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Abstract

We study linear factor models under the assumptions that factors are mutually indepen-
dent and independent of errors, and errors can be correlated to some extent. Under factor
non-Gaussianity, second to fourth-order moments are shown to yield full identification
of the matrix of factor loadings. We develop a simple algorithm to estimate the matrix
of factor loadings from these moments. We run Monte Carlo simulations and apply our
methodology to data on cognitive test scores, and financial data on stock returns.

JEL codes: Cl14.

Keywords: Independent Component Analysis, Factor Analysis, high-order moments,
noisy ICA.



1 Introduction

A linear factor model relates a vector of L measurements to a vector of K unobserved

sources, or factors, via a linear relationship:
Y =AX+1U, (1)

where A is an L-by-K matrix of parameters (factor loadings) and U is a vector of L
errors. A sample of N ii.d. observations of Y is available for inference. In Factor
Analysis (FA), it is assumed that Var(X) = Ik (the identity matrix), and A is identified
up to a rotation (Anderson and Rubin, 1956). Independent Component Analysis (ICA)
strengthens the orthogonality assumption, and assumes that all the components of X
and U are mutually independent. Then, if factors are not normally distributed, with a
variance normalized to identity, A is generically identified up to sign and permutation
normalizations (Comon, 1994, Eriksson and Koivunen, 2003). In the past ten years, ICA
has become the standard approach to source separation, with numerous applications to
signal processing, telecommunications, and medical imaging (Hyvérinen, Karhunen and
Oja, 2001).

Independent factor models are also present in the econometrics literature. A well-

known example is the measurement error model (L =2, K = 1):

Y
Y,

where X , U; and U, are assumed independent, and Var(X) = 1. Geary (1942) and

X+ U
An X + Uy,

Reiersol (1950) have shown that factor loadings are identified if X is not Gaussian. Since
this seminal work, a long series of econometric contributions have proposed different ways

to identify and estimate factor loadings in the measurement error model.! The class of

LA short list of contributions includes Pal (1980), Dagenais and Dagenais (1997), Lewbel (1997),
Erickson and Whited (2002), and Schennach et al. (2007) for a recent nonparametric generalization of
the model.



models that we consider in this paper can be seen as a generalization of this line of
research to multi-factor structures.

Factor models are widely used in other areas of economics. For example, Ross’s
(1976) Arbitrage Pricing Theory (APT) has profoundly influenced empirical finance.
In macroeconometrics, structural VAR models (e.g., Blanchard and Quah, 1989) have
evolved into more complex factor models (e.g., Forni and Reichlin, 1998, Pesaran, 2006,
Chudik and Pesaran, 2007). In microeconometrics, error component models for panel
data can be understood as parsimonious linear factor models. Moreover, recent studies
aiming at better understanding the sources of individual wage/productivity dispersion
have used factor models to construct measures of “primary” mental abilities based on
psychometric tests (e.g., Carneiro, Hansen and Heckman, 2003, and Heckman, Stixrud
and Urzua, 2006).

Factor independence is often assumed in these applications, as in Ross’s APT, or in
the aforementioned papers by James Heckman and coauthors. Independence, or higher-
order uncorrelatedness, serves two goals. First, it provides another source of identification
of the model, in the form of additional moment restrictions. Second, independence is a
natural step beyond uncorrelatedness if one is interested in higher-order moments of the
data. If the data are not Gaussian, and display skewness or kurtosis, then it is natural
to seek to fit not only the variance but also third and/or fourth-order moments.?

In applications to social sciences, measurement error and/or specific factors are likely
to be present. However, most ICA algorithms do not explicitly allow for noise. Indeed, in
ICA applications, errors are usually assumed negligible (U = 0), hoping that noise-free
methods work well if the signal-to-noise ratio is high enough (Cardoso and Pham, 2004).

The methodological contribution of this paper is to fill this gap in the literature, and

2For example, there is evidence that the variance of returns is not an adequate measurement of risk
as assumed in the CAPM model. For a recent extension of CAPM involving higher-order moments of
asset returns, see Mencia and Sentana (2008).



provide a close substitute to noise-free ICA algorithms that remains consistent in the
presence of noise.

In the noise-free case, several computationally efficient ICA algorithms are currently
available to separate up to K = L unobserved factors, FastICA (Hyvérinen and Oja,
1997) and JADE (Cardoso and Souloumiac, 1993) being especially popular. Most of
these methods use a two-step approach to estimation.® In the first step (prewhitening),
the data are transformed so that the covariance matrix is the identity, e.g. using Principal
Component Analysis (PCA). In the second step (source separation) the rotation matrix
is derived from higher-order information.

Two approaches have already been proposed to deal with noisy ICA models. In the
first approach (Moulines et al., 1997, Attias, 1999) a flexible parametric model is postu-
lated for factor and error distributions. Maximum Likelihood is often used in estimation,
together with the EM algorithm. This requires an appropriate parametric specification,
e.g. a mixture model, and greatly increases the computational cost relative to noise-free
two-step algorithms.

The second approach relies on a prewhitening step as in noise-free ICA methods,
replacing PCA by Probabilistic PCA (Beckmann and Smith, 2004) or FA (Ikeda and
Toyama, 2000, Stegeman and Mooijaart, 2007). This approach yields a fast semi-
parametric estimation of A. Yet, as only second-order moments of the data are used
in the prewhitening step, the number K of common factors must be less than the Leder-
mann bound* for the procedure to be consistent. Moreover, it only deals with Gaussian
errors. If errors are sizeable and the data are highly non-normal, this assumption can be

problematic.

3See Chen and Bickel (2005). Given the high number of moment restrictions implied by independence,
optimal method-of-moments/minimum distance estimation is not tractable. We will provide simulation
evidence to illustrate this point.

4The Ledermann bound is the maximal number of factors, K, such that the number of non redundant
elements of Var(Y) is greater than the number of factor loadings plus the number of restrictions to pin
down the rotation. The bound is K = (2L + 1 — +/8L + 1)/2 if errors are mutually uncorrelated.



We also adopt a semi-parametric, two-step approach. In the first step, second to
fourth-order moments of error variables are inferred from a set of linear restrictions,
and filtered out from the corresponding data moments. Importantly, unlike the previous
literature we use all second, third and fourth-order data moments in the first estimation
step. Then, the second step uses Cardoso and Souloumiac’s (1993) JADE algorithm to
estimate factor loadings. We call quasi-JADE this two-stage estimation procedure.

Quasi-JADE is consistent whether errors are Gaussian or not, and is almost as fast to
run as JADE. An important property of the algorithm is that errors can be correlated to
some extent. We show that, if J is the number of mutually independent error pairs, up to
K = min{J, L} factors are generically identified. In the particular case of independent
errors, we can thus relax the Ledermann bound and estimate up to L factors. This is
because we use higher-order data moments in the prewhitening step of the algorithm.?

Finally, our approach is related to overcomplete (K > L) ICA models.® Indeed, our
estimation procedure can be applied iteratively to estimate a model with L unrestricted
factors, L — 1 factors specific to measurements {2, ..., L}, L — 2 factors specific to mea-
surements {3, ..., L}, etc., and one last factor specific to the last two measurements, for
a total of L (L — 1) /2 factors with restrictions on factor loadings. Building on Cardoso
(1991), De Lathauwer et al. (2007) have recently proposed an algorithm for overcomplete
ICA based on fourth-order moments of the data. Compared to their approach, we do not
require error variables to be non-Gaussian, we use second (and higher) order moments in
the estimation, and we allow for up to L(L — 1)/2 factors when A is sparse enough. The
results of De Lathauwer et al. (2007) are thus complementary to ours, as they develop

a method to estimate overcomplete models without noise, while we propose a robust

5The algorithm can also be applied to cases where factor loadings are restricted ez-ante, as in struc-
tural VARs. If there are sufficiently many restrictions for the rotation indeterminacy to disappear, factor
loadings and error covariances can be jointly estimated from the first estimation step. The benefits of
using higher-order information then translate into the possibility of allowing for a richer error structure.

6 Algorithms for overcomplete ICA have been proposed by Comon (2004) for the case L, K = 2,3,
and by Albera et al. (2004), among others.



version of a standard ICA algorithm (JADE) in the presence of non-negligible noise.
Sections 2 and 3 present the model, derive the moment restrictions on which identi-
fication and estimation are based and show the identification of the number of factors,
error cumulants and factor loadings. In Section 4 we discuss the estimation of the factor
loadings, and develop the asymptotic distribution theory for JADE, surprisingly missing
in the literature. In Section 5, we illustrate the finite-sample properties of our procedure
by means of Monte-Carlo simulations, and in Section 6 we apply the method to two
datasets: psychometric data on cognitive test scores, and financial data on stock returns.

Lastly, Section 7 concludes.

2 Model and moment restrictions

2.1 The model

Let Y = (Y1,..,Y2)" be a vector of L > 2 zero-mean, real-valued random variables
(measurements), where T denotes the transpose operator. Let X = (X1, ..., XK)T be a
random vector of K > 1 real valued, non degenerate random variables (factors). Let also
U = (U, ...,U.)" be a vector of L real-valued random variables (errors). An observation

sample is a collection of N independent draws of vector Y.

Assumption A1 There exists a L-by-K matriz of scalar parameters (factor loadings),

A = [Mg],” such that Y = AX + U, and A, X and U satisfy the following conditions:

1. (XY, UMY has zero mean and finite moments up to the fourth order.
2. The components of X are mutually independent, and independent of those of U.

3. The components of X have unitary variance.

A triple (A, X, U), satisfying these assumptions is called a representation of Y.

7A generic column of A is denoted A, and a generic row Ag.



In the second statement, independence can be replaced by the weaker assumption of
zero multivariate cumulants up to the fourth order. The third statement is a normaliza-
tion condition. If (A,X,U) is a representation of Y, then (AD_I,DX, U) is another
representation of Y for any diagonal matrix D with positive entries on the diagonal.

The normalization of the variance of X is not sufficient to grant identification. For any
value of K, the number of factors, let us define the set of sign-permutation matrices as the
set Sk of all products DP, where D is a diagonal matrix with diagonal components equal
to 1 or —1 and P is a permutation matrix. For given values of L and K, let (A, X, U) be
a representation of Y. Clearly, for all S € Sk, (AS, STX, U) is another representation.
We say that the matrix of factor loadings A is identified if any representation of Y,
(A, X, U), is such that A and A are equal modulo Sk (i.e. A = AS for some S € Sk).

Given the linearity and independence assumptions, working with cumulants is espe-
cially convenient. Multivariate cumulants of centered random variables of order 2, 3 and

4 are defined as follows:
Cum (71, Zo) = E(Z,Z,),
Cum (21, 24, Z3) = E(Z1Z273),
Cum (Z1, Zs, Z3, Z4) = B(Z1252524) —B(Z125)E(Z52Z4) — B(Z1 Z3)E(Z2 Z4)
—E(Z,Z4)E(Zy Z3).
To ensure identification we impose the following restrictions on the first cumulants of

error variables.

Assumption A2 There erists a non empty set of indices J C {(¢,m) € {1,...,L}* £ <

m} such that, for all (¢,m) € J and all measurement indices i and j, we have:
Cum (U,, U,,) = Cum (U;, Uy, Uy,) = Cum (U5, U;, Uy, Uy,) = 0.

Most of the ICA literature makes parametric assumptions on errors, usually assuming

Gaussianity. However, Davies (2004) points out that error Gaussianity alone is not suffi-

6



cient to provide identification of factor loadings in a noisy ICA model. For identification,
one needs to restrict the dependence between errors, which is what Assumption A2 does.
The following lemma shows that Assumption A2 is satisfied by a broad class of error

structures.

Lemma 1 Let U = Tle, where II is a L-by-H matriz of scalar parameters, and the
components of € are mutually independent and independent of those of X with finite

moments up to the fourth order. Then U satisfies assumption A2, with
J={t,m) e {1,..,L} £<m, U I Up,},
where 1L denotes statistical independence.

The proof is in section A.1 of the mathematical Appendix.

Lemma 1 shows that several commonly used error dependence structures satisfy As-
sumption A2. A first example is provided by independent heteroskedastic errors. In this
case:

J={(t;m) €{1,.., L}’ ¢ <m}, and J=#J = @

If the data has a group structure, with r disjoint groups M; (i = 1,...,7), and errors
are independent between groups, then J = {(¢,m) € M; x M;,i # j, £ < m}, and
T =3 #M, (L - #Mz‘)-

In addition, Assumption A2 allows for temporal or spatial correlation patterns. For
instance, if errors are MA(q) then J = {(¢{,m) € {1,..,L}* ¢ < m —q}, and J =
(L—q)(L—q—1)/2. Likewise, spatial MA models may also satisfy the assumption, with
J depending on the zeros of the matrix of spatial weights (e.g., Anselin, 2003).

In contrast, autoregressive (or spatial autoregressive) error structures do not satisfy
Assumption A2, as errors are correlated at all lags and leads. However, the methods of

this paper are applicable in this case also. To see how one might proceed, let us consider



a case where errors are ARMA(1,1). Then by taking quasi-differences Y; — pY;_1, where
p is the autoregressive parameter, we end up with MA (1) errors. Using the results below,
p can then be obtained in the first estimation step (prewhitening), together with error
moments.

Throughout the paper, we will take the set J as given. In some cases, the choice
of J may be very natural. For example, in the application to cognitive test scores we
will allow for contemporaneous correlation in the errors, taking into account the group
structure of the data. However, there may be cases where no obvious choice for J is

available.
2.2 Moment restrictions

We start by deriving the moment restrictions implied by Assumption Al. Let p € {2, 3,4}
and (41, ...,4,) € {1,..., L}*. Assumption Al implies

Cum (Ygl, vy Y}gp) = Z

K
k=1

P
(H A&-,k) Kp (Xk) + Cum (Ugl, ceey Uep) ; (2)
i=1
where we write k, (Z) = Cum (Z, ..., Z) (repeat Z p times) for univariate cumulants of
order p > 1.

Moment restrictions (2) have a common multilinear structure which can be conve-

niently expressed in matrix form, as in ordinary Factor Analysis. Define the following

L-by-L, symmetric, square matrices:

Dy [Cum (Y5, Y)],

I'y (E) [Cum (YzaYJ’YL’)]a te {1""aL}a

Qy (¢, m) = [Cum (Y;,Y;,Y,V,)], ¢,me{l,.. L}

with similar expressions for Xy, I'y (¢) or Qu (4, m).



Restrictions (2) imply that

Sy = AAT + 3y, (3)
Iy (¢) = ADjdiag(A,) A" + Ty (¢), (4)
Qy (¢,m) = AD,diag(A;® A,) AT +Qyu (¢,m), (5)

where Ay € RV is the fth row of A, Dy (resp. D,) is the diagonal matrix with cumulant
k3 (X) (resp. k4 (X)) in the kth entry of the diagonal, and ® is the Hadamard (element
by element) matrix product.

Assumption A2 imposes additional restrictions. Combining the assumption with re-

strictions (5) yields:
Qy (¢,m) = AD,diag (A, © A,) AT, V(¢,m)e J.

For a symmetric matrix A = [a;;], we denote as vech the operator that stacks the
elements of the upper triangular part of A, extracted horizontally from left to right:
vech (A) = [a]

i<j- Applying the vech operator we obtain:

wy (£,m) = vech (Qy (£,m)) = QD, (A, ® A,,), VY(¢,m)e T,

where Q is the @—by—]f matrix which generic (7, j) row, ¢ < j, is (A Aj1, ooy Ak AjK)s

ie.
Q = [vech (M A]), ..., vech (Ax A% )],
where A, denotes the kth column of A.
Next, construct the @—by—] matrix Qy by concatenating columnwise all vectors

vech (Qy (¢,m)), (¢,m) € J. Clearly:

Qy

[wy (6:m)] (g myes

= [Cum (Y;,Y;,Y,, Ym)](igj)x(z,m)ej :



Matrix €y contains all fourth-order cumulants of measurements which are not contami-
nated by the presence of noise. Moreover, letting Q7 be the J-by-K matrix obtained by

selecting rows (7, 7) € J from Q, we obtain:

Qy = QD,Qj. (6)
We can similarly construct the following matrix of third-order cumulants:

FY = [Cum (Ka S/Za Ym)]

ix(&,m)?

where the rows of I'y are indexed by i € {1,...,L} and the columns are indexed by
(¢,m) € J. Then,

I'y = AD;Q7,. (7)

In the next section, we take J as given and focus on the identification of factor

loadings, using moment restrictions (3) to (7).

3 Identification results

In this section, we use the moment restrictions implied by the noisy ICA model to give
sufficient conditions for the identification of factor loadings and error moments. We start

with the number of factors, K.

3.1 Identification of the number of factors

The following theorem is an immediate consequence of (6) and (7).

Theorem 1 The two following statements hold:

i) Assume that all factor variables are kurtotic (k4 (Xy) # 0,Yk), and that matriz Q7
has rank K, which in particular implies K < J. Then matriz Qy has rank K.

i) Assume that all factors are skewed (k3 (Xy) # 0,Vk), and that both A and Qs

have rank K, which implies that K < min{J, L}. Then T'y has rank K.

10



In Theorem 1, as in the other identification results below, we assume that Q. has
rank K. Note that this is different from assuming that A has rank K. For example, if
one column of A, say the first one, has all elements equal to zero except one, then the
first column of Q_ is identically zero, while A may still have rank K. Conversely, Q7
may have rank K even if A has rank less than K8

Theorem 1 shows that matrices Qy and I'y allow to identify the number of common
factors K. Notice that fourth-order cumulants can be used together with third-order

cumulants. Define

QY (.7) = [Cum (}/ivyvjvnaym)]v ] S {17"'7L}7

and §Y = [Fy,ﬂy(l),,ﬂy(lz)]

Then, it is easily shown that, if factors are either skewed or kurtotic and A and Q7 have

rank K, then matrix ®vy has rank K.
3.2 Identification of error moments
Applying operator vech to (3), (4) and (5) yields the following linear restrictions:

vech (By) = Qlg + vech (Zy),
vech (Ty (¢)) = QD3A,+ vech (Ty (¢)), V¢,

vech (Qy (¢,m)) = QD,(A¢® Ay,) + vech (Quy (4, m)),V (¢, m),

where 1 is a K-dimensional vector of ones.

All factors are kurtotic. Let us begin by assuming that all factors are kurtotic, so

that D, has no zero on its main diagonal. Theorem 1 shows that, if matrix Q7 has rank

1 1 2
8For example, for L = 3, K = 3, J = {(1,2),(1,3),(2,3)}: A = ( 1 2 3 ) has rank 2, but
1 3 4

Qs = ( ) has rank 3.

—
S W N
—

o ® o

11



K, then rank (2y) = K. So one can choose an orthogonal basis of the null space of Q3,

and construct a L(L2+1)—by—(L(L2+1) -K ) orthogonal matrix B that satisfies: 2B = 0.

Hence, as Q 7Dy has full column rank, it follows that QTB = 0. So,

BT vech (Zy) = BTvech (Zy), (8)

BT vech (Ty (¢)) = BT vech (Ty (¢)), VY, (9)

B" vech (Qy (¢,m)) B" vech (Qy (¢,m)),V (¢,m). (10)

The following theorem shows that these linear restrictions identify error cumulants.

Theorem 2 Assume that all factor variables have non zero excess kurtosis® and that
matriz Qg has rank K. Then, second, third and fourth-order cumulants of error variables

are uniquely defined by identifying restrictions (8), (9) and (10).

The proof is in Section A.2 of the mathematical appendix.

Theorem 2 provides linear restrictions identifying error cumulants of order 2 to 4
irrespective of A and X. The theorem shows that high-order moments of the data,
appearing in (4) and (5), contain information on error moments that is not contained
in second-order moments of the data. Exploiting this information allows to increase
the number of common factors that can be identified in Factor Analysis, which relies
exclusively on second-order restrictions (3).

The following corollary is immediate.

Corollary 1 Assume that the conditions of Theorem 2 are satisfied. Then, the elements

of AAT are uniquely defined by restrictions (3) and (8).

If K < L, the corollary shows that if the conditions of Theorem 2 hold, then A

is identified up to right-multiplication by an orthogonal matrix. The last part of the

9 “Excess kurtosis” of a random variable refers to its standardized kurtosis minus three, which can be
positive or negative. So, the assumptions in Theorem 2 allow for leptokurtic or platykurtic factors, the
only requirement being that the kurtosis of all factor variables be different from that of the normal.

12



identification proof, that we derive in the next section, is devoted to the identification of
this rotation.

Corollary 1 can be of interest in its own right, if ex-ante restrictions are assumed on
matrix A. Indeed, if these restrictions are sufficient to identify A from the knowledge of

AAT, then the rest of the identification proof is unnecessary.®

All factors are skewed. We can proceed similarly if every factor is skewed. If both
A and Qg have full column rank K, Theorem 1 shows that 'y = AD3Q} has rank K.
Hence, there exists a L-by-(L — K) orthogonal matrix C such that I',C = 0. So, as D3
has no zero on its diagonal, it must also be that CTA = 0.

The second, third and fourth-order cumulants of Uy, for all £ € {1, ..., L}, thus satisfy

the following linear restrictions:

C'sy = C'sy, (11)
C'Iy (/) = C'TI'y(0), (12)
CTﬂy(E,m) = CTQU(E,m). (13)

Define, for all £ € {1, ..., L}, the sets
r={me{l,..,L}, m<fLor ({,m)e T},

with I, = #T7,. Denote also Az, the I;-by-K matrix obtained by selecting rows i € Z, from
A. The following theorem gives conditions under which the system of linear restrictions

(11), (12), and (13), has a unique solution.

Theorem 3 Assume that every factor distribution is skewed, that Qg has rank K, and
that Az, has full column rank for all £. Then, second, third and fourth-order cumulants

of error variables are identified from restrictions (11), (12), and (13).

10This is, for example, the case if A is assumed to be lower triangular, as in the following linear panel
data model: y;; = pi + uit, (¢,t) € {1,..., N} x {1,...,T}, where py is a random walk: p;z = p; ¢—1 + €3,
with pjo, €1, ...,&i7 independent. The transitory shocks u; can be e.g. MA(g), or the sum of an MA(q)
and an iid component (e.g., measurement error).

13



The proof is in Section A.3 of the mathematical appendix.

Theorem 3 implies that the number of factors is bounded by min {I,, ¢ € {1, ..., L}}.
In the particular case of independent errors this yields K < L—1. Focusing on the model
with L = 2 and K = 1, Geary (1942) has shown that identification holds, provided that
the factor is skewed. Theorem 3 provides a generalization of this result to multi-factor
models.

Lastly, the discussion in this subsection can be generalized to the case where every
factor is either skewed or kurtotic (k3 (Xx) k4 (Xx) # 0). One needs only replace matrix

T'y by matrix &y = [Ty, Qy(1), ..., 2y (L)], and compute C such that ®LC = 0.
3.3 Identification of factor loadings

In this section we assume that the cumulants of order 2, 3 and 4 of error components are
known, the previous section giving sufficient conditions for their identification. Second,
third and fourth-order restrictions (3), (4), (5) imply that matrix A satisfies, simultane-

ously,

Sy = Iy —Zy=AA", (14)
Iy () = Ty (¢)=Ty(¢) = ADsdiag (A;) A", (15)
Qy (,m) = Qy (4,m) — Qy (¢, m) = AD, diag (A, ® A,,,) A”. (16)

Let us assume that K < L, and let P be an K-by-L matrix such that
PEyPT = Ik, (17)

Matrix P can easily be constructed from eigenvectors and eigenvalues of Svy. Left and

right-multiplying (14), (15) and (16) by P and P™, respectively, we obtain:
Py ()PT = VDsdiag(A,) V", ¢e{1,..,L},
PQy (£, m)PT = VD,diag(A,©A,) VT, £<m,

14



where V = PA is orthonormal (VVT = Iy). Therefore, V solves a joint diagonalization

problem. Theorem 4 below gives conditions for the solution to this problem to be unique.

Theorem 4  Assume that error cumulants are known, and that matriz A has full col-
umn rank K, so in particular K < L.

(i) If at most one factor variable has zero excess kurtosis, then factor loadings are
identified from second and fourth-order moment restrictions (14) and (16).

(i) If at most one factor variable has zero skewness, then factor loadings are identified
from second and third-order moment restrictions (14) and (15).

(1) If for any couple of factors indices (k, k'), (k3 (Xk) , k3 (Xp) , ka (Xi) , K4 (X)) #
0, then factor loadings are identified from second, third and fourth-order moment restric-

tions (14), (15) and (16).

The proof is in Section A.4 the mathematical appendix.

Combining Theorems 2, 3 and 4 we obtain that (7) at most K = min{J, L} factors
can be identified if all factors are kurtotic, and (4) at most K = min{f,,¢ € {1, ..., L}}
if all factors are either skewed or kurtotic. In the case where errors are independent
one can thus identify up to K = L factors in the first case and K = L — 1 in the
second case. By comparison, the number of factors in FA models is bounded by K =
(2L +1- \/m) /2. This general identification result holds provided that sufficiently
many errors are mutually independent.!!

We end this section by remarking that Lemma 2, together with the previous iden-
tification theorems, imply that overcomplete ICA models are identified if there exist

sufficiently many restrictions on factor loadings. To see that, let us consider the model:

Y = A X, +...+ AsXs + U,

HTo give an example, if errors follow an MA(q) process indexed by the measurement indices ¢ =
1, ..., L, then one can generically identify L common factors if J = (L — ¢)(L — ¢ —1)/2 > L, that is if

g<(2L—-1-+BL¥1)/2.
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where, for all s € {1, ..., S}, X, has K, < L elements, A, is L-by-Kj, and all factors and
errors are assumed mutually independent. Let us suppose that all factors are kurtotic,
the argument being similar when factors are skewed. Theorems 2 and 4 show that one
can generically identify up to K1 = J; factors Xy, where J; is the number of components
of AsXy + ... + AsXs + U that are mutually independent. As an example, K1 = L — 1
factors X; are identified, if the first row of all matrices As, ..., Ag is identically zero.
Applying this procedure sequentially shows identification in the case where S = L — 1,
and, for all s € {1,...,S}, K, = L — s, and the first s — 1 rows of A, are zero. This
corresponds to a block-triangular structure where the first L — 1 factors are common to
all measurements, the next L — 2 factors are specific to Y3,..., Y, and so on. In this
model there are K = L(L —1)/2 factors, and L(L —1)?/6 restrictions on the L*(L —1)/2

factor loadings.

4 Estimation

We start by discussing the issue of estimating factor loadings. GAUSS codes for two
versions of the quasi-JADE algorithm are available online.'?> Then, we provide the as-
ymptotic theory of the JADE estimator, and discuss how to perform inference for JADE

and quasi-JADE in practice.

4.1 Estimation of factor loadings

We assume that the number of factors K is known.!3 The two steps of the estimation

algorithm are as follows.

12 Available at: http://www.cemfi.es/~bonhomme/

13 Assuming that Q. has full column rank and that factor variables show excess kurtosis, then matrix
Qv hasrank K < J (see Theorem 1). In the additional appendix to this paper (Bonhomme and Robin,
2008a), we propose a refined version of the sequential testing procedure developed in Robin and Smith
(2000) to estimate the rank of Qvy, and provide Monte Carlo simulations.
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Prewhitening. In the first step error moments are estimated. In the case where all

factors are kurtotic one may apply the following procedure:'*

1. Construct matrix Qy = [Cum (Y;, Y}, Ys, Y;,)], where rows are indexed by couples

(4,7), i < 7, and columns are indexed by couples (¢,m) € J.

2. Assuming that rank (Qy) = K, find the null space of 2%, i.e. compute an or-

thogonal L(L2+1) by—(L(LQH) — K) matrix B such that Q3B = 0. A Singular Value

Decomposition (SVD) can be used for this purpose.

3. Solve for the non-zero elements of 3y in the linear system (8). Proceed in the same

way for third-order and fourth-order error cumulant matrices I'y (¢) and Quy (¢, m).

In the algorithm, Step 3 can be performed by Least Squares. However, doing so
does not necessarily deliver a positive-definite matrix Xy — Xy. This is why it seems
preferable to combine the linear restrictions (8) with the covariance restrictions (3), and
perform a factor analysis of Xy with linearly constrained error variances and covariances.

In practice, we simultaneously solve for the lower triangular matrices W (L-by-K)

and Z (L-by-L) such that restrictions

Sy = WWT 42777,
B vech (Zy) = B"vech (ZZ"),

2z7],,, = 0, V{m)eJ,

approximately hold in a L? sense. This is a quadratic problem that can be solved using

standard optimization routines.®

4 Alternatively, if all factors are skewed, or either skewed or kurtotic, one can follow a similar proce-
dure, basing the estimation on matrix I'y or matrix ®v, respectively.

15High-order moments are notoriously more difficult to estimate precisely than low-order moments
(see the experiment in Table 1 below). One may thus want to weight second, third and fourth-order
restrictions differently (see also Cragg, 1997).
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The following remarks are in order. First, all second, third and fourth-order moments
of the data are used to estimate W. Higher-order moments appear in the matrix B.
This is for this reason why up to K = L factors can be estimated, while, using second-
order moments only, the maximal number of factors would be less than the following
(generalized) Ledermann bound: K < (2L +1 — /(2L +1)? — 8.J)/2.16

Second, if there are sufficiently many restrictions on A, then one can estimate A
together with Xy directly from this system. The source separation step below is not

necessary (see the discussion following Corollary 1).

Source separation. Given whitened cumulant matrices Sy, Ty (¢) and Qy (¢, m)
(equations (14), (15) and (16)), we compute V as the K-by-K matrix of common or-
thonormal eigenvectors (VVT = Ix) of matrices PTy (¢) PT and PQy (¢, m) PT, where
P satisfies equation (17). For example, one can choose P = W~ (the Moore-Penrose
generalized inverse of W), where W has been estimated in the prewhitening step. In
this case, factor loadings are then obtained as A = WV,

In practice, we replace theoretical moments by empirical analogs and use Cardoso and
Souloumiac’s (1993) Joint Approximate Diagonalization algorithm (JADE). This algo-
rithm provides a fast way of minimizing with respect to an orthonormal matrix V the sum
of squares of off-diagonal elements of matrices VIPTy (£) PTV and VIPQy (¢, m) PTV.
In practice, one may want to weight cumulant matrices according to their estimated pre-
cision.

The JADE algorithm is described in Appendix B. We call the resulting algorithm
quasi-JADE, to emphasize the two-step nature of our procedure. It is only marginally

more complicated to implement than JADE and almost as fast. However, unlike JADE,

16This bound is obtained by comparing the number of parameters to be estimated (that is: K (L —
(K — 1)/2) unrotated factor loadings and (L(L + 1)/2 — J) error covariances) to the number of second-
order moments (that is: L(L + 1)/2). It coincides with the Ledermann bound when J = {¢ < m}, and
J=L(L-1)/2.
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it is robust to the presence of (possibly correlated) noise.
Lastly, once factor loadings have been estimated, one can obtain the third and fourth-

order cumulants of factor variables from the linear restrictions (6) and (7).'”

4.2 Inference

As far as we know, there is no derivation of the asymptotic properties of JADE in the
ICA literature. This section aims at filling this gap. At the end of the section, we discuss
how to perform inference for the JADE and quasi-JADE estimates in practice.

To proceed, let ;&1, - ;&5 be root-IN consistent and asymptotically normal estimators
of S symmetric K-by-K matrices Aq, ..., Ag.'® Construct A= [Kl, ...,_/15} and A =

[A1, ..., Ag] by concatenation. The JADE estimator is

s
V = arg min Z OH(VTKSV),

VeOg

where off(M) = >, m2, for a matrix M = [my,], and Ok is the set of orthonormal
K-by-K matrices.

Assume that there exists V € Og such that, for all s = 1,...,S, VTA,V = D,
where Dy is the diagonal matrix with diagonal elements ds, ..., dsx. Define the K-by-K

matrices:

R l (dsk — dsm) ]
Zf’:l(ds’k — dslm)2 k,m=1,..,.K

and r, = vec(R;). Lastly, let F be the following K2-by-SK? matrix:

F = [diag (ry), ..., diag (rg)] .

We show the following result in Appendix C.

"We use generalized inverses to do so. For example, using equation (6), the fourth-order cumulants
of factor variables are estimated as the diagonal elements of an estimate of: Q~Qy [Q}]T. We proceed
similarly to estimate third-order cumulants.

18When applying JADE or quasi-JADE, Ay, ..., Ag are whitened matrices of empirical cumulants,
which are root-N consistent and asymptotically normal estimators of their population equivalents.
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Theorem 5 Assume that Zle(dsk — dsm)? # 0 for all k # m. Then

A~

Nz (vec(V) - vec(V)) - N (0, Avar (N%V)) (weakly),
where:
Avar (N%V) = (Ix®V)F(Is®VT®V") Avar (N%A) (Is@VOV)ET(Ix®VT), (18)
where Avar denotes the asymptotic variance.

Let us consider the particular case of S = 1. In this case, (18) yields the well-known
expression for the variance-covariance matrix of the eigenvectors of a symmetric matrix
(e.g., Anderson, 1963). The diagonal coefficients of matrix F are equal to 1/(dix — dim),
for £ # m. The variance of eigenvectors thus increases when two eigenvalues of A get
close to each other.

In the general case of more than one matrix (S > 1), precise estimation requires
>, (dsk — dysm)? to be away from zero, for all indices (k,m). Cardoso (1999) already noted
that joint diagonalization algorithms seemed less sensitive to the presence of multiple
roots than usual diagonalization techniques.!® Theorem 5 permits to better understand
the conditions granting a good precision.

In the quasi-JADE algorithm using fourth-order moments, indices are s = (¢, m), and
matrices D, are: Dy diag (A ® A,,). If there exist &, &' such that dg = dgp for all s, it
must be that

A Amiba (Xi) = Ao Ay 4 (X)) , V(€,m).

This cannot happen if at most one factor has zero excess kurtosis and the columns of A
are not proportional to each other.
This result is not surprising, as the variance of eigenvector estimators blows up when

the model is not identified. Non identification arises in PCA when the variance of the

19Gee also the asymptotic distribution of estimators of Common Principal Components derived by
Flury (1986).
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vector of measurements has multiple eigenvalues (there are then obviously many possible
choices for a basis of the corresponding eigenspace). In ICA this happens when two
columns of the matrix of factor loadings are proportional or when factor distributions
lack skewness and/or excess kurtosis. We shall produce Monte-Carlo simulations to
illustrate this point.

Lastly, the asymptotic result for JADE given in Theorem 5 can be generalized to quasi-
JADE, at the cost of introducing extra notation. As a result, the algorithm yields root-INV
consistent and asymptotically normal estimates of factor loadings and error moments,
under the conditions of Theorem 2 (or Theorem 3, if using third-order moments) and
Theorem 4. However, this generalization is not of direct interest to our purpose, as

illustrated by the next remark.

Practical remark. In practice, we do not recommend to use formula (18) to compute
standard errors. Instead, we suggest to compute standard errors or confidence intervals by
standard bootstrap (maybe with appropriate recentering for finite sample improvements).
The reason is that (18) involves variances of third and/or fourth-order moments of the
data, i.e. sixth and eighth-order moments. These are difficult to estimate precisely
(see Table 1 for an example with log-normal variables). In our simulation experiments,
we obtained extremely imprecise estimates of matrix Avar(A), even with very large

samples (more than 10,000 observations). In contrast, bootstrapping provided good

approximations of the true variance-covariance matrix of the JADE estimator.

5 Monte-Carlo simulations

In this section, we study the finite-sample properties of our estimator with numerical
simulations. Table 2 displays means and standard deviations of the Monte Carlo distrib-

utions of factor loadings estimates obtained from 1000 simulations of samples of various
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Table 1: Empirical cumulants of the standard log-normal™®

N 500 1000 5000 10000 true
k3@ 4.49 (2.20)3)  4.87 (2.47) 5.66 (2.54) 5.83 (3.17) 6.18
K4 35.9 (.88) 44.5 (.93) 72.9 (.72) 79.8 (.93) 110.9
ke 4,825 (.36) 8,698 (.35) 44,492 (.21) 55,505 (.28) 617,376
ks 856,819 (.22) 2,642,849 (.20) 59,108,559 (.12) 80,815,329 (.16) | 1.647x 10"

(1) Estimated from 1000 independent draws of samples of size N.

(2) k3468 skewness, excess kurtosis, 6th and 8th-order cumulants of a log-normal random
variable.

(3) t-statistics in parentheses.

sizes generated by standardized log-normal factors, standard normal errors and A equal
to

2 11

A=1 21

11 2
We only report the estimates of the first column of A and the variance of the first
error, the other estimates being qualitatively similar. Monte Carlo standard deviations
of estimates are given between brackets. Estimation is based on all moments of order
2 and 4 of the data and uses the restrictions of Theorem 2. The error moments are
estimated by least squares, based on restrictions (8) and (10).

Table 2 shows that finite sample biases are small and rapidly decrease as IV increases.
By comparison, small sample biases are much larger and convergence is much slower
for empirical cumulants. The striking contrast between Tables 2 and 1 suggests that
our algorithm does a good job at extracting the relevant information from high-order
moments of the data, while being relatively immune to the imprecision of their estimation
in finite samples.

We then study the robustness of the (noise-free) JADE and quasi-JADE algorithms
to noise (see Table 3). We run the simulations with normal errors, log-normal factors, a
sample size of N = 1000 and A = A;. The standard deviation of errors can take four
values: 0.1, 0.5, 1 and 2. The performance of quasi-JADE deteriorates as the signal-to-

noise ratio decreases. However, biases remain limited even for rather large error variances.
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Table 2: Quasi-JADE for various sample sizes(")

N 500 1000 5000 10000
A1l 2. 03 (.28) 2.03 (.17) 2.01 (.09) 2.01 (.06)
Aot 95 (.23) .99 (.14) 1. 00 (.07) 1.00 (.05)
A31 95 (.23) .99 (.15) 99 (.07) 1.00 (.05)
Var(Uy) .77 (59) .87 (43) .96 (20) .98 (.16)
O Log-normal factors, standard normal errors, A = Aj.
Bootstrapped standard errors in parentheses.
Table 3: Robustness to noise(”)
JADE
Var(Uy) .01 .25 1 4
A1t 2.00 (.07) 2.11 (.08) 2.36 (.12) 2.81 (.46)
Aot 1.00 (.11) 1.00 (.12) .95 (.24) .72 (.86)
A3t 1.00 (.11) 1.03 (.14) 1.08 (.22)  1.05 (.77)
Quasi-JADE
Var(Uy) .01 .25 1 4
A1 1.98 (.12)  2.01(.13) 2.03 (.17)  2.02 (.44)
A2t 1.00 (.15) .99 (.12) .99 (.14) .95 (.31)
A31 1. 00 (.16) .99 (.13) .99 (.15) .95 (.32)
Var(Uy) 04 (.11) .18 (.22) .87 (.43)  3.77 (.98)
Minimum Distance
Var(Uy) .01 .25 1 4
A1 2. 03 (.12) 2. 04 (.14) 2.04 (.17)  2.02 (.43)
Aot 98 (.10) 98 (.10) .98 (.12) .97 (.28)
A1 98 (.10) .98 (.11) .99 (.13) .98 (.28)
Var(U) - 09 (.32) 11 (.37) .86 (.44) 3.75 (1.28)
% convergence 99.9% 100.0% 99.8% 84.3%
@ Log-normal factors, standard normal errors, A = Ay, N = 1000.
Bootstrapped standard errors in parentheses.
Table 4: Near—Gaussianity biases(!)
K4 -6/5? 1/2 1 10 100 ~110¢)
A1 1.94 (.48) 1. 66 (.78) 1. 76 (.74) 2. 03 (33) 2.01 (.26) 2. 01 (.19) 2.03 (20)
Aot 91 (.48) 97 (.71) 94 (.63) 97 (.30) 98 (.21) 99 (.16) .98 (.15)
A31 92 (.48) 1. 00 (.69) 96 (.65) 97 (.29) 97 (.21) 98 (.17) .98 (.16)
Var(Uy) 71 (65) 92 (84) 76 (79) 77 (63) .88 (53) .92 (40) .86 (.44)

() Factors are normal mixtures, standard normal errors, A = A;, N = 1000. Bootstrapped
standard errors in parentheses.

() Uniform distribution.
®) Log-normal distribution.
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By comparison, JADE, which does not allow explicitly for noise, produces large finite
sample biases.?’

In the last part of Table 3, we present the results of a Minimum Distance based
on the complete set of moment restrictions (MD). The estimation is based on second
and fourth-order restrictions (3) and (6). In all the simulations that we performed,
MD proved to be highly unstable.2! The bottom part of Table 3 presents simulation
results with log-normal factors, normal errors and A = A;. Conditional on numerical
convergence,?> MD yields only slightly more precise estimates of factor loadings than
quasi-JADE. However, as error variances get larger, the MD algorithm fails to reach
convergence more frequently (less than 1% of the time when Var(U;) < 1 but 15% of
the time when Var(U;) = 4). In addition, the MD algorithm did not converge when we
tried to estimate five factors or more, while quasi-JADE still delivered useful estimates
in this case (see below). This comparison shows the usefulness of devising an estimation
algorithm that efficiently combines the moments of the data while being numerically
stable.

Next, we investigate the sensitivity of the quasi-JADE algorithm to factor Gaussianity.
The sample size is N = 1000. Errors are standard normal variables. We simulate
symmetric, kurtotic factors as mixtures of two independent normals. Table 4 summarizes
Monte Carlo distributions for excess kurtosis values in %, 2, 5, 10 and 100. In the first
column of Table 4, we also report results for the case of uniformly distributed factors.

The uniform distribution is platykurtic, with x4 = —6/5. The last column shows results

20In the noise-free JADE algorithm, PCA was used to whiten the fourth-order cumulant matrices.

21 Minimization with respect to the whole set of parameters (A,Xy,Dy) converged (numerically)
in none of the cases that we considered. To obtain a more stable algorithm, admittedly with some
efficiency loss, we treated the coefficients of D4 as nuisance parameters. Precisely, we minimized the MD
norm, evaluated at (A, ¥y, D4(A)), with respect to (A, Xy) alone and where D4(A) is the diagonal
of Q Qy [Q}}T. Note that using the optimal metric to estimate D4(A) given A, or incorporating
third-order moment restrictions, yielded even greater instability.

22Gtarting values were chosen equal to the true parameters. We declared numerical convergence
achieved when the gradient of the MD criterion was inferior to 10~2 in absolute value after 5000 Newton
iterations.
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Table 5: Comparison of Quasi-JADE and FA-JADE()®)

Quasi-JADE

Errors normal log-normal

A1, Az 199 ((11) 1.00 (.18) 1.99 (.11) 1.00 (.19)
Ao, Age 199 (\11) 1.00 (.18) 1.99 (.11) 1.00 (.19)
As1,Aze 1.99 (\11) 1.00 (.18) 1.99 (.12) 1.00 (.19)
A1, A2 99 (119) 2,00 (.13) .99 (.21) 1.99 (.16)
Ast, Ase 99 (.19) 1.99 (.13) .99 (.20) 2.00 (.15)

FA-JADE

Errors normal log-normal

A1, A2 2.00 (.09) .98 (.20) 2.01 (.12) .94 (.24)
Ao1, Ago 2.00 (.09) .98 (.20) 2.01 (.12) .94 (.24)
As1,Az2 2.00 (.09) .98 (.20) 2.01 (.12) .94 (.24)
Aa1, A2 1.00 (122) 2.00 (.25) 1.03 (.27) 1.99 (.26)
Ast, As2 1.00 (.23) 2.01 (.26) 1.04 (.26) 1.97 (.27)

(1) factors are normal mixtures with excess kurtosis k4 =
5, errors are normal or log-normal with unitary variance,
A = Az, N = 1000. Bootstrapped standard errors in
parentheses.
(2) “FA-JADE” is Stegeman and Mooijaart’s (2007) sequen-
tial estimation algorithm.
for log-normal factors, with excess kurtosis equal to e + 2e3 + 3e% — 6 ~ 110. Overall, we
find that the impact of kurtosis on the performance of the algorithm is far from negligible.
The closer the excess kurtosis is to zero, the greater the estimator’s bias and the lower
its precision.?

It is also interesting to compare quasi-JADE to algorithms of noisy-ICA which use
FA or PPCA in the prewhitening step (Beckmann and Smith, 2004, Tkeda and Toyama,
2000, Stegeman and Mooijaart, 2007). We use the algorithm of Stegeman and Mooijaart
(2007, “FA-JADE” hereafter), which is based on an initial FA step. For this reason,
the number of factors is limited by the Ledermann bound. For example, for L. = 3 and

independent errors, at most K = 1 factor can be estimated. To compare quasi-JADE

and FA-JADE, we thus have to restrict the number of factors. We choose L =5, K = 2,

23We also experimented with errors being non-Gaussian, and found that quasi-JADE estimates were
almost unchanged relative to the Gaussian case.
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and set:

AQE

N DN DN
DO ==

1

N

Factors follow normal mixtures with excess kurtosis equal to k4 = 5, while errors have
unitary variances and follow either a normal or a log-normal distribution. Lastly, N =
1000. Comparing the first four columns of Table 5 to the last four columns shows that
allowing for higher-order moments in the prewhitening step of the algorithm (as in quasi-
JADE) results in efficiency gains, at least for the second factor. Moreover, while FA-
JADE is still consistent for A when errors are Gaussian, it fails to be when errors are
log-normal. Indeed, factor loadings estimates are biased in the last two columns of the
table. In comparison, quasi-JADE estimates remain almost unbiased.

Then, we investigate the finite-sample performance of our algorithm when the num-
ber of measurements and the number of factors increase. Table 6 illustrates the cases
L =K =5and L = K = 10, respectively. In both cases, A has entries equal to 2
everywhere on the diagonal, and equal to one everywhere else. These simulations show
that the performance of our algorithm is only moderately damped by the number of
factors/measurements. We view this as quite remarkable a result as a hundred of fac-
tor loadings is certainly a significant number of parameters to estimate given that no

explanatory variable is observed.?*

6 Two applications

In this section we apply our methodology to data on cognitive test scores, and to financial

data on stock returns. Details about the data and results are given in the additional

24We performed three additional simulations, available in the additional appendix to this paper (Bon-
homme and Robin, 2008a). We checked that, for skewed enough factors, using second and third-order
moments only could result in precise estimates of factor loadings. We also found that quasi-JADE had
good properties in the presence of correlated errors, and in a sparse overcomplete model.
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Table 6: Increasing the number of factors and measurements(")

L=K=5 L=K=10
N 500 1000 5000 500 1000 5000
A1 2.06 (A1) 2.03 (28) 2.01 (.13) 1.85 (.72) 1.97 (.56) 2.00 (.27)
A1 95 (.35) .98 (25) .99 (12) .89 (.52) .90 (43) .98 (.22)
sy 95 (34) .98 (.24) 1.00 (.12) .88 (.53) .90 (45) .98 (.23)
At 95 (.35) .98 (24) .99 (11) .88 (.53) .92 (43) .98 (.22)
sy 95 (34) .98 (.24) .99 (.12) .88 (.53) .90 (43) .98 (.22)
61 88 (.54) .91 (43) .98 (.22)
At 89 (.53) .90 (44) .98 (.22)
As1 88 (.52) .90 (44) .98 (.23)
Aot 87 (53) .91 (44) .98 (.23)
A10,1 .88 (.52) .89 (.44) .98 (.22)

Var(Uy) .58 (.56) .81 (44) .95 (.20) .40 (.55) .49 (.53) .88 (.28)

) Log-normal factors, standard normal errors. Bootstrapped standard errors in

parentheses.
appendix to this paper (Bonhomme and Robin, 2008a).

6.1 Test scores

We use data from the British National Child Development Study (NCDS), which is a
longitudinal survey of a British birth cohort born in the same week of 1958. There are
seven available test measures: mathematics and reading at age 7, 11 and 16, and a verbal
test at age 11 only. We select a sample of 7816 observations with complete information
on all test score variables. We analyze the data with an independent factor model.2> We
allow the errors to be contemporaneously correlated (at age 7, age 11 and age 16). This
is important and natural as the tests were taken on the same day. The data present
sufficient non-normality for three factors to be estimable.

26 The first three columns show the factor

Table 7 shows the estimation results.
loadings estimates that correspond to each of the seven test score measures. The last

seven columns give the estimates of the variance-covariance matrix of error variables.

25Gee Jennrich and Trendafilov (2005) for an application of noise-free ICA methods to psychometrics.

26Tn the estimation we use second, third and fourth-order moments jointly. Relative to second-order
moments, third-order moments are weighted by a factor .178, and fourth-order ones by .091. These
numbers correspond to the average of the (bootstrapped) variances of the components of ¥y divided
by the average of the variances of the components of Ty (of ﬁy, respectively).
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Table 7: Test scores data: model estimates(!)

Factor loadings Error covariances
Math (7) 13.6 543 —4.03 363 16.4 0 0 0 0 0
(:25) (60)  (.92) (7.0) (4.4)
Reading (7) 10.9 134 —6.64 | 164 141 0 0 0 0 0
(:26) (90)  (1.5) (4.4) (8.0)
Math (11) 224 530 —1.83 0 0 128 37.1 60.1 0 0
(21) (45)  (L1) (5.1) (2.9) (3.1)
Reading (11) 11.0 877  2.06 0 0 371 104 37.2 0 0
(25) (27) (1.2) (2.9) (1.9) (2.2)
Verbal (11) 14.8 10.7 —1.47 0 0 60.1 37.2 175 0 0
(-28) (39)  (1.4) (3.1) (2.2) (3.7)
Math (16) 18.8 4.07  3.79 0 0 0 0 0 114 —41.6
(.28) (.41) (:94) (3.6) (2.1)
Reading (16) 12.2 10.9  7.05 0 0 0 0 0 —41.6 15.2
(37) (.65) 1.9 2.1) 1.7
Skewness .552  —1.65 .009 | —.0764 —5.23 -1.82 —.0635 —1.03 1.18 —68.9
(:036)  (.069) (91) | (.034) (.50) (:22) (.082) (1) (16)  (9.5)
Ex. kurtosis —1.28 1.28  .520 | —1.71 3.52 —-8.83 —3.07 —-6.561 —.927 185
(.040) (.21) (1.04) (.066) (.61) (.62) (.17) (.32) (.49) (57)

(1) Source: NCDS 1965, 1969 and 1974. Bootstrapped standard errors in parentheses. Details on

the data are given in the additional appendix to this paper (Bonhomme and Robin, 2008a).
The last two rows give the skewness and excess kurtosis of the factor and error variables.
Lastly, bootstrap standard errors are given in parentheses (100 iterations). We see that
errors are sizeable in this application, the ratio of the sum of squares of factor loadings to
total variance being 60%. This suggests that overlooking error variables in the model can
have severe consequences on the results. To check that, we re-estimated factor loadings
using JADE. We found that the second and third factors were essentially driven by the
math and reading test scores at age 7, respectively. This is likely to be because the large
errors in the test score at age 7 are wrongly interpreted as extra factors.

The first factor in Table 7 is correlated with scores in reading and mathematics, the
correlation being stronger with the latter. In contrast, the second factor is correlated
to reading and verbal test scores, but has small or zero correlation with the scores in
mathematics. Lastly, the third factor puts positive weight on scores of tests taken at age
16, and negative weight on tests taken at age 7. These three factors account for 45%, 19%
and 4% of the total variance, respectively, while errors account for 32%. We interpret

the first and second factors as mathematical and verbal abilities, and the third one as
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reflecting heterogeneous learning slopes, characterizing children who perform better early

on (at age 7) or later in their academic career (at age 16).

6.2 Stock returns

In an influential paper, Fama and French (1993) identify two factors, in addition to
the market return, explaining a large proportion of the variance of time-series of U.S.
excess stock returns. “Small Minus Big” (SMB) is the difference between the average
of the returns on two stock portfolios: one containing firms with market value (price
time number of shares) less than the median, and one containing firms with size above
the median. “High Minus Low” (HML) is the difference between the average of the
returns on two stock portfolios: one gathering firms with book-to-market ratio (book
value of capital divided by market value) less that the 30th percentile and another one
containing all firms with a ratio above the 70th percentile. Fama and French show that
these three factors explain monthly data on 25 portfolios formed by intersecting size and
book-to-market quintiles remarkably well.

We apply quasi-JADE to estimate a linear independent factor model with three fac-
tors, imposing independent errors. We use daily data on the returns to 25 stock portfolios
formed on size and book-to-market, collected between 01/07/1963 and 31/08/2005 by
Fama and French.?” The size and book-to-market breakpoints are NYSE quintiles. There
are 10,616 observations. Returns are net of the risk-free rate.

Table 8 shows the correlations between the three factors that we estimate using
quasi-JADE and Fama and French’s factors. We see that the three factors estimated
by quasi-JADE are strongly correlated with the market, size and book-to-market factors
constructed by Fama and French. The correlations are .84, .85 and .90, respectively.

This indicates that our blind source separation procedure yields factor estimates which

2"These data can be downloaded from Kenneth French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french /data library.html
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Table 8: Stock returns data: Fama French
factors versus quasi-JADE estimates

Factors First Second Third
Market return .84 .24 -41
“Small minus big” | -.49 .85 -.09
“High minus low” | -.11 23 .90

() Source: 25 stock portfolios formed on size
and book-to-market, daily US data. Down-
loaded from Kenneth French’s website.

have sound economic sense.?®

7 Conclusion

The recent literature on Independent Component Analysis (ICA) has produced several
methods able to deal with noise-free, linear independent factor models with up to K = L
factors. In this paper we have developed an algorithm that robustifies one of the most
popular ICA algorithms, Cardoso and Souloumiac’s (1993) JADE, when measurement
error cannot be neglected. We have constructed a two-stage consistent estimator for
noisy ICA with clustered errors, quasi-JADE. In the prewhitening step, error moments
are estimated from second to fourth-order moments of the data, while in the source
separation step JADE is applied to the whitened cumulant matrices.

Monte Carlo results are encouraging. For sufficiently non symmetric and/or kurtotic
data, we obtain small biases and precise estimates, even in relatively small samples.
Moreover, the application to test scores shows that allowing for noise can be very impor-
tant in practical situations. This suggests that quasi-JADE can be a valid alternative to
existing methods in traditional applications of ICA, like signal processing, where it can
be used in place of noise-free methods. Moreover, in situations where factor analysis is

widely used (macroeconomics, finance, psychometrics) quasi-JADE provides a consistent

28We also experimented on stock data grouped by industries, finding much lower correlations. This
casts some doubts on the ability of Fama and French’s factors to explain disaggregate data on stock
returns with the same success.
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way to fix the rotation matrix.

In the future, we plan to pursue two directions of research. First, it would be inter-
esting to extend quasi-JADE to deal with noisy overcomplete ICA models (K > L). The
second direction of research concerns the extension of the method of this paper to the
case of a very large number of measurements. Bai and Ng (2002) and Bai (2003) pro-
vide extensive analyses of the PCA estimator in this case. Financial and macroeconomic
applications motivate the need to extend ICA methods in this direction.

Finally, once factor loadings have been estimated, it remains to estimate the distri-
bution of factors and errors. This is done in a companion paper (see Bonhomme and

Robin, 2008b).
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APPENDIX

A Mathematical proofs

We start with some notation. For a n-by-m matrix A, we denote as A [R,C] the submatrix
of rows 4 € R and columns j € C, for R C {1,..,n} and C C{1l,...m}. R = {1,...,n} or
C ={1,...,m}, we write A[-,C] and A [R,"].

So, in particular, matrix Qg can be equivalently written as Q[J7,-], and Az, as A [Ty, .].

A.1 Proof of Lemma 1

Let (¢,m) € J. AsU; L U,,, we have Cov (Uy, Uy,) = 0. In addition: U, = II[e 1L U, = I e,
where IT} is the £th row of matrix II. It follows from Darmois’ theorem (e.g., Comon, 1994, p.

306) that for all h € {1,..., H} either g, is Gaussian or mgm,, = 0. In either case:
TehTmhK3(En) = TenTmntka(en) = 0.

The conclusion comes from the cumulant identities:

H
Cum(Ui, Uy, Um) = Z TihTthTmh i3 (Eh)a
h=1
H
Cum(U;, U, U, Up) = WinTjnmenTmnkia(en)-
h=1

A.2 Proof of Theorem 2

To simplify the exposition, let us define oy = vech (Xv ), vy (£) = vech (T'y (£)), and wy (¢,m)

vech (2y (¢,m)), with similar notation for oy, yu (£) and wy (£, m). Let also
T = {(e, m) e {1,..,L}2, 1< m} \J.

Remark that oy, vy (£) and wy (¢, m) have zero entries in positions (z,7) € J. Construct
vectors oy [J€], yu (¢) [T¢] and wy (¢,m) [J€] by dropping the zero entries. Let also B [J¢, ]
be the submatrix obtained by selecting the rows of B indexed by couples (¢,m) ¢ J. Equations
(8), (9) and (10) imply

BTUY =B [Jca ']T ou [\70] ) (A]-)
Byy (¢) = B[J% T yy (0) [T,V (A2)
BTyy (¢,m) = B[J |  wy (£,m) [T,V (£m). (A3)
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We shall show that matrix B [J¢, ] has full row rank, which will prove the identification of
error moments. To proceed, remark that B [J¢, -] has @ —J rows and @
If J > K, B[J¢,] has more columns than rows. Let r = rank (B [J¢,]).

Suppose that r < @ — J. There exists a (@ - K) -by-(@ — K — r) matrix

A, full column rank, such that B [J7¢,-] A = 0. As both B and A have full column rank, BA

— K columns.

has full column rank, hence B[J, ] A necessarily has full column rank @ — K —r, with

L(L+1)

s K-r>J-K (A4)

Moreover, as QTB = 0 by construction,
0=Q"BA=Q[7, ' B[J,]A,

Now, Q[J,-] has J rows and K columns. It has full column rank, so its null space has
dimension J — K. This contradicts condition (A4) on the rank of B[J,:] A. Hence, r =
@ — J and matrix B [J¢, ] therefore must have full row rank.

This ends the proof of Theorem 2.

A.3 Proof of Theorem 3
Let us define Zf = {m € {1, ...,L},m ¢ L}, for all £ € {1, ..., L}, that is,
I ={me{l,...,L},£ <mand ({,m) € TJ}.

1. We first show that, for all £, C [Zf,-] has full row rank in the same way as in the proof
of Theorem 2.

Matrix C[Z{,-] has L — I, rows and L — K columns. As, by assumption, A [Zy,-] has rank
K and dimensions I-by-K, Iy > K. Suppose that r = rank (C [Zf,]) < L — I;. There exists a
full column rank, (L — K)-by-(L — K — r) matrix A, such that C[Z{,] A = 0. Both A and C
having full column rank, CA has also full column rank. Hence, C[Z,-] A has full column rank
L—-K-—r.

Moreover, CTA = 0. Hence,
0=ATCA=A[T,]"C[T] A.

By assumption, A [Zy, -] is full column rank K and its null space has dimension I;— K. Therefore,

C [Zy, ] A cannot have a rank greater than I, — K:
L-K-r<I—K.
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Hence r > L — I;, which contradicts the assumption.
2. Now, applying the vech operator to (11), (12), (13) shows that error cumulants satisfy
the linear system (A1), (A2), (A3) with, in place of B [J¢,], the block diagonal matrix

D = diag (C[Z{,],-..,C[Z%,"]) -

As C|[Zj,] has full row rank for all ¢, it follows that D has also full row rank.
This ends the proof of Theorem 3.

A.4 Proof of Theorem 4

To prove Theorem 4, we first prove the following lemma giving conditions under which the joint

eigenvectors of a set of matrices is uniquely defined (up to sign and permutation).?

Lemma 2 Let K and L be any integers. Let Aq,...,Ar be K-by-K matrices. Suppose that
there exist x*¥ = (:c’f,...,a:’i)T e Rl and vF e RE, vE £ 0, k = 1,...,K + 1, solutions to the

joint diagonalization problem:
afvh = Ak, Ve=1,.. L.

Assume that the set {vl, v vK} is linearly independent, that all vF, k = 1,..., K+1, have norm
one, and that x* # x¥ for all (k,k') € {1,...,K}?, k # k'. Then, there ezists k € {1,..,K}

such that vE+1 = £vk,

Proof. Since {v',...,vX} is a basis of RX, there exists ¢ = (ci, ..., cx) # 0 such that vK+! =

vl + ...+ cxvE. Then, for all £ =1, ..., L,

K K K K
chvak = chAgvk =4 Achkvk = AAqu"'1 = xf+1vK+1 = wf'*'l (Z ckvk) .
k=1 =1 =1 k=1

As (v!, ..., vK) is linearly independent, it follows from the last equality that:

ckxf = ckxfﬂ,

for all (k,£). Hence, for all k:

ckxk = cka+1.

As ¢ # 0, there exists k such that ¢, # 0. For this k: x* = xX*1. Moreover, as x* # x*' for all
kK #kin {1,..., K}, it follows that ¢z = 0 for all ¥’ # k. Hence

VEH — o vk,

29The result of Lemma 2 can also be found in De Lathauwer et al. (2004), p. 305.
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As both v¥ and vE+1 have norm one, ¢; = 1. The result follows. m
The proof of Theorem 4 easily follows.

Fourth-order moments. Second and fourth-order cumulant restrictions (3)-(5) yield:

Qy (,,m) = ADydiag(A;®Ay,)AT, £<m, (A5)

Sy = AAT. (A6)

Let A be another value satisfying restrictions (A5)-(A6). We show that under the conditions
of Theorem 4, there necessarily exists a sign-permutation matrix S such that A = AS.

A having full column rank K, and f]y being positive definite, there exists a unique or-
thonormal L-by-K matrix O (OTO = Ix) and a unique K-by-K diagonal, positive matrix D
such that 3y = ODOY. Let P = D~1/20T. Then V = PA is a matrix of joint orthonormal

eigenvectors (VVT = Ig) of
PQy (¢,m) P’ = PAD diag (A; ® A)) ATPT, < m.

In general, there can be infinitely many joint eigenvectors to a set of matrices if all matrices
have multiple roots. However, Lemma 2 shows that the problem of diagonalizing matrices
PQy (¢,m)PT has a unique solution up to column sign and permutation if for all (k,%') €

{1,..,K}?, k # k', there exists £ < m such that

Ak Amk ks (Xk) 7 Aok Ampr 4 (Xpr) -

As either k4 (Xg) # 0 or kg (Xgr) # 0, and as any two columns of A are linearly independent,
this condition is always satisfied. It follows that V is uniquely defined, up to column sign and
permutation.

Now, the true A necessarily verifies:
A =A(PA)T(PA) = AATPTPA = SyPTPA = OD'/?PA = OD'/?V,

It is thus unique as V is unique.

Third-order moments. The same argument applies to third-order cumulant matrices

T'y (£). Indeed, in the noise-free case third-order restrictions (4) become
Ty () = ADsdiag (A) AT, ¢e{1,...L}.
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In this case, Lemma 2 shows that the common eigenvectors corresponding to eigenvalues
D; diag (A¢) are uniquely determined up to column sign and permutation if for all (k, k') €
{1,..,K}2, k # k', there exists £ € {1,..., L} such that

Atz (Xg) # dewrssg (Xpr) -

As before, this condition is always satisfied.

Third and fourth-order moments. The proof is almost identical to the two previ-
ous ones. With Qy (¢,m) and T'y (£) together, eigenvectors are identified if for all (k, k') €
{1,..,K}?, k # k', there exists (£, m) such that

Ak Amikka (Xi) 7 Aow Amp k4 (Xr)

or there exists £ € {1, ..., L} such that

Aekkz (Xi) # Aewriz (Xgr) -

As one of the four moments k3 (X%), k3 (Xg), ka4 (Xi) and k4 (Xp) is non zero, it follows from

the assumptions on A that this condition is always satisfied.

B The JADE algorithm
Let A = {Ag,k = 1...K} a set of real, symmetric, L-by-L matrices. Let us define the function:

OH(A) = Z az?ja
1]
for all A = [a;;]. Then joint approximate diagonalization of A is achieved by minimizing

K
> off(UAUT), (BT7)
k=1

with respect to U orthogonal.
Let 6 € [—m, ], let (4,5) € {1,...,L}? and let R;;(6) be the L-by-L matrix equal to the
identity matrix except at the (z,4), (i,7), (4,%) and (4, ) entries where it is equal to:
< cos(f) sin(8) )
—sin(f) cos(6) )
Let i # j, and let us define:

K
0;(0) =Y off (Rij(0)AxRi;(6)") .

k=1
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Lastly, let hi,j(A) = (a”‘ — ajj, 04 + aji), and let:
K
Gij = Z hgj(Ak)hi,j(Ak) = (gij)i,j:I,Q'
k=1
Cardoso and Souloumiac (1996) show that 6y such that:

T+ . / Yy
COS(QO) = o ) SlIl(a()) = m7

where £ = g11 — go2, ¥ = g12 + g21 and r = /22 + y2, minimizes O; ;(#).

This closed-form expression for 6y allows to minimize (B7) by the following algorithm:

1. Start with U(0) =1Ij.

2. Begin loop on step s.

3. Begin loop on (4, 7).

4. Compute G; ;.

5. Compute 6.

6. If Oy is different enough from zero, continue. Else stop.

7. Compute R;;(6p)ArR;;(60)T and modify A consequently.
8. Update U(s) as U(s + 1) = R;;(60)U(s).

9. End loop on (i, 7).

10. End loop on s.

C Asymptotic theory of the JADE estimator

First-order conditions. The JADE estimator solves

S
V = arg min ; off(VITA,V).

The Lagrangian associated with the minimization problem is:

S
L (Va'Y) = Z Oﬂ.(VTKsV) + ’)’T vec (VTV — IK) s

s=1
SN VEAVR)E Y vk (VEVE = D)+ Y Yok Vi Vim,

s m#k k m#k
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where 7 is a vector of length K? containing Lagrange multipliers v,,;,, and vy, is the kth column

of matrix V.
Differentiating the Lagrangian with respect to vy, for £ = 1...K, yields:
oL (V,3) IR
s kAl kL
Then, multiplying this equation by VX, for m # £, gives:
23 Y (VE ATV ATk + T = 0.
s k#L
Using that 7,,, = 7,,, by symmetry, it follows that
ZZ va Vo)V, ATA Vi —Z Z EA Vo vL;A Vi,
s k#L s k#m
or, equivalently, as Ks is symmetric for all s:
SR Y I | A = ZVTA Vivy | AV
s k#L k#m
Then, as Ele Vkvk =VVT = Ix we obtain

sz (I — V7 ) AV = > VA, (I — ¥ Vh) As¥y,

s

which we write after rearranging:

3 AV (v,TnAsom - ?EASW) =0.
s

Equation (C8) holds for all £ < m. The JADE estimator V solves these K (K

redundant equations, together with the K(K + 1)/2 orthogonality constraints:
ViVm = O, for all £< m.

Identification and consistency. Let V= (v1,...,VK) € Ok be such that

s
V =arg vHelglK 52::1 off(VTA,V).

(C8)

—1)/2 non

Then, as: Vmgl 25521 off(VTA,V) = 0 at the true value, it follows that \N/'TAS\N/' = f)s is
€Ok

diagonal for all s. As for all k # m there exists s € {1...S} such that dg # dg,, one can apply

Lemma 2 to show that V is equal to the true V, up to column sign and permutation. This

shows the identification of V. Consistency follows from classical arguments, as the parameter

space Ok is compact.
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Asymptotic distribution. A first-order Taylor expansion of (C8) around the true value

V yields:

S
Z v%AsvlC (vaAsv,C - vTTnAsvm)
s

S
+ Z (vaASv]C — v;l;LAsvm) (VEAS(Q\]C — Vi) + VEAS(Vm — vm))

S
S
+ szAsvk (vaAs(f?k —vE) = Vi As(Vin — vm)) =0p (N_I/Q) .
S

As plimKS = A, for all s, and as vaAsvm = 0 for all k # m, this yields:
N—oo
S -~
Z (dsk - dsm) VrTn(As - As)vk
S

S
+ 37 (o = dom) (VI ATk = Vi) + VEAS (T = vim)) = 0p (N71/2),

where dg;, = vI Agvy, are the diagonal elements of VTA V.
k

At this stage, it is convenient to define T, = vk (Vg—vi). As vk A = dgp, v, one has:
s R s
> ok dom) VR, — A)Vi+ D Aok dom) (smBk + degBrm) = 0p (N112).
S

8

Now, a Taylor expansion of the orthogonality constraints yields:
Tk + Thm = Vo (Vi — Vi) 4+ VE (Vi — Vi) = 0, for all m, k.

Thus we have:
S S

> Aok — dom)” Fonke = — 3 (do — dom) Vin (Bs — Agvi+0, (N7/2) . (C9)

S S

Let X = VT (\7 - V). Then, equation (C9) is equivalently written, in matrix form, as:
vec(i) =-F(Is@V'eV") (vec(;&) — vec(A)) + op (Nﬁl/Q) ,
where F, A and A have been defined in the text. Note that F is well defined provided that

ZS (dsk - dsm)2 # 0 for all k # m.

s

Then, as:
vec(X) = (Ix®VT) (vec(\?) — vec (V)) ,
it follows that
N (vee(V) — vec (V) =~ (Ik ® V)F (Is @ VI @ VI) V¥ (vee(R) - vec (4)) + 0, (1).

This achieves to prove the theorem.
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