ in L 2 `0, T ; L 2 (∂Ω)
´, what gives the convergence for the boundary conditions [START_REF] Gerbeau | Mathematical methods for the magnetohydrodynamics of liquid metals[END_REF].

-Initial conditions (12) -Through ( 22) and ( 27), we obtain the strong convergences ψ n (0) → ψ(0) and ψ n (0) → ψ(0) in L p (Ω), for all 1 < p < +∞, so that the initial conditions ( 12) are satisfied.

Stability of stationary solutions

In this section we study the stability of stationary solutions. We believe that it is an appropriate mathematical formulation of the Current Hole. The ultimate goal is to determine what are the stationary solutions which are also stable solutions. It is possible to relax the assumption of stationarity, in this case the questions is to determine quasi-stationary and stable solutions. In what follows we focus on spectral stability of a special family of stationary solutions which correspond to eigenvectors of the Grad-Shafranov operator.

In order to fit with the model used in [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF] and to obtain a more convenient mathematical formulation of the Current Hole, we consider the problem with a source term

( ∂tψ = 1 ρR [ψ, Φ] + η (∆ ⋆ ψ -Jc) , ∂tω = ρR " 1 (ρR) 2 [ω, Φ] + h 1 (ρR) 2 , Φ i ω " + ρR h ψ, 1 ρR 2 ∆ ⋆ ψ i , (28) 
plus Dirichlet boundary conditions. The source term Jc is a forcing nonohmic current [START_REF] Czarny | Bézier surfaces and finite elements for MHD simulations[END_REF], see Remark 3. The initial conditions are denoted ψ0 = ψ(t = 0), ω0 = ω(t = 0).

We will use assume in this section that ν ≥ 0, η ≥ 0, that (3) holds, and that 0 < R -< R < R + .

Stationary solutions

In our context, a stationary solution is such that the velocity is zero, which turns into Φ0 = ω0 = 0. In this case -∆ ⋆ ψ0 = Jc and ω0 = 0.

Plugging in (28) one gets the relation » ψ0,

1 ρR 2 ∆ ⋆ ψ0 - = 0.
Any ψ0 such that 1 ρR 2 ∆ ⋆ ψ0 = f (ψ0) for a given function f satisfies this condition. In this work we assume a spectral dependence that is

- 1 ρR 2 ∆ ⋆ ψ0 = λψ0.
Equivalently ψ0 is solution to

 -∂R `1 R ∂Rψ0 ´-∂Z `1 R ∂Z ψ0 ´= λρRψ0, x ∈ Ω, ψ0 = 0, x ∈ ∂Ω.
This problem admits a symmetric and positive weak formulation in H 1 0 (Ω), see [START_REF] Allaire | Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation[END_REF]. We deduce that there exists a complete family (ui, λi) i≥0 of real eigenvectors ui ∈ H 1 0 (Ω) and real eigenvalues λi ∈ R such that

 -∂R `1 R ∂Rui ´-∂Z `1 R ∂Z ui ´= λiρRui, x ∈ Ω, ui = 0, x ∈ ∂Ω, with the ordering 0 < λ0 ≤ λ1 ≤ λ2 ≤ • • • . The spectral gap is positive [1] µ = λ1 -λ0 > 0. ( 29 
)
The eigenvectors are orthonormal for the weighted L 2 scalar product and for the weighted

H 1 0 scalar product Z Ω ρRuiuj = δij and Z Ω 1 R ∇ui • ∇uj = λiδij. (30) 
Definition 15. All initial data

(ψ0, ω0) = γ(ui, 0), ∀i, (31) 
are stationary for the source term Jc = ∆ ⋆ ui. We may call them spectral initial data.

Remark 16. The eigenvalues and eigenvectors are continuous with respect to the coefficient of the problem which is ρ. Equivalently the eigenvalues and eigenvectors are continuous with respect to the function

w = ρR 2 . ( 32 
)
With (32), bounds of various quantities are obtained uniformly with respect to the density profile.

Stability in the case i = 0

As a preliminary remark we stress that the generalization of ( 13) writes

d dt Z Ω |∇ψ| 2 2R + |∇Φ| 2 2ρR + η Z Ω (∆ ⋆ ψ) 2 R + ν Z Ω ω 2 ρR = η Z Ω 1 R Jc∆ ⋆ ψ (33)
from which we can deduce from the Cauchy-Schwarz inequality that

d dt Z Ω |∇ψ| 2 2R + |∇Φ| 2 2ρR ≤ η Z Ω 1 2R J 2 c .
It implies that ψ and Φ remain bounded in the H 1 0 norm

ψ(t) 2 H 1 0 (Ω) + Φ(t) 2 H 1 0 (Ω) ≤ C " ψ0 2 
H 1 0 (Ω) + t Jc 2 L 2 (Ω) " . (34) 
This inequality does not imply nor that ψ(t) remains close to its initial condition ψ0, neither that Φ(t) remains close to zero. Our goal is here to obtain some inequalities that will explain precisely that ψ(t) remains close to its initial condition ψ0, and that Φ(t) remains close to zero. It will establish the stability of the corresponding initial data. Let us define the coefficients αn of expansion of ψ over the eigenvector basis ψ

(t) = X n≥0 αn(t)un, αn(t) = Z Ω ρRψ(t)un.
We set γ = α0(0). We study the differences

ψ = ψ -γu0 and ω = ω -0 = ω.
Similarly we define Φ = Φ -Φ0 = Φ. We also assume that Jc = γ∆ ⋆ u0.

Proposition 17. One has the identity

d dt Z Ω ˛∇ψ ˛2 2R -λ0ρRψ 2 + ˛∇Φ ˛2 2ρR ! = -η I(ψ) -ν Z Ω ω 2 ρR ( 35 
)
where we have defined

I(ψ) = Z Ω `∆⋆ ψ ´2 R + λ0ρRψ∆ ⋆ ψ ! . ( 36 
)
Proof. Simple algebra shows that

8 > > > > < > > > > : ∂tψ = 1 ρR [γu0, Φ] + 1 ρR [ψ, Φ] + η∆ ⋆ ψ, ∂tω = ρR h γu0, 1 ρR 2 ∆ ⋆ ψ i + ρR h ψ, 1 ρR 2 ∆ ⋆ γu0 i +ρR " 1 (ρR) 2 ˆω, Φ ˜+ h 1 (ρR) 2 , Φ i ω " + ρR h ψ, 1 ρR 2 ∆ ⋆ ψ i .
(37) The source term Jc has been cancelled. The right hand sides are the sum of a linear term with respect to ψ and ω (this term is written just after the sign =) and of a quadratic term (written on the next line). Concerning the quadratic terms, the structure is identical to the structure of the system [START_REF] Fujita | Plasma Equilibrium and Confinement in a Tokamak with Nearly Zero Central Current Density in JT-60U[END_REF]. Multiplying ∂tψ by -1 R ∆ ⋆ ψ and ∂tω by -1 ρR Φ and integrating by parts in the domain, the following energy relation can be deduced:

d dt Z Ω ˛∇ψ ˛2 2R + ˛∇Φ ˛2 2ρR = -η Z Ω `∆⋆ ψ ´2 R -ν Z Ω ω 2 ρR - Z Ω " 1 ρR [γu0, Φ] « " 1 R ∇ ⋆ ψ « - Z Ω " ρR » γu0, 1 ρR 2 ∆ ⋆ ψ - + ρR » ψ, 1 ρR 2 ∆ ⋆ γu0 -« " 1 ρR Φ « = -η Z Ω `∆⋆ ψ ´2 R -ν Z Ω ω 2 ρR - Z Ω [γu0, Φ] 1 ρR 2 ∇ ⋆ ψ + Z Ω » γu0, 1 ρR 2 ∆ ⋆ ψ - Φ - Z Ω » ψ, 1 ρR 2 ∆ ⋆ γu0 - Φ = -η Z Ω `∆⋆ ψ ´2 R + λ0 Z Ω ˆψ, γu0 ˜Φ -ν Z Ω ω 2 ρR = -η Z Ω `∆⋆ ψ ´2 R + λ0 Z Ω ˆγu0, Φ ˜ψ -ν Z Ω ω 2 ρR .
Next we eliminate ˆγu0, Φ ˜with the first equation of the system rewritten as

[γu0, Φ] = ρR∂tψ -[ψ, Φ] -ηρR∆ ⋆ ψ, so that Z Ω ˆγu0, Φ ˜ψ = Z Ω ρR∂t ψ 2 2 - Z Ω " ψ 2 2 , Φ # -η Z Ω ρR(∆ ⋆ ψ)ψ = Z Ω ρR∂t ψ 2 2 -η Z Ω ρR(∆ ⋆ ψ)ψ.
The remaining step consists in showing that the left hand side is a non negative quadratic form, and that the right hand side is controlled. To do so, let us define b ψ = X n≥1 αnun = ψ -α0u0.

Proposition 18. The left hand side of (35) controls the H 1 0 norm of b ψ and Φ. There exists a constant C > 0 such that

µ ' ' ' b ψ ' ' ' 2 H 1 0 (Ω) + ' ' Φ ' ' 2 H 1 0 (Ω) ≤ C Z Ω ˛∇ψ ˛2 R -λ0ρRψ 2 + ˛∇Φ ˛2 ρR ! , ( 38 
)
where µ is the spectral gap (29).

Proof. It is sufficient to remark that Z

Ω ρRψ 2 = X n≥0 α 2 n and Z Ω |∇ψ| 2 R = X n≥0 λnα 2 n . Therefore Z Ω ˛∇ψ ˛2 R -λ0ρRψ 2 ! = X n≥1 (λn -λ0) α 2 n ≥ µ X n≥1 α 2 n controls the H 1 0 norm of b ψ.
Proposition 19. Assume that the function w defined in (32) is constant.

Then the right hand side of ( 35) is non positive.

Proof. The hypothesis ρR = w R has a major consequence. Indeed the contribution to be analyzed in the right hand side of (35) is I(ψ).

One has

I(ψ) = X n,m≥0 αnαm Z Ω λnλm ρ 2 R 4 R unum -λ0λmρ 2 R 3 unum = w X n,m≥0 αnαm Z Ω (λnλm -λ0λm) ρ 2 R 3 unum
Because of the orthogonality relations (30), we obtain

I(ψ) = w X n α 2 n `λ2 n -λ0λn ´. (39) 
Therefore I(ψ) ≥ 0 unconditionally and the claim is proved.

Next we do not consider anymore that w is a constant. The method of analysis consists nevertheless in comparing I(ψ) with a functional that can be decomposed as in (39). But we first establish technical results. Proposition 20. Let T > 0. The coefficient α0(t) satisfies the estimate

|α0(t)| ≤ |α0(0)| + C Z t 0 ' ' ' b ψ(s) ' ' ' H 1 0 (Ω) ds ( 40 
)
for some constant C > 0 and for all t ≤ T .

Proof. Using the first equation of (37) one obtains

α ′ 0 (t) = d dt Z Ω ρRψ(t)u0 = Z Ω [γu0, Φ]u0 + Z Ω [ψ, Φ]u0 + η Z Ω ρR∆ ⋆ ψu0.
The first integral vanishes:

R Ω [γu0, Φ]u0 = γ R Ω [u0, u0]Φ = 0. The second integral is Z Ω [ψ, Φ]u0 = Z Ω [ψ -α0(t)u0, Φ]u0 = Z Ω [ b ψ, Φ]u0.
Using the energy identity (34) it is evident that Φ is bounded in

H 1 0 (Ω). Therefore ˛ZΩ [ψ, Φ]u0 ˛≤ C ' ' ' b ψ ' ' ' H 1 0 (Ω)
.

The third integral is

Z Ω ρR∆ ⋆ ψu0 = Z Ω ρR∆ ⋆ b ψu0 + α0(t) Z Ω ρR(∆ ⋆ u0)u0 = Z Ω ρR∆ ⋆ b ψu0 -α0(t)λ0 Z Ω ρ 2 R 3 u 2 0 .
One also has after one integration by parts ˛ZΩ

ρR∆ ⋆ b ψu0 ˛≤ C ' ' ' b ψ ' ' ' H 1 0 (Ω)
.

Therefore one has the Gronwall type relation α ′ 0 (t) + σα0(t) = q(t) with σ = λ0 R Ω ρ 2 R 3 u 2 0 > 0 and

|q(t)| ≤ C ' ' ' b ψ(t) ' ' ' H 1 0 (Ω)
for some universal constant C > 0. So α0(t) = e -σt α0(0) + Z t 0 e -σ(t-s) q(s)ds.

This proves the claim.

Lemma 21. (Gronwall lemma) Let t → f (t) be a smooth non negative function such that

f (t) ≤ A + B Z t 0 f (s)ds + C Z t 0 Z s 0 f (r)dr, A, B, C ≥ 0.
Then there exists a constant D > 0 such that

f (t) ≤ " 1 + `Bt + Ct 2 ´eDt " A. ( 41 
) Proof. Set u(t) = R t 0 R s 0 f (r)dr and v = u ′ + u. Then v ′ ≤ A + Dv with D = max(B + 1, C). Therefore a classical Gronwall lemma shows that v(t) ≤ e Dt v(0) + A Z t 0 e D(t-s) ds = e Dt -1 D A ≤ te Dt A, that is u ′ (t) + u(t) ≤ te Dt A =⇒ u ′ (t) ≤ te Dt A.
For 0 ≤ s ≤ t one has u ′ (s) + u(s) ≤ `eDt A ´s. Once more, the Gronwall lemma between 0 and t shows that

u(t) ≤ e -t u(0) + " e Dt A " Z t 0 e s-t sds ≤ " e Dt A " t 2 .
Since f (t) ≤ A + Bu ′ (t) + Cu(t), the result is proved.

Proposition 22. There exists a second order polynomial

x → pt(x) = -C1β |α0(t)| x + C2µx 2 -C3βx 2 ( 42 
)
where µ is the spectral gap, β = w -w-W 1,∞ (Ω) , and the three constants C1, C2 and C3 are positive, such that

I(ψ(t)) ≥ pt " b ψ H 1 (Ω) " . (43) 
Proof. We first remark that ψ(t) = b ψ(t) + α0(t)u0, so that

I(ψ) = I( b ψ) + α0(t) 2 I(u0) + α0(t) Z Ω 2∆ ⋆ u0∆ ⋆ b ψ R + λ0ρR(u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) = I( b ψ) + α0(t) Z Ω λ0ρR(-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0)
after simplifications.

• The integral term is rewritten for convenience as

Z Ω λ0 w R (-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) = Z Ω λ0 w -w- R (-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) + w- Z Ω λ0 R (-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) = Z Ω λ0 w -w- R (-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0).
Here w-is any constant. Let us choose for convenience

w-= min (R,Z)∈Ω w (R, Z) > 0.
We also define

β = w -w-W 1,∞ (Ω) . Then ˛ZΩ λ0 w -w- R (-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) ˛≤ C1β b ψ H 1 (Ω) .
Thanks to the energy identity (34) one gets

α0(t) Z Ω λ0ρR(-u0∆ ⋆ b ψ + b ψ∆ ⋆ u0) ≥ -C1 |α0(t)| β b ψ H 1 (Ω) . (44) 
• Let us define the integral

J ( b ψ) = Z Ω " ∆ ⋆ b ψ " 2 ρR 3 + λ0 R b ψ∆ ⋆ b ψ.
Due to the orthogonality relations (30)

J ( b ψ) = X n≥0 α 2 n `λ2 n -λ0λn ´≥ 0
holds without condition. Notice also that one has

J ( b ψ) ≥ (λ1 -λ0) X n≥0 λnα 2 n ≥ C2(λ1 -λ0) b ψ 2 H 1 (Ω) . (45) 
• Next,

I( b ψ) = Z Ω w " ∆ ⋆ b ψ " 2 ρR 3 + w λ0 R b ψ∆ ⋆ b ψ = Z Ω 0 B @(w -w-) " ∆ ⋆ b ψ " 2 ρR 3 + (w -w-) λ0 R b ψ∆ ⋆ b ψ 1 C A + w-J ( b ψ). Then I( b ψ) ≥ w-J ( b ψ) + Z Ω (w -w-) λ0 R b ψ∆ ⋆ b ψ.
Thanks to (45) one has the lower bound

I( b ψ) ≥ C2(λ1 -λ0) b ψ 2 H 1 (Ω) + Z Ω (w -w-) λ0 R b ψ∆ ⋆ b ψ. (46) 
After one integration by parts, it comes ˛ZΩ

(w -w-) λ0 R b ψ∆ ⋆ b ψ ˛≤ C3 w -w-W 1,∞ (Ω) b ψ 2 H 1 (Ω) (C3 > 0).
Therefore one obtains

I(ψ) ≥ -C1 |α0(t)| w -w-W 1,∞ (Ω) b ψ H 1 (Ω) +C2(λ1 -λ0) b ψ 2 H 1 (Ω) -C3 w -w-W 1,∞ (Ω) b ψ 2 H 1 (Ω)
or also

I(ψ) ≥ pt " b ψ H 1 0 (Ω) "
, and the proof is ended.

Theorem 23. Let T > 0. There exists a constant C > 0, depending on time, such that

' ' ψ(t) ' ' H 1 0 (Ω) + ' ' Φ(t) ' ' H 1 0 (Ω) ≤ C " ' ' ψ(0) ' ' H 1 0 (Ω) + ' ' Φ(0) ' ' H 1 0 (Ω) " . (47) 
More precisely, (i) there exists constants c1, c2 > 0 such that (47) holds for all t ≤ T with C = c1(1 + te c 2 t ),

(ii) if the function w has small variation in the sense

β = w -w-W 1,∞ (Ω) < c0(λ1 -λ0) (c0 > 0), (48) 
then there exists constants c3, c4 > 0 such that (47) holds for all t ≤ T with C = c3(1 + t 3 e c 4 t ).

Proof.

(i) One can lower bound the negative part of pt (42) as

pt(x) ≥ -M `α0(t) 2 + x 2 ´, M > 0.
Inserting in ( 35)-( 36)-( 43), one obtains

d dt " µ ' ' ' b ψ(t) ' ' ' 2 + ' ' Φ(t) ' ' 2 « ≤ M " ' ' ' b ψ(t) ' ' ' 2 + α0(t) 2 « . (49) 
Thanks to the basic inequality (a + b) 2 ≤ 2a 2 + 2b 2 applied to (40) one obtains

d dt " µ ' ' ' b ψ(t) ' ' ' 2 + ' ' Φ(t) ' ' 2 « ≤ M ' ' ' b ψ(t) ' ' ' 2 + 2α0(0) 2 + 2 "Z t 0 ' ' ' b ψ(s) ' ' ' ds « 2 ! .
The Cauchy-Schwarz inequality implies that

d dt " µ ' ' ' b ψ(t) ' ' ' 2 + ' ' Φ(t) ' ' 2 « ≤ M " ' ' ' b ψ(t) ' ' ' 2 + 2α0(0) 2 + 2t Z t 0 ' ' ' b ψ(s) ' ' ' 2 ds «
for t < T . After integration between 0 and t one gets

µ ' ' ' b ψ(t) ' ' ' 2 + ' ' Φ(t) ' ' 2 ≤ " µ ' ' ' b ψ(0) ' ' ' 2 + ' ' Φ(0) ' ' 2 « + M Z t 0 ' ' ' b ψ(s) ' ' ' 2 ds +2M T α0(0) 2 + 2M t Z t 0 Z s 0 ' ' ' b ψ(r) ' ' ' 2 drds. ( 50 
)
We can simplify and get

' ' ' b ψ(t) ' ' ' 2 ≤ a " ' ' ψ(0) ' ' 2 + ' ' Φ(0) ' ' 2 " +b Z t 0 ' ' ' b ψ(s) ' ' ' 2 ds+ct Z t 0 Z s 0 ' ' ' b ψ(r) ' ' ' 2 drds.
(51) Lemma 21 applied to the inequality (51) with the particular choices

(A, B, C) = " a " ' ' ψ(0) ' ' 2 + ' ' Φ(0) ' ' 2 " , b, ct " shows that ' ' ' b ψ(t) ' ' ' 2 ≤ " 1 + bte dt + ct 3 e dt " a " ' ' ψ(0) ' ' 2 + ' ' Φ(0) ' ' 2 " , d > 0, ( 52 
)
and lead to (47). Proposition [START_REF] Strauss | Nonlinear Three-Dimensional Magnetohydrodynamics of Noncircular Tokamaks[END_REF] corresponds to b = c = 0. In this case the solution remains close to the initial data for all time t > 0. On the other hand the general result with (b, c) = (0, 0) shows the continuity in the sense of Hadamard in H 1 0 (Ω), but with an exponential growth of the distance between the initial data and the solution. It is reasonable to infer that if the function w is non constant, but with small variations, then the solution will remain closer to the initial data, closer than what is predicted by the previous theorem. This is indeed the case.

(ii) For a small enough constant c0, the dominant coefficient of pt(x) is positive: C2µ -C3β = C4 > 0. Therefore

pt(x) = C4x 2 -C1β |α0(t)| x = C4 " x - C1β |α0(t)| 2C4 « 2 - C 2 1 β 2 4C4 α0(t) 2 ≥ -M α0(t) 2 .
One obtains d dt

" µ ' ' ' b ψ ' ' ' 2 + ' ' Φ ' ' 2 « ≤ M α0(t) 2 (53) 
which is a simplification of (49). So instead of (51) one gets

' ' ' b ψ(t) ' ' ' 2 ≤ a " ' ' ψ(0) ' ' 2 + ' ' Φ(0) ' ' 2 " + ct Z t 0 Z s 0 ' ' ' b ψ(r) ' ' ' 2 drds.
We now get (52) with b = 0. The rest of the proof is evident.

Discussion

The model that we have considered is quite general since the boundary and the density profile are arbitrary. It will be perhaps necessary to modify the model in the future to better fit with the physical setting of the problem, but the main ingredients are already there. The general model is equipped with an energy identity which shows that it fits into the standard formulation of such problems established after the seminal works of Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] and Temam [START_REF] Temam | Navier-Stokes Equations, Theory and Numerical Analy-sis[END_REF]. The results obtained in the previous section show that the fundamental mode is stable in the sense of Hadamard, and that we control the growth in time of the difference with the initial condition in the case the initial solution is close to the fundamental mode. If the function w is a constant, then pt(x) ≥ 0, and

' ' ψ(t) ' ' H 1 0 (Ω) + ' ' Φ(t) ' ' H 1 0 (Ω) ≤ c1 " ' ' ψ(0) ' ' H 1 0 (Ω) + ' ' Φ(0) ' ' H 1 0 (Ω)
" holds (this is also a consequence of Lemma 19). If compares with the results of the main theorem of this section, it indicates that the dependence in time of ' ' ψ(t) ' '

H 1 0 (Ω) + ' ' Φ(t) ' ' H 1 0 (Ω)
if more important if the function w is less flat. We do not know if these estimates are optimal. The basic inequality (38) plays a crucial role. The fundamental mode u0 is non negative (this is a basic result of the spectral theory of coercive operators like the Poisson operator, see [START_REF] Allaire | Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation[END_REF]). Considering the physical situation for the Current Hole which is described in Figure 2, one sees that the initial condition of the Current Hole has both signs, + and -, that is a mathematical formulation of the problem must consider at least the second mode u1 as initial solution. It is an open problem nowadays.
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 12 Figure1: Schematic description of the poloidal section of a tokamak. The poloidal section is represented by the grey region plus the white region Ω. The main part of the plasma is assumed to be in the white region. The models developed in this work are defined in the 2D domain Ω.

  Some notations are introduced in this paragraph. The Poisson brackets of two scalar functions is [a, b] = ∂Ra∂Z b -∂Z a∂Rb.

  [START_REF] Kadomtsev | Non linear helical perturbations of a plasma in a Tokamak[END_REF]. ([START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], Theorem 5.1, p.58) Let B be a Banach space, and B0 and B1 be two reflexive Banach spaces. Assume B0 ⊂ B with compact injection, B ⊂ B1 with continuous injection.Fix T < +∞, 1 < p0 < +∞, 1 < p1 < +∞. Then the injection {v ∈ L p 0 (0, T ; B0); ∂tv ∈ L p 1 (0, T ; B1)} ⊂ L p 0 (0, T ; B) Theorem 14. ([8], Corollary 2.1, p.29) Let O ⊂ R M be compact and let X be a separable Banach space. Assume that vn : O → X * , n = 1, 2, . . . is a sequence of measurable functions such that ess sup y∈O vn(y) X

	is compact.

* ≤ M uniformely in n = 1, 2, . . . . Moreover let the family of (real) functions vn, Φ : y → vn(y), Φ , y ∈ O, n = 1, 2, . . . be equi-continuous for any fixed Φ belonging to a dense subset in the space X.

Then vn ∈ C `O; X * weak ´for any n = 1, 2, . . . , and there exists v ∈ C `O; X * weak ´such that