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This paper addresses the following general problem of tree regular model-checking: decide
whether R∗(L) ∩ Lp = ∅ where R∗ is the reflexive and transitive closure of a successor

relation induced by a term rewriting system R, and L and Lp are both regular tree
languages. We develop an automatic approximation-based technique to handle this –
undecidable in general – problem in the case when term rewriting system rules are non

left-linear.
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1. Introduction

Automatic verification of software systems is one of the most challenging research

problems in computer aided verification. In this context, regular model-checking

has been proposed as a general framework for analysing and verifying infinite state

systems. In this framework, systems are modelled using regular representations: the

systems configurations are modelled by finite words or trees (of unbounded size) and

the dynamic behaviour of systems is modelled either by a transducer or a (term)

rewriting system (TRS for short). Afterwards, a system reachability-based analysis

∗This work was granted by the French ANR project RAVAJ.
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is reduced to the regular languages closure computation under (term) rewriting

systems: given a regular language L, a relation R induced by a (term) rewriting

system and a regular set LP of bad configurations, the problem is to decide whether

R∗(L)∩Lp = ∅ where R∗ is the reflexive and transitive closure of R. Since R∗(L) is

in general neither regular nor decidable, several approaches handle restricted cases

of this problem.

In this paper we address this problem for tree regular languages by automat-

ically computing over- and under-approximations of R∗(L). Computing an over-

approximation Kover of R∗(L) may be useful for the verification if Kover ∩ Lp = ∅,

proving that R∗(L)∩Lp = ∅. Dually, under-approximation may be suitable to prove

that R∗(L)∩Lp 6= ∅ (see Fig.1). This approach is relevant if the computed approx-

imations are not too coarse. Another important point is that in general, there are

some restrictions on the rewriting systems in order to ensure the soundness of the

above approach. This paper follows and adapts an expert-human guided approx-

imation technique introduced in [17] for left-linear term-rewriting systems. More

precisely, the paper 1) extends this approach to term rewriting systems with non-

left-linear rules, 2) illustrates its advantages on examples, and 3) points out the

application domains.

Notice that a preliminary version of the present paper has been published [7].

The results in [7] are obtained for left-quadratic TRSs. To make it short, the present

paper extends the model in [7] and generalises the underpinning constructions to

deal with all non left-linear term rewriting systems. In addition, more examples are

given to illustrate the definitions.

= ∅?
Lp

R∗(L)

L

Kover

= ∅?

Figure 1. Is the intersection between Kover and Lp empty?

Related Work Given a term rewriting system R and two ground terms s

and t, deciding whether s →∗
R t is a central question in automatic proof theory.

This problem is shown decidable for term rewriting systems which are terminat-

ing but it is undecidable in general. Several syntactic classes of term rewriting

systems have been pointed out to have a decidable accessibility problem, for in-
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stance by providing an algorithm to compute R∗(L) when L is a regular tree lan-

guage [15, 13, 19, 22, 25, 26, 23]. In [17], the authors focus on a general completion

based human-guided technique. This technique has been successfully used (not au-

tomatically) to prove the security of cryptographic protocols [18] and recently Java

Bytecode programs [4]. This framework was extended in [24] to languages accepted

by AC-tree automata. We quote several works for tree regular model checking pro-

posed in [9, 1, 8, 20].

Layout of the paper The paper is organised as follows. Section 2 introduces

notations and the basic completion approach. Next, Section 3 presents the main

theoretical contributions of the paper, while Section 4 describes a family of examples

and gives related security issues. Finally, Section 5 concludes.

2. Preliminaries

2.1. Terms and TRSs

Comprehensive surveys can be found in [16, 2] for term rewriting systems, and

in [12, 19] for tree automata and tree language theory.

Let F be a finite set of symbols, associated with an arity function ar : F → N,

and let X be a countable set of variables. T (F ,X ) denotes the set of terms, and

T (F) denotes the set of ground terms (terms without variables). The set of variables

of a term t is denoted by Var(t). A substitution is a function σ from X into T (F ,X ),

which can be extended uniquely to an endomorphism of T (F ,X ). A position p for a

term t is a word over N. The empty sequence ǫ denotes the top-most position. The

set Pos(t) of positions of a term t is inductively defined by: Pos(t) = {ǫ} if t ∈ X

and Pos(f(t1, . . . , tn)) = {ǫ}∪{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}. If p ∈ Pos(t), then

t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by

replacement of the subterm t|p at position p by the term s. We also denote by t(p) the

symbol occurring in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t)

(⊆ Pos(t)) the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.

Thus PosF (t) is the set of functional positions of t.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where l, r ∈

T (F ,X ) and l 6∈ X . A rewrite rule l → r is h-left-linear (resp. h-right-linear) if each

variable of l (resp. r) occurs at most h times within l (resp. r). A TRS R is h-left-

linear (resp. h-right-linear) if every rewrite rule l → r of R is h-left-linear (resp.

h-right-linear). For above linearity definitions, if h = 1, the prefix “h-” is omitted. A

TRS R is linear if it is right-linear and left-linear. The TRS R induces a rewriting

relation →R on terms whose reflexive transitive closure is written →∗
R. The set of R-

descendants of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →∗
R t}.

For every positive integer k, any ground terms s and t, we inductively define s →k
R t

by: s →0
R t if and only if s = t, and s →k+1

R t if and only if there exists a term s1

such that s1 →k
R t and s →R s1.
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2.2. Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be in-

finite. The set R∗(E) is generally not computable [19]. However, it is possible to

over-approximate it [17] using tree automata, i.e. a finite representation of infinite

(regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that Q ∩ F = ∅.

T (F ∪Q) is called the set of configurations A transition is a rewrite rule c → q,

where c ∈ T (F ∪Q) is a configuration and q ∈ Q. A normalised transition is a

transition c → q where c = f(q1, . . . , qn), f ∈ F , ar(f) = n, and q1, . . . , qn ∈ Q.

A bottom-up non-deterministic finite tree automaton (tree automaton for short)

is a quadruple A = 〈F ,Q,Qf ,∆〉, Qf ⊆ Q and ∆ is a finite set of normalised

transitions. The rewriting relation on T (F ∪Q) induced by the transition set ∆ of

A is denoted →∆. When ∆ is clear from the context, →∆ is also written →A. The

tree language recognised by A in a state q is L(A, q) = {t ∈ T (F) | t →⋆
A q}. The

language recognised by A is L(A) =
⋃

q∈Qf
L(A, q). A tree language is regular if

and only if it is recognised by a tree automaton. We denote by C[q1, . . . , qn] a term

of T (F∪{q1, . . . , qn}).

Let us now recall how tree automata and TRSs can be used for term reachability

analysis. Given a tree automaton A and a TRS R, the tree automata completion

algorithm proposed in [17] computes a tree automaton Ak
R such that L(Ak

R) =

R∗(L(A)) when it is possible (for the classes of TRSs where an exact computation

is possible, see [17]), and such that L(Ak
R) ⊇ R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0
R completion builds

a sequence A0
R,A1

R . . .Ak
R of automata such that if s ∈ L(Ai

R) and s →R t then

t ∈ L(Ai+1
R ). If there is a fix-point automaton Ak

R such that R∗(L(Ak
R)) = L(Ak

R),

then L(Ak
R) = R∗(L(A0

R)) (or L(Ak
R) ⊇ R∗(L(A)) if R is in no class of [17]). To

build Ai+1
R from Ai

R, a completion step is achieved. It consists of finding critical

pairs between →R and →Ai
R

. To define the notion of critical pair, the substitution

definition is extended to terms in T (F ∪Q). For a substitution σ : X 7→ Q and a

rule l → r ∈ R such that Var(r) ⊆ Var(l), if there exists q ∈ Q satisfying lσ →∗
Ai

R

q

then lσ →∗
Ai

R

q and lσ →R rσ is a critical pair. Note that since R and Ai
R is finite,

there is only a finite number of critical pairs. Thus, for every critical pair detected

between R and Ai
R such that rσ 6→∗

Ai
R

q, the tree automaton Ai+1
R is constructed by

adding a new transition rσ → q to Ai
R. Consequently, Ai+1

R recognises rσ in q, i.e.

rσ →Ai+1

R

q. However, the transition rσ → q is not necessarily normalised. Then,

we use abstraction functions whose goal is to define a set of normalised transitions

Norm such that rσ →∗
Norm q. Thus, instead of adding the transition rσ → q which

is not normalised, the set of transitions Norm is added to ∆, i.e., the transition set

of the current automaton Ai
R.

We give below a very general definition of abstraction functions which allow to

each functional position of rσ a state of Q. The role of an abstraction function

remains to define equivalence classes of terms where one class corresponds to one
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state of Q. An abstraction function γ is a function γ : ((R × (X → Q) × Q) 7→

N
∗) 7→ Q such that γ(l → r, σ, q)(ǫ) = q. Thus, given an abstraction function

γ, the normalisation of a transition rσ → q is defined as follows. Let γ be an

abstraction function, ∆ be a transition set, l → r ∈ R with Var(r) ⊆ Var(l) and

σ : X → Q such that lσ →∗
∆ q. The γ−normalisation of the transition rσ → q,

written Normγ(l → r, σ, q), is defined by:

Normγ(l → r, σ, q) = {r(p)(βp.1, . . . , βp.n) → β |

p ∈ PosF (r),

β =

{

q if p = ǫ

γ(l → r, σ, q)(p) otherwise,

βp.i =

{

σ(r(p.i)) if r(p.i) ∈ X

γ(l → r, σ, q)(p.i) otherwise.

Example 1. Let A = 〈F ,Q,Qf ,∆〉 be the tree automaton such that F =

{a, b, c, d, e, f, ω} with ar(s) = 1 with s ∈ {a, b, c, d, e, f} and ar(ω) = 0, Q =

{qb, qf , qω}, Qf = {qf} and ∆ = {ω → qω, b(qω) → qb, a(qb) → qf}. Thus, L(A) =

{a(b(ω))}. Given the TRS R = {a(x) → c(d(x)), b(x) → e(f(x))}, two critical pairs

are computed: a(qb) →∗
A qf , a(qb) →R c(d(qb)) and b(qω) →∗

A b(qω) →R e(f(qω)).

Let γ be the abstraction function such that γ(a(x) → c(d(x)), {x → qb}, qf )(ǫ) = qf ,

γ(a(x) → c(d(x)), {x → qb}, qf )(1) = qf , γ(b(x) → e(f(x)), {x → qω}, qb)(ǫ) = qb

and γ(b(x) → e(f(x)), {x → qω}, qb)(1) = qb. So, Normγ(a(x) → c(d(x)), {x →

qb}, qf ) = {d(qb) → qf , c(qf ) → qf} and Normγ(b(x) → e(f(x)), {x → qω}, qb) =

{f(qω) → qb, e(qb) → qb}.

Now we formally define what a completion step is. Let A = 〈F ,Q,Qf ,∆〉 be

a tree automaton, γ an abstraction function and R a left-linear TRS. We define a

tree automaton CR
γ (A) = 〈F ,Q′,Q′

f ,∆′〉 with:

• ∆′ = ∆ ∪
⋃

l→r∈R, σ:X 7→Q, lσ→∗
A

q,rσ 6→∗
A

q Normγ(l → r, σ, q),

• Q′ = {q | c → q ∈ ∆′} and

• Q′
f = Qf .

Example 2. Given A, R and γ of Example 1, performing one completion step

on A gives the automaton CR
γ (A) such that CR

γ (A) = 〈F ,Q,Qf ,∆′〉 where ∆′ =

∆∪Normγ(a(x) → c(d(x)), {x → qb}, qf )∪Normγ(b(x) → e(f(x)), {x → qω}, qb) =

{ω → qω, b(qω) → qb, a(qb) → qf , d(qb) → qf , c(qf ) → qf , f(qω) → qb, e(qb) → qb}.

Notice that CR
γ (A) is R-close, and in fact an over-approximation of R∗(L(A)) is

computed. Indeed, the tree automaton CR
γ (A) recognises the term a(e(e(f(ω)))) when

R∗(L(A)) = {a(b(ω)), a(e(f(ω))), c(d(b(ω))), c(d(e(f(ω))))}.

Proposition 3 (Theorem 1 in [17]) Let A be a tree automaton and R be a TRS

such that A is deterministic or R is left-linear, and for every l → r ∈ R, Var(r) ⊆

Var(l). For any abstraction function γ, one has:

L(A) ∪R(L(A)) ⊆ L(CR
γ (A))).
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In addition, an abstraction function can be defined in such a way that only

terms, actually reachable, will be computed. This class of abstraction functions is

called (A,R)−exact abstraction functions in [3].

Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton and R be a TRS. Let Im(γ) = {q |

∀l → r ∈ R, ∀p ∈ PosF (r) s.t. γ(l → r, σ, q)(p) = q}. An abstraction function γ is

(A,R)−exact if γ is injective and Im(γ) ∩Q = ∅.

By adapting the proof of Theorem 2 in [17] to the new class of abstractions, we

show that with such abstraction functions, only reachable terms are computed.

Theorem 4 (Theorem 2 in [17]) Let A be a tree automaton and R be a TRS

such that A is deterministic or R is right-linear. Let α be an (A,R)−exact abstrac-

tion function. One has: CR
α (A) ⊆ R∗(L(A)).

We now give the general result in [17] saying that, if there exists a fix-point

automaton, then its language contains all the terms actually reachable by rewriting,

at least.

Theorem 5 (Theorem 1 in [17]) Let A, R be respectively a tree automaton, a

TRS. For any abstraction function γ, if there exists N ∈ N and N ≥ 0 such that

(CR
γ )(N)(A) = (CR

γ )(N+1)(A), then R∗(L(A)) ⊆ L((CR
γ )(N)(A)).

f
qf

Aq1 A q2

Figure 2. A run of A on f(A, A).

The above method does not work for

all TRSs. For instance, consider a

constant A and the tree automaton

A = ({q1, q2, qf}, {A → q1, A →

q2, f(q1, q2) → qf}, {qf}) (Fig. 2) and the

TRS R = {f(x, x) → g(x)}. There is no

substitution σ such that lσ →∗
A q, for a

q in {q1, q2, qf}. Thus, following the pro-

cedure, there is no transition to add. But

f(A, A) ∈ L(A). Thus g(A) ∈ R(L(A)).

Since g(A) /∈ L(A), the procedure stops

(in fact does not begin) before providing

an over-approximation of R∗(L(A)).

3. Contributions

This section extends an approximation-based technique introduced in [17] for left-

linear term-rewriting systems, to TRSs with non left-linear rules. If the term-

rewriting system is not left-linear, it is possible to apply Proposition 3 by deter-

minizing the envolved automaton. However, since the determinisation is exponential

and since it has to be done at each completion step (which doesn’t preserve the de-

terminism), the procedure is too expensive to be used in practice. In this framework,
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our contribution provides a well-suited (parametrised) model and underpinning the-

oretical tools that avoid these exponential steps when the term rewriting system

is h-left-linear, with a small h. The small values of h can be justified by the fact

that most of TRS’s modelling concrete verification problems are 2-left-linear. In-

deed, non-left linear variables frequently occur to encode comparisons between two

elements of the specified system and, in most cases only two elements are compared.

Definition 6. Let A = (Q,∆,Qf ) be a finite bottom-up tree automaton. The au-

tomaton A(h) = (Q(h),∆(h),Q
(h)
f ), for h ≥ 1, is defined by:

• Q(h) = {{q} | q ∈ Q} ∪ {Q ⊆ Q | CardQ ≤ h} (states of Q(h) are denoted

with an (h) exponent),

• Q
(h)
f = {{q} | q ∈ Qf},

• ∆(h) = {f(q
(h)
1 , . . . , q

(h)
n ) → q(h) | ∀q ∈ q(h), ∃q1, . . . , qn ∈ Q, ∀1 ≤ i ≤

n, qi ∈ q
(h)
i and f(q1, . . . , qn) → q ∈ ∆}.

f
{qf}

A{q1, q2} A {q2, q1}

Figure 3. A run of A(2) on f(A, A).

To illustrate the definition above, let’s

consider the automaton A whose final

state is qf and whose transitions are

A → q1, A → q2 and f(q1, q2) → qf .

The states of A(2) are all pairs of states

and singletons over {q1, q2, qf}, and

the transitions are A → {q1}, A →

{q2}, A → {q1, q2}, f({q1}, {q2}) →

{qf}, f({q1, qi}, {q2, qj}) → {qf} for

all i, j’s in {1, 2, f} (Fig. 3). When

considering only the accessible states,

among all the transitions above we just

have transitions f({q1, qi}, {q2, qj}) →

{qf} for all i, j’s in {1, 2}.

Proposition 7. One has L(A) = L(A(h)).

Proof. By definition of A(h), if f(q1, . . . , qn) → q ∈ ∆, then f({q1}, . . . , {qn}) →

{q} ∈ ∆(h). Consequently, for every term t such that t →∗
A q, one also has t →∗

A(h)

{q}. Since for every qf ∈ Qf , {qf} ∈ Q
(h)
f , L(A) ⊆ L(A(h)).

It remains to prove that L(A(h)) ⊆ L(A). We will prove by induction on k that

for every k ≥ 1, for every term t, every state q(h) of A(h), if t →k

A(h) q(h), then for

all q ∈ q(h), t →k
A q.

• If t →
A(h) q(h), then, by definition of ∆(h), t is a constant and for all

q ∈ q(h), there exists a transition t → q in A.
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• Assume now that the claim is true for a fixed positive integer k. Let t be

a term and q(h) ∈ A(h) such that t →k+1

A(h) q(h). Consequently, there exists

f ∈ Fn such that t →k

A(h) f(q
(h)
1 , . . . . . . , q

(h)
n ) →

A(h) q(h). It follows that

t = f(t1, . . . , tk) and for all 1 ≤ i ≤ k, ti →
k

A(h) q
(h)
i . Using the induction

hypothesis, ti →k
A qi, for all qi ∈ q

(h)
i . Consequently, for all q ∈ q(h),

f(q1, . . . , qn) → q ∈ ∆, proving the induction.

So, L(A(h)) ⊆ L(A).

Lemma 8. Let k ≥ 1. If C[q1, . . . , qn] →k
A q and if q

(h)
1 , . . . q

(h)
n are states of A(h)

satisfying qi ∈ q
(h)
i for all 1 ≤ i ≤ n, then C[q

(h)
1 , . . . , q

(h)
n ] →k

A(h) {q}.

Proof. We prove by induction on k that for every k ≥ 1, if C[q1, . . . , qn] →k
A q

and if q
(h)
1 , . . . q

(h)
n are states of A(h) satisfying qi ∈ q

(h)
i for all 1 ≤ i ≤ n, then

C[q
(h)
1 , . . . , q

(h)
n ] →k

A(h) {q}.

• If k = 1, then C[q1, . . . , qn] → q is a transition of A. Therefore, by definition

of ∆(h), C[q
(h)
1 , . . . , q

(h)
n ] → {q} is a transition of A(h).

• Assume now that the proposition is true for all j ≤ k and that

C[q1, . . . , qn] →k+1
A q. There exist q′1, . . . , q

′
ℓ states of A and f ∈ Fℓ such

that C[q1, . . . , qn] →k
A f(q′1, . . . , q

′
ℓ) →A q. Consequently, C[q1, . . . , qn] is

of the form C[q1, . . . , qn] = f(t1, . . . , tℓ) where the ti’s are terms over

F∪{q1, . . . , qn}. Moreover, for all i, there exists ki ≤ k such that ti →
ki

A {q′i}

and
∑

i ki = k. Therefore, by induction hypothesis, t
(h)
i →ki

A(h) {q′i} where

t
(h)
i is the term obtained from ti by substituting qi by q

(h)
i . Now, since

f(q′1, . . . , q
′
ℓ) → q is a transition of A, f({q′1}, . . . , {q

′
ℓ}) → {q} is a transi-

tion of A(h).

It follows that C[q
(h)
1 , . . . , q

(h)
n ] →k+1

A(h) {q}, proving the lemma.

Lemma 9. If there are q1, q2, . . . , qj states of A, with j ≤ h such that t →∗
A qi for

every 1 ≤ i ≤ j, then t →∗

A(h) {qi | 1 ≤ i ≤ j}.

Proof. If t →∗
A qi for every 1 ≤ i ≤ j, then there exist functions πi’s from positions

of t into Q such that πi(ε) = qi and for every position p of t, if t|p ∈ Fn, then

t(p)(πi(p.1), . . . , πi(p.n)) → πi(p) is a transition of A.

Therefore, by definition of ∆(h), t(p)({πi(p.1) | 1 ≤ i ≤ j}, . . . , {πi(p.n) | 1 ≤

i ≤ j}) → {πi(p) | 1 ≤ i ≤ j} is in ∆(h). It follows that t →∗

A(h) {qi | 1 ≤ i ≤ j}.

Proposition 10. If each variable occurs at most h times in left-hand sides of rules

of R, then R(L(A)) ∪ L(A) ⊆ L(CR
γ (A(h))).

Proof. Since L(A) = L(A(h)) and since L(A(h)) ⊆ L(CR
γ (A(h))), L(A) ⊆

L(CR
γ (A(h))). It remains to show that R(L(A)) ⊆ L(CR

γ (A(h))).
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Let t ∈ R(L(A)). By definition there exists a rule l → r ∈ R, a position p of t

and a substitution µ from X into T (F) such that

t = t[rµ]p and t[lµ]p ∈ L(A) (1)

It follows there exist states q, qf of A such that qf is final, and

lµ →∗
A q and t[q]p →∗

A qf . (2)

Consequently, by Definition 6, one has

lµ →∗

A(h) {q} and t[{q}]p →∗

A(h) {qf}. (3)

If rµ →∗

A(h) {q}, then (3) implies that t[rµ]p →∗

A(h) {qf}. In this case, since t =

t[rµ]p and since {qf} is by construction a final state of A(h), t is in L(A(h)), which

is a subset of L(Cγ(A(h))).

Now we may assume that rµ 6→∗

A(h) {q}. Let Pl be the set of variable positions

of l; i.e. Pl = {p | l(p) ∈ X )}. Set Pl = {p1, . . . , pℓ}. Since lµ →∗
A q, by (2) there

exist states q1, . . . , qℓ of A such that

µ(l(pi)) →
∗
A qi and l[q1]p1

. . . [qℓ]pℓ
→∗

A q. (4)

We define the substitution σ from variables occurring in l into 2Q by: σ(xi) = {qi |

l(pi) = xi}. Since l is h-left-linear, for each xi, σ(xi) contains at most h states.

We claim that lσ →∗

A(h) q. Indeed by (4) and by Lemma 9 for each xi occurring

in l, µ(xi) →∗

A(h) σ(xi). It follows that lµ →∗

A(h) lσ. By (4) and using Lemma 8,

lσ →∗

A(h) {q}, proving the claim. By construction of CR
γ (A(h)), rσ →∗

CR
γ (A(h))

{q}.

Moreover, by definition of σ, rµ →∗

A(h) rσ. It follows that

t = t[rµ]p →∗

A(h) t[rσ]p →∗

Cγ(A(h))
t[{q}]p →∗

A(h) {qf},

which completes the proof.

Proposition 11. If R is right-linear and if α is (A,R)-exact, then L(Cα(A(h))) ⊆

R∗(L(A)).

Proof. This is a direct consequence of Theorem 4 and Proposition 7.

Notice that if A is a non-deterministic n-state automaton, any determinitic

automaton recognising L(A) may have O(2n) states. Furthermore, considering h has

a constant, A(h) has O(nh) states and O(nhk) transitions, where k is the maximal

arity symbol of F . For 2-left-linear term-rewriting systems, A(h) has significantly

less states that a deterministic automaton accepting L(A).
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4. Example and Application Domains

4.1. Example

We have tested our approach on the following family of examples. We first con-

sider a family of tree automata (An) defined as follows: the set of states of An

is {q1, . . . , q2n+2, qf}, the set of final state is {qf}, and the set of transitions is

{ω → q1, ω → q2, a(q1) → q1, a(q2) → q2, b(q1) → q1, b(q2) → q2, a(q1) →

q3, a(q2) → q4, a(qi) → qi+2, b(qi) → qi+2, f(q2n+1, q2n+2) → qf}, for i ≥ 3. The au-

tomaton An accepts the set of terms of the form f(t1, t2) where t1 and t2 are terms

over {a, b, ω} such that t1|1n−1 and t2|1n−1 exist and are in {a}.{a, b}∗. Roughly

speaking, when using word automata, a(b(ω)) denotes ab, and each pair (t1, t2) can

be viewed as words of L = {a, b}n−1.{a}.{a, b}∗ satisfying the condition above. We

second consider the term rewriting system R containing the single rule f(x, x) → x,

and we want to prove that bn−1a(ω) ∈ R∗(L(An)). Using finitely many times The-

orem 4 directly on An may not prove the results. However, to prove the results, one

can determinise An before using Theorem 4. But, the minimal automaton of L(An)

has 2n states at least [21], [Exercise 3.20, p. 73]. Then, the completion should be

applied to this automaton. Consequently, this automatic proof requires an exponen-

tial time step. Using our approach, one can compute A(h) and apply Proposition 11,

that provides the proof requiring a polynomial time step.

4.2. Left-linearity and Security Issues

4.2.1. Security Protocol Analysis

The TRSs used in the security protocol verification context are often non left-linear.

Indeed, there is a lot of protocols that cannot be modeled by left-linear TRSs. Un-

fortunately, to be sound, the approximation-based analysis described in [18] requires

the use of left-linear TRSs. Nevertheless, this method can still be applied to some

non left-linear TRSs, which satisfy some weaker conditions. In [17] the authors pro-

pose new linearity conditions. However, these new conditions are not well-adapted

to be automatically checked.

In our previous work [5] we explain how to define a criterion on R and A

to make the procedure automatically work for industrial protocols analysis. This

criterion ensures the soundness of the method described in [18, 17]. However, to

handle protocols the approach in [5] is based on a kind of constant typing. In [6]

we go further and propose a procedure supporting a fully automatic analysis and

handling – without typing – algebraic properties like XOR.

Let us first remark that the criterion defined in [17] does not allow managing the

XOR non left-linear rule. Second, in [5] we have restricted XOR operations to typed

terms to deal with the XOR non left-linear rule. However, some protocols are known

to be flawed by type confusing attacks [14, 10, 11]. Notice that our approach in [6]

can be applied to any kinds of TRSs. Moreover, it can cope with exponentiation

algebraic properties and this way analyse Diffie-Hellman based protocols.
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4.2.2. Backward Analysis of Java Bytecode

A recent work [4], dedicated to the static analysis of Java bytecode programs using

term-rewriting systems, provides an automatic procedure to translate a Java byte-

code into a term rewriting system modeling the code execution on the Java Virtual

Machine. In this context, generated TRSs are left-linear but non right-linear. For

example the rewriting rule:

xInvokeSpecialCC(pprotected, valtrue, cc, ca, cam, ic) →

xInvokeSpecialCC(subclass(ic, cc), valtrue, cc, ca, cam, ic)

where ca, cam, ic and cc are variables, is a 2-right-linear rule. This rule is a part

of a Java bytecode instruction translation, corresponding to the invocation of the

method. In order to compute approximation refinements as in [3] or to manage

backward analyses that are – in general and in practice – more efficient that forward

analyses – term rewriting systems have to be turned left-right, i.e. left- and right-

hand sides of rules have to be permuted. By this permutation 2-right-linear TRSs

become 2-left-linear ones.

5. Conclusion

Regular approximation techniques have been successfully used in the context of

security protocol analysis. In order to apply them to other applications, this pa-

per proposed an extension of the completion procedure for handling non left-linear

rules. Our contributions allow analysing some reachability problems using polyno-

mial steps computing A(h), rather than automata determinisation steps that are

exponential, even in practical cases. Notice that the approach presented only for

quadratic rules can be extended to more complex TRSs. We intend to optimise

this technique: polynomial is better than exponential but may also lead to huge

automata in few steps. We have been implementing the techniques in an efficient

rewriting tool like TOMa in order to investigate complex systems backward analy-

ses.
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