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Time compactness tools
for discretized evolution equations
and applications to degenerate parabolic PDEs

Boris Andreianov

Abstract We discuss several techniques for proving compactnessjoksees of
approximate solutions to discretized evolution PDEs, aiplications to conver-
gence of finite volume discretizations of degenerate pdi@bquations. While the
well-known Aubin-Simon kind functional-analytic technigs were recently gener-
alized to the discrete setting by Gallouét and Latché,[b2fe we discuss direct
techniques for estimating the time translates of approtdrealutions in the space
L. One important result is the Kruzhkov time compactness lamfurther, we
describe a specific technique that benefits from the ordesepvation for the under-
lying PDE, and recall the well-known methods based on nealinveak-* conver-
gence and on the subsequent reduction of Young measures.
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1 Introduction

Let us think of evolution equations set on a cylindrical dom@:= (0,T) x Q C
R* x RN. Proving convergence of space-time discretizations df sggiations of-
ten includes the three following steps : constructing @itesolutions and getting
uniform (in appropriate discrete spaces) estimates; etigaa convergent sub-
sequence; writing down a discrete weak formulation (e.@h wiscretized test
functions) and passing to the limit in the equation in ordenfer convergence.

For the first step, obtention of estimates is greatly singalifoy preservation, at
the discrete level, of the key structure properties of th&RPguch as symmetry, co-
ercivity, monotonicity of the diffusion operators invol¥ieentropy dissipation, for
the nonlinear convection operators in the degenerate picatase; etc.). For get-
ting discretea priori estimates, as in the continuous case test functions are ofte
used; therefore, some analogues of integration-by-parisulas and chain rules
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are instrumental for the first step. For the examples we githis paper, “discrete
duality” type schemes (mimetic, co-volume, DDFV;, see, ,d2]. and references
therein) can be used to guarantee an exact integratioratig-fgature. In contrast,
chain rules for derivation in time or in space must be refdneapproximate ana-
logues, often taking the form of convexity inequalitiesg(se.g., [3], [2, Sect. 4]).

In this note, we give insight into convergence proofs foffédéent cases of) de-
generate elliptic-parabolic-hyperbolic PDEs under theegal fornt

u=b(v), u—div [G(v)—ao(O¢p(V))]+¢@(v)=f InQ=(0T)xQ (1)

with b(-), ¢ (-), ¢(-) continuoud non-decreasing on IR, normalized by zero at zero,
with a continuous convection flu®(-) and withag : RN — IRN of Leray-Lions type
(see e.qg. [1, 3]p-laplacian, withag(& ) = |&|P~2€ is a typical example). For the sake
of simplicity, homogeneous Dirichlet boundary condition(0, T) x dQ is taken.

But our main goal is to discuss the second step of the prooésphe of get-
ting compact sequences of discrete solutions (when the compactificatethods
strongly utilize a particular structure of the underlyingt, this step is in fact com-
bined with the third step of passing to the limit). For linpaoblems, the two latter
steps are somewhat trivial; indeed, mere functional-aitabpunds would lead to
compactness in a weak topology, which is enough to pass tintiidrom the dis-
crete to the continuous weak formulation of the PDE. Thigkofinonlinear prob-
lems and passage to the limit in nonlinear terms, boundgictional spaces can be
sufficient when combined with basic compact embeddingsttisitrequires rather
strong bounds involving e.g. some estimates of the devastRegarding evolution
PDEs of, say, porous medium type’, bounds are available on the space derivatives
but not on the time derivatives (those belong to seragativeSobolev spaces). In
this situation, either compactness in ath hocstrong topology is needed; or the
weak compactness coming from uniform boundedness shoutsbimdined with
some compactification arguments (compensated compactoesyy measures and
their reduction, etc.) that exploit in a non-trivial way tparticular structure of the
PDE in hand (div-curl structure, pseudomonotonicity, @pgrinequalities, etc.).

In the continuous setting, one celebrated result is the Aubns lemma and
its generalization by Simon [14]. To give an example mostvanht for the appli-
cations we have in mind, let us simply state here that a segueh), bounded in
L1(0,T;W1(Q)) and such thatul"), is bounded i1 (0, T;W~—11(Q)) is relatively
compact inL(Q), cf. [12]. In this situation, compactness property comesiana
priori boundonu” in some spackP(0, T, X) with X compactly embedded in*(Q)
(e.g.,.X =W1(Q)), and from a very basic use of the evolution PDE in hand: the
PDE brings information on boundedness of the time derieati{f in some space

1 see [4] and references therein for well-posedness theosydai “triply nonlinear” equations.
These are mathematical models for porous media, sedin@mt&tefan problem, etc..

2 Actually, we assume that either these functions are unifpoontinuous ow is boundeda priori.
3 Throughout the note, “compact” actually signifies “relalwcompact”.
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L9(0,T;Y) whereY can be a subspace of distributions@requipped with a rather
weak topology (e.gY =W~11(Q)). A discrete version of the Aubin-Simon lemma
was recently proposed by Gallouét and Latché in [12]. Ates result also taken
from Simon [14] uses a bound on fractional time derivatiies'pas it was demon-
strated by Emmrich and Thalhammer in [9], this version ideappropriate in the
time-discretized setting, because time fractional déviga of order less than/2
exist even for piecewise constant functions.

These results going back to [14] offer a very wide spectrurapgications, yet
they are difficult to apply on degenerate parabolic probleittsnon-Lipschitz non-
linearities. Both of the above results are rather of a fumati-analytic character; the
difficulty comes from the fact that nonlinear mappings ma&e torrespondence be-
tween linear functional spaces. Yet this difficulty is notiadamental one; roughly
speaking, it is settled by a careful use of translation aguisiand of moduli of
continuity. In this note, we present a collection of compdernary techniques that
either involve as few functional spaces as pos8itgeg., onlyL(Q) is used e.g. in
the Kruzhkov lemma, se®2); or they make non-trivial use of the PDE in hand.

2 Direct estimation of time translates

By the Fréchet-Kolmogorov compactness criteriorL#(Q), uniform bounds on
space and time translatesuWfare needed:; in the setting of the present note, the first
ones are readily available, and the difficulty is to estinthéstime translates as

T-3
vh / / [W(t+6) — ()| < w(8) with lim w(8) =0, )
o Ja 3—0
w(-) being a modulus of continuity, uniform im Here are two ways to obtain (2).
A discrete Kruzhkov lemma

e The continuous setting (see [13])

Lemma 1 (Kruzhkov [13]). Assume that the families of functicus)p, (F/)n o are
bounded in E(Q) and satisfygu" = ¥|4;<mD?F} in 2'(Q). Assume that'ucan
be extended outside Q, and one‘has

//(.?|uh(t,x+6)—uh(t,x)|dxdt < w(@). with mw(©) =0, (3

wherew(-) does not depend on h. Théal'),, is (relatively) compact in 1(Q).

4 Working in anh-independent space is an advantage for producing discees@ous of such argu-
ments; yet the approach of [12] exhibits a simple and efftaise ofh-dependent spaces.

5 In practice, space translation estimates of the kind (3)beanbtained via an estimate of some
discrete gradients; notice that estimates of kind (3) alstupon composingi"), by a function
b(-) which is uniformly continuous (as in (1), we mean th&t= b(V")).
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Clearly, this is an_,loc compactness result (one can apply the lemma local®)in

e A discrete version of the Kruzhkov lemma (see [7, 2])

For problem (1), the valum = 1 is relevant; we limit to this case the discussion of
discrete analogues of Lemma 1.

To give an idea of discrete versions of the Kruzhkov lerffinassume we are
given a family of meshes a® indexed by the sizé > 0, satisfying mild propor-
tionality restrictions (e.qg., for the case of two-point ffinite volume schemes as de-
scribed in [10], one needs for all neighbour volurres diam(k)-+diamL)<const ¢ |
uniformly in h). Assume that in relation with the meshes, spaces of des¢ueic-
tions IR, and discrete field§RN);, are defined (each elemante Ry, or F € (RV)j,
is a piecewise constant @@ function reconstructed from the degrees of freedom
of the discretization method). Assume we are given disgeddient and discrete
divergence operatoE*.h and diV mapping between these spaces.

Let (&)n be the associated time steps ads the entire part oT /d,. Assume
that with this notation, we are given discrete evolutionatgpns under the form

b(vf ™) — b(v)

for n € [0, Ny, 3

= div"[FY] + £t (4)

where families of discrete functior(suﬂ“) on’ (f,ﬁ‘*l) o and of discrete
ne|0,Np ne|0,Np

fields (FR“) 0N are bounded in}(Q). Assume in addition that the discrete
ne|0,Np

gradients( thnh+1)ne[o N are bounded in.'(Q) (and that this bound implies a

uniform translation bound in space of the famijy this is the case e.g. when dis-
crete Poincaré inequalities can be proved). Under thesengstions, reproducing

at the discrete level the proof of Lemma 1 as it is done in [7,08f concludes

that the family(b(V"))p, is relatively compact in.(Q). Let us stress that the proof
only uses one functional space: e.g. in different finite mmumethods, all discrete
objects (functions, fields, gradient, divergence) arenadijulifted to L(Q).

A classical technique for the “variational” setting

Following [1], by “variational” we mean a setting where thawtion itself is an
admissible test function in the weak formulation of the PEH#s situation occurs
for (1). It typically comes along witla priori estimates that can be reproduced at
the discrete level, provided the discretization is soméwstracture-preserving.

6 Here we give a rather heuristic presentation; see [7] anfdf2jvo precise formulations covering,
e.g., standard two-point flux finite volume schemes, see Hii] DDFV schemes, see [2].

7 Notice that for evolution PDEs governed by accretive #tQ) operators, of which (1) is an
example, time-implicit discretizations are better suftstructure preservation. Use of numerical
schemes in space that possess a kind of discrete dualityefiwingco-volume, DDFV schemes,
etc.) enables getting discrete estimates analogous totiigaous ones. For notions of solution
involving nonlinear test functions (e.g., entropy, renalimed solutions) orthogonality assumption
on the meshes and isotropy assumption on the diffusion typeray be needed, see e.g. [3].
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The technique of [1] used, in its finite volume version, eig[10, 11, 3], is to
integrate the equation in time frotmo t+0, takeun(t+9)—up(t) for test function,
then integrate irjt,x). On problem (1), this may lead to a uniform estimate

>0 [ T*‘S‘/{; (b0 t+8) =AM 1)) (SOM)(t+8) — $(M)(1)) < (&) (5)

Then Lipschitz continuity o ob~! (resp., oo ¢ 1) can be used to infer uniform
L? time translates of (u") (resp., ofo(u")). Yet the correspondinig* translates can
be obtained in the casgieo b~ (resp.,bo ¢ 1) is a merely continuous function.

e A technique for L estimates involving non-Lipschitz nonlinearities (seg [3

Consider the case whege:= ¢ ob~1 is a uniformly continuous function (moreover,
itis non-decreasing). Let be a concave modulus of continuity fgpr b=, M beits
inverse, and sdfl (r) = r 1(r). Let 7T be the inverse of1. Note thatrT is concave,
continuous, andi(0) = 0. Setw = b(V")(t+5,x) andu = b(\V")(t,x). We have

. . 1 o~
19— 8= [ 7780~ B) < Q7 [ AUBW (W)
Sincel(w) — (1] < (I ul), we have (| (w) ~ $(u)]) < jw - u and

(1§ (w) = W) = 1(1§w) — S W) — F(u)] < [w—ul[§(w) — §(u)].
Therefore, (5) implies ah® estimate of the kind (2) oa" = ¢ (V"):

/1 /1
JL19078) -6 ()1 < 101y [ w-ullg -] = I 1e5(6)).

e Use of contraction arguments and absorption terms (see [8])

Let us mention one more possibility for getting estimatekiod (2) for (1), which
takes advantage of the monotonicity@f-). Assumeg = Id in (1); to shorten the
arguments, assunfe= 0. ThenL! translates in time afi" = b(V") can be estimated
with every of the two preceding methods, the Kruzhkov lemméadirect estima-
tion of translates with variational techniques. This mal#s")), relatively com-
pact; yet, wherb1(.) is discontinuous, no information on compactnesé8jy, is
obtained this way. Now, let us use the translation (in timeariance of the equation
and thel. contraction property natural for (1). This yields the estien(see [8])

5
L 1p03) —bAT=8)+ [ 1wl - vl < [ s —be)s)

(6)
forallse (0,T—5), wherevl}(t) =V1(t+5). Integrating ins > a > 0, using the time
translation bound fofb(V")), we get arL((a,T) x Q) estimate of time translates
of (V). This is sufficient folLL . compactness providefi(-) is strictly increasing.

Discrete version of (6) (see [8]) assumes tHecontraction property (linked to
order preservation via the Crandall-Tartar lemma) is preskat the discrete level.
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Applications to (1) and some other parabolic PDEs.

We treat different “doubly nonlinear” cases of (1), assugrimat eitheib(-) of ¢(+)
is invertible and thus it can be taken to be identity-), upon a change of unknown.
e Application to a parabolic-hyperbolic PDE (see [3])

In the case (1) wittb = Id, providedLP(Q) estimates of the discrete gradient of
¢ (V") are available, the space translatesp¢?") can be estimated uniformly (as
well as the functiong (V") themselves), and an estimate of the form (5) can be ob-
tained. Then the above technique for exploiting (5) assetbet ! (Q) compactness

of (¢ (V"))n, which is a first step of the convergence proof for this prob{see [3]).

e Application to an elliptic-parabolic PDE with the structicondition (see [2])

Assume thatp = Id. In this case, the Kruzhkov lemma can be used, see [2]; alter-
natively, estimate (5) allows to control thé time translates ob(\") similarly to
what was described above. If tisructure conditionG(v) = F(b(v)) is satisfied,
compactness ab(V"))y, is enough to pass to the limit, see Alt and Luckhaus [1].

e Application to a cross-diffusion system (see [7])
The following kind of models comes from population dynamics

U — D1Au— div((u-+v)Ou+ullv) = u(ag — byu—cyv), @
vt — DAV — div(vOu+ (u+v)0v) = v(ap — bou— Cv),
Natural estimates for approximate solutions of (7)l&&ounds on/I+ u+ v Ou,
VvI+u+v0Ov; this gives only ai*/3 bound on the diffusion fluxes in (7), thus we
are not in a variational settifigTherefore for existence obtained by convergence of
finite volume approximations of the kind [10], the Kruzhkewima was used in [7].
Alternatively, the discrete Aubin-Simon lemma (see [12)id be used here.

e Application to convergence of some linearized implicitesobs (see [5])

An elliptic-parabolic “bidomain” system is used for modied heart electric activity.
In [5], finite volume discretization of a simplified versiohtbe bidomain model:

Vi — div|M;(-)0u; | +H (V) = lap(+), o
{vt +div%Me(-)Du3} FHE) = lap(), VT U ®)
was considered; here, the “ionic curreht{-) is a cubic polynomial. The nonlinear
reaction term brings an estimate\df(v) which boundss in L*(Q). Time-implicit
DDFYV discretization of (8) preserves this structure; them problem falls into the
“variational” frameworR and time translates can be estimated like in [1, 10, 11].
From the practical point of view, it is important to acceteraomputations, and
to consider a linearized method where the discretizatiath@feaction ternid (v)
is not fully implicit. Unfortunately, for theoretical anadis L* estimate fon" is
not available any more; only a weaker estimate can be olutaiuith interpolation
arguments. In [5], we applied the Kruzhkov lemma to expluii tveaker estimate.

8 from the practical point of view, e.g. the first equation catrive tested withi(t4-6).
9 Indeed, we have" bounded irL*(Q) andH (V") is bounded irL*/3(Q) = (L*(Q))*.
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3 Advanced use of the underlying PDE features

Compactness from monotone penalization and order-preseation

For getting (6), we already used the order-preservatiarctre for (1). Its further
use, in conjunction with penalization, may lead to an incticmmpactness proof.

e The structure needed for compactification

Assume that one can provaiquenessf a solution to the PDE under study, let us
callit (Eqp). Assume that it can be embedded “continuously” into a fafttlg) of
perturbed PDEs having the property thijt < Vi, whene; < &, wherevf , Vi, are
the associated discrete solutions. Continuitg ie [—1,1] means, we assume that
limits ase — 0 (if any) of exact solutionsg;, of (Eq.) solve the limit equationE qp).

Assume that fog # 0, the corresponding sequenag)y, is well defined and it
converges to an exact solutiop of (Eq:). Then solutions{vg)h to the discretized
equation Eqp) converge, af — 0, to the unique solution fEqp). For the proof,
write

VSV < SV < S SV S S < (9)

and pass to the limit ds— 0 to definevyy/y == Iimhﬁovil/m (up to extraction of
a subsequence) solution t&d./,); then, (9) is inherited at the limit (except that
(vg)h may not have a limit). By monotonicity, we can define=limm e U_1/m, V=
liMm 0 Up/m; furthermorey < liminf, oV§ < limsup, ,oV < v. Both v,V solve
(Eq); by uniqueness(,vg)h converges to = v the solution of(Eqp).

e Application to an elliptic-parabolic PDE without the striuce condition (see [8])

We assume thap = Id, ¢ = 0 in (1). We have seen that compactnes$gt") )y,

can be established, e.g., with the Kruzhkov lemma. Undestheture condition
G(v) =F(b(u)), this is enough to pass to the limitin the equation. But ineggah no
control of time oscillations o6 (V") is available, and the method of [1] breaks down.
Yet it is enough to add penalization term of the fogr(v) = £(arctarv + Jsigne)

to get into the setting where (6) can be exploited to contisiréte solutiongv?)y,

and to pass to the limit, as— 0, for the Yc-penalized equation ). The order-
preservation assumptions of the above method being fudlfillee to the choice of
e, We get convergence 0§, in the cases where uniqueness for (1) can be shown.

Use and reduction of Young measures
Let us recall well-known techniques (which are not specditrhe compactness).

e Nonlinear weak-* convergence and its description (seaegfees in [10, 11, 3, 6])

Equi-integrable sequencés"), of L1(Q) functions are relatively compact in the
nonlinear weak-* sense; namely, for all Carathéodory mapch thatF (-,u"(-)))n

is equi-integrablel 1-weak limit of F(-,u"(-)) equals tof F(-,A)dv(A;-) for some
family of probability measureév(-;t,x)):x on the set of values ofu"),. For R-
valued sequences, equivalent description in terms of theilalition function of
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v(-) is very convenient, see [10, 11]. Finally, if the Young measy(-;t,x) reduces
to a Dirac measuré(- — u(t,x)), thenstrongconvergence afi" to u is inferred.

¢ Application to discretization of the elliptic(g)-laplacian (cf. [6])

The classical Minty argument (see e.g. [1, 2]) cannot beiaeggalirectly when
the p(x)-laplacian discretized problemdivh[|I:Ihuh|ph('>*2EIhuh] = fMis consid-
ered: discretizationgy, of p(-) lead to estimates in “moving” spaces-Pi(*). Using
Young measures fo(r[lhuh)h one can “pull everyone down” to the common space
L and use the monotonicity &f— |&|P~2¢& to reduce the Young measure (see [6]).

e Application to a parabolic-hyperbolic PDE (see [3])

For the case of (1) wittb = Id, we have already justified the compactness of
(¢ (V™) in L1(Q). The Minty argument or the above reduction of Young measures
yield compactness ¢f1"¢ (V")),. Then, following the ideas of Tartar and DiPerna,
a weak-* limit of (V"),, is created anentropy inequalitiesare used to reduce the
corresponding Young measure to a Dirac measure, in the widppi 1].

Acknowledgements The author thanks E. Emmrich for discussions on the aboveigees.
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