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Abstract—This paper addresses the problem of localization
in mobile networks. Our goal is to make localization possible
even for off-the-shelf communication devices like smartphones or
sensor nodes, not equipped with GPS or operating in areas where
the GPS does not work well. In our approach, a user estimates
its position by exploiting opportunistic exchanges with other
devices (peer devices). The localization information provided by
peers include their own position estimation and can be used
even though it may be highly inaccurate. In a heterogeneous
setup, peers can provide different ranging technologies (e.g.
RSSI and UWB). We investigate the performance of two existing
localization algorithms based on Weighted Centroid (WC) and
Linear Matrix Inequalities (LMI) under different conditions of
accuracy and heterogeneity. The study is performed by means of
simulations that, however, make use of realistic ranging models,
derived from an extensive set of RSSI and UWB measurements.
The simulation results show that in most cases LMI provides a
better user position estimation than WC, with an error of 1 to 4
meters for 10 opportunistic interactions, and that heterogeneity
of peer positioning accuracy has a limited but positive impact on
the localization performance.

Index Terms—opportunistic, localization, heterogeneity, Linear

Matrix Inequality, weighted centroid

I. INTRODUCTION

Inferring the geographical location of nodes in a certain

area is recognized as a fundamental service in many different

contexts, from robotics to telecommunication systems, that

may enable a number of applications and network opti-

mizations strategies. The topic has been widely and deeply

investigated from many different perspectives and the general

conclusion is that accurate node localization requires either

dedicated hardware or sophisticated software [1], or even both

in particularly harsh environments [2], [3], [4], whereas simple

localization schemes that make use of the received signal

strength to estimate the distance between nodes are generally

affected by residual localization errors in the order of meters,

in particular in indoor environments [5].

In this paper, we tackle the localization problem from a

different and rather new perspective: rather than searching

for yet another signal processing technique or system archi-

tecture explicitly designed to provide localization services,

we propose to spill out this service from the opportunistic

interactions that may occur among heterogeneous wireless

nodes. More specifically, we advocate that a strayed node with

no self-localization capabilities can estimate its own position

by exploiting the localization information provided by passing-

by nodes. In practice, nodes that happen to be within op-

portunistic interaction range will exchange packets containing

their current position estimate, together with an indication of

its accuracy. Furthermore, nodes will perform some sort of

ranging to estimate their mutual distance. Then, each node

can use the information collected during the opportunistic

interaction to estimate its own position.

The opportunistic interaction paradigm is enabled by the

growing popularity of small and portable personal electronic

devices, such as smart phones, PDAs, music and video players

and so on, which draws a prospective scenario where a large

number of mobile, heterogeneous nodes may exchange data

with passing by nodes on an opportunistic basis, for different

purposes [6]. In particular, some of the mobile nodes may

be equipped with self-localization hardware, e.g. Cricket [7],

indoor GPS [8], MEMS-based navigation, or RSSI-based.

Hence, the opportunistic interactions among nodes may be ex-

ploited to enhance the localization capabilities of the different

devices through opportunistic localization techniques.

A possible target scenario for opportunistic localization

is, for instance, an airport, where employees and passengers

may carry different devices. Employees may carry high-

end positioning devices, capable of extremely accurate self-

localization, whereas passengers may be given low-end lo-

calization devices as airport gadgets, with hardly any self-

localization capability. Passengers’ devices may rely on oc-

casional interactions with employees’ devices to improve the

accuracy of their own positioning. Furthermore, dedicated

localization devices may be sparsely placed in airport lounges

and corridors to further help the opportunistic localization of

passengers. A similar service may be offered to the visitors

of large exhibitions, archaeological sites, amusement parks,

museums, and so on.

It is easy to realize that the effectiveness of the oppor-

tunistic localization paradigm is determined by four major

features: i) the likelihood of opportunistic interactions; ii)

the initial accuracy of nodes’ localization; iii) the ranging

accuracy; iv) the algorithm used to process the information

obtained through opportunistic interactions, i.e., the so-called

opportunistic localization algorithm. The aim of this study

is to shed some light on the way these different features



2

affect the opportunistic localization performance. We focus

on the three last features, studying what happens when the

contacts have occurred. To this end, we define a simple

but realistic system model that makes it possible to control

each feature by opportunely setting some system parameters.

More specifically, we consider two opportunistic localization

algorithms, namely the Weighted Centroid (WC) [9] and the

Linear Matrix Inequality (LMI) [10], which have been recently

proposed for the opportunistic scenario [11]. We then study

the localization accuracy attained by these algorithms when

varying the number of opportunistic interactions, in two sce-

narios with complementary characteristics in terms of native

nodes’ localization and ranging accuracy. To give practical

significance to the study, the ranging models considered in

our analysis have been experimentally characterized. More

specifically, we consider two ranging techniques, one based

on the Received Signal Strength Indication (RSSI) measures

obtained with ZigBee sensor nodes, and the other one based on

the Time of Arrival (ToA) measures, provided by PulsON’220

UWB devices. Note that these technologies are complementary

in terms of popularity and ranging accuracy: the RSSI circuitry

is in fact a mature technology, natively supported by basically

all wireless devices, but provides extremely noisy ranging

estimates, whereas UWB technology is still in a prototyping

phase, though it can achieve extremely accurate ranging [12],

[13], [14]. Hence, the experimental characterization of the

ranging accuracy with RSSI and UWB technologies can

actually be considered as a side contribution of this work.

The remaining of the paper is structured as follows. In

Sec. II we formally state the opportunistic localization problem

and describe the system model. In Sec. III, we present the

experimental characterization of the RSSI and UWB ranging

techniques. The opportunistic localization algorithms consid-

ered in this work are presented in Sec. IV. Then, Sec. V reports

the analysis of the localization performance obtained through

simulations. Finally, Sec. VI draws conclusions.

II. SYSTEM MODEL

We address a scenario where a number of mobile nodes,

equipped with a common communication device (Bluetooth,

WiFi or ZigBee), can exchange data on an opportunistic basis,

when they happen to be in coverage range. We focus our

attention to the worst case, where one node, called user, is

not equipped with any self-localization module. The other

nodes, named peers, can instead perform some form of self-

localization, with some level of accuracy. The opportunistic

localization problem consists in estimating the user’s position

from the positioning and ranging information provided by

mobile and static peers through direct opportunistic data

exchange.

A. Communication model

The opportunistic interactions between the user and the

peers occur through the common wireless interface. We con-

sider the classic path loss and shadowing RF channel model,

according to which the signal power Γr(d) received at distance

d from the transmitter is given by:

Γr(d) = Γt +K − 10η log10

(
d

d0

)
+ ψ , (1)

where Γt is the transmission power [in dB], K is a unit-

less constant that depends on the environment, d0 is the

reference distance for the antenna far field model, and η is

the so-called path loss coefficient that, once again, depends on

the environment. Finally, ψ is a Gaussian-distributed random

variable, with zero mean and variance σ2
ψ , that describes the

long term fading (or shadowing) effect.

We assume that opportunistic interaction is enabled only if

the received signal strength is above a certain threshold Γth
that, according to (1), yields a nominal opportunistic range

Rtarg given by:

Rtarg = d010
(Γt+K−Γth)/10η . (2)

Clearly, in a real scenario the opportunistic range cannot be

considered fixed, since the shadowing term ψ in (1) makes

the actual communication range Ropp a log-normal distributed

random variable, given by:

Ropp = Rtarg10
ψ/10η . (3)

B. Self-positioning model used by peers

We assume that peer nodes can self-localize with some

level of accuracy, e.g., using a dedicated (non opportuni-

stic) localization infrastructure (as indoor GPS). The position

estimation is modeled as a 2-D Gaussian random variable,

with zero mean and variance σ2
loc, therefore the error distance

between the estimated (P̂i) and the actual position (Pi), is a

Rayleigh random variable with parameter σloc. We note that

the probability distribution of the localization error obtained

by practical self-localization schemes may not be necessarily

Gaussian. Nonetheless, the gaussian model condenses the

accuracy of the native self-localization mechanism in a single

parameter, namely σ2
loc, thus making it possible to better

control the scenario characteristics and greatly simplifying the

investigation. In any case, the qualitative results provided by

our analysis are preserved even for more realistic error models,

as we observed in some experiments (not reported here for

space constraints) where the self-localization information of

the peers was generated using practical localization schemes.

C. Ranging model

We assume that, during opportunistic interactions, nodes

perform ranging estimation using either Radio Signal Strength

Indication (RSSI) or Time of Arrival (ToA) measures. The two

ranging techniques are briefly explained below.

1) RSSI ranging: The RSSI-based ranging provides an

estimate d̂ of the actual distance d between transmitter and

receiver by maximizing the likelihood of the received signal

power Γr, according to the propagation law (1). In practice,

for a received signal strength Γr, the RSSI ranging results in:

d̂ = d010
(Γt+K−Γr)/10η = d 10−ψ/10η . (4)

From (4) we clearly see that short distances have smaller

ranging error, d̂ being proportional to the actual distance d.
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2) ToA ranging: The ToA-based ranging provides an esti-

mate d̂ of d by using the time T that an RF impulse takes

to propagate from sender to receiver and back. This time,

thus, includes the transmission and propagation time of the

RF impulse, plus the processing time at sender and receiver.

Since the transmission and processing time intervals are all

known and deterministic, they can be easily removed from the

measure T , thus obtaining an estimate of the sole propagation

time τ of the RF impulse over space. Ideally, τ is equal

to the distance d between transmitter and receiver divided

by the propagation speed vp of the electromagnetic wave.

In practice, however, this measure is affected by noise, due

to the difficulty of discriminating the first propagation path

from reflections. Furthermore, in absence of line of sight

(LOS) between transmitter and receiver, the ranging estimate

may be unreliable. However, in LOS condition, the measured

time delay can be fairly well modeled as a Gaussian random

variable with mean d/vp and variance σ2
τ , according to what

stated in [15]. The ML distance estimate is thus given by:

d̂ = τvp , (5)

where vp is the propagation speed of electromagnetic waves

in air. Note that, conversely to RSSI-based ranging, the prob-

ability distribution of the ranging error provided by ToA does

not depend on the actual value of d.

III. EXPERIMENTAL CHARACTERIZATION OF THE

RANGING MODELS

In order to give practical meaning to the results provided

by our analysis, we characterized the ranging-error models de-

fined in Sec. II-C by using real measurements, collected within

the FP7 Network of Excellence in Wireless COMmunications

NEWCOM++. More specifically, we collected both RSSI

measures, using ZigBee sensor nodes, and ranging samples

provided by PulsON’220 UWB devices. The measures were

performed using a Lego robot, equipped with ZigBee and

UWB devices, that moved along a predefined L-shaped path in

a corridor at a constant speed (6 m straight, a quarter of circle

curve and then another 8.2 m straight). During its motion, the

robot communicated with the static nodes deployed both in the

same corridor and inside adjacent rooms. (See [16] for more

details.)

A. RSSI ranging model

The RSSI experiment was performed using 21 ZigBee

devices CC2430 that communicated with the mobile device

every 50 ms. Overall, more than 4000 samples were collected

in the experiment. These data have been used to characterized

the parameters of (1). Using a Least Square method, we

estimated η = 3.31 and P0 = Γt + K = −29.03 dBm at

distance d0 = 0.1 m. Furthermore, the shadowing term was

found to be approximately Gaussian-distributed (in dB), with

zero mean and standard deviation σψ = 5.55, as plotted in

Fig. 1(a).

−40 −20 0 20 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Shadowing [dB]

P
d

f

 

 

empirical pdf

N(0, 30.774)

(a) Empirical pdf of the shadowing term ψ in (1)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

Actual distance [m]

E
s
ti
m

a
te

d
 d

is
ta

n
c
e
 [
m

]

 

 

bisector line

measured samples

(b) Estimated vs. actual distance for UWB LOS mea-
surements

Fig. 1. Experimental measurements

B. UWB ranging model

High time resolution is one of the key benefits of ultra-

wideband signals for precision ranging. Due to the extremely

short duration of transmitted pulses, UWB receivers are able to

discriminate individual multipath components, thus achieving

high accuracy [17].

The ToA experiment was performed using PulsON’220

UWB devices [18], placed in 12 different positions. Each pair

of nodes communicates every 500 ms, collecting more than

1000 measurements. Among these values, we considered only

the line of sight (LOS) samples that were singled out from

the dataset by using the geometric information and observing

the correlation of consecutive measures. Fig. 1(b) shows the

estimated distance returned by PulsON’220 devices vs the

actual distance, confirming the very high ranging accuracy

provided by the device in LOS condition. The empirical

distribution of the ranging error obtained from the collected

data can be fairly well modeled as Gaussian, with zero mean

and standard deviation σd = 0.029 m.

IV. OPPORTUNISTIC LOCALIZATION ALGORITHMS

During an opportunistic interaction, the peer node sends to

the user its current position estimate P̂i along with an estimate

of its maximal positioning error ǫmaxloc . Note that, according to

the Gaussian self-localization model described in Sec. II-B,

the localization error is unbounded, at least in principle, so
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ǫmaxloc is set to the 0.9-quantile, i.e., such that:

P [ǫ ≤ ǫmaxloc ] = 0.9 . (6)

In addition to receiving P̂i and ǫmaxloc from peers, the user

also performs an estimate d̂ of its distance from each trans-

mitting peer. Once again, the error that affects this estimate

is unbounded, in principle. However, we cut the maximum

ranging error to:

ǫmaxrang = dmax − d̂ , (7)

where dmax is such that:

P
[
d̂ ≤ dmax

]
< 0.9 . (8)

The probability distribution of d̂ depends on the particular

ranging technique used by the nodes, as specified in Sec. II-C.

We assume that the user performs N opportunistic interac-

tions with different nodes, while staying in the same position.

With the collected data, it runs one of the opportunistic

localization algorithms described below.

A. WC localization algorithm

The Weighted Centroid (WC) algorithm, derived from [9],

estimates the user’s position P̂u simply as a weighted average

of the peers’ estimated coordinates:

P̂u =

∑N
i=1 wiP̂i∑N
i=1 wi

, (9)

where each coefficient wi is inversely proportional to the

estimated distance from the ith peer and its position accuracy,

i.e.:

wi =
1

d̂i(1 + σloc,i)
. (10)

B. LMI localization algorithm

Another localization scheme, proposed in [10], is based on

the solution of Linear Matrix Inequality (LMI) problems. For

each peer i involved in an opportunistic interaction, the user

writes the following inequality:

‖Pu − P̂i‖ ≤ Ri , (11)

where || · || denotes the Euclidian distance, and Ri is the

maximum admissible distance between the user and peer i,
given by:

Ri = d̂+ ǫmaxrang + ǫmaxloc . (12)

This situation is illustrated in Figure 2. In the figure above,

the dotted circle delimits the area that will likely contain

the estimated position P̂i. In the figure below, the gray disc

represents the area that will likely contain Pu. Note that the

circle is centered on P̂i rather than Pi and that its radius Ri
takes into account the ranging error.

The chosen user’s estimated position P̂u is the center of

the rectangle that tightly encloses the intersection area of N
circles centered in P̂i with radius Ri, for i = 1, 2, . . . , N , as

illustrated by Figure 3(a).

We observe that, due to the approximated upper bounds

in (8) and (6), it is actually possible that some of the peers
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(a) Situation related to the inequation.
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Fig. 2. Illustration of a single LMI inequation.
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Fig. 3. LMI estimation.

can communicate with the user even when their distance

is larger than Ri. In this case, the LMI problem may be

unsolvable, because the intersection of circles is empty, as

in Figure 3(b). When this event occurs, we relax the LMI

problem by increasing progressively the value of Ri until a

solution is found.

V. PERFORMANCE ANALYSIS

In this section we compare the localization performance of

LMI and WC in different scenarios, when varying the number

of opportunistic interactions. In order to study separately the

impact of self-localization and ranging accuracy, we consider

the following two complementary scenarios:

A All peers have very good self-localization (σloc = 1 m),

but rely on quite unreliable RSSI-based ranging (σψ =
5.55 dB);

B All peers suffer rather poor self-localization (σloc =
2 m), but perform accurate ToA-based ranging using

UWB technologies (σd = 0.029 m).
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Fig. 4. Localization error in scenario A (σloc = 1 m) and B (σloc = 2 m).

Moreover, we change the nominal coverage range Rtarg
in both scenarios in order to understand its effect on the

localization accuracy.

In Fig. 4 we show the mean localization errors for the

WC and LMI methods in both scenarios, varying the number

of opportunisc interactions and the value of Rtarg . Results

confirm the intuitive expectations, namely:

• The localization error decreases as the number of oppor-

tunistic interactions increases, for all scenarios and all

values of Rtarg. In fact, as the number of interactions

increases, the peers distribution around the user becomes

more and more homogeneous. This is clearly beneficial

for WC that estimates the user’s position as the mean of

the peer positions, so that the localization error asymptot-

ically tends to zero. Similarly, the number of intersecting

circles in LMI also increases, so that the intersection area

progressively shrinks around the actual user position.

• The localization error decreases as the nominal oppor-

tunistic range Rtarg decreases. By reducing Rtarg, we

enable opportunistic interactions only with peers that are

closer to the user. The WC algorithm then computes

the centroid of nodes that are closer to the user, so

that the estimated position will also be closer to the

user (on average). For LMI, the intersecting circles have

smaller radius and, hence, the intersection area is also

smaller (on average). Note that in this case, the accu-

racy of RSSI-based ranging improves, since according

to (4), the ranging error is proportional to the distance.

Clearly, the counterpart is that reducing Rtarg, we also

decrease quadratically the likelihood of an opportunistic

interaction to occur, thus the localization algorithm will

be performed with a much smaller number of the peers,

provided that the nodes density and mobility models

remain the same.

• Results are better for scenario B than for scenario A. In

the case of WC, scenario B is using a larger σloc and

therefore gives more weight to peers close to the user.

In the case of LMI, the radius Ri of intersecting circles

shrinks in scenario B: although σloc and consequently

ǫmaxloc is bigger, it is compensated by the tiny σd which

makes ǫmaxrang even smaller.

Fig. 4 also reveals that the performance of LMI is not always

better than WC. In scenario A, in fact, the large ranging

error will yield to wider intersecting circles in LMI and, in

turn, a slower increase of the localization accuracy with the

number of opportunistic contacts. This effect is less marked

for small values of Rtarg, for which the ranging error, which is

proportional to the distance between user and peer, becomes

less significant. In scenario B, instead, LMI exhibits better

performance than WC, since the circles’ radius is smaller and

the intersection area shrinks faster than in the previous case.

We now consider a heterogeneous version of scenario B,

where the peers may have different levels of localization

accuracy. To provide a fair comparison among different sce-

narios, we fixed a mean localization error ξ and draw σloc,i
for the ith peer at random and uniformly in the interval

[(1 − α)ξ
√
2/π , (1 + α)ξ

√
2/π], where α ∈ [0, 1] is a

dispersion factor. When α = 0, all the peers will have the same

localization accuracy σloc,i = ξ
√
2/π, which corresponds to

a homogeneous scenario, whereas α = 1 will lead to an

extremely heterogeneous scenario, with some peer very well

localized (like beacons) and others very poorly localized. In

any case, the mean localization error is always equal to ξ.

Fig. 5 reports the LMI performance in heterogeneous sce-

nario B, with different values of σloc and, consequently, ξ. The

main result here is the low impact of heterogeneity. However,

we observe that, with few opportunistic interactions, better

performance is achieved with homogeneous peers (α = 0).

However, as the number of contacts increases, the hetero-

geneity of nodes (α > 0) turns out to be beneficial, since

in the presence of even a few extremely well localized nodes

with good ranging, LMI yields rather accurate localization,

regardless the presence of other nodes with coarse positioning

estimate. This result confirms the robustness of the LMI

approach in the opportunistic scenario.

VI. CONCLUSIONS

In this paper we propose the opportunistic localization

approach as a valuable solution to provide positioning in-

formation to a strayed node, called “user”, by means of

direct opportunistic interactions with heterogeneous wireless

nodes that happen to be in spatial proximity, called “peers.”

Opportunistic localization can be undertaken while the user

and the peers are moving, and several users can be con-

sidered. We investigated the localization error obtained by
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Fig. 5. LMI localization error in heterogeneous scenario B.

two opportunistic localization algorithms, namely WC and

LMI, when varying the number of opportunistic interactions

and for various scenarios, characterized by different values

of nominal opportunistic range, native positioning error of

peers, and ranging accuracy. The analysis has been carried

out through extensive computer simulations based on realistic

ranging models validated via experimental measurements.

From the results, we observed what follows. First, as largely

expected, the positioning accuracy of the user improves with

the number N of opportunistic interactions and decreases with

the nominal opportunistic range Rtarg . However, all the other

parameters being fixed, we expect that the time required by

the user to achieve a target opportunistic localization error is

roughly independent of Rtarg. In fact, with small Rtarg, the

opportunistic interactions are less frequent, but more effective,

whereas with large Rtarg, the interactions are more frequent

but less useful. Nonetheless, the LMI algorithm makes a

better use of the information collected through opportunistic

interactions, so that a large value of N is generally preferable.

Second, the LMI algorithm benefits from accurate ranging,

even in the presence of coarsely localized peers. This benefit,

however, is less evident when Rtarg is small, in which case

accurate peers’ localization is more effective (also considering

that, over small distances, even RSSI-based ranging is rather

reliable). Third, the heterogeneity of the peers localization

accuracy has marginal effect on the LMI performance, though

with few interactions homogeneity is preferable, whereas

for larger values of N , heterogeneity brings some limited

improvement.
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