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Time compactness tools
for discretized evolution equations
and applications to degenerate parabolic PDEs

Boris Andreianov

Abstract We discuss several techniques for proving compactness of sequences of
approximate solutions to discretized evolution PDEs, withapplications to conver-
gence of finite volume discretizations of degenerate parabolic equations. While the
well-known Aubin-Simon kind functional-analytic techniques were recently gener-
alized to the discrete setting by Gallouët and Latché [12], here we discuss direct
techniques for estimating the time translates of approximate solutions in the space
L1. One important result is the Kruzhkov time compactness lemma. Further, we
describe a specific technique that benefits from the order-preservation for the under-
lying PDE, and recall the well-known methods based on nonlinear weak-* conver-
gence and on the subsequent reduction of Young measures.
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1 Introduction

Let us think of evolution equations set on a cylindrical domain Q := (0,T)×Ω ⊂
IR+× IRN. Proving convergence of space-time discretizations of such equations of-
ten includes the three following steps : constructing discrete solutions and getting
uniform (in appropriate discrete spaces) estimates; extracting a convergent sub-
sequence; writing down a discrete weak formulation (e.g., with discretized test
functions) and passing to the limit in the equation in order to infer convergence.

For the first step, obtention of estimates is greatly simplified by preservation, at
the discrete level, of the key structure properties of the PDE (such as symmetry, co-
ercivity, monotonicity of the diffusion operators involved; entropy dissipation, for
the nonlinear convection operators in the degenerate parabolic case; etc.). For get-
ting discretea priori estimates, as in the continuous case test functions are often
used; therefore, some analogues of integration-by-parts formulas and chain rules
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2 Boris Andreianov

are instrumental for the first step. For the examples we give in this paper, “discrete
duality” type schemes (mimetic, co-volume, DDFV; see, e.g., [2] and references
therein) can be used to guarantee an exact integration-by-parts feature. In contrast,
chain rules for derivation in time or in space must be replaced by approximate ana-
logues, often taking the form of convexity inequalities (see, e.g., [3], [2, Sect. 4]).

In this note, we give insight into convergence proofs for (different cases of) de-
generate elliptic-parabolic-hyperbolic PDEs under the general form1

u= b(v), ut −div
[
G(v)−a0

(
∇∇∇ϕ(v)

)]
+ψ(v) = f in Q= (0,T)×Ω (1)

with b(·),ϕ(·),ψ(·) continuous2 non-decreasing on IR, normalized by zero at zero,
with a continuous convection fluxG(·) and witha0 : IRN → IRN of Leray-Lions type
(see e.g. [1, 3];p-laplacian, witha0(ξ ) = |ξ |p−2ξ is a typical example). For the sake
of simplicity, homogeneous Dirichlet boundary condition on (0,T)× ∂Ω is taken.

But our main goal is to discuss the second step of the proofs, the one of get-
ting compact3 sequences of discrete solutions (when the compactificationmethods
strongly utilize a particular structure of the underlying PDE, this step is in fact com-
bined with the third step of passing to the limit). For linearproblems, the two latter
steps are somewhat trivial; indeed, mere functional-analytic bounds would lead to
compactness in a weak topology, which is enough to pass to thelimit from the dis-
crete to the continuous weak formulation of the PDE. Thinking of nonlinear prob-
lems and passage to the limit in nonlinear terms, bounds in functional spaces can be
sufficient when combined with basic compact embeddings; butthis requires rather
strong bounds involving e.g. some estimates of the derivatives. Regarding evolution
PDEs of, say, porous medium type,Lp bounds are available on the space derivatives
but not on the time derivatives (those belong to somenegativeSobolev spaces). In
this situation, either compactness in anad hocstrong topology is needed; or the
weak compactness coming from uniform boundedness should becombined with
some compactification arguments (compensated compactness, Young measures and
their reduction, etc.) that exploit in a non-trivial way theparticular structure of the
PDE in hand (div-curl structure, pseudomonotonicity, entropy inequalities, etc.).

In the continuous setting, one celebrated result is the Aubin-Lions lemma and
its generalization by Simon [14]. To give an example most relevant for the appli-
cations we have in mind, let us simply state here that a sequence(uh)h bounded in
L1(0,T;W1,1(Ω)) and such that(uh

t )h is bounded inL1(0,T;W−1,1(Ω)) is relatively
compact inL1(Q), cf. [12]. In this situation, compactness property comes from ana
priori boundonuh in some spaceLp(0,T,X) with X compactly embedded inL1(Ω)
(e.g.,X = W1,1(Ω)), and from a very basic use of the evolution PDE in hand: the
PDE brings information on boundedness of the time derivativesuh

t in some space

1 see [4] and references therein for well-posedness theory ofsuch “triply nonlinear” equations.
These are mathematical models for porous media, sedimentation, Stefan problem, etc..
2 Actually, we assume that either these functions are uniformly continuous orv is boundeda priori.
3 Throughout the note, “compact” actually signifies “relavively compact”.
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Lq(0,T;Y) whereY can be a subspace of distributions onΩ equipped with a rather
weak topology (e.g.,Y =W−1,1(Ω)). A discrete version of the Aubin-Simon lemma
was recently proposed by Gallouët and Latché in [12]. A related result also taken
from Simon [14] uses a bound on fractional time derivatives of uh; as it was demon-
strated by Emmrich and Thalhammer in [9], this version is quite appropriate in the
time-discretized setting, because time fractional derivatives of order less than 1/2
exist even for piecewise constant functions.

These results going back to [14] offer a very wide spectrum ofapplications, yet
they are difficult to apply on degenerate parabolic problemswith non-Lipschitz non-
linearities. Both of the above results are rather of a functional-analytic character; the
difficulty comes from the fact that nonlinear mappings make bad correspondence be-
tween linear functional spaces. Yet this difficulty is not a fundamental one; roughly
speaking, it is settled by a careful use of translation arguments and of moduli of
continuity. In this note, we present a collection of complementary techniques that
either involve as few functional spaces as possible4 (e.g., onlyL1(Q) is used e.g. in
the Kruzhkov lemma, see§ 2); or they make non-trivial use of the PDE in hand.

2 Direct estimation of time translates

By the Fréchet-Kolmogorov compactness criterion inL1(Q), uniform bounds on
space and time translates ofuh are needed; in the setting of the present note, the first
ones are readily available, and the difficulty is to estimatethe time translates as

∀h
∫ T−δ

0

∫

Ω

∣∣∣uh(t+δ )−uh(t)
∣∣∣≤ ω(δ ) with lim

δ→0
ω(δ ) = 0, (2)

ω(·) being a modulus of continuity, uniform inh. Here are two ways to obtain (2).

A discrete Kruzhkov lemma

• The continuous setting (see [13])

Lemma 1 (Kruzhkov [13]). Assume that the families of functions(uh)h,(Fh
α )h,α are

bounded in L1(Q) and satisfy∂
∂ t u

h = ∑|α |≤mDαFh
α in D ′(Q). Assume that uh can

be extended outside Q, and one has5

∫ ∫

Q
|uh(t,x+δ )−uh(t,x)|dxdt ≤ ω(δ ), with lim

δ→0
ω(δ ) = 0, (3)

whereω(·) does not depend on h. Then(uh)h is (relatively) compact in L1(Q).

4 Working in anh-independent space is an advantage for producing discrete versions of such argu-
ments; yet the approach of [12] exhibits a simple and efficient use ofh-dependent spaces.
5 In practice, space translation estimates of the kind (3) canbe obtained via an estimate of some
discrete gradients; notice that estimates of kind (3) are stable upon composing(uh)h by a function
b(·) which is uniformly continuous (as in (1), we mean thatuh = b(vh)).
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Clearly, this is anL1
loc compactness result (one can apply the lemma locally inQ).

• A discrete version of the Kruzhkov lemma (see [7, 2])

For problem (1), the valuem= 1 is relevant; we limit to this case the discussion of
discrete analogues of Lemma 1.

To give an idea of discrete versions of the Kruzhkov lemma6, assume we are
given a family of meshes ofΩ indexed by the sizeh > 0, satisfying mild propor-
tionality restrictions (e.g., for the case of two-point fluxfinite volume schemes as de-
scribed in [10], one needs for all neighbour volumesK,L, diam(K)+diam(L)≤const dK,L

uniformly in h). Assume that in relation with the meshes, spaces of discrete func-
tions IRh and discrete fields(IRN)h are defined (each elementuh ∈ IRh or F ∈ (IRN)h

is a piecewise constant onΩ function reconstructed from the degrees of freedom
of the discretization method). Assume we are given discretegradient and discrete
divergence operators∇∇∇h and divh mapping between these spaces.

Let (δh)h be the associated time steps andNh is the entire part ofT/δh. Assume
that with this notation, we are given discrete evolution equations under the form

for n∈ [0,Nh],
b(vn+1

h )−b(vn
h)

δh
= divh [Fn+1

h ]+ f n+1
h (4)

where families of discrete functions
(

un+1
h

)

n∈[0,Nh]
,
(

f n+1
h

)

n∈[0,Nh]
and of discrete

fields
(

Fn+1
h

)
n∈[0,Nh]

are bounded inL1(Q). Assume in addition that the discrete

gradients
(

∇∇∇hvn+1
h

)
n∈[0,Nh]

are bounded inL1(Q) (and that this bound implies a

uniform translation bound in space of the familyvh; this is the case e.g. when dis-
crete Poincaré inequalities can be proved). Under these assumptions, reproducing
at the discrete level the proof of Lemma 1 as it is done in [7, 2], one concludes
that the family(b(vh))h is relatively compact inL1(Q). Let us stress that the proof
only uses one functional space: e.g. in different finite volume methods, all discrete
objects (functions, fields, gradient, divergence) are naturally lifted to L1(Q).

A classical technique for the “variational” setting

Following [1], by “variational” we mean a setting where the solution itself is an
admissible test function in the weak formulation of the PDE;this situation occurs
for (1). It typically comes along witha priori estimates that can be reproduced at
the discrete level, provided the discretization is somewhat structure-preserving.7

6 Here we give a rather heuristic presentation; see [7] and [2]for two precise formulations covering,
e.g., standard two-point flux finite volume schemes, see [10], and DDFV schemes, see [2].
7 Notice that for evolution PDEs governed by accretive inL1(Ω) operators, of which (1) is an
example, time-implicit discretizations are better suitedfor structure preservation. Use of numerical
schemes in space that possess a kind of discrete duality (mimetic, co-volume, DDFV schemes,
etc.) enables getting discrete estimates analogous to the continuous ones. For notions of solution
involving nonlinear test functions (e.g., entropy, renormalized solutions) orthogonality assumption
on the meshes and isotropy assumption on the diffusion operator may be needed, see e.g. [3].
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The technique of [1] used, in its finite volume version, e.g.,in [10, 11, 3], is to
integrate the equation in time fromt to t+δ , takeuh(t+δ )−uh(t) for test function,
then integrate in(t,x). On problem (1), this may lead to a uniform estimate

∀h> 0
∫ T−δ

0

∫

Ω

(
b(vh)(t+δ )−b(vh)(t)

)(
ϕ(vh)(t+δ )−ϕ(vh)(t)

)
≤ ω(δ ). (5)

Then Lipschitz continuity ofϕ ◦b−1 (resp., ofb◦ϕ−1) can be used to infer uniform
L2 time translates ofϕ(uh) (resp., ofb(uh)). Yet the correspondingL1 translates can
be obtained in the caseϕ ◦b−1 (resp.,b◦ϕ−1) is a merely continuous function.

• A technique for L1 estimates involving non-Lipschitz nonlinearities (see [3])

Consider the case wherẽϕ := ϕ ◦b−1 is a uniformly continuous function (moreover,
it is non-decreasing). Letπ be a concave modulus of continuity forϕ ◦b−1, Π be its
inverse, and set̃Π(r) = r Π(r). Let π̃ be the inverse of̃Π . Note thatπ̃ is concave,
continuous, and̃π(0) = 0. Setw= b(vh)(t+δ ,x) andu= b(vh)(t,x). We have

∫

Q
|ϕ̃(w)− ϕ̃(u)|=

∫

Q
π̃
(
Π̃ (|ϕ̃(w)− ϕ̃(u)|)

)
≤ |Q| π̃

( 1
|Q|

∫

Q
Π̃(|ϕ̃(w)− ϕ̃(u)|)

)
.

Since|ϕ̃(w)− ϕ̃(u)| ≤ π(|w−u|), we haveΠ(|ϕ̃(w)− ϕ̃(u)|)≤ |w−u| and

Π̃(|ϕ̃(w)− ϕ̃(u)|) = Π(|ϕ̃(w)− ϕ̃(u)|)|ϕ̃(w)− ϕ̃(u)| ≤ |w−u| |ϕ̃(w)− ϕ̃(u)|.

Therefore, (5) implies anL1 estimate of the kind (2) onuh = ϕ(vh):

∫

Q
|ϕ(vh(t+δ ))−ϕ(vh(t))| ≤ |Q| π̃

( 1
|Q|

∫

Q
|w−u||ϕ̃(w)−ϕ̃(u)|

)
= |Q| π̃

( 1
|Q|ω(δ )

)
.

• Use of contraction arguments and absorption terms (see [8])

Let us mention one more possibility for getting estimates ofkind (2) for (1), which
takes advantage of the monotonicity ofψ(·). Assumeϕ = Id in (1); to shorten the
arguments, assumef = 0. ThenL1 translates in time ofuh = b(vh) can be estimated
with every of the two preceding methods, the Kruzhkov lemma and a direct estima-
tion of translates with variational techniques. This makes(b(vh))h relatively com-
pact; yet, whenb−1(·) is discontinuous, no information on compactness of(vh)h is
obtained this way. Now, let us use the translation (in time) invariance of the equation
and theL1 contraction property natural for (1). This yields the estimate (see [8])

∫

Ω
|b(vh

δ )−b(vh)|(T−δ )+
∫ T−δ

s

∫

Ω
|ψ(vh

δ )−ψ(vh)| ≤
∫

Ω
|b(vh

δ )(s)−b(vh)(s)|
(6)

for all s∈ (0,T−δ ), wherevh
δ (t)= vh(t+δ ). Integrating ins>α > 0, using the time

translation bound for(b(vh))h we get anL1((α,T)×Ω) estimate of time translates
of ψ(vh). This is sufficient forL1

loc compactness providedψ(·) is strictly increasing.
Discrete version of (6) (see [8]) assumes theL1 contraction property (linked to

order preservation via the Crandall-Tartar lemma) is preserved at the discrete level.



6 Boris Andreianov

Applications to (1) and some other parabolic PDEs.

We treat different “doubly nonlinear” cases of (1), assuming that eitherb(·) of ϕ(·)
is invertible and thus it can be taken to be identityId(·), upon a change of unknown.
• Application to a parabolic-hyperbolic PDE (see [3])

In the case (1) withb = Id, providedLp(Q) estimates of the discrete gradient of
ϕ(vh) are available, the space translates ofϕ(vh) can be estimated uniformly (as
well as the functionsϕ(vh) themselves), and an estimate of the form (5) can be ob-
tained. Then the above technique for exploiting (5) assesses theL1(Q) compactness
of (ϕ(vh))h, which is a first step of the convergence proof for this problem (see [3]).

• Application to an elliptic-parabolic PDE with the structure condition (see [2])

Assume thatϕ = Id. In this case, the Kruzhkov lemma can be used, see [2]; alter-
natively, estimate (5) allows to control theL1 time translates ofb(vh) similarly to
what was described above. If thestructure conditionG(v) = F(b(v)) is satisfied,
compactness of(b(vh))h is enough to pass to the limit, see Alt and Luckhaus [1].

• Application to a cross-diffusion system (see [7])

The following kind of models comes from population dynamics:
{

ut −D1∆u−div
(
(u+ v)∇∇∇u+u∇∇∇v

)
= u(a1−b1u− c1v),

vt −D2∆v−div
(
v∇∇∇u+(u+ v)∇∇∇v

)
= v(a2−b2u− c2v),

(7)

Natural estimates for approximate solutions of (7) areL2 bounds on
√

1+u+ v∇∇∇u,√
1+u+ v∇∇∇v; this gives only anL4/3 bound on the diffusion fluxes in (7), thus we

are not in a variational setting8. Therefore for existence obtained by convergence of
finite volume approximations of the kind [10], the Kruzhkov lemma was used in [7].
Alternatively, the discrete Aubin-Simon lemma (see [12]) could be used here.

• Application to convergence of some linearized implicit schemes (see [5])

An elliptic-parabolic “bidomain” system is used for modelling heart electric activity.
In [5], finite volume discretization of a simplified version of the bidomain model:

{
vt −div

[
M i(·)∇∇∇ui

]
+H(v) = Iap(·),

vt +div
[
Me(·)∇∇∇ue

]
+H(v) = Iap(·), v= ui −ue, (8)

was considered; here, the “ionic current”H(·) is a cubic polynomial. The nonlinear
reaction term brings an estimate ofvh(v) which boundsv in L4(Q). Time-implicit
DDFV discretization of (8) preserves this structure; then the problem falls into the
“variational” framework9 and time translates can be estimated like in [1, 10, 11].
From the practical point of view, it is important to accelerate computations, and
to consider a linearized method where the discretization ofthe reaction termH(v)
is not fully implicit. Unfortunately, for theoretical analysis L4 estimate forvh is
not available any more; only a weaker estimate can be obtained with interpolation
arguments. In [5], we applied the Kruzhkov lemma to exploit this weaker estimate.

8 from the practical point of view, e.g. the first equation cannot be tested withu(t+δ ).
9 Indeed, we havevh bounded inL4(Q) andH(vh) is bounded inL4/3(Q) = (L4(Q))∗ .
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3 Advanced use of the underlying PDE features

Compactness from monotone penalization and order-preservation

For getting (6), we already used the order-preservation structure for (1). Its further
use, in conjunction with penalization, may lead to an indirect compactness proof.

• The structure needed for compactification

Assume that one can proveuniquenessof a solution to the PDE under study, let us
call it (Eq0). Assume that it can be embedded “continuously” into a family (Eqε ) of
perturbed PDEs having the property thatvh

ε1
≤ vh

ε2
whenε1 ≤ ε2, wherevh

ε1
, vh

ε2
are

the associated discrete solutions. Continuity inε ∈ [−1,1] means, we assume that
limits asε→0 (if any) of exact solutionsvε of (Eqε ) solve the limit equation (Eq0).

Assume that forε 6= 0, the corresponding sequence(vh
ε)h is well defined and it

converges to an exact solutionvε of (Eqε). Then solutions(vh
0)h to the discretized

equation (Eq0) converge, ash→ 0, to the unique solution of(Eq0). For the proof,
write

vh
−1 ≤ vh

−1/2 ≤ ...≤ vh
−1/m ≤ ...≤ vh

0 ≤ ...≤ vh
1/m ≤ ...≤ vh

1/2 ≤ vh
1, (9)

and pass to the limit ash→ 0 to definev±1/m := limh→0vh
±1/m (up to extraction of

a subsequence) solution to (Eq±1/n); then, (9) is inherited at the limit (except that
(vh

0)h may not have a limit). By monotonicity, we can definev := limm→∞ u−1/m, v :=
limm→∞ u1/m; furthermore,v ≤ lim infh→0vh

0 ≤ limsuph→0vh
0 ≤ v. Both v,v solve

(Eq0); by uniqueness,(vh
0)h converges tov= v the solution of(Eq0).

• Application to an elliptic-parabolic PDE without the structure condition (see [8])

We assume thatϕ = Id, ψ = 0 in (1). We have seen that compactness of(b(vh))h

can be established, e.g., with the Kruzhkov lemma. Under thestructure condition
G(v) = F(b(u)), this is enough to pass to the limit in the equation. But in general, no
control of time oscillations ofG(vh) is available, and the method of [1] breaks down.
Yet it is enough to add penalization term of the formψε(v) = ε(arctanv∓ π

2 signε)
to get into the setting where (6) can be exploited to control discrete solutions(vh

ε )h

and to pass to the limit, ash → 0, for theψε -penalized equation (1ε). The order-
preservation assumptions of the above method being fulfilled due to the choice of
ψε , we get convergence of(vh)h in the cases where uniqueness for (1) can be shown.

Use and reduction of Young measures

Let us recall well-known techniques (which are not specific to timecompactness).

• Nonlinear weak-* convergence and its description (see references in [10, 11, 3, 6])

Equi-integrable sequences(uh)h of L1(Q) functions are relatively compact in the
nonlinear weak-* sense; namely, for all Carathéodory mapF such that(F(·,uh(·)))h

is equi-integrable,L1-weak limit ofF(·,uh(·)) equals to
∫

F(·,λ )dν(λ ; ·) for some
family of probability measures(ν(·; t,x))t,x on the set of values of(uh)h. For IR-
valued sequences, equivalent description in terms of the distribution function of
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ν(·) is very convenient, see [10, 11]. Finally, if the Young measureν(·; t,x) reduces
to a Dirac measureδ (·−u(t,x)), thenstrongconvergence ofuh to u is inferred.

• Application to discretization of the elliptic p(x)-laplacian (cf. [6])

The classical Minty argument (see e.g. [1, 2]) cannot be applied directly when
the p(x)-laplacian discretized problem−divh

[
|∇∇∇huh|ph(·)−2∇∇∇huh

]
= f h is consid-

ered: discretizationsph of p(·) lead to estimates in “moving” spacesW1,ph(·). Using
Young measures for(∇∇∇huh)h one can “pull everyone down” to the common space
L1 and use the monotonicity ofξ 7→ |ξ |p−2ξ to reduce the Young measure (see [6]).

• Application to a parabolic-hyperbolic PDE (see [3])

For the case of (1) withb = Id, we have already justified the compactness of
(ϕ(vh))h in L1(Q). The Minty argument or the above reduction of Young measures
yield compactness of(∇∇∇hϕ(vh))h. Then, following the ideas of Tartar and DiPerna,
a weak-* limit of (vh)h is created andentropy inequalitiesare used to reduce the
corresponding Young measure to a Dirac measure, in the way of[10, 11].

Acknowledgements The author thanks E. Emmrich for discussions on the above techniques.
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