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Quality estimators aspire to quantify the perceptual resemblance, but not the usefulness, of a distorted imagewhen
compared to a reference natural image. However, humans can successfully accomplish tasks (e.g., object identi-
fication) using visibly distorted images that are not necessarily of high quality. A suite of novel subjective experi-
ments reveals that quality does not accurately predict utility (i.e., usefulness). Thus, even accurate quality
estimators cannot accurately estimate utility. In the absence of utility estimators, leading quality estimators
are assessed as both quality and utility estimators and dismantled to understand those image characteristics that
distinguish utility from quality. A newly proposed utility estimator demonstrates that a measure of contour de-
gradation is sufficient to accurately estimate utility and is argued to be compatible with shape-based theories of
object perception. © 2011 Optical Society of America

OCIS codes: 110.2960, 110.3000, 110.3925.

1. INTRODUCTION

Imaging systems that capture, process, compress, transmit,

and/or store natural images [1] supply information to humans

to permit or to facilitate the performance of a particular task.

For instance, people working in the public safety sector

(e.g., law enforcement, fire control, and emergency services)

use natural imaging systems in real-time scenarios to make

immediate decisions about how best to respond to an incident

[2,3]. In another example, investigators not only examine

recordings obtained with video surveillance systems, but

also introduce such recordings as evidence for criminal

investigations [4–6].

Consumer imaging systems (e.g., digital cameras) directly

used by human observers to perform a particular task capture

a broad class of source content and are vulnerable to a broad

class of distortions, including compression and transmission

errors. When operating with limited resources (e.g., commu-

nication bandwidth or memory storage), such imaging sys-

tems can produce visibly distorted natural images. A visibly

distorted image could impede a human’s ability to perform

a task and provoke inappropriate responses, or it could have

no impact at all. Understanding the impact of distortions is

clearly important to system designers, users, as well as the

subjects who may be captured. Poorer task performance im-

plies that the distorted image is less useful to a human obser-

ver than its undistorted counterpart: the “perceived utility”

decreases. The perceived utility characterizes the usefulness

of a distorted image as a surrogate for a reference (i.e., undis-

torted) natural image. For such systems and the images gen-

erated by them, an objective estimator of perceived utility

would facilitate current and future system design, optimiza-

tion, and improvement.

Prior work on the perceived utility of natural images can

be traced back to the Boston University Optical Research

Laboratory formed in 1946, where the human viewing the

images was first studied as a component in a reconnaissance

imaging system [7]. Later, Johnson quantified task perfor-

mance in terms of empirically determined sampling criteria

for detection, recognition, and identification of a target object

[8,9]. The sampling criteria were specified in terms of the num-

ber of resolved cycles along the minimum dimension of the

target object and established the level of object discrimination

with respect to the distance of the target object. Johnson’s

criteria provide basic guidelines for the design of imaging sen-

sors and the expected performance for a given task (i.e., target

recognition).

Other work has investigated alternatives and refinements to

Johnson’s criteria [10–12]. For example, recognition of a tar-

get has been demonstrated to be equivalent to the detection of

an equally sized circular disk, which allows for imaging de-

vices to be characterized in terms of the smallest detectable

circular disk [10]. A recent study observed that Johnson’s cri-

teria was restricted to the objects used in Johnson’s study [11].

In another example, Vollmerhausen et al. proposed a targeting

task performance (TTP) metric that accounts for variations

among imaging sensors and computes the integral of the

square root of the product of the target contrast, the sensor

frequency response, and the contrast sensitivity function of

the human visual system (HVS) [12]. The TTP metric was de-

monstrated to predict task performance more accurately than

Johnson’s criteria [12].

The impact of various image compression artifacts on task

performance has been investigated. One study investigated

the use of uncompressed and compressed synthetic aperture

radar imagery captured by an airborne sensor to perform var-

ious tasks (e.g., vehicle counting and vehicle classification)

and reported the relationship between task performance

and the compression ratio [13]. Given the same compression

Rouse et al. Vol. 28, No. 2 / February 2011 / J. Opt. Soc. Am. A 157

1084-7529/11/020157-32$15.00/0 © 2011 Optical Society of America



ratio, Irvine et al. observed that wavelet-based compression

techniques yield better task performance than standard JPEG

compression [13]. Another study conducted a target identifi-

cation experiment using uncompressed and compressed

close-range thermal imagery containing one of a finite number

of known targets [14]. O’Shea et al. demonstrated that the TTP

metric can be used to predict task performance of com-

pressed imagery using the frequency response of a parameter-

ized Gaussian blur as the sensor frequency response in the

TTP metric, where the parameters of the Gaussian blur were

selected to fit the experimental results [14].

A fundamental limitation of the prior work on image utility

is the use of a priori knowledge about the target objects im-

aged. The experiments conducted to measure task perfor-

mance train observers to identify a specific set of targets

that will appear in the test images [12,14] or prompt observers

to perform specific tasks that imply information about the po-

tential content of the image (e.g., vehicle counting) [13]. The

models developed in the prior work also incorporate a priori

knowledge about the target object(s) such as the contrast of

the target [12,14]. Practical use of such a priori knowledge in

models requires (1) a mechanism that correctly associates

known target information with the image under evaluation,

which increases the complexity of the model, and (2) a data-

base of target information, which limits the scope of images to

which the model can be reliably applied. In short, the results

from prior work are tailored to specific applications and pro-

vide little insight into the underlying image characteristics that

allow human observers to achieve a desired task performance

level for a broad class of images, and the work in this paper

seeks to understand and identify those underlying image

characteristics.

Over the past three decades, consumer imaging systems

have been largely studied in the context of perceived quality

to characterize the perceptual resemblance of a distorted im-

age to a reference (either known or implied) [15–24]. Objec-

tive estimators of perceived quality have been proposed that

are designed according to various principles (e.g., signal fide-

lity measures or HVS models), and these estimators are then

tuned to or trained on image databases containing distorted

images with subjective scores. Such image databases contain

distortions typically affecting consumer imaging systems; for

example, the LIVE and CSIQ image databases [25,26] contain

images with distortions due to blur, compression, transmis-

sion errors, additive noise, and/or global contrast loss. Thus,

such estimators are expected to accommodate a broad class

of source content and distortions, and various estimators have

achieved very good predictive performance of perceived qual-

ity for these databases.

The work presented in this paper is motivated by the prior

work in both image quality and utility and expands the pre-

vious narrowly studied definitions of utility in a manner that

allows both a broader evaluation of utility as well as a char-

acterization of the underlying image characteristics that im-

pact usefulness. Unlike the specific tasks performed with

images in prior work, the “task” is instead to report the con-

tent of an image as it is gradually improved from an initially

extremely distorted and unrecognizable version to a visually

lossless [27] version. A novel suite of experiments presented

here provides utility scores for distorted images, and quality

scores are collected using a standard test methodology. Dis-

tortions were strategically selected to disrupt various spatial

frequencies in a broader sense than those traditionally studied

in perceived quality experiments.

An analysis of the resulting relationship between perceived

quality and perceived utility demonstrates that an image’s per-

ceived quality does not imply that image’s usefulness and vice

versa. Therefore, an objective estimator that accurately esti-

mates perceived quality scores cannot accurately estimate

perceived utility scores and vice versa. These results motivate

a thorough analysis of the images to understand the image

characteristics that produce distorted but useful images for

human observers. We assess the performance of several ob-

jective estimators as both quality and utility estimators.

Although most of these objective estimators have been de-

signed to estimate perceived quality, they serve as signal anal-

ysis tools not only to develop an understanding of those image

characteristics that impact usefulness but also to suggest

signal analysis tools for an objective utility estimator.

Two objective estimators are shown to accurately estimate

utility. The first is an objective estimator that is customarily

used as a quality estimator. A modified version of this estima-

tor, in which the modifications adjust the relative importance

of distortions across spatial frequencies to the overall objec-

tive estimate, is shown to generate the most accurate esti-

mates of perceived quality among the objective estimators

evaluated.

The second objective estimator is the newly proposed nat-

ural image contour evaluation (NICE) utility estimator, which

was inspired by the importance of contour information to the

HVS for object perception [28–30]. NICE is based on the hy-

pothesis that degradations to image contours restrict the con-

tent that an image conveys to a human and decrease perceived

utility. In particular, NICE estimates utility as a function of

both lost and introduced contour information in a distorted

image when compared with a reference image.

To the best of our knowledge, no experimental methods ex-

ist to measure the perceived utility of distorted natural images

when the task is to report the content of an image. This paper

reports the first usage of such experimental methods as well

as a subsequent analysis. Section 2 presents the proposed

experimental methodology used to collect perceived utility

scores. Several standard methods are available to collect

perceived quality scores for distorted natural images, and

Section 3 reviews the experimental methodology we used

to collect perceived quality scores. Experimental results illus-

trating the relationship between the perceived utility and per-

ceived quality scores are presented in Section 4. Section 5

reviews objective estimators that are assessed as both utility

and quality estimators of distorted natural images in Section 6.

The results from both the subjective experiments and the anal-

ysis of objective estimators as utility and quality estimators

are discussed in Section 7. General conclusions are provided

in Section 8.

2. METHODS: PERCEIVED UTILITY SCORES

A distorted natural image is viewed as a surrogate for an un-

distorted, reference image. A perceived utility score quantifies

the usefulness of that distorted image with respect to the re-

ference image for a task. More useful images provide more

information about the image content to an human.

158 J. Opt. Soc. Am. A / Vol. 28, No. 2 / February 2011 Rouse et al.



Two meaningful anchors on the perceived utility scale de-

scribe the usefulness of an image: the recognition threshold

(RT) equivalence class and the reference equivalence class

(REC). The RT equivalence class, henceforth denoted the

RT, specifies an equivalence class of maximally degraded

images from which humans accurately recognize the “basic

content” of the reference image. The perceived utility score

of the RT can distinguish useful distorted images from useless

distorted images formed from a reference image. In particular,

an image with a perceived utility score greater than that of its

RT is useful, whereas an image with a perceived utility score

less than that of the RT is useless. Humans recognize at least

the basic content of useful images but recognize nothing in

useless images.

The basic content of a reference image is subjective for our

task, which is reporting the content of an image, so a specific

experiment (see Subsection 2.C.3) was conducted to estimate

the RT. In that experiment, observers read descriptions (pro-

vided by anonymous observers) of distorted images and

judged if the description indicated that the “writer” recognized

the basic content of the reference image. This allowed the

collective responses from all the observers define the basic

content of the reference image.

The REC specifies an equivalence class of images, including

the reference image, that yield the same interpretation of the

content as the reference image. Images in the REC may con-

tain signal degradations that may or may not be visible to a

human observer but still convey the same information as

the reference image. A visually lossless image could contain

signal distortions, yet remain visually indistinguishable from

the reference image, so a visually lossless image belongs to

the REC. Any distorted image whose perceived utility score

is statistically equivalent to that of a visually lossless image

formed from the same reference image belongs to the REC.

Two experiments [31] were conducted to obtain perceived

utility scores. The first experiment acquires subjective data

that were processed (see Subsection 2.D) to produce relative

perceived utility scores for a collection of distorted natural

images generated from each reference image. These relative

perceived utility scores correspond to a unique range of val-

ues that only are meaningful for distorted images formed from

a specific reference image. The relative perceived utility

scores for the RT and the REC of each reference image are

used to linearly map the relative perceived utility scores to

a common range of values. On this common range of values,

the RT is indicated by a perceived utility score of 0, and the

REC is indicated by a perceived utility score of 100. The sub-

jective data obtained in the second experiment is used to es-

timate the RT of each reference image. The REC did not need

to be estimated from experimental data because both the re-

ference image and any visually lossless image belong to the

REC. A visually lossless image generated via JPEG-2000 (J2K)

compression using the dynamic contrast-based quantization

(DCQ) strategy [32] defined the REC of each reference image

(see Subsection 2.A.3).

The remainder of this section describes the methods used

to collect subjective data and produce perceived utility

scores. First, the distortion types used to construct refer-

ence/distortion image sequences are described. Then, the

methods are reported for the experiments conducted using

these sequences to acquire subjective data to (1) produce re-

lative perceived utility scores and (2) estimate the RTs of re-

ference images. Last, the derivation of perceived utility scores

from the collected subjective data is explained.

A. Reference/Distortion Image Sequences
Sequences of decreasingly distorted natural images were

generated from a reference natural image. Each sequence cor-

responds to a specific distortion and evolves such that sub-

sequent images in the sequence gradually refine detail or

information relative to the previous images. For brevity, such

a sequence is henceforth denoted (1) generically as a refer-

ence/distortion sequence and (2) more specifically by ex-

plicitly indicating either the reference image name, the

distortion, or both (e.g., reference/JPEG denotes a sequence

of JPEG distorted images corresponding to the same undi-

sclosed reference). The reference/distortion sequences were

formed by varying a single parameter that controlled the level

of distortion. For a single reference subjected to a single dis-

tortion, perceived utility is assumed to exhibit a monotoni-

cally, nondecreasing relationship with decreasing distortion

level. Thus, as a reference/distortion sequence evolves toward

a visually lossless image, the perceived utility does not de-

crease. The sequences of distorted images that correspond

to different distortions served as test stimuli in the experi-

ments. Select images from the airplane/J2K þ DCQ sequence

are shown in Fig. 3.

Each distortion is spatially correlated with the reference

natural image and disrupts different image characteristics.

The image characteristics disrupted include the spatial fre-

quency content, contour integrity (i.e., edges), and the level

of detail (i.e., textures). Example images with each distortion

are shown in Fig. 1, and Table 1 summarizes each distortion.

Subsections 2.A.1, 2.A.2, 2.A.3, 2.A.4, and 2.A.5 describe the

five distortions evaluated in the experiments.

1. JPEG: Quantized Discrete Cosine
Transform (DCT) Coefficients
JPEG achieves lossy compression of natural images by quan-

tizing block-based DCT coefficients [33]. The quantization

strategy implemented in the source code library provided

by the Independent JPEG Group [34] is used and parameter-

ized by Pjpeg ∈ ½0; 100�, which scales the example luminance

component quantization table suggested in the JPEG specifi-

cation [35]. A sequence of images with JPEG compression

artifacts evolves by increasing the parameter Pjpeg.

2. BLOCK: Extreme Blocking Artifacts
Extremely low-rate JPEG images effectively replace each

8 × 8 block of pixels with their average value. To simulate this,

a reference/BLOCK sequence of images has extreme blocking

artifacts and evolves by decreasing the quantization step-size

Qavg of the average block pixel value.

3. J2K þ DCQ: Quantized Discrete Wavelet
Transform Coefficients
The lossy J2K image compression standard represents natural

images as a linear combination of wavelet basis functions [36].

Distortions are introduced by quantizing the basis function

coefficients found using a discrete wavelet transform to

achieve a desired encoding bitrate, R. The DCQ strategy as-

signs quantization step sizes according to a measure of visual
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distortion parameterized by characteristics of the image, the

wavelet subband coefficients, and the display. The DCQ strat-

egy’s visual distortion measure distinguishes visually lossless

images from visibly distorted images, so the DCQ strategy can

specify subband quantization step sizes for lossy compression

that yield a visually lossless image. A reference/J2K þ DCQ

sequence of images has distortions due to J2K compression

using the DCQ strategy and evolves by increasing the encod-

ing bitrate, R.

4. Texture Smoothing (TS)
Edges distinguish objects and regions (i.e., sky and rooftop) in

natural images that convey substantial meaning to human

observers, whereas textures generally provide secondary in-

formation about these objects or regions. Furthermore, the

extrastriate visual cortex exhibits the greatest response to

images that retain contour information and lack texture infor-

mation [30]. The apparent significance of edges to the HVS

inspired the evaluation of distortions that deliberately smooth

texture regions in images with limited disruption to edges.

Total variation (TV) regularization traditionally has been

used to remove noise from images by producing piecewise

smooth images that lack textures [37]. TV regularization exe-

cuted via soft thresholding of undecimated Haar wavelet coef-

ficients in all subbands, except the low-frequency residual

subband, smooths texture regions in natural images [37–40].

A five-level undecimated Haar wavelet transform is used. A

reference/TS sequence of images has distortions due to TS

and evolves by decreasing a smoothing parameter γ that con-

trols the degree of TS induced by soft thresholding.

5. TS þHPF : TS plus High-Pass Filtering
Low-frequency content is not critical to preserve the ap-

pearance of edges, which commonly coincide with object

boundaries in natural images, so images subjected to TS

and high-pass filtering were evaluated. When viewing high-

pass filtered images, observers necessarily cannot use very

low-frequency content by squinting, moving, or otherwise

blurring the appearance of the stimulus to interpret the image

content. A high-pass filter (HPF) that removes low-frequency

content from images with TS distortions produces the TSþ
HPF distortions.

B. Experiment 1: Subjective Data to Derive Relative
Perceived Utility Scores
This experiment collected subjective data that was processed

to derive relative perceived utility scores of distorted images

formed from the same reference image. Distorted images of

the same reference image but subjected to different distor-

tions were compared using a paired comparison test metho-

dology. The images compared were selected from reference/

distortion sequences corresponding to the same reference

Fig. 1. Original reference airplane image and distorted images illustrating the five distortions described in Subsection 2.A. The JPEG and BLOCK
distortions are introduced by quantizing coefficients of a block-based DCT. J2K þ DCQ distortions result from quantizing coefficients of a discrete
wavelet transform according to the DCQ strategy [32]. TS distortions are induced via TV regularization to smooth texture regions with limited
disruption to edges. A HPF that removes low-frequency signal information from images with TS distortions produces the TSþ HPF distortions.
Table 1 contains descriptions of each of the distortions.
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image but different distortions. The comparisons of images

with different distortions were used to align different refer-

ence/distortion sequences for the same reference image.

For example, these comparisons allow the images from both

an airplane/J2K þ DCQ sequence and an airplane/TS se-

quence to be placed in relation to one another in terms of their

relative perceived utility. For the same reference image, all

reference/distortion sequences corresponding to each distor-

tion were aligned, and these aligned sequences can be merged

to form a single sequence of increasingly useful images that

contain all distorted images of the same reference image.

1. Stimuli
Nine grayscale natural images of size 512 × 512 pixels were

cropped from original natural images and served as the refer-

ence images for these experiments. The content of the natural

images consisted of either one or two main objects (e.g., an

airplane or a boy and a cat) or a human in action (e.g., skiing

or playing guitar). The nine natural images used in the experi-

ments are shown in Figs. 1(a) and 2.

A collection of distorted images was formed by selecting a

broad range of distortion levels from each reference/distor-

tion sequence corresponding to each reference image and dis-

tortion. Specifically, images with JPEG distortions were

formed using JPEG parameter values Pjpeg ¼ 1, 2, 5, 10, 20,

and 50. Images with BLOCK distortions were formed using

quantization step sizes Qavg ¼ 400, 200, and 1. Six images with

J2K þ DCQ distortions were formed using encoding bitrates

logarithmically equally spaced from R ¼ 0:01 to RVL, where

RVL denotes the bitrate of a visually lossless image formed

Table 1. Summary of Image Distortions Studied
a

Distortion Description Parameter Versus

Distortion Level

Example Magnified Example

None Reference airplane image N/A

JPEG Quantized DCT coefficients according to the lossy JPEG

image compression standard. Parameterized by JPEG

quality parameter Pjpeg.

Increasing Pjpeg

decreases the level

of distortion.

J2K þDCQ Quantized discrete wavelet transform coefficients using

quantization step-sizes specified by the DCQ strategy

for a target encoding bitrate, R.

Increasing R
decreases the level

of distortion.

BLOCK Replace each 8 × 8 block of pixels by their average and

quantize this average pixel value using the quantization

parameter Qavg.

Decreasing Qavg

decreases the level

of distortion.

TS TS with limited disruption to image edges. Parameterize

by TS parameter γ.

Decreasing γ

decreases the level

of distortion.

TSþHPF TS (i.e., TS distortions) plus high-pass filtering.

Parameterize by TS parameter γ.

Decreasing γ

decreases the level

of distortion.

a
The relationship between the distortion parameter and the level of distortion is described for each distortion. For a reference image subjected to one distortion type,

utility and quality are assumed to exhibit a monotonically, nondecreasing relationship with decreasing distortion level.
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using the DCQ strategy and J2K compression. Four of the six

images from the airplane/J2K þ DCQ sequence are shown in

Fig. 3. Images with TS and TSþ HPF distortions were formed

using smoothing parameters γ ¼ 2048, 446, 97, 21, 5, and 1.

The entire collection contained 243 distorted images.

2. Procedure
A paired comparison testing methodology was used to collect

subjective responses. Soft copies of the distorted images were

presented on a display at a distance of approximately four pic-

ture heights. Observers were asked to select an image from a

pair of distorted images corresponding to the same reference

image in response to the query “Which image tells you more

about the content?” Most of the observers were Franco-

phones, and for those observers, the query was presented

in French as “Quelle est l’image qui donne le plus d’informa-

tion sur le contenu de l’image?” The distorted images in each

pair correspond to the same reference image but different dis-

tortions (e.g., airplane with J2K þ DCQ distortions and air-

plane with TSþ HPF distortions). Each observer provided

responses for a pair of images once. Certain pair comparisons

were determined to be unnecessary based on responses col-

lected in a preliminary experiment (e.g., comparing the most

distorted image with J2K þ DCQ distortions to the least dis-

torted image with TS distortions), so the number of compar-

isons for each reference image was reduced. The images in

each pair were simultaneously presented side by side on

the display, and the placement of the pair of images on the

display was randomized. The order that pairs were presented

to observers was randomized.

Because of the large number of comparisons, the paired

comparison tests were split into four testing sessions.

Fig. 2. Natural images serving as reference images for the experiments.
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Observers completed each session in approximately 30 min.

Distorted images corresponding to the reference images air-

plane, boy and cat, caged birds, guitarist, and train were com-

pared in the first two test sessions. J2K þ DCQ, TS, and

TSþ HPF distorted images were included in the first session,

and JPEG, BLOCK, TS, and TSþ HPF distorted images were

included in the second session. Both TS and TSþ HPF dis-

torted images appear in both sessions, so that the combined

responses from each session also can be used to determine

the relationship among J2K þ DCQ distorted images and both

BLOCK and JPEG distorted images via transitivity.

Distorted images corresponding to the reference images

backhoe, jackolanterns, pianist, and skier were compared

in the last two test sessions. The last two sessions were de-

signed such that observers compared half of the distorted

images in a single test session, and the distorted images in

each session spanned the full range of distortion levels tested.

All five types of distortions appeared in each of these last two

test sessions.

3. Observers
A total of 82 observers with verbally verified normal or cor-

rected-to-normal acuity participated in the experiment over

the four test sessions. Forty naive, Francophone observers

participated in the first test session. An analysis of the results

obtained from the first test session revealed that fewer obser-

vers would yield statistically equivalent results, so the remain-

ing test sessions were conducted with fewer observers. In the

second test session, ten naive, Francophone observers and

ten expert, French- or English-speaking observers partici-

pated. Twenty-two naive, Francophone observers partici-

pated in the last two sessions with 11 observers per session.

C. Experiment 2: RTs of Natural Images
The experiment to estimate RTs for each of the nine reference

images subjected to J2K þ DCQ, TS, and TSþ HPF distortions

consisted of two parts. In the first part, observers called

writers provided descriptions of the distorted images. In

the second part, new observers called readers read these de-

scriptions and decided which description indicated that the

writer recognized the image content. Since writers typed their

descriptions, response time is not a suitable indicator of re-

cognition. The experimental methods used to estimate the

RTs of the nine reference images are described.

1. Stimuli
To accurately estimate observer RTs of the reference images,

reference/distortion sequences were constructed for each re-

ference image using a dense set of distortion parameters for

the J2K þ DCQ, TS, or TSþ HPF distortions. Reference/J2K þ
DCQ sequences contained 20 images corresponding to encod-

ing bitrates R that were logarithmically equally spaced from

0.01 to 0:30bits=pixel. The choice of extremely low bitrates

guaranteed that unrecognizable images appear at the begin-

ning of the sequence. Both reference/TS and reference/TSþ
HPF sequences contained 24 images corresponding to smo-

othing parameters γ that were logarithmically equally spaced

from 2048 to 1. The first image of a reference/TS sequence

contained an image with only very low-frequency content,

and the first image of a reference/TSþ HPF sequence con-

tained an image with a constant valued, gray image. With nine

reference images and three distortions, there were a total of

27 reference/distortion sequences.

2. Part 1: Procedure to Collect Descriptions of Distorted
Natural Images
In this part of the experiment, which is similar in design to that

of Bruner and Potter [41], observers called writers viewed a

distorted image and typed a brief description of the recogniz-

able image content. The images that a writer viewed and de-

scribed were ordered such that a writer cycled through each

image of one reference/distortion sequence in order of de-

creasing distortion level. After completely viewing one refer-

ence/distortion sequence, the writer cycled through a new

reference/distortion sequence corresponding to a different

reference image and possibly a different distortion.

A writer necessarily viewed and described the images of at

most nine reference/distortion sequences, each sequence cor-

responding to a different reference image. The order that

the reference/distortion sequences were presented to each

writer was randomized. Participants completed this task in

about 30 min.

3. Part 2: Procedure to Identify RTs from Descriptions
Collected in Part 1
In this part of the experiment, observers called readers who

had not previously viewed the images read the descriptions

produced by the writers.

This experiment consisted of consecutive trials. In each

trial, a reader read all the descriptions provided by an uniden-

tified writer for the images of a single reference/distortion

Fig. 3. Four images from the airplane/J2K þ DCQ sequence used in
Experiment 1 (Subsection 2.B). J2K þ DCQ distorted images are pa-
rameterized using the encoding bitrate R in bits per pixel (see
Table 1). The encoding bitrate of the visually lossless airplane image
specified by the DCQ strategy is RVL ¼ 1:85bits=pixel. The perceived
utility (U) scores and perceived quality (Q) scores obtained via the
subjective experiments are provided for each image.
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sequence. The reference image corresponding to a reference/

distortion sequence was simultaneously presented to the read-

er to compare with the descriptions, but information about the

distortion viewed by the writer was hidden from the reader.

The list of descriptions typed by a writer were ordered for the

reader such that the first description corresponded to the first

image of the reference/distortion sequence (i.e., an unrecog-

nizable image), and the last description corresponded to the

last image of the sequence. In each trial, the reader was in-

structed to select the first description that indicated the basic

content of the reference natural image had been recognized.

Trials were randomized for each reader.

This experiment was split into four sessions to alleviate

observer fatigue. No time limit was imposed, and observers

completed each session in approximately 30 min.

4. Observers
A total of 49 observers with verbally verified normal or cor-

rected-to-normal acuity participated in the experiments to es-

timate RTs for the nine reference images. Forty-six English-

speaking observers (i.e., writers) participated in the ex-

periment that collected descriptions of images in sequences

corresponding to the different distortions. Nine to 13 obser-

vers viewed and described the distorted images in the refer-

ence/J2K þ DCQ sequences for all nine reference images. Not

all observers viewed a reference/J2K þ DCQ sequence of

images corresponding to each of the nine reference images.

Twelve observers viewed and described the distorted images

in the reference/TS and reference/TSþ HPF sequences for all

nine reference images. Three English-speaking observers (i.e.,

readers) participated in the experiment to identify RTs from

writers’ descriptions.

D. Perceived Utility Scores from Subjective Data
Perceived utility scores were obtained using the subjective

data acquired in the two experiments described in Subsec-

tions 2.B and 2.C. The process to obtain perceived utility

scores is described as three steps.

1. Relative Perceived Utility Scores from Subjective Data
Relative perceived utility scores were derived from the sub-

jective data collected using the paired comparison test meth-

od (see Subsection 2.B). In particular, given two differently

distorted images formed from the same reference image,

the subjective data collected for the pair of images was used

to estimate the actual probability that one distorted image is

more useful to a human than the other.

Bradley and Terry specified a mathematical model that re-

lates the probability that the response to stimulus X i is greater

than the response to stimulus X j to a continuum of raw scale

values that ranks the collection of stimuli fX igni¼1
according to

some measure of merit [42]. This mathematical model was

used to derive relative perceived utility scores (i.e., the raw

scale values). For a reference image X ref , let X i denote a dis-

torted image formed from Xref , and let pij denote the probabil-
ity that image X i conveys more information to a human about

the content of X ref than image X j . The Bradley–Terry model

was used to map the estimates of pij, based on the subjective

data, to relative perceived utility scores.

Distorted images subjected to the same distortion were not

compared in the paired comparison test because perceived

utility is assumed to exhibit a monotonically, nondecreasing

relationship as the distortion level decreased in the reference/

distortion sequences. This assumption was imposed by expli-

citly defining the estimate of the probability pij for two types

of comparisons. First, for comparisons of an image with itself,

the estimate of pii was set to 0.5, since observers were ex-

pected to choose either image with equal probability. Second,

for two different distorted images corresponding to the same

reference/distortion sequence, the image with less distortion

was assumed to have greater perceived utility than the image

with more distortion. This second assumption was imposed by

setting pij ¼ 0:99 when image X i and X j belong to the same

reference/distortion sequence (e.g., a JPEG distortion se-

quence), but the level of distortion for X i is less than that

of X j . The images used in the paired comparison test were

broadly spaced in terms of the distortion level to accommo-

date this second assumption. For example, suppose XR1
and

XR2
are two J2K þ DCQ distorted images formed from the re-

ference image using encoding bitrates R1 and R2, where

R1 < R2. Because a larger encoding bitrate implies a lower

level of distortion for J2K þ DCQ distortions, the second

assumption was imposed by setting PðXR2
> XR1

Þ ¼ 0:99.
For each reference image, relative perceived utility scores

for the corresponding set of distorted images were obtained

from the estimates of pij using a generalized linear model,

which Critchlow and Flinger demonstrated is equivalent to

the maximum-likelihood method used by Bradley and Terry

[43]. The estimates of pij were either generated from the sub-

jective data or explicitly defined to impose the assumptions

regarding the relationship among perceived utility and the dis-

tortion parameters for a single distortion. In addition to pro-

ducing relative perceived utility scores, this data provides a

mapping from each distortion parameter to the relative per-

ceived utility scores for each reference image, which was used

in the next step.

2. Relative Perceived Utility Scores for
the RT and the REC
The RT and the REC of each reference image are used as an-

chors to map the relative perceived utility scores to the com-

mon utility scale (see Subsection 2.D.3). The estimates of

the relative perceived utility scores for the RT and REC are

described.

The subjective data from the second experiment (see Sub-

section 2.C) were used to estimate the relative perceived uti-

lity score coinciding with the RT of each reference image. The

processed subjective data from the first experiment was used

to construct mappings from each distortion parameter to the

relative perceived utility scores. The RT for each reference/

distortion sequence was estimated in terms of the correspond-

ing distortion parameter based on the results from the

experiments described in Subsection 2.C (e.g., the RT for a

J2K þ DCQ sequence was specified in terms of the encoding

bitrate R). The relative perceived utility score of the reference/

distortion sequence’s RT was found by linear interpolation

using the mappings from each distortion parameter to the re-

lative perceived utility scores. For a reference image, this

yields several estimates of the relative perceived utility score

for the RT, one corresponding to each distortion. The relative

perceived utility score for the actual RT is estimated as the

average of the relative perceived utility scores for the RT
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for each distortion because the relative perceived utility

scores for the RT for each distortion were found to be statis-

tically equivalent.

Both the reference image and any visually lossless image

belong to the REC. Thus, the relative perceived utility score

coinciding with the minimum bitrate visually lossless image

generated via J2K compression using the DCQ strategy was

used to define the relative perceived utility score of the

REC (see Subsection 2.A.3). These visually lossless images

were included in the paired comparison experiments, so

the relative perceived utility scores of the REC of each refer-

ence image were directly estimated.

3. Perceived Utility Scores: Relative Perceived Utility
Scores Mapped to a Common Utility Scale
Perceived utility scores were obtained by mapping the relative

perceived utility scores to a common utility scale, where the

RT was mapped to a perceived utility score of 0 and the REC

was mapped to a perceived utility score of 100. The relative

perceived utility scores for the RT and the REC were used to

define a linear mapping from relative perceived utility scores

for the distorted images generated from the same reference

image to perceived utility scores on the common utility scale.

3. METHODS: PERCEIVED
QUALITY SCORES

Human judgments of perceived quality generally indicate the

perceptual resemblance of an image to a reference and are

quantified by a perceived quality score. The reference is either

(1) an explicit, external natural image that is presented to the

observer or (2) an internal reference based upon observer ex-

pectations that is only accessible to the observer. Despite the

vagueness of the term “quality,” observers frequently attend to

particular distortions (e.g., “blocky,” “blurry,” “sharp,” etc.) to

draw conclusions about the perceived quality [44].

Distorted natural images have been studied more often in

the context of perceived quality than perceived utility, and

several objective estimators have been developed to estimate

perceived quality (see Section 5). The relationship between

perceived quality and perceived utility is unclear; however,

a poor quality image is expected to be less useful than an ex-

cellent quality image. If perceived quality accurately estimates

perceived utility, then existing objective quality estimators

should be suitable as utility estimators. Otherwise, those im-

age characteristics that differentiate judgments of perceived

quality from those of perceived utility need to be determined

to properly design both quality and utility estimators robust to

a variety of distortions.

An experiment was conducted to acquire perceived quality

scores for the same images for which perceived utility scores

were obtained to understand the relationship between quality

and utility. The methods employed to acquire perceived qual-

ity scores are reported.

A. Stimuli
The nine reference images and the 243 distorted images

formed from these reference images according to the methods

described in Subsection 2.B.1 served as test stimuli in this

experiment.

B. Procedure
The absolute category rating (ACR) [45] testing methodology

[46] was used to collect perceived quality opinions of distorted

images from human observers and consists of consecutive

trials. In each trial, an observer was presented with a stimulus

for 10 s. Then, the display was set to a constant gray back-

ground, and the observer was immediately requested to pro-

vide a opinion score that indicated his perceived quality of the

previously displayed stimulus. The reference images were in-

cluded in the test stimuli evaluated by the observer, and an

observer was unaware if a stimulus was a distorted or refer-

ence image. The order of the stimuli presented was random

and varied for each observer.

A discrete category rating scale was used that has five

categories. Observers provide opinions of quality using the

adjectives “bad,” “poor,” “fair,” “good,” and “excellent” that

define the quality categories. The observers participating in

the experiment were Francophones; the rating scale respec-

tively translated to French is “mauvais,” “médiocre”, “assez

bon,” “bon,” and “excellent.”

To alleviate observer fatigue due to prolonged evaluation

sessions, the test was split into two sessions, each containing

roughly half of the stimuli. Observers completed each session

in approximately 30 min and rested for 5 min between the two

testing sessions.

C. Observers
Twenty-six naive, Francophone observers with verbally veri-

fied normal or corrected-to-normal acuity participated in the

experiment, and one observer was rejected as an outlier ac-

cording to criteria specified in the VQEG multimedia phase I

report [47]. The 25 opinion scores from the remaining 25 ob-

servers were used to produce perceived quality scores for

each stimulus.

D. Perceived Quality Scores from Subjective Data
Observers provided quality judgements that correspond to

one of the five category levels (i.e., “bad,” “poor,” “fair,”

“good,” and “excellent”). These five levels were mapped to

the integers on the range 1 to 5 and yield observer opinion

scores. The perceived quality score [48] for each test image

was computed by averaging the corresponding observer

opinion scores.

4. RESULTS: QUALITY IS NOT A PROXY
FOR UTILITY

The subjective data collected in Sections 2 and 3 provide per-

ceived utility scores and perceived quality scores for a collec-

tion of distorted natural images. An analysis of the resulting

relationship between the perceived quality scores and the per-

ceived utility scores is reported and followed by a summary of

the image characteristics that appear to influence human judg-

ments of quality and utility, respectively, based on an analysis

of the distortions. Example images that illustrate that quality

is not a proxy for utility are then presented and discussed.

A. Relationship between Quality and Utility
Perceived quality scores lie on the closed interval Q ¼ ½1; 5�,
whereas perceived utility scores lie on the set of real numbers

R with 0 denoting the RT and 100 denoting the REC. Images

with perceived utility scores less than 0 are unrecognizable
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and useless, and images with perceived utility scores greater

than 100 are more useful than the reference image.

The relationship between quality and utility was analyzed

only for those images whose perceived utility scores lie on

the closed interval U ¼ ½−15; 115�. No images had perceived

utility scores greater than 115, but many images (n ¼ 80)

had perceived utility scores less than −15. Differences be-

tween perceived utility scores for images well below the

RT convey less information about utility, since these values

result from comparisons of two unrecognizable images.

Furthermore, unrecognizable images were rated as having

“bad” quality: the perceived quality scores for these images

have small standard deviation and both mean and median ap-

proximately equal to 1 [49]. Images whose perceived utility

scores fall just below the RT were included because Bruner

and Potter reported that human observers, especially adults,

tend to maintain incorrect hypotheses about the actual con-

tent when viewing reference/distortion sequences beginning

with a very distorted, unrecognizable images as compared

to observers that first view a reference/distorted sequence be-

ginning with a less distorted image [41]. Our experiments to

estimate RTs had observers first view very distorted unrecog-

nizable images in the reference/distortion sequences, so in-

cluding images whose perceived utility scores lie on the

interval ½−15; 0� accounts for possible overestimates of the

RTs due to the phenomenon reported by Bruner and Potter.

To test whether quality is a robust proxy for utility, both

correlation and accuracy statistics were used. Specifically,

quality is not a robust proxy for utility if (1) perceived quality

scores and perceived utility scores are weakly correlated and

(2) perceived quality scores inaccurately estimate perceived

utility scores. The Pearson linear correlation r, the Spearman

rank correlation ρ, and the Kendall rank correlation τ are used

to quantify the relationship between perceived quality scores

and perceived utility scores [50]. The rank correlation mea-

sures, the ρ and τ, quantify the discrepancies between the rank

order of the two sets of subjective scores. Neither ρ nor τ are

affected by a monotonic, nonlinear mapping.

The root mean squared error (RMSE) and the outlier ratio

(OR) were chosen to quantify the accuracy with which per-

ceived quality scores estimate perceived utility scores. The

RMSE was computed after fitting the perceived quality scores

and the perceived utility scores to a monotonic, nonlinear

mapping [see Eq. (1)]. The OR is the proportion of nonlinearly

mapped quality scores (i.e., the utility score estimated from

quality) that lie outside the 95% confidence interval of the per-

ceived utility score.

Monotonic nonlinear functions were fitted to the subjective

scores and used to map perceived quality scores to the utility

range, since perceived quality exhibits a nonlinear relation-

ship with perceived utility (see Figure 4). LetQ ¼ ½1; 5� denote
the domain of the quality range, and let U ¼ ½−15; 115� denote
the domain of the utility range. Let qi and ui respectively de-

note the perceived quality score and perceived utility score of

image i. The nonlinear function f : Q → U given as

f ðqÞ ¼ a logðqÞ þ b ð1Þ

maps perceived quality scores to the utility range, and the

parameters fa; bg were found by minimizing the sum of the

squared error based on the residuals ff ðqiÞ − uigni¼1
, where

n is the number of images with both perceived quality and per-

ceived utility scores. The fit was considered sufficient if the

residuals exhibit a Gaussian distribution. The Jarque–Bera

(JB) normality test determines if a collection values come

from an unspecified Gaussian distribution [51], was applied

to the set of residuals ff ðqiÞ − uigni¼1
, and concluded that they

did come from an unspecified Gaussian distribution at the 95%

confidence level.

The two scatterplots in Figs. 4 and 5 illustrate the nonlinear

relationship between quality and utility for the nine reference

images and five distortions with perceived utility indicated on

the left ordinate. In each scatter plot, the quality adjectives

delineating the quality rating scale have been provided on

the top abscissa, and the two anchors, the RT and the

Fig. 4. Quality is not a suitable proxy for utility. The scatterplot
shows the relationship between perceived utility scores and the per-
ceived quality scores for nine reference images. The symbols indicate
the reference image corresponding to each subjective score. The RT
and the REC are denoted on the axis corresponding to perceived uti-
lity scores. The quality adjectives are denoted on the axis correspond-
ing to the perceived quality scores. Standard error bars have been
included for both subjective scores. In each figure, the fitted nonlinear
mapping from the abscissa to the ordinate is denoted by the solid
curve, and the 95% PI for the fitted nonlinear mapping is denoted
by the dashed curves. See also Fig. 5.

Fig. 5. Perceived utility versus perceived quality where the symbols
indicate the distortion (cf. Figure 1) corresponding to each subjective
score. See caption of Fig. 4.
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REC, associated with perceived utility are indicated on the

right ordinate. The symbols in Figs. 4 and 5 distinguish

subjective scores according to the reference image and the

distortion, respectively. The solid curve in each figure corre-

sponds to the fitted nonlinear mapping from the abscissa to

the ordinate [i.e., Eq. (1)], and the dashed curves define the

95% prediction interval (PI) for the fitted nonlinear mapping.

The nonlinear relationship between utility and quality indi-

cates that the quality of a test image generally does not accu-

rately predict its usefulness. The slope of the nonlinear

relationship between utility and quality is positive and de-

creases with increasing quality, which indicates that varia-

tions in quality correspond to smaller variations in utility as

quality increases. For example, there are test images rated

as having perceived quality ranging from “fair” to “excellent”

that have high perceived utility.

The relationship between quality and utility was analyzed

for the entire collection of distorted images as well as subsets

of the collection that were formed by treating (1) quality, (2)

distortion type, and (3) reference image (i.e., scene content)

as factors. The quality range spans the interval ½1; 5�, and three

“levels” of the quality factor were defined for analysis: low

quality ½1; 2:25Þ, medium quality ½2:25; 3:75�, and high quality

ð3:75; 5�. Subsets of distorted images spanning these different

regions of quality were analyzed because the distorted images

used in the experiment span a wide range of distortion levels

ranging from unrecognizable to visually lossless. The five dis-

tortion types correspond to the “levels” of the distortion type

factor: JPEG, BLOCKS, J2K þ DCQ, TS, and TSþ HPF. Sub-

sets of distorted images corresponding to different distortion

types were analyzed because each distortion type disrupts dif-

ferent image characteristics. Subsets of distorted images

corresponding to different reference images were analyzed

because different image characteristics may affect the rela-

tionship between quality and utility for each scene.

Statistical differences in either correlation or accuracy

among the different levels of a factor (i.e., quality region or

distortion type) preclude a reliable predictive relationship be-

tween perceived quality and perceived utility. Statistical dif-

ferences between two correlation values were determined

using a z test after applying the Fisher transformation to

the correlation values [52,53]. Statistical differences between

accuracy statistics were identified by analyzing the squared

errors fðf ðqiÞ − uiÞ2gni¼1
using a one-way analysis of variance

(ANOVA) to determine if any of the mean squared errors

(MSEs) statistically differ for a particular factor [53]. If

ANOVA indicated that the accuracy differed according to a

particular factor, then Tukey’s multiple comparison proce-

dure was used to identify which levels (e.g., high quality or

J2K þ DCQ) of that factor had statistically different MSEs.

The comparison results are reported as p values, where p val-

ues greater than 0.05 indicate that at the 95% confidence level

the MSEs differ among the two levels of the factor that are

compared. The OR is a binomial random variable, and statis-

tical differences between two OR values are determined via a

z test at the 95% confidence level using the Gaussian approx-

imation of a binomial random variable [53].

Table 2 summarizes the correlation and accuracy statistics

for all images and subsets of distorted images when either the

quality region or the distortion is considered as a factor. The

monotonic, nonlinear mapping [i.e., Eq. (1)] affects the Pear-

son linear correlation between the subjective scores. The

Pearson linear correlation computed before applying the non-

linearity is denoted r, and it is denoted rfit when computed

Table 2. Results Summarizing the Relationship between Perceived Quality and Perceived Utility
a

Factor Image Subset n r ρ τ RMSE rfit OR

All 163 0.909 0.919 0.750 14.2 0.925 0.58

Quality region Low quality 72 0.819 0.791 0.606 12.4 0.812 0.58

Medium quality 63 0.620 0.625 0.458 17:3 0.627 0.67

High quality 28 0.603 0.583 0.402 8.7 0.614 0.32

Distortion JPEG 39 0.931 0.938 0.795 11.2 0.939 0.62

BLOCKS 6 0.228 0.116 0.138 6.3 0.221 0.00

J2K þ DCQ 42 0.953 0.953 0.825 11.5 0.955 0.45

TS 38 0.963 0.934 0.769 11.0 0.957 0.50

TSþ HPF 38 0.884 0.868 0.690 16:5 0.894 0.71

Reference image Airplane (set 1) 18 0.981 0.976 0.905 6.0 0.986 0.28

Backhoe (set 1) 16 0.968 0.945 0.812 7.7 0.972 0.31

Guitarist (set 1) 21 0.940 0.966 0.865 8.5 0.977 0.43

Jackolanterns (set 1) 18 0.953 0.975 0.892 7.4 0.974 0.22

Boy and cat (set 2) 16 0.936 0.895 0.740 12.9 0.949 0.56

Caged birds (set 2) 13 0.950 0.945 0.821 11.9 0.942 0.54

Pianist (set 2) 21 0.912 0.943 0.823 11.9 0.950 0.33

Skier (set 2) 19 0.907 0.942 0.826 12.9 0.945 0.42

Train (set 2) 21 0.924 0.927 0.794 11.8 0.951 0.48

Sets of references Set 1 73 0.940 0.948 0.800 10.8 0.954 0.47

Set 2 90 0.893 0.895 0.714 16.1 0.909 0.64

a
Each row corresponds to a subset of n images either spanning a particular range of quality or corresponding to a particular distortion. The Pearson linear correlation

r, the Spearman rank correlation ρ, and the Kendall rank correlation τ are computed between the perceived quality and perceived utility scores. The RMSE and the OR
were computed using the utility scores and the mapped [i.e., Eq. (1)] quality scores. rfit denotes the Pearson linear correlation after applying the mapping. For the
correlation statistics and OR, bold values are statistically equivalent to the largest value for a subset of images (excluding All). Bold RMSE values are statistically larger
than the other subsets based on ANOVA.
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after applying the nonlinearity. For each statistic, values in

boldface are statistically greater than those of the other levels

within that factor. The following summarizes key observa-

tions, which appear in bold, followed by statistical justifica-

tions and interpretations.

Quality does not consistently and accurately predict

utility for different regions of quality. The entire collec-

tion of distorted images range from unrecognizable to visually

lossless, and a strong global correlation is observed, which

implies that a poor-quality image is less useful than an excel-

lent-quality image. However, the 95% PI for the fitted nonlinear

mapping between utility and quality (i.e., Fig. 4) indicates that

a perceived quality score corresponds to a broad range of per-

ceived utility scores, and the range of the perceived utility

scores varies for different regions of quality (e.g., the PI is

wider in the medium-quality region than the low-quality re-

gion). An analysis of the relationship between the perceived

utility scores and the perceived quality scores for individual

quality regions provides more insight into the relationship

between quality and utility.

For different quality regions, both the correlation and accu-

racy between the perceived utility scores and the nonlinearly

mapped perceived quality scores vary. The perceived utility

scores and perceived quality scores exhibit the most linear

relationship (r ¼ 0:82) for images with low quality (i.e., rated

as having either “bad” or “poor” perceived quality). Variations

in perceived quality scores explain 67% (i.e., 100r2%) of the

variation in perceived utility scores in this quality region.

However, for the other quality regions, the correlation be-

tween perceived utility scores and perceived quality scores

is statistically significantly smaller (r < 0:62), which indicates

that variations in the perceived quality scores explain no more

than 40% of the variation in the perceived utility scores in the

medium- and high-quality regions.

The quality region was found to be a factor that influences

the squared errors between the perceived utility scores and

the nonlinearly mapped perceived quality scores based on

a one-way ANOVA (Fð2; 160Þ ¼ 7:16, p < 0:01). The MSE be-

tween the perceived utility scores and the mapped perceived

quality scores for distorted images in the medium-quality re-

gion is statistically larger than that of the other two quality

regions (p ≤ 0:01).
The significant variation in both the correlation and accu-

racy statistics for different regions of quality demonstrate that

quality does not generally provide a reliable estimate of utility.

The observed relationship between quality and utility is dis-

cussed for each quality region.

Variations in quality for distorted images in the low-quality

region largely coincide with variations in utility. The slope of

the overall relationship between utility and quality decreases

as quality increases and is steepest within the low-quality re-

gion, which indicates that small changes in perceived quality

in the low-quality region affect perceived utility more than

small changes in quality for other regions of quality. Consider,

for example, a reference/distortion sequence beginning with

an unrecognizable image and evolving toward a useful image

with medium perceived quality. Subsequent images in the se-

quence will contain less distortion than the previous images,

and the sequence will evolve from unrecognizable to recogniz-

able within the low-quality region. The strong correlation

(r ¼ 0:82) as well as the steep slope between utility and qual-

ity within this region reflect the dramatic perceptual changes

coinciding with the evolution of images from unrecognizable

to recognizable in this sequence. In other words, the observed

relationship between quality and utility in the low-quality

region suggests that observers largely judge lower-quality

images in terms of their ability to interpret the content.

Distorted images in the medium-quality region are useful,

but visibly distorted and nearly span the full range of utility:

½21; 115�. Of the distorted images in the medium-quality region,

20% have very high utility (i.e., perceived utility scores greater

than 90) and span nearly the entire range of the medium-

quality region: ½2:5; 3:7�. This clearly demonstrates that high uti-

lity does not necessarily imply high quality, since these images

all havemediumquality. Therefore, veryuseful images can con-

tain a moderate amount of visible distortions (i.e., have med-

ium quality). Further analysis revealed that most of the images

with medium quality and high utility are TSþ HPF distorted

images, which suggests that removing low-frequency content

can form a perceptually different image (i.e., decrease quality)

without affecting the image’s usefulness.

Distorted images in the high-quality region contain few visi-

ble distortions and span a narrow range of utility: ½73; 108�. In
addition, more than 60% of the distorted images have very high

utility (i.e., perceived utility scores greater than 90) with qual-

ity as low as 4 (i.e., “good” quality). Furthermore, both low

correlation with and low RMSE between the perceived utility

scores and the nonlinear mapped perceived quality scores

was observed for distorted images in the high-quality region.

In other words, as the level of distortion decreases utility sa-

turates before quality saturates, and refinements in quality for

high-quality images have little effect on utility.

The interpretation of the relationship between utility and

quality must be qualified with respect to the natural images

used in the experiments. In particular, the usefulness of the

natural images was determined by an object or objects that

generally occupy a large portion of the image, which led to

useful images despite the presence of visible of distortions

(i.e., images in the medium-quality region). Had the usefulness

of the images been dictated by either a smaller or less con-

spicuous object (e.g., recognition of the flower pot in the

boy and cat image), the relationship between utility and qual-

ity could differ. For example, image usefulness dictated by a

smaller, inconspicuous object is expected to require a higher

quality image than if the usefulness is dictated by a larger, con-

spicuous object. Such variations in image usefulness reflect

tasks that repurpose the original intent of the images. In this

paper, the task was to report the content of each natural im-

age, and the content of the images selected for the experiment

is dictated by one or two conspicuous objects.

Utility is not accurately estimated using quality for

TSþHPF distorted images. Both the accuracy with which

perceived utility scores are estimated from mapped perceived

quality scores as well as the correlation between the per-

ceived utility scores and the perceived utility scores varies

among the different distortion types [54]. The squared errors

between the perceived utility scores and the mapped per-

ceived quality scores were influenced by the distortion

type factor based on a one-way ANOVA (Fð4; 158Þ ¼ 3:43,
p ¼ 0:01). The MSEs for estimates of perceived utility scores

from perceived quality scores for TSþ HPF distortions were
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found to be statistically larger than those for JPEG (p < 0:04),
J2K þ DCQ (p < 0:05), and TS distortions (p < 0:03).

TSþ HPF distortions disrupt both high-frequency content

via TS and low-frequency content via high-pass filtering,

whereas JPEG, J2K þ DCQ, and TS distortions primarily dis-

rupt high-frequency content before low-frequency content.

The perceived utility scores exhibit very strong correlation

(r > 0:93) with the perceived quality scores for the JPEG,

J2K þ DCQ, and TS distorted images, and the highest correla-

tion is observed for the TS distorted images (r ¼ 0:96). The

very strong correlation between the perceived utility scores

and the perceived quality scores for JPEG, J2K þ DCQ, and

TS distorted images indicates that distortions to high-

frequency content affect both utility and quality. However,

the correlation between the perceived utility scores and the

perceived quality scores is statistically lower for the TSþ
HPF distorted images than the TS distorted images

(p ¼ 0:01), yet the TSþ HPF distorted images only lack the

low-frequency content of the TS distorted images. The weak

correlation as well as the large RMSE between the perceived

utility scores and the mapped perceived quality scores for

TSþ HPF distorted images indicate that distortions to low-

frequency content affect utility differently than they affect

quality.

Overall, the analysis of the relationship between utility and

quality demonstrate that an image with low quality also has

low utility, and an image with high quality also has high utility.

However, distorted images with quality in the medium region

correspond to a wide range of perceived utility scores, includ-

ing high utility. In other words, high utility does not imply high

quality. The perceived utility scores of TSþ HPF distorted

images are less accurately estimated from the perceived qual-

ity scores than for the other distortions, especially when the

TSþ HPF distorted image has quality in the medium region

and suggests that low-frequency content affects quality differ-

ently than utility.

Quality does not accurately predict utility for some re-

ference images. The accuracy with which perceived utility

scores are estimated from mapped perceived quality scores

varies among the different reference images. As reported in

Table 2, the squared errors between the perceived utility

scores and the mapped perceived quality scores were not in-

fluenced by the reference image based on a one-way ANOVA

(Fð8; 154Þ ¼ 1:68, p ¼ 0:11). However, when sets of reference

images were compared to one another, significant differences

in the squared errors between the perceived utility scores and

the mapped perceived quality scores were noted

(Fð1; 161Þ ¼ 9:48, p < 0:01). The reference images were

grouped into the two sets: Set 1 ¼ fairplane; backhoe;
guitarist; jackolanternsg and Set 2 ¼ fboycat; cagedbirds;
pianist; skier; traing.

The accuracy with which perceived utility scores were es-

timated from mapped perceived quality scores was signifi-

cantly lower for the reference images in set 1 than those in

set 2. Specifically, the TSþ HPF distorted images generated

from reference images in set 2 were generally rated as having

perceived quality scores much lower than their TS distorted

image counterparts (i.e., equal γ). In other words, observers

were more sensitive to the loss of low-frequency content in

image from set 2 than for images from set 1.

B. Effects of Low-Frequency Content on
Quality and Utility
JPEG, BLOCKS, J2K þ DCQ, and TS distortions largely dis-

rupt high-frequency content with limited disruption to low-

frequency content. However, TS and TSþ HPF distorted

images with the same smoothing parameter γ only differ with

regard to the inclusion of low-frequency content. The per-

ceived utility scores and perceived quality scores for TS

and TSþ HPF distorted images were compared to determine

the influence of low-frequency content on both utility and

quality.

For each reference image, the subjective scores for TS and

TSþ HPF distorted images with equal smoothing parameters

γ are tested for statistical differences when γ ¼ 1, 5, 21, 97,

446, and 2048. Statistical differences in the subjective scores

imply that the disruption to low-frequency content influences

the subjective scores. For TS and TSþ HPF distorted images

formed from the same reference image using smoothing

parameter γ, let STSðγÞ and STSþHPFðγÞ denote the subjective

scores, respectively, and let σSTSðγÞ and σSTSþHPFðγÞ respectively

denote the standard deviation of STSðγÞ and STSþHPFðγÞ. z tests

were used to determine if two scores are statistically different

using the test statistic

zstat ¼
STSðγÞ − STSþHPFðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2STSðγÞ
þ σ2STSþHPFðγÞ

q : ð2Þ

The results of the z test are reported as the confidence that

STSðγÞ is greater than STSþHPFðγÞ (i.e., Pðz ≤ zstatÞ, where z is a

zero-mean Gaussian random variable with unit variance)

and is denoted as ConfðSTSðγÞ > STSþHPFðγÞÞ ∈ ½0; 1�. Figures
6 and 7 present ConfðSTSðγÞ > STSþHPFðγÞÞ as a function of the

Fig. 6. Perceived quality either decreases or remains the same when
low-frequency content is disrupted (i.e., for TSþ HPF distortions re-
lative to TS distortions). The figures show the confidence that the per-
ceived quality (Q) score of the TS distortions are greater than the
perceived quality score for TSþ HPF distortions with equal γ as a
function of the perceived quality score of the TS distortions. See Sub-
section 4.B for additional details regarding the confidence analysis
and its interpretation.
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perceived quality score and the perceived utility score of a TS

distorted image, respectively [55]. Key observations appear in

bold, followed by a statistical justification and interpretation.

For the same reference image, a TSþHPF distorted

image never is of higher quality than a TS distorted im-

age with the same γ. Over all levels of quality, loss of low-

frequency content led to an average decrease in perceived

quality of 0.53, and, in most cases, the perceived quality of

a TS distorted image is statistically greater than that of a TSþ
HPF distorted image formed from the same reference image

using the same γ. For some images, the perceived quality of a

TS and TSþ HPF distorted image with equal γ are statistically

equivalent but only when the perceived quality of the TS dis-

torted image is less than 3 (i.e., the quality is “fair” or worse).

In short, because poorer-quality images are very heavily dis-

torted, additional distortions that affect the low-frequency

content of poorer-quality images have little influence on the

perceived quality.

The relationship between the utility of TS and TSþ
HPF distorted images with the same γ formed from the

same reference image varies for each reference image.

For many of the reference images, disruptions to low-

frequency content (i.e., TS and TSþ HPF distorted images

with equal γ) do not affect perceived utility. However, disrup-

tions to the low-frequency content of the skier, airplane, back-

hoe, and caged birds images did affect utility when the TS

distorted image has high utility (i.e., perceived utility score

greater than 70).

The skier image has a statistically greater perceived utility

score when low-frequency content is disrupted (i.e., for TSþ
HPF distorted images) than when the low-frequency content

is not disrupted (i.e., the TS distorted images). Moreover, a

skier TSþ HPF distorted image with medium quality has a

perceived utility score statistically greater than 100: this image

is more useful than the reference image. Removing the low-

frequency content from the skier image introduces “halos”

near edges that enhance the visibility of the skier and other

objects (see Fig. 8). The increased visibility of the skier could

explain why removing the low-frequency content (i.e., a TS

distorted image versus a TSþ HPF distorted image with the

same γ) increased the perceived utility. However, the observer

Fig. 7. Disruptions to low-frequency content do not affect the per-
ceived utility of most images. The figures show the confidence that
the perceived utility (U) score of the TS distortions are greater than
the perceived utility score for TSþ HPF distortions with equal γ as a
function of the perceived utility score of the TS distortions. Refer to
the caption of Fig. 6.

Fig. 8. Example showing that the skier TS distorted image has sta-
tistically greater quality than the TSþ HPF distorted image with equal
γ but statistically lower utility. Removing the low-frequency content
from the skier image (i.e., the TSþ HPF distorted image) introduces
“halos” near edges that enhance the visibility of the skier. See also
Figs. 6 and 7.
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responses do not indicate what criteria the observers used to

choose the TSþ HPF distorted image over the TS distorted

image (see Subsection 7.A).

Among TS distorted images with high utility (i.e., greater

than 70), the perceived utility scores of the airplane, backhoe,

and caged birds images were statistically smaller for TSþ
HPF distorted images than TS distorted images for the same

γ. Because a paired comparison test methodology without ties

was used, observers were forced to choose one of the images

in each pair presented. The binary responses collected from

observers to obtain perceived utility scores preclude a defini-

tive explanation for why the TS distorted images were chosen

over TSþ HPF distorted images, but there are two possible

explanations for this result:

• Relative to the TSþ HPF distorted images, the low-

frequency content of TS distorted images may convey useful

information about the content to observers. For example, in

the airplane image, the removal of the low-frequency content

darkens many regions of the image (e.g., the sky and the air-

plane). The sky similarly darkens in the backhoe image when

low-frequency content is removed. These perceptual differ-

ences may cue different interpretations about the scene to ob-

servers, and the interpretation for the TS distorted image

appears more accurate. The appearance of the specular re-

flections of the bird cage, which may provide an observer with

information about the brightness of the room, are reduced in

the caged birds TSþ HPF image relative to its TS distorted

version. Such features correspond to additional information

about the image content beyond the visibility of the objects’

spatial details, which would be primarily conveyed by high-

frequency content (e.g., edges).

• Observers may have found both TS and TSþ HPF dis-

torted images formed from the same reference using the same

γ equally useful and more often reverted to judgments of qual-

ity to choose an image. This would suggest that quality is a

secondary criteria to utility. In other words, given images with

equal utility, observers generally preferred the higher-quality

TS distorted image, except when the lower-quality TSþ HPF

distorted image conveyed sufficiently more information about

the content (e.g., the skier image). For many of the reference

images, the values of ConfðSTSðγÞ > STSþHPFðγÞÞ show evidence

of a slight, though not statistically significant, bias toward ob-

servers choosing the TS distorted image over the TSþ HPF

distorted image with equal γ.

We conjecture that the second explanation (i.e., observers

revert to quality judgements) is more plausible; however, dif-

ferent observers may have used different criteria to make a

decision (see Subsection 7.A).

C. Examples Illustrating That Quality Is Not a Proxy for
Utility
The analysis of the relationship between perceived utility

scores and perceived quality scores demonstrates that quality

does not accurately predict utility, and Fig. 9 illustrates sev-

eral cases when the relationship between two distorted

images based on quality does not reflect the relationship be-

tween those two images in terms of utility and vice versa.

Each row of Fig. 9 corresponds to a different reference image,

and for each row the images are arranged such that (1) the

distorted image on the left and the distorted image in the mid-

dle have statistically equivalent perceived utility scores but

statistically different perceived quality scores and (2) the dis-

torted image in the middle and the distorted image on the right

have statistically equivalent perceived quality scores but sta-

tistically different perceived utility scores.

The first two rows of the first two columns in Fig. 9 illus-

trate the relationship between TS and TSþ HPF distorted

images. The TS parameter γ must be increased (i.e., increasing

the level of TS) for a TS distorted image to exhibit the same

perceived quality observed as a TSþ HPF distorted image, but

the resulting TS distorted image will have lower perceived uti-

lity than the TSþ HPF distorted image (first row of Fig. 9).

Similarly, a J2K þ DCQ distorted image that exhibits the same

perceived quality as a TSþ HPF distorted image also has low-

er perceived utility (second row of Fig. 9). In other words,

high-frequency content must be disrupted to form a distorted

image with equal quality to an image that lacks low-frequency

content.

The last row of Fig. 9 contains three images that respec-

tively have J2K þ DCQ, JPEG, and TSþ HPF distortions.

High-frequency content is disrupted for both J2K þ DCQ

and JPEG distorted images with limited disruption to low-

frequency content. For the TSþ HPF distorted image, the

low-frequency content is lost with little disruption to the

high-frequency content. The TSþ HPF distorted image has

“fair” perceived quality (statistically equivalent to the JPEG

distorted image) but perceived utility corresponding to the

REC.

These examples illustrate that distorted images corre-

sponding to a specific level of utility can significantly vary

in terms of quality, and distorted images corresponding to a

specific level of quality can significantly vary in terms of uti-

lity. Thus, quality does not reliably predict utility. Further-

more, the observed relationship between utility and quality

implies that any objective estimator that accurately estimates

perceived quality (utility) scores cannot also accurately esti-

mate perceived utility (quality) scores across a variety of dis-

tortion types.

5. OBJECTIVE ESTIMATORS OF
SUBJECTIVE SCORES

This section reviews several signal analysis tools that could

provide meaningful estimates of subjective scores of natural

images: (1) amplitude–spectrum statistics of natural images,

(2) natural image quality estimators, and (3) a proposed nat-

ural image utility estimator that compares image contours.

A. Amplitude–Spectrum Statistics
A well-known characteristic of natural scenes is the relation-

ship between the spatial frequency and the amplitude of the

spatial frequency component [56]. This characteristic is math-

ematically specified as Aðf Þ ¼ f −β, where β defines the spec-

tral slope of an image. Natural images have been reported to

have spectral slope values near 1.2 on average [56,57].

Human performance on visual discrimination tasks has de-

monstrated a decrease when the spectral slope of the test sti-

muli are artificially increased or decreased [57]. Such results

motivate the use of the spectral slope as an indicator of per-

ceived utility as a natural image is increasingly distorted. In

this paper, the spectral slope β of a test image is evaluated

as a means to estimate subjective scores.
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B. Full-Reference Image Quality Estimators
The psychometric evidence presented in Section 4 establishes

that perceived quality scores do not reliably predict perceived

utility scores. This evidence implies that an objective estima-

tor that accurately estimates perceived quality scores cannot

accurately estimate perceived utility scores. Accurate estima-

tion of the perceived quality of distorted natural images

remains an open research problem, so current quality estima-

tors may produce accurate estimates of the perceived utility

scores of distorted natural images. Therefore, full-reference

quality estimators are treated as mathematical formulas

and, in particular, signal analysis tools that quantify the com-

parison of a distorted image to a reference image. This section

reviews the full-reference quality estimators assessed accord-

ing to their performance as utility estimators and quality

estimators in Section 6.

Full-reference quality estimators use both an explicit, exter-

nal reference image X and the test image X̂ to estimate the

subjective score of the test image. The full-reference quality

estimators evaluated in this paper can be categorized as (1)

conventional signal fidelity measures, (2) estimators based

on properties of the HVS, and (3) estimators derived from

hypothetical high-level HVS objectives.

1. Conventional Signal Fidelity Measures
MSE, which is used to compute the peak signal-to-noise ratio

(PSNR), and rms distortion contrast provide computationally

simple evaluations of signal fidelity. These measures evaluate

fidelity solely in terms of the overall energy of the distortions.

rms distortion contrast CrmsðEÞmeasures fidelity based on the

visibility of the distortions E ¼ X̂ − X when comparing the

images on a particular display device [58] and is given by

Fig. 9. Differences in perceived quality (Q) do not imply differences in perceived utility (U). In terms of perceived utility, the distorted images in
the middle column are statistically equivalent to the distorted images in the left column. However, in terms of perceived quality the distorted images
in middle column are statistically equivalent to the distorted images in the right column. The images have been cropped from their original versions.
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CrmsðEÞ ¼
1

μLðXÞ

�

1

M

X

M

i¼1

ðLðEi þ μXÞ − μLðEþμXÞÞ2
�

1=2

; ð3Þ

where μLðXÞ denotes the average luminance of the reference

image X, LðEi þ μXÞ denotes the luminance of the ith pixel

of Eþ μX, μLðEþμXÞ denotes the average luminance of the mean

shifted distortions Eþ μX, andM is the total number of pixels.

Equation (3) normalizes the standard deviation of the lumi-

nance values Eþ μX according to the mean luminance of

X. This normalization accounts for Weber’s law, which asserts

that distortions of equal energy are more difficult to detect in

brighter regions of an image than in darker image regions.

Various other signal fidelity measures have been analyzed

with regard to their performance to estimate perceived quality

[59,60].

2. Estimators Based on Properties of the HVS
Several quality estimators capitalize on models and principles

characterizing low-level HVS properties such as contrast sen-

sitivity [61], contrast masking [32,61,62], and perceived con-

trast [63,64]. These properties model the detection of a

visual target (e.g., the distortions in an image) under a variety

of conditions based on the contrast of the distortions. Many

quality estimators have been proposed [15–17,21–23,65–75],

but this section summarizes a subset that represents a variety

of approaches.

Two quality estimators, the weighted SNR (WSNR) and

noise quality measure (NQM), evaluate images by incorporat-

ing HVS properties to simulate the appearance of the refer-

ence and test images to a human and compute the SNR as

a function of the difference of the simulated images [72]. An-

other quality estimator, the visual SNR (VSNR), evaluates

images according to a contrast model accounting for low-level

HVS properties and the midlevel HVS property of global pre-

cedence [74,76]. The last quality estimator in this category, cri-

terion 4 (C4), assesses images using elaborate models of

several processing areas of the visual cortex [74]. The models

in C4 describe color vision, frequency-orientation analysis,

contour detection, perceptual and localization of patterns,

object discrimination, and visual memory.

3. Estimators Based on Hypothetized
Objectives of the HVS
A family of quality estimators has been developed based on

the premise that the HVS has evolved in response to the sta-

tistical regularities exhibited by the physical world. The esti-

mators operate under the hypothesis that differences between

the statistical characteristics of the reference and test images

correspond to a change in perceived quality. Estimators from

this family include the structural similarity (SSIM) index [22],

a multiscale extension of SSIM (MS-SSIM) [73], and the visual

information fidelity (VIF) criterion [23].

SSIM employs a local measure of spatial correlation be-

tween the pixels of the reference and test images that is modu-

lated by distortions quantified by locally normalized first

(mean) and second (variance) moments. MS-SSIM extends

SSIM by evaluating this modified spatial correlation measure

across several image scales. The authors of this paper have

reported extended discussions and analyses of SSIM and

MS-SSIM elsewhere [40,77].

The VIF criterion [23] generates objective scores based on a

measurement of the mutual information between the test and

reference image. VIF uses Gaussian models of spatially local

wavelet coefficients of the test image and reference image, so

the mutual information measurement reduces to a local SNR

in the wavelet domain [see Eq. (A3)]. A modification of VIF,

denoted VIF*, is also evaluated [78]. VIF* normalizes the in-

dividual image scale measurements used by VIF before line-

arly pooling. Consequently, VIF* exhibits a greater sensitivity

to low-frequency content disruptions than VIF. A mathemati-

cal description of VIF* is provided in the Appendix A.

C. NICE Utility Estimator
Processing in the HVS parses a visual stimulus into meaningful

pieces that facilitate the perception of objects. The primary

visual cortex extracts local, oriented edge information from

a visual stimulus. This information is later processed by cor-

tical regions of the HVS that have been associated with object

perception [79]. Cells within in the extrastriate cortex, in par-

ticular V4, have been functionally described as shape descrip-

tors [28]. The extrastriate visual cortex has been shown to

exhibit an increased activation in response to images that con-

tain contour information [30]. Thus, the evidence suggests

that the HVS uses contour information for object perception.

A degradation to image contours is hypothesized to inhibit

object perception. Furthermore, we hypothesize that the per-

ceived usefulness of a distorted image is related to a human’s

ability to recognize objects within that image. Biderman and

Ju reported that human observers can recognize objects from

line drawings nearly as efficiently as photographs [80], and the

authors of the present paper have shown elsewhere that hu-

mans can recognize image content from contour information

detected using a Canny edge detector operating at different

image scales [81]. The fidelity of contour information from

a test image with respect to a reference image may be a reli-

able indicator of perceived utility, and, specifically in this

paper, a human’s ability to extract information from the test

image.

The NICE utility estimator compares the contours identi-

fied in a test image to those identified in the reference image

to produce a numerical score indicating the estimated utility

score of the test image [78,82]. Image contours or edges, de-

fined by sudden intensity changes in pixel values, can be

identified by the presence of an absolute maximummagnitude

in the gradient of an image [83].

Image contours can be detected from a single image scale

or across multiple image scales. For example, the Sobel edge

detector analyzes image content from a single image scale to

identify contours. However, energy from edges span multiple

image scales, and the HVS does not strictly analyze one image

scale of visual information [61]. A wavelet decomposition

coarsely approximates the multiscale, multiorientation analy-

sis conducted by the primary visual cortex, and can be used to

identify contours at multiple image scales. The Sobel edge de-

tector is computationally efficient, but multiscale contour

identification uses visual information from multiple image

scales that would be available to the HVS. The performance

of NICE was evaluated using both single- and multiscale

contour identification methods. The computation that NICE

conducts using identified contours is described and followed
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by individual descriptions of the single-scale and multiscale

contour identification methods used for NICE.

1. Contour Comparison
An objective score with NICE is computed by comparing the

contours of the reference and test images, which are repre-

sented as binary images. Before the contours of the reference

and test images are compared, binary images representing the

contour maps are individually subjected to morphological di-

lation with a 3 × 3 plus sign-shaped structuring element E [84].

Morphological dilation accommodates local registration er-

rors between the reference and test contour maps introduced

by distortions in the test image that should not be quantified as

errors.

The contours of the reference and test images are com-

pared across S image scales, and Bs and B̂s respectively de-

note the contours of the reference and test images at scale s.
The overall NICE score for the test image is

NICE ¼
P

S
s¼1

dHðBs⊕E; B̂s⊕EÞ
P

S
s¼1

NBs

; ð4Þ

where NBs
is the number of nonzero elements of Bs⊕E,

dHðX; YÞ denotes the Hamming distance [85] between the

two binary vectors X and Y , and B⊕E denotes the dilation

of the binary image B using the morphological structuring ele-

ment E. The Hamming distance quantifies (1) the number of

pixels corresponding to contours in the reference image that

have been lost in the test image due to the distortions and (2)

the number of pixels corresponding to contours in the test im-

age introduced by the distortions that were absent in the re-

ference image. Since the content of natural images vary, the

proportion of pixels corresponding to contours will vary. The

factor NB accounts for this variability by adaptively scaling

the raw score dHðB⊕E; B̂⊕EÞ according to the extent of

the contour information identified in the reference image.

2. Single-Scale Contour Identification with Classical
Edge Detectors
Numerous image processing tools have been designed to de-

tect edges in natural images [83,86,87]. These are used to gen-

erate the binary images B1 and B̂1 corresponding to contours

of the finest image scale of the respective reference and test

images for the single-scale implementation of NICE [i.e., S ¼ 1

in Eq. (4)]. Edge detectors incorporate a filtering operation

that approximates the first derivative of the image. The Sobel

and Canny edge detectors were used for the single-scale ver-

sion of NICE.

The Sobel edge detector filters an image with two 3 × 3

linear filters, one that approximates a horizontally oriented

derivative and another that approximates a vertically oriented

derivative. If Gx and Gy correspond to the approximated hor-

izontal and vertical derivatives of the original image, respec-

tively, then an edge-intensity image, given as G ¼ G2
x þ G2

y, is

subjected to hard thresholding, using a threshold given as

twice the average value of G to produce a binary image iden-

tifying image contours.

The Canny edge detector filters the image with the deriva-

tive of a Gaussian specified for a particular σ > 0 and applies

thresholding to generate a binary image [86]. The parameter σ

in the Canny filter controls the suppression of high-frequency

content (i.e., textures and uncorrelated noise) before detect-

ing edges, and NICE was implemented with the Canny edge

detector for σ ¼ 1.

3. Multiscale Contour Identification
A wavelet representation of an image provides multiscale

directional derivatives of that image, which can be used to

identify image contours at different image scales. Both the re-

ference and test images are represented using an undecimated

implementation of the steerable pyramid [88] using D orienta-

tions and S scales [89]. Let W s;θðiÞ and Ŵ s;θðiÞ denote the ith
wavelet coefficient of the respective reference and test images

in the subband corresponding to scale s ∈ f1; 2;…; Sg and

orientation θ ∈ f0; πD ; 2πD ;…; πðD−1ÞD g.
For each image scale s, the local modulus maxima (LMM)

[90] of wavelet coefficient scales correspond to image con-

tours for the reference and test images. The LMM are deter-

mined from gradient vectors formed from wavelet subbands

corresponding to derivatives in horizontal and vertical spatial

directions [90]. Define GsðiÞ ¼ W s;0ðiÞ − jW s;π
2
ðiÞ and ĜsðiÞ ¼

Ŵ s;0ðiÞ − jŴ s;π
2
ðiÞ as the gradient of the respective reference

and test images at scale s, where j ¼
ffiffiffiffiffiffi

−1
p

. For image scale

s, letMsðiÞ ¼ jGsðiÞj andAsðiÞ ¼ ∠GsðiÞ denote the respective
modulus and angle of the gradient of the reference image. Si-

milarly, define M̂sðiÞ ¼ jĜsðiÞj and ÂsðiÞ ¼ ∠ĜsðiÞ for the test

image. The LMM of the reference image correspond to points

of MsðiÞ greater than the two adjacent neighbors in the direc-

tion indicated by AsðiÞ, and for the test image, the LMM are

similarly identified using M̂sðiÞ and ÂsðiÞ. For scale s, let I s

and Î s denote sets of indices i corresponding to LMM of

the respective reference image and test images.

Binary images represent image contours of the reference

and test images. Thresholds used to identify contours are in-

dependently calculated for the reference and test images

based on the energy of the combined horizontal and vertical

subbands (i.e.,Ms and M̂s). Specifically, the image contours at

scale s of the reference and test images are identified as LMM

that exceed the respective thresholds βs ¼ 4

P

P

P
i¼1

M2
sðiÞ and

β̂s ¼ 4

P

P

P
i¼1

M̂2

sðiÞ, where P is the number of wavelet coeffi-

cients. BsðiÞ and B̂sðiÞ, the reference and test binary images

for scale s, are defined as

BsðiÞ ¼
�

1 MsðiÞ > βs and i ∈ Is

0 else
: ð5Þ

B̂sðiÞ is similarly defined using M̂s, Î s, and β̂s.

6. RESULTS: OBJECTIVE ESTIMATES OF
UTILITY AND QUALITY

Subjective experiments are reliable but prohibitively expen-

sive methods to estimate either utility or quality, but an objec-

tive estimator that is consistent with subjective responses for

either utility or quality can be used in lieu of the subjective

experiments. This section evaluates each objective estimator

described in Section 5 as both a utility estimator and a quality

estimator. Specifically, the objective estimates are evaluated

using the perceived utility and perceived quality scores from

the subjective experiments. Objective estimators that provide

accurate and reliable estimates of the subjective scores also

serve as signal analysis tools that can be analyzed to under-

stand which image characteristics impact the subjective
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scores. For example, an objective estimator that reliably esti-

mates perceived utility scores can be dismantled to under-

stand the image characteristics that affect utility.

The implementations of all the objective estimators were

obtained from the respective authors and are available in the

Metrix Mux compilation of objective estimators [91]. Single-

scale implementations of NICE are evaluated using the Sobel

and Canny edge detector, respectively denoted as NICESobel

and NICECanny. Multiscale implementations of NICE are eval-

uated using up to four scales [i.e., for S ¼ 1; 2; 3; 4 in Eq. (4)],

where each implementation is denoted MS-NICES (i.e., MS-

NICE3 denotes MS-NICE using the first three image scales).

A monotonic, nonlinear mapping between objective esti-

mates and subjective scores is often recommended before

analyzing the performance of an objective estimator [92].

However, the nonlinear mapping functionally compensates

for objective estimator’s shortcomings and obscures the rela-

tionship between the image characteristics analyzed by that

objective estimator and those that affect the subjective scores.

Thus, a linear mapping between the objective estimates and

the subjective scores was used to avoid drawing erroneous

conclusions from the results that are due to the nonlinear

mapping and not the objective estimator. Furthermore, objec-

tive estimators that estimate either utility or quality using only

a linear mapping are preferred, since training data is not

needed to calibrate the nonlinear mapping associated with

the objective estimator (see also Appendix VI.3 of [93]).

An affine linear function hE that maps the objective esti-

mates to the range of values corresponding to the subjective

scores that lie in the domain E was fitted to the data. The pa-

rameters of hE were found by minimizing the sum of the set of

squared residuals fðhEðdiÞ − eiÞ2gni¼1
for the n images, where

di and ei respectively denote an objective estimate and a sub-

jective score for image i.
To test the performance of an objective estimator as a uti-

lity estimator and a quality estimator both correlation and

accuracy statistics were used to quantify the relationship be-

tween its objective estimates and the respective subjective

scores. Specifically, (1) the objective estimates and the sub-

jective scores must be strongly correlated and (2) the objec-

tive estimator must accurately estimate the subjective scores.

The correlation and accuracy statistics used in

Subsection 4.A (i.e., ρ, τ, r, RMSE, and OR) are used to eval-

uate the ability of the objective estimators to estimate subjec-

tive scores. The resolving power (RP0:05) is another accuracy

statistic that is used to specify the smallest difference in fitted

objective scores for a pair of test images such that the differ-

ence is significant based on the estimated error of the subjec-

tive scores at the 95% confidence level [94].

The skewness and kurtosis of the set of residuals fhEðdiÞ −
eigni¼1

are also reported. Values of skewness and kurtosis that

differ from 0 and 3, respectively, suggest that the residuals do

not come from a Gaussian distribution. The best performing

objective estimators will have residuals that come from a

Gaussian distribution with a small standard deviation (i.e.,

small RMSE); such estimators analyze important image char-

acteristics that describe the variation in the subjective scores.

Statistical differences in accuracy are determined by com-

paring the variance of the residuals corresponding to different

objective estimators. An F test frequently is used to compare

the variance of the residuals corresponding to different objec-

tive estimators, but an assumption with the F test is that the

residuals come from a Gaussian distribution [53,92]. For most

objective estimators, the residuals did not come from a Gaus-

sian distribution according to the JB normality test [51], so the

Brown–Forsythe–Levene (BFL) test [95], rather than the F
test, was used to compare the variance of the residuals for

different objective estimators, with results reported by the

corresponding p value. With the BFL test, p values greater

than 0.05 indicate that the variance of the residuals for two

estimators are statistically equivalent at the 95% confi-

dence level.

The results that characterize the performance of the objec-

tive estimator as both (1) utility estimators and (2) quality

estimators are reported separately. A general summary of

the results is presented.

A. Results: Objective Estimates of Perceived Utility
A utility estimator should both detect recognizable images and

provide accurate estimates of perceived utility.

1. Determining If Test Images Are Recognizable
Objective estimators can be used to determine if test images

are recognizable by applying an appropriate threshold to the

score generated by that estimator.

An image is either recognizable or unrecognizable. Cast as a

two-class detection problem, the performance of an estimator

as a detector can be characterized by its receiver operating

characteristic (ROC) [96–98]. A ROC curve summarizes the

relationship between the proportion of true positives and

false-positives for a given estimator using a range of threshold

values. The area under the ROC curve (AUC) collapses the

performance of an objective estimator to a single number.

Given a pair of test images belonging to each class (i.e.,

one recognizable and one unrecognizable), the AUC quantifies

the probability that an estimator correctly distinguishes recog-

nizable images from unrecognizable images.

The objective estimators were evaluated as recognition de-

tectors by applying a threshold to the objective estimates to

classify an image as either recognizable or unrecognizable. A

total of 1000 thresholds were tested ranging from 0.95 of the

minimum objective estimate to 1.05 times the maximum ob-

jective estimate. For each threshold, the true positive rate

(i.e., the proportion of times an image was correctly classified

as recognizable) and the false-positive rate (i.e., the propor-

tion of times an image was incorrectly classified as recogniz-

able) were recorded. ROC curves were generated from the

recorded pairs of true-positive and false-positive rates. The

AUC was estimated by the trapezoidal rule [97]. The AUC

is a statistic estimated from available data and is therefore

a random variable, so the 95% confidence intervals for the es-

timates of the AUC were computed [97]. The first column of

Table 3 lists the AUC as the recognition detection accuracy for

each objective estimator that was used to detect recognizable

images across all distortions.

VIF, VIF*, NICESobel, NICECanny, and all versions of MS-

NICE correctly distinguish recognizable images from unrecog-

nizable images with statistically greater probability than the

other objective estimators. All of the other objective estima-

tors correctly rank two such images with probability greater

than chance. In Table 3, the absolute maximum value of the

recognition detection accuracy is shown in bold, and values
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that are statistically equivalent with 95% confidence are itali-

cized. The subjective experiments revealed a linear relation-

ship between perceived quality scores and perceived utility

scores for low-quality distorted images, so an objective esti-

mator that produces accurate estimates of perceived quality

scores should also accurately detect recognizable images. All

the other objective estimators exhibit poor recognition detec-

tion accuracy because these estimators severely underesti-

mate the perceived utility scores of TSþ HPF distorted

images. Specific details about the performance of these

estimators are discussed alongside the results presented in

Subsection 6.A.2.

2. Estimating the Perceived Utility of Recognizable
Test Images
A utility estimator should accurately estimate the perceived

utility of a test image deemed recognizable. Only those test

images with perceived utility scores exceeding −15 (n ¼ 163

test images) are used to evaluate an estimator’s performance

as a utility estimator, since accurate estimates of perceived

utility scores for unrecognizable images are unnecessary.

Table 3 summarizes the correlation and accuracy statistics

for all the objective estimators when analyzing their linearly

mapped objective estimates with respect to the perceived uti-

lity scores. The p value for the BFL test BFLp is reported when

the residuals of each objective estimator were compared with

the residuals of VIF, since residuals for VIF exhibited the smal-

lest variance when VIF was evaluated as a utility estimator.

The following reports the key results, which appear in bold,

followed by a summary of the results for subsets of objective

estimators that exhibit similar performance. Statistical justifi-

cations, general interpretations, and specific remarks about

the objective estimators are reported.

Estimators that strictly analyze distortions to high-

frequency content and measure degradations to image

contours accurately estimate perceived utility. VIF,

NICESobel, NICECanny, and MS-NICES≤2 [99] outperform the

other objective estimators as utility estimators. Relative to

the other estimators evaluated, estimates from these estima-

tors strongly correlate with the perceived utility scores

(r > 0:91, ρ > 0:93, τ > 0:78). Estimates from these objective

estimators more accurately estimate the perceived utility

scores than the other estimators (RMSE ≤ 15:4, OR < 0:6,
RP0:05 < 39:2).

VIF, NICESobel, NICECanny, and MS-NICES≤2 strictly analyze

the high-frequency content of the reference and test images.

NICESobel, NICECanny, and MS-NICES≤2 primarily analyze dis-

ruptions to contours, whereas VIF analyzes any disruption

to high-frequency content (i.e., both contours and textures).

Most importantly, all of these estimators do not analyze dis-

ruptions to low-frequency content, which contributed to the

poorer performance of many of the other objective estimators

as utility estimators. A detailed discussion that compares VIF

to NICE is presented in Subsection 7.B.

Among the various implementations of NICE and MS-NICE,

estimates from NICECanny most accurately estimate the per-

ceived utility scores. The RMSE for NICECanny is smallest

among the various implementations of NICE and MS-NICE,

but is not statistically significant. However, the residuals

for NICECanny exhibit much higher kurtosis that those for

the other implementations of NICE and MS-NICE. Residuals

exhibiting high kurtosis indicate that most of the estimates

from NICECanny are very accurate with respect to the

Table 3. Statistics Summarizing the Performance of Estimators as Utility Estimators
a

Estimating Perceived Utility

Correlation Measures Accuracy Measures

Estimator

Recognition

Detection Accuracy ρ τ r RMSE OR RP0:05 BFLp Skew/Kurt

Spectral slope β 0.729 0.751 0.535 0.730 25.6 0.748 64.4 <10−3 0:51=2:8

Signal fidelity measures PSNR 0.768 0.520 0.422 0.414 34.1 0.859 57.3 <10−3 −0:19=2:6
CrmsðEÞ 0.792 0.521 0.404 0.211 36.6 0.877 38.2 <10−3 0:11=1:8

Estimators based on HVS properties WSNR 0.766 0.485 0.372 0.415 34.0 0.847 57.6 <10−3 −0:22=2:4
NQM 0.796 0.509 0.401 0.422 33.9 0.847 54.1 <10−3 −0:28=2:4
VSNR 0.790 0.530 0.436 0.541 31.5 0.742 83.9 <10−3 −0:51=3:0
C4 0.830 0.661 0.517 0.651 28.4 0.785 75.9 <10−3 −0:74=3:9

Estimators based on hypothesized

HVS objectives

SSIM 0.924 0.862 0.682 0.845 20.0 0.595 55.2 <10−3 −0:12=3:8
MS-SSIM 0.935 0.731 0.585 0.652 28.4 0.828 66.4 <10−3 0:01=2:4

VIF 0.978 0.959 0.821 0.943 12.4 0.595 26.6 1 0:04=2:9
VIF* 0.973 0.928 0.768 0.924 14.3 0.497 41.1 0.850 −0:53=4:2

Proposed utility estimators NICESobel 0.980 0.951 0.804 0.924 14.3 0.564 33.6 0.398 −0:37=4:1
NICECanny 0.980 0.937 0.785 0.935 13.3 0.454 39.1 0.472 −0:36=5:2
MS-NICE1 0.979 0.956 0.816 0.923 14.4 0.583 33.0 0.296 −0:35=3:7
MS-NICE2 0.980 0.959 0.821 0.911 15.4 0.577 33.4 0.073 −0:15=3:6
MS-NICE3 0.980 0.958 0.817 0.902 16.2 0.601 34.0 0.016 −0:06=3:5
MS-NICE4 0.981 0.947 0.794 0.901 16.3 0.601 34.5 0.008 0:03=3:3

a
The recognition detection accuracy is the probability that an unrecognizable image and a recognizable image are correctly distinguished. The Pearson (linear)

correlation coefficient r, the Spearman rank correlation coefficient ρ, the Kendall rank correlation τ, the RMSE, the OR, and the resolving power RP0:05 are reported
when the estimates are compared with the perceived utility scores for test images with perceived utility exceeding −15 (n ¼ 163 test images). Italicized p values for the
BFL test (BFLp) indicate that the residual variance is statistically equivalent to that of VIF. The skewness and kurtosis of the residuals are italicized when the JB test
indicates that the residuals belong to a Gaussian distribution (see Section 6). Except for the skewness and kurtosis statistics, optimal values appear in bold with
statistically equivalent values italicized.
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perceived utility scores and poorly estimated for only a few

distorted images. Further inspection of the relationship be-

tween estimates from NICECanny and the perceived utility

scores revealed that NICECanny less accurately estimates

the perceived utility scores for distorted images formed from

the skier and caged birds images relative to distorted images

formed from the remaining seven images. Removing distorted

images formed from the skier and caged birds images, both

significantly increases the linear correlation and significantly

reduces the RMSE to 0.97 and 9.3, respectively. The interpre-

tation of none of the other estimators changes as significantly

when these distorted images are removed; even the RMSE for

VIF only reduces to 11.

NICECanny underestimates the perceived utility scores for

the skier distorted images. The Canny edge detector identifies

contours within the snow region below the skier in the skier

image. Because all of the distortions blur the pixel values in

the snow region of the image, NICECanny no longer detects

most of these contours in the snow region in any of the dis-

torted images at the lowest level of distortion. Consequently,

NICECanny measures a large degradation to image contours in

these slightly distorted images. Furthermore, a majority of the

contours detected in the reference image correspond to the

snow region of the image, so additional degradations to con-

tours have a small impact on the estimate from NICECanny. The

Sobel edge detector did not identify any contours in the snow

region of the image, and thus removing skier distorted images

from the data set did not change the interpretation of its per-

formance as a utility estimator.

NICECanny overestimates the perceived utility scores for the

caged birds distorted images. The cage in the caged birds im-

age blocks the two birds, and the bars of the cage contribute

strong edges that are identified by the Canny edge detector. As

this image is distorted, the strong edges corresponding to the

bars of the cage are not significantly suppressed, and thus,

NICECanny only measures a small overall degradation to the

image contours. Because the cage partially occludes the birds,

a higher-level, more complex analysis is necessary to distin-

guish the birds from the cage and measure the degradation

of their respective contours. We hypothesize that the human

observers primarily attend to the birds with an awareness of

the cage, and perceived utility is gauged by the detail of the

birds. NICECanny does not separately measure the degradation

of contours corresponding to the birds and the cage within

this image.

For the remaining distorted images, NICECanny outperforms

the other implementations of NICE and MS-NICE, and these

different implementations largely vary with respect to the

edge-detector used. The Sobel, Canny, and wavelet-based

edge detectors used by NICE were evaluated using the pub-

licly available Berkeley Segmentation Dataset and Benchmark

to determine which method identifies contours that best cor-

responds with those identified by humans [100]. The wavelet-

based edge detector was tested using only its finest scale

contour maps (i.e., s ¼ 1), since MS-NICE1 exhibits the smal-

lest residual variance among the four versions of MS-NICE.

The Canny edge detector ranked highest among the three

methods, which suggests that its contour maps correspond

best with those formed by humans. NICE is designed assum-

ing that degradation to contours coincide with a decrease in

utility, and better correspondence between the objectively

identified contours and those identified by a human should

improve the performance of NICE. The overall performance

of NICECanny as a utility estimator combined with the corre-

spondence between its contour maps and those identified hu-

mans illustrate the importance of contour information when

estimating perceived utility.

A monotonic, nonlinear mapping improves the accuracy of

MS-NICE3 and MS-NICE4 as utility estimators. Estimates from

both MS-NICE3 and MS-NICE4, strongly correlate with per-

ceived utility scores (r ≈ 0:9, 0:95 < ρ < 0:96, 0:79 < τ <
0:82), and their rank correlation statistics are statistically

equivalent to those of VIF. However, these two estimators pro-

duce less accurate estimates of perceived utility (RMSE ≈ 16).

A monotonic, nonlinear mapping, which does not affect ρ and

τ, improved both the linear correlation and accuracy between

estimates from both MS-NICE3 and MS-NICE4 and the per-

ceived utility scores. This nonlinear mapping primarily com-

presses differences among the objective estimates for

distorted images with low perceived utility scores (i.e., near

the RT). Although the nonlinearity improves their perfor-

mance as utility estimators, the nonlinear mapping introduces

a stage of processing that was not incorporated into

MS-NICES and illustrates that MS-NICES ’s analysis of the re-

ference and test images for S > 2without the monotonic, non-

linearity degenerates as utility decreases. In particular,

MS-NICES becomes increasingly sensitive to disruptions to

low-frequency content for distorted images with low per-

ceived utility scores as S increases and coarser image scales

are analyzed.

VIF* produces unreliable estimates of perceived utility,

especially for TSþ HPF distortions with high perceived uti-

lity. Estimates from VIF* strongly correlate with and accu-

rately estimate perceived utility scores, and most of VIF*’s

correlation and accuracy statistics are statistically equivalent

to those of VIF. However, VIF* underestimates the perceived

utility of TSþ HPF distorted images with high perceived uti-

lity because, unlike VIF, VIF* has a greater sensitivity to dis-

ruptions to low-frequency content. The negative skewness of

VIF*’s residuals are a consequence its poor estimates of the

perceived utility scores for TSþ HPF distorted images. The

results from the subjective experiments described in Sec-

tion 4 demonstrate that disruptions to low-frequency content

do not consistently affect perceived utility scores. Therefore,

VIF*’s unreliable performance as a utility estimator, especially

for TSþ HPF distorted images, is expected because VIF* is

sensitive to disruptions to low-frequency content.

Estimators that analyze distortions to low-frequency

content perform poorly as utility estimators. The spectral

slope, signal fidelity measures, objective estimators based on

HVS properties, SSIM, and MS-SSIM perform poorly as utility

estimators. Estimates from these estimator exhibit weaker

correlation with perceived utility scores (ρ < 0:86, τ < 0:68,
r < 0:85) and less accurately estimate perceived utility

(RMSE > 20, OR > 0:6, RP0:05 > 54) than the other estimators

(i.e., the variants of NICE and VIF).

The TSþ HPF distorted images largely influence the perfor-

mance of these estimators. When each estimator was analyzed

as a utility estimator with the TSþ HPF distorted images

removed, all estimators except the spectral slope exhibited

significantly better performance as utility estimators. The per-

formance improvements when the TSþ HPF distorted images
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are removed indicate that these estimators operate with the

assumption that distortions do not compromise the integrity

of the low-frequency content without also severely distorting

the high-frequency content. Such an assumption is consistent

with the behavior of lossy image compression methods but

could be problematic for other types of distortion artifacts

that arbitrarily distort an image such as transmission errors

due to packet loss.

The spectral slope quantifies the shape of the distorted

image’s frequency response. The J2K þ DCQ, TS, and TSþ
HPF distortions primarily disrupt and suppress high-

frequency content before low-frequency content as the level

of distortion increases, which leads to a significant decrease

in the spectral slope (i.e., β increases in Aðf Þ ¼ 1=f −β). JPEG
distortions simultaneously disrupt, suppress, and introduce

high-frequency content (e.g., blocking artifacts) and lead to

a modest increase in β relative to the other distortions as

the level of distortion increases. As a result, the relationship

between the spectral slope and perceived utility varies with

each distortion type, and the spectral slope is observed to

be an unreliable indicator of utility, since its relationship with

perceived utility scores varies with distortion type.

The signal fidelity measures as well as the estimators based

on HVS properties generate objective estimates that are en-

tirely, or in part, a function of energy measurements of the

reference and test images. PSNR and CrmsðEÞmeasure the glo-

bal energy of the difference image X − X̂ in the pixel and

luminance domains, respectively. VSNR analyzes the visibility

of the global contrast of the difference image across several

image scales. The other estimators based on HVS properties

apply different filters to suppress frequency content less sen-

sitive to the HVS and compare the global energy of the filtered

reference and test images in the frequency domain. All of

these estimators account for distortions to low-frequency

content, and the loss of low-frequency content significantly

decreases the energy of the distorted image relative to the re-

ference image. Consequently, each of these estimators under-

estimate the perceived utility scores for TSþ HPF distorted

images.

Both SSIM and MS-SSIM incorporate an analysis of low-

frequency content via a comparison of the spatially local mean

pixel values of the reference and test images. In addition to

MS-SSIM’s local mean comparison of the reference and test

images, MS-SSIM compares the variance of spatially local

pixel values of the reference and test images across multiple

image scales. Thus, both MS-SSIM’s mean and variance com-

parisons analyze the low-frequency content of the reference

and test images, whereas only SSIM’s mean comparison anal-

yzes the low-frequency content of the reference and test

images.

SSIM and MS-SSIM were modified by removing the com-

parisons of the reference and test images that quantify

disruptions to low-frequency content, and both modified esti-

mators exhibited better performance as utility estimators than

their original implementations across all five distortion types.

The linear correlation and RMSE between SSIM’s estimates

and perceived utility significantly improve to 0.92 and 15, re-

spectively, when SSIM operates without the local mean com-

parison (i.e., when SSIM ignores disruptions to low-frequency

content). The linear correlation and RMSE between MS-

SSIM’s estimates and perceived utility modestly improve to

0.73 and 25, respectively, when MS-SSIM operates without

both the local mean and variance comparisons across multiple

image scales. Even when the local mean and variance compar-

isons have been removed, MS-SSIM’s multiscale analysis ne-

cessarily quantifies distortions to low-frequency content and

explains its modest performance improvement. However, the

significant improvement demonstrated with SSIM when the

local mean comparisons are removed relative to the original

implementation of SSIM suggests that an analysis of high-

frequency content provides reliable estimates of perceived

utility [101].

B. Results: Objective Estimates of Perceived Quality
A quality estimator should produce objective estimates that

are both strongly correlated with perceived quality and accu-

rately estimate perceived quality. All test images (n ¼ 243)

were used to evaluate an estimator’s performance as a quality

estimator because a reliable quality estimator should accu-

rately determine the quality of unrecognizable distorted

images, even though they have “bad” quality. Table 4 sum-

marizes the statistics for each objective estimator when anal-

yzing the linearly mapped objective estimates with respect to

the perceived quality scores. The difference between VIF*’s

estimates and the perceived quality scores exhibited the smal-

lest variance (i.e., smallest RMSE), so the p value for the BFL

test is reported when the residuals of estimates from each

objective estimator when used as quality estimates were com-

pared with that of VIF*.

The following reports the key results, which appear in bold,

followed by a summary of the results for subsets of objective

estimators that exhibit similar performance. Statistical justifi-

cations, general interpretations, and specific remarks about

the objective estimators are reported.

Estimators that are sensitive to distortions to low-

frequency content perform poorly as quality estimators

over a variety of distortions. The spectral slope, signal fi-

delity measures, and objective estimators based on HVS prop-

erties, SSIM, and MS-SSIM perform poorly as quality

estimators over a variety of distortions. Estimates from these

estimators, weakly correlate (ρ ∈ ½0:52; 0:87�, τ ∈ ½0:33; 0:70�,
r ∈ ½0:40; 0:88�) with and/or inaccurately estimate

(RMSE ∈ ½0:50; 1:1�, OR ∈ ½0:51; 0:89�, and RP0:05 ∈ ½1:6; 2:6�)
the perceived quality scores. A difference of 1 in perceived

quality corresponds to a different quality category (i.e., “fair”

versus “good”).

The TSþ HPF distortions are largely responsible for the

poor performance of these estimators as quality estimators.

In fact, when each estimator was analyzed with the TSþ
HPF distortions removed from the test image set, the inter-

pretation of the performance of these estimators changes:

the correlation and accuracy statistics of these estimators im-

proved. Apart from the spectral slope and CrmsðEÞ, these ob-

jective estimators previously have been evaluated as quality

estimators on other image databases that do not include dis-

tortions that deliberately disrupt the low-frequency content

without severely disrupting the high-frequency content

[74,102,103]. The performance of these estimators on the cur-

rent database of test images, which includes distortions that

disrupt low-frequency content without severely disrupting

high-frequency content (i.e., the TSþ HPF distortions for

small γ), demonstrates that these estimators were designed
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and tested under the assumption that either (1) distortions

will not compromise the integrity of the low-frequency con-

tent, (2) distortions to low-frequency content will coincide

with severe distortions to high-frequency content, or (3) dis-

tortions to low-frequency content have a negligible impact on

quality. However, the current results indicate that these differ-

ent assumptions do not reflect the general image characteris-

tics that influence judgments of perceived quality. Namely, the

loss of low-frequency content without severely disrupting

high-frequency content coincides with a significant decrease

in quality.

The spectral slope, as discussed in Subsection 6.A.2, quan-

tifies the shape of the distorted image’s frequency response,

which varies for the different distortions. However, the corre-

lation between the spectral slope and the perceived quality

scores is significantly lower than the correlation between

the spectral slope and the perceived utility scores. Specifi-

cally, the spectral slope accounts for 53% (i.e., 100r2%) of

the variation of utility, but only 34% of the variation in quality.

An analysis of the relationship between the spectral slope and

the perceived quality scores revealed that TSþ HPF distorted

images have spectral slopes similar to TS and J2K þ DCQ dis-

torted images, but TSþ HPF distorted images have signifi-

cantly lower perceived quality. Thus, the spectral slope is

an unreliable indicator of quality over a variety of distortions.

The signal fidelity measures as well as the estimators based

on HVS properties, excluding C4, produce estimates that are a

function of the energy of the reference and test images and

account for distortions to low-frequency content, which, ac-

cording to the subjective experiments, significantly affects

quality. However, these estimators are very sensitive to distor-

tions to low-frequency content and consequently underesti-

mate the perceived quality scores of TSþ HPF distorted

images.

An analysis of the relationship between the estimates from

C4, SSIM, and MS-SSIM and the perceived quality scores re-

vealed that their accuracy decreases as quality decreases,

which indicates that their analyses of the reference and test

images degenerate as quality decreases. However, the Spear-

man rank correlation (ρ > 0:70) between perceived quality

and the estimates from these three estimators suggest that

they each exhibit a nonlinear, monotonic relationship with

the perceived quality scores. Fitting the estimates from these

estimators to the perceived quality scores with a monotonic,

nonlinear mapping significantly changes the interpretation of

their performance as quality estimators: each significantly im-

proves as a quality estimator. Each of these estimators analyze

distortions to low-frequency content, as discussed in Subsec-

tion 6.A.2, and the subjective experiments demonstrate that

distortions to low-frequency content affect perceived quality.

However, even with a nonlinear mapping these estimators re-

main sensitive to distortions to low-frequency content and still

underestimate the perceived quality of TSþ HPF distorted

images.

Estimators that analyze all frequency content without

overemphasizing the significance of distortions to low-

frequency content accurately estimate perceived quality

scores over a variety of distortions. VIF* produces more

reliable estimates of perceived quality scores than VIF over

a variety of distortions. Estimates from VIF strongly correlate

(ρ > 0:92, τ > 0:77, r > 0:95) with and accurately estimate

(RMSE < 0:35, OR < 0:57, RP0:05 ∈ ½0:83; 1:1�) perceived qual-

ity scores, and most of VIF’s correlation and accuracy statis-

tics are statistically equivalent to those of VIF*.

VIF distinguishes smaller differences among distorted

images with high perceived quality more reliably than VIF*,

which results in smaller resolving powers for VIF because

VIF is more sensitive to disruptions to high-frequency content

than VIF*. Modest disruptions to high-frequency content (i.e.,

Table 4. Statistics Summarizing the Performance of Objective Estimators as Quality Estimators
a

Correlation Measures Accuracy Measures

Estimator ρ τ r RMSE OR RP0:05 BFLp Skew/Kurt

Spectral slope β 0.518 0.331 0.585 0.895 0.835 1.902 <10−3 −0:27=2:1

Signal fidelity measures PSNR 0.598 0.477 0.656 0.833 0.506 1.949 <10−3 −0:81=2:8
CrmsðEÞ 0.627 0.480 0.401 1.011 0.881 2.413 <10−3 −0:61=2:0

Estimators based on HVS properties WSNR 0.582 0.443 0.648 0.841 0.823 2.052 <10−3 −0:90=2:8
NQM 0.600 0.461 0.666 0.823 0.831 1.911 <10−3 −0:97=3:0
VSNR 0.607 0.466 0.738 0.745 0.794 1.760 <10−3 −1:1=3:6
C4 0.822 0.636 0.832 0.615 0.808 1.600 <10−3 −0:47=2:9

Estimators based on hypothesized HVS objectives SSIM 0.870 0.696 0.883 0.519 0.700 2.517 <10−3 −0:12=2:6
MS-SSIM 0.713 0.561 0.603 0.850 0.864 1.918 <10−3 −0:38=1:9

VIF 0.929 0.774 0.950 0.345 0.531 0.828 0.13 0:17=5:4
VIF* 0.938 0.799 0.959 0.313 0.568 1.056 1 0:12=3:0

Proposed utility estimators NICESobel 0.932 0.780 0.885 0.515 0.786 2.076 <10−3 −0:64=2:9
NICECanny 0.914 0.746 0.934 0.394 0.568 1.020 0.35 −0:29=3:5
MS-NICE1 0.935 0.784 0.875 0.535 0.778 2.256 <10−3 −0:77=3:1
MS-NICE2 0.937 0.789 0.860 0.563 0.765 2.405 <10−3 −0:79=3:1
MS-NICE3 0.940 0.796 0.855 0.572 0.782 2.291 <10−3 −0:73=3:0
MS-NICE4 0.946 0.810 0.855 0.572 0.757 2.254 <10−3 −0:69=3:0

a
The Pearson (linear) correlation coefficient r, the Spearman rank correlation coefficient ρ, the Kendall rank correlation τ, the RMSE, the OR, and the resolving

power RP0:05 are reported when the estimates are compared with the perceived quality scores for all test images (n ¼ 243). Italicized p values corresponding to the BFL
test (BFLp) indicate that the residual variance is statistically equivalent to that of VIF*. The skewness and kurtosis of the residuals are italicized when the JB test
indicated that the residuals belong to a Gaussian distribution (see Section 6). Except for the skewness and kurtosis statistics, optimal values appear in bold with
statistically equivalent values italicized.
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textures) affect the perceived quality of high-quality yet visibly

distorted images. However, distortions to low-frequency con-

tent have a greater affect on perceived quality than distortions

to high-frequency components (see Section 4), and VIF* is

more sensitive to low-frequency distortions than VIF. Conse-

quently, VIF* estimates the perceived quality scores of TSþ
HPF distortions more accurately than VIF, which results in the

slightly smaller, although not statistically significant, RMSE

observed for VIF* as compared to VIF. However, VIF overes-

timates the perceived quality scores of TSþ HPF distorted

images because disruptions to low-frequency content do

not affect estimates from VIF unless they accompany severe

disruptions to high-frequency content. VIF*, however, anal-

yzes the low-frequency content. In short, VIF performs well

as a quality estimator for applications that do not encounter

distortions such as the TSþ HPF distortions that disrupt low-

frequency content without severely disrupting high-frequency

content. However, VIF* performs well as a quality estimator

across a variety of distortions because its modifications to VIF

normalize the individual channel measurements based on the

energy distribution of the reference image across image scales

(see Section 8).

Estimators that measure degradations to image con-

tours perform poorly as quality estimators over a variety

of distortions. NICESobel and the various implementations of

MS-NICE produce unreliable estimates of perceived quality

across a variety of distortions. Estimates from these estima-

tors strongly correlate (ρ ∈ ½0:91; 0:95�, τ ∈ ½0:74; 0:81�,
r ∈ ½0:85; 0:94�) with and estimate with moderate accuracy

(RMSE ∈ ½0:39; 0:58�, OR ∈ ½0:56; 0:79�, RP0:05 ∈ ½1:0; 2:5�)
the perceived quality scores.

A nonlinear relationship between the perceived quality

scores and the estimates from both NICESobel and MS-

NICES≤4 was observed and quantified by their strong Spear-

man correlation statistics (ρ > 0:93). Further analysis of this

nonlinear relationship revealed that small degradations to

contours, as measured by both NICESobel and MS-NICES≤4,

correspond to large changes in the perceived quality scores.

In other words, distorted images with high perceived quality

scores primarily exhibit visible degradations to textures, and

both NICESobel and MS-NICES≤4 do not measure degradations

to image textures, which influence perceived quality. Further-

more, distorted images with very low perceived quality exhibit

large changes in contours, as measured by NICESobel and

MS-NICES≤4, but exhibit very little change in perceived quality.

Thus, heavily distorted images (i.e., with very low perceived

quality) exhibit strong variations in signal characteristics that

correspond to very small changes in perceived quality. This

follows if one considers again a reference/distortion sequence

beginning with an unrecognizable image and evolving toward

a useful, medium-quality image. The dramatic perceptual

changes in subsequent images near the RT will coincide with

significant variations in the underlying signal characteristics,

especially the emergence of contours, as detected by

NICESobel and MS-NICES≤4. Despite these dramatic perceptual

changes, the perceived quality scores of these images are still

very low relative to the undistorted reference images.

For NICESobel and MS-NICES≤4, a monotonic, nonlinear

mapping increases the linear correlation between their objec-

tive estimates and the perceived quality scores to at least 0.94

and is statistically larger for MS-NICE4 (r ¼ 0:97). The non-

linear mapping also reduces the RMSE to less than 0.41

and is smallest for MS-NICE4 (RMSE ¼ 0:28). The fitted non-

linearity expands small differences among estimates from

NICESobel and MS-NICES≤4 for distorted images with high per-

ceived quality and compresses large differences among esti-

mates from NICESobel and MS-NICES≤4 for distorted images

with low perceived quality. Among the single- and multiscale

implementations of NICE, MS-NICE4 exhibits the best per-

formance as quality estimator when fitted with a nonlinear

mapping because, as discussed in Subsection 6.A.2, imple-

mentations of MS-NICES for larger S are more sensitive to

low-frequency distortions than the other versions (i.e., NICE

and MS-NICES≤2), which analyze distortions to high-frequency

content.

Although the monotonic, nonlinear mapping changes the

interpretation of the performance of NICESobel and MS-

NICES≤4 as quality estimators, the parameters of this nonli-

nearity may vary for distortions not included in the current

collection of test images. The current results cannot defini-

tively establish that using both NICESobel andMS-NICES≤4 with

a tuned nonlinear mapping provides reliable and accurate es-

timates of perceived quality over a variety of distortion types.

NICECanny performs poorly as a quality estimator for med-

ium-quality distorted images. Over the entire collection of dis-

torted images, estimates from NICECanny exhibit correlation

and accuracy statistics as a quality estimator that are statisti-

cally equivalent to those of VIF* when considering the entire

collection of distorted images. However, the performance of

NICECanny as a quality estimator is not consistent for different

regions of quality. Specifically, estimates from NICECanny ex-

hibit statistically weaker linear correlation with the perceived

quality scores (r ¼ 0:62) than VIF* (r ¼ 0:82) for distorted

images with medium quality (i.e., perceived quality scores be-

tween ½2:25; 3:75�). Furthermore, the RMSE between esti-

mates using both VIF* and NICECanny and perceived quality

scores are 0.28 and 0.42, respectively, for medium-quality dis-

torted images, and the variance of the residuals are statisti-

cally smaller for VIF* than NICECanny. In both the low- and

high-quality regions, the performance statistics for VIF* and

NICECanny are statistically equivalent.

The relationship between NICECanny and the perceived

quality scores is consistent with the relationship observed be-

tween perceived quality scores and perceived utility scores:

perceived utility is unreliably predicted from perceived quality

for medium-quality distorted images. Likewise, NICECanny es-

timates the perceived quality less reliably for distorted images

with medium quality. TSþ HPF and TS distorted images with

equal γ formed from the same reference image have very si-

milar values for NICECanny, which is consistent with their

equal perceived utility scores yet different perceived quality

scores. NICECanny overestimates the quality of TSþ HPF dis-

torted images because it does not analyze distortions to low-

frequency content, whereas VIF* does and most accurately

estimates the perceived quality of TSþ HPF distorted images.

C. Results: Summary
When estimating perceived utility scores, objective estimators

that analyze the high-frequency content of the reference and

test images outperform those estimators that also analyze the

low-frequency content of the reference and test images. Spe-

cifically, VIF, NICESobel, NICECanny, and MS-NICES≤2 produce
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the most reliable estimates of perceived utility scores. The in-

terpretation of both SSIM and MS-SSIM as utility estimators

changes when they operate without the components that anal-

yze low-frequency content (i.e., the mean component and, in

the case of MS-SSIM, also the variance component): both es-

timators provide more accurate estimates of perceived utility

than their original implementations.

NICECanny produces the most accurate estimates of the per-

ceived utility scores when the skier and caged birds images

were discarded. These images reveal two limitations of

NICECanny: (1) detection of less visible contours (e.g., those

in snow region in the skier image) and (2) separate analysis

of relevant versus irrelevant contours (e.g., the birds versus

the bars of the cage in the caged birds image). Despite these

limitations, NICECanny demonstrates that perceived utility

scores can be reliably estimated from an analysis of image

contour degradation.

When estimating perceived quality scores, estimates from

VIF* most accurately estimate the perceived quality scores.

Unlike many of the other objective estimators, VIF* analyzes

both high- and low-frequency content of the reference and test

images without overemphasizing disruptions to low-frequency

content. Several other estimators grossly underestimate the

perceived quality scores of TSþ HPF distorted images be-

cause these estimators analyze low-frequency content but

overemphasize the effect of distortions to low-frequency con-

tent. VIF* weights the relative influence of distortions to low-

and high-frequency content on its estimates in a manner that

yields accurate estimates of perceived quality.

7. DISCUSSION

The subjective experiments establish that perceived quality is

not a suitable proxy for perceived utility. An evaluation of ob-

jective estimators as both utility and quality estimators re-

vealed that an analysis of degradations to high-frequency

content and, specifically, image contours produces accurate

estimates of perceived utility, whereas a properly weighted

analysis of degradations across all frequency content pro-

duces accurate estimates of perceived quality. This section

discusses (1) the limitation of the perceived utility scores,

(2) the image characteristics revealed by objective estimators

that impact perceived utility and perceived quality, and (3) the

relationship between object recognition, perceived utility, and

the analysis conducted by NICE [104].

A. Limitations of Perceived Utility Scores
Relative perceived utility scores of distorted images were ob-

tained using a paired comparison methodology that has two

limitations. The subjective responses lack information about

the specific content actually recognized by the observers

viewing the distorted images because the test method only

collected binary responses (i.e., a choice) from observers

in response to the query, “Which image tells you more about

the content?” This precludes an analysis of the data based on

the actual criteria that led observers to their responses.

The second limitation is that observers may have used a

secondary factor such as perceived quality to choose an image

when both images appeared equal with regard to their per-

ceived usefulness. For example, for the airplane, backhoe,

and caged birds images, the TS distorted images had higher

perceived utility than the TSþ HPF distorted image with

the same γ. If observers consistently rely on a secondary fac-

tor to choose an image, then the perceived utility scores will

be intermixed with these secondary factors. Because TS dis-

torted images have greater perceived quality than TSþ HPF

distorted images, the perceived quality is the most likely sec-

ondary factor to influence an observer’s decision.

Despite the limitations with the current method used to ob-

tain relative perceived utility scores, the results still illustrate

a distinction between perceived quality and perceived utility,

and any improvements to the test methodology used to obtain

relative perceived utility scores are expected to reveal greater

differences between perceived quality and perceived utility.

B. Objective Estimators Reveal Image Characteristics
That Impact Utility and Quality
Among the objective estimators investigated, VIF and NICE

performed best as utility estimators, and VIF* performed best

as a quality estimator. First, the signal analyses conducted by

VIF* and VIF are analyzed and compared, since the distinc-

tions between VIF* and VIF reiterate the conclusion drawn

from the subjective experiments that low-frequency content

affect perceived utility but not quality. Second, the signal anal-

yses conducted by VIF and NICE are analyzed and compared,

since VIF and NICE illustrate different uses of high-frequency

content to estimate utility. Last, the impact that an edge

detector used with NICE has on its performance as a utility

estimator for other distortions is discussed.

1. VIF Versus VIF*: Low-Frequency Content
Affects Quality
VIF and VIF* analyze the reference and test images using the

steerable pyramid decomposition [88], which models the well-

accepted multichannel characterization of the analysis con-

ducted by the HVS in the primary visual cortex [61] (a

mathematical description of VIF and VIF* is presented in

Appendix A). VIF and VIF* compute and linearly pool spatially

local SNRs within each channel, which produces a channel

measurement that quantifies the fidelity of the test image with

respect to the reference image within that channel. The chan-

nel measurement values decrease as the fidelity of the test im-

age with respect to the reference image within that channel

decreases (i.e., the test image contains more distortion).

The sum of the channel measurements from the same image

scale yield image scale measurements that quantify the fidelity

of the test image with respect to the reference image within

that image scale. Because the steerable pyramid decomposi-

tion represents a coarser image scale with half as many coef-

ficients as the next finest image scale (i.e., due to decimation),

the finer image scale measurements are larger than the coar-

ser image scale measurements. VIF linearly pools image scale

measurements to produce an objective estimate for the test

image, and image scale measurements at finer image scales

dominate VIF’s objective estimate. In contrast, VIF* nor-

malizes each image scale measurement by the number of coef-

ficients in that image scale, which balances the measurements

from different image scale measurements, before linearly

pooling. Natural images exhibit a 1=f α power spectra [56],

and, consequently, the normalized image scale measurements

at coarser image scales dominate VIF*’s objective estimate. As

a result, VIF* is more sensitive to disruptions to coarser image

scale content than finer image scale content.
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Images from the airplane/J2K þ DCQ, airplane/TS, and air-

plane/TSþ HPF sequences that have statistically equivalent

perceived utility are evaluated using VIF and VIF* to illustrate

the differences between VIF and VIF*. The image from the air-

plane/TSþ HPF sequence has the same parameter γ as the im-

age from the airplane/TS sequence and statistically has the

smallest perceived quality. Figure 10 shows the image scale

measurements from VIF and the normalized image scale mea-

surements from VIF* for these three images. The image scale

measurements from VIF are much larger at finer image scales

(i.e., high spatial frequencies) than coarser image scales (i.e.,

low spatial frequencies) and exhibit very little variation

among these four distorted images across all image scales.

Thus, for these images, VIF’s pooled image scale measure-

ments reflect their similarity in perceived utility but not their

differences in perceived quality. In contrast, the normalized

image scale measurements from VIF* are larger at coarser

scales than finer scales and indicate a difference between

the airplane/TSþ HPF image and the other distorted image at

the coarsest image scale. Thus, for these images, VIF*’s po-

oled image scale measurements reflect their differences in

perceived quality and not their similarity in perceived utility.

The analyses conducted by VIF* and VIF are consistent

with the subjective experiments. The absence of low-

frequency content (i.e., the TSþ HPF distorted images versus

TS distorted images with the same γ) significantly and consis-

tently affects quality but has less consistent effects on the uti-

lity. Since VIF and the various implementations of NICE

outperform the other objective estimators as utility estima-

tors, the fidelity of low-frequency content does not strongly

influence utility in this study. The low-frequency content re-

presents the shading in grayscale natural images, which forms

the appearance of naturalness due to interactions between ob-

ject surfaces and lighting. Natural images with undisrupted

shading are visually consistent with our daily experiences

with natural environments. Disruptions to an image’s shading

decrease its perceived quality, which the objective estimates

produced by VIF*, not VIF, accurately reflect due to normal-

izing image scale measurements before pooling across image

scales.

2. Comparing VIF and NICE: Estimates of Image
Contour Degradation
Fine-scale signal components describe natural image details

corresponding to both object boundaries and textures, and

the energy of the fine-scale signal components coincides with

the visibility of these details. VIF and NICE, both of which per-

form best as utility estimators, specifically analyze the energy

of fine-scale signal components of the reference and test

images to produce an objective estimate of the test image’s

perceived utility. Both objective estimators [105] filter the

images using two channels that separate the fine-scale signal

components into horizontally and vertically oriented spatial

frequency components. VIF and NICE illustrate two possible

uses of the fine-scale signal components to estimate perceived

utility.

VIF subjects the high-frequency channel responses for the

reference and test images to a normalization mechanism func-

tionally similar to divisive normalization (i.e., a model of gain

control) that normalizes channel responses to a particular

range for subsequent processing stages [23,106,107]. Divisive

normalization models the relationship between the nth
neuron’s response yn to its input tn according to

yn ¼ tpn
bq þ P

m∈Mn

wmt
q
m
; ð6Þ

where b is a positive saturation constant, Mn is a set of in-

dices specifying local spatial, frequency, and orientation neu-

ron responses to input tn, the wm are weights applied to those

local responses before pooling, and the exponents p and q are
positive values that model a power-law relationship between a

neuron’s input and output.

VIF approximates the divisive normalization model by nor-

malizing the channel responses based on the energy [i.e., in

Eq. (6) set b ¼ 0 and p ¼ q ¼ 2] of their spatially local channel

responses. That is, VIF performs spatially local variance nor-

malization. Image contours generally elicit larger channel

responses than textures, and following a spatially local

variance normalization, the channel responses to both con-

tours and textures are normalized to the same range. As a

Fig. 10. VIF is more sensitive to distortions at finer image scales (i.e., high spatial frequencies) over those at coarser image scales (i.e., low spatial
frequencies), whereas VIF* is more sensitive to disruptions to coarser scale content than finer scale content. Figures 10(a) and 10(b) respectively
show the image scale measurements computed by VIF and VIF* for the airplane image with J2K þ DCQ (Q ¼ 3:8, U ¼ 77), TS (Q ¼ 4:0, U ¼ 76),
and TSþHPF (Q ¼ 3:2, U ¼ 69) distortions. These images have statistically equivalent perceived utility, but the perceived quality of the TSþHPF
distorted image is statistically smaller than the other two distorted images. The pooled image scale measurements for VIF reflect their similarity in
perceived utility but not their differences in perceived quality. The pooled image scale measurements for VIF* reflect their differences in perceived
quality not their similarity in perceived utility.
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consequence of this normalization, estimates from VIF reflect

any disruption to the high-frequency channel responses due to

the distortions, so disruptions to both image contours and

image textures affect VIF’s objective estimates.

In contrast with VIF, NICE detects the edges in the refer-

ence and test images and can be viewed as performing spa-

tially global variance normalization, collinear facilitation [29],

and hard thresholding. NICE and MS-NICE perform global

variance normalization by normalizing the channel responses

based on the average channel response energy [108]. Global

variance normalization reduces the magnitude of all the chan-

nel responses, so channel responses to image contours remain

larger than those to textures.

Collinear facilitation describes the perceptual facilitation

and suppression of channel responses due to interactions

(i.e., connected cells) among spatially local and similarly or-

iented channel responses and suggests that mechanisms med-

iate the perception of smooth curves from line segments

[109,110]. In particular, studies of human observers report that

the detection contrast of a target Gabor patch spatially

flanked by two high-contrast Gabor patches is highest (i.e.,

the target is difficult to detect) when the flanking patches

are spatially very close to and have the same orientation as the

target, whereas the target detection contrast is lowest (i.e.,

the target is easy to detect) when the spatial distance between

the flanking patches and the target is large and oriented ortho-

gonal to the target patch [109]. Furthermore, the target detec-

tion contrast is lowest when the global orientation of the line

formed by the three patches coincided with the individual

patch orientations [110]. All of the edge detectors used for

NICE crudely perform collinear facilitation via a thinning

operation that retains local maxima.

Hard thresholding removes low-energy channel responses,

which largely coincide with textures, and is hypothesized to

represent a decision process performed at a later stage of the

HVS corresponding to object perception. Disruptions to image

textures have a negligible impact on NICE’s objective score,

since NICE reflects disruptions to image contours due to the

distortion process.

Because NICE primarily measures degradations to image

contours, we analyzed estimates of VIF when decomposed

into separate fidelity measurements for contours and textures.

Specifically, VIF was decomposed as

VIF ≈ VIFcontour þ VIFtexture; ð7Þ

where VIFcontour and VIFtexture respectively represent VIF eval-

uated on contour and texture components of an image. Esti-

mates from both VIFcontour and VIFtexture were evaluated in

terms of their performance as utility estimators. The correla-

tion statistics for VIFcontour increase relative to those for VIF,

whereas all of the correlation statistics for VIFtexture are sta-

tistically smaller than those of VIF. The RMSE of VIFcontour

is 10.7, but the residual variance is statistically equivalent

to that of VIF (RMSE ¼ 12:4). However, the RMSE for

VIFtexture is 18.3 and is statistically larger than that of VIF.

In short, VIFcontour accurately estimates the perceived utility

scores as a function of the fidelity of the contour information.

In summary, VIF analyzes disruptions to both contours and

textures while excluding disruptions to low-frequency con-

tent, whereas NICE primarily analyzes disruptions to contours

to estimate utility. The performance of VIFcontour as a utility

estimator is parallels the performance of NICE, which corro-

borates the hypothesis that contour degradations coincide

with decreased perceived utility.

3. Edge Detectors Impact the Performance of NICE
NICE operates in conjunction with an edge detector and was

assessed using three different edge detectors. As a utility es-

timator, NICE operating with the Canny edge detector (i.e.,

NICECanny) and excluding the skier and caged birds distorted

images outperformed NICE operating with the other edge de-

tectors. The performance of NICECanny as a utility estimator

was justified in terms of the agreement of its identified edges

with object boundaries identified by humans: compared with

human ground truth, the Canny edge detector ranked highest

among the three edge detectors (see Subsection 6.A.2). De-

spite the performance of NICECanny as a utility estimator,

the current database does not include distorted artifacts that

are uncorrelated with the reference image (e.g., independent,

additive white Gaussian noise), and the Canny edge detector

frequently identifies false contours as a result of these distor-

tion artifacts.

Correlated distortions influence a human’s perception of

the distortion level more than uncorrelated distortions (i.e.,

independent, additive white Gaussian noise) [111,112]. Thus,

uncorrelated distortions are expected to have a smaller influ-

ence on perceived utility than correlated distortions: human

observers can “ignore”moderate levels of uncorrelated distor-

tions. NICE estimates perceived utility as a function of the er-

rors between the reference and test edge maps produced by

an edge detector: an edge detected in the reference image but

absent in the test image produces an error, and an edge absent

in the reference image but detected in the test image produces

an error. With NICE, more errors imply lower utility, and per-

ceived utility would be underestimated when the errors are

largely due to false contours that humans would “ignore.”

More advanced edge detectors assess various types of edge

cues, including pixel value discontinuities and texture bound-

aries [113,114], but generally conduct a more complex analy-

sis of an image relative to the edge detectors tested with NICE.

The distortion types used in the experiments were spatially

correlated with the reference image, so the current collection

of test images cannot be used to evaluate the potential vulner-

abilities of the contour detection techniques used by NICE.

However, the current results based on correlated distortions

demonstrate the feasibility of conducting an image contour

comparison to accurately estimate perceived utility. NICE op-

erating with robust edge detectors that do not detect false

contours due to uncorrelated noise sources are expected to

reliably estimate perceived utility scores for such distortions.

C. Object Recognition, Perceived Utility, and NICE
A perceived utility score quantifies the amount of information

a distorted image conveys to a human, where the information

of a scene included the objects and activities as well as their

respective details. We hypothesize that perceived utility is

linked to the level of detail with which objects and activities

in the scene are recognized.

Objects in the natural world can be described with varying

levels of detail, and object recognition studies using images

containing one object have examined the effects of simple im-

age filtering on the level of detail accurately recognized by a
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human. Such object recognition studies use the taxonomy of

objects proposed by Rosch to distinguish these levels of de-

tail, which Rosch named “levels of abstraction” [115]. As an

example, a snare drum can be identified as a musical instru-

ment, a drum, or a snare drum, where Rosch’s taxonomy re-

spectively assigns these descriptions to the superordinate,

basic, and subordinate levels of abstraction. The object recog-

nition studies demonstrate that humans can reliably recognize

an object at the basic level using only low-frequency content,

whereas subordinate-level recognition requires more high-

frequency content [116,117]. Thus, humans only perceive an

object’s basic-level details but not its subordinate-level details

in a low-pass filtered distorted image, and this result is con-

sistent with low-pass filtering leading to a decrease in per-

ceived utility as subordinate-level object details disappear.

The object recognition studies also concluded that humans

can reliably recognize an object at both the basic and subor-

dinate levels using only high-frequency content [116,117].

Thus, a high-pass filtered distorted image does not affect

the level of detail a human perceives about the object, and

this result is consistent with high-pass filtering (i.e., TS versus

TSþ HPF distorted images with the same γ) often negligibly

affecting perceived utility.

Another recent perceptual study of object recognition used

natural images containing multiple objects of varying size and

demonstrated that the number and accuracy with which hu-

mans recognized objects in distorted images decreases as the

level of blur increases [118]. Furthermore, the size of the

objects accurately recognized decreases as the level of blur

increases (i.e., disrupting high-frequency content compro-

mises the recognition of smaller objects). These results are

consistent with the criteria proposed by Johnson, which

was used to design sensors and display devices [8,119]. The

Johnson criteria relates the level of object discrimination to

the detectability of a bar pattern of a given spatial frequency.

For object recognition, the Johnson criteria states that a hu-

man must detect a bar grating with four cycles across the ob-

ject’s minimum dimension [120]. Increasing the number of

cycles in the bar grating across the object’s minimum dimen-

sion allows the object to be more accurately identified. Our

perceived utility scores are consistent with this evidence be-

cause perceived utility decreases as high-frequency content is

removed or distorted.

The object recognition studies demonstrate that loss of

high-frequency content but not low-frequency content impairs

object recognition performance. This evidence is consistent

with our subjective experiments and suggest that our per-

ceived utility scores, rather than perceived quality scores, es-

timate the amount of information recognized by a human.

Such studies and our perceived utility scores provide little gui-

dance toward understanding how information is recognized

by a human, and in particular, which underlying image

characteristics impact usefulness. However, those objective

estimators (i.e., VIF, NICE, and MS-NICE) that accurately es-

timate perceived utility were dismantled and analyzed to un-

derstand those image characteristics that impact usefulness.

In particular, NICE and MS-NICE estimate utility based on a

measurement of the degradation to image contours in a dis-

torted image with respect to a reference image.

Contours form shapes, and object shape is hypothesized to

be a primary cue for object recognition by the HVS [121]. Hu-

mans reliably recognize objects from line drawings [80], which

provide only object shape cues, and even from degraded line

drawings [81,122]. Line drawings abstractly represent object

shapes using contours, and humans quickly identify contours

formed by Gabor patches aligned along a curved path placed

in an image composed of an array of randomly oriented Gabor

patches [123]. The ability of humans to recognize objects from

abstract contour representations along with their reported

ease of detecting contours among clutter support theories

of shape-based object recognition.

Another object recognition study collected functional mag-

netic resonance imaging (fMRI) data for various regions of the

visual cortex to understand how the HVS performs object re-

cognition. The fMRI data, which measures variations in blood

flow, was collected from both the striate (i.e., primary) and

extrastriate cortex when humans viewed images that con-

tained only contour regions, texture regions, or both (i.e.,

the full image) [30]. In that study, the extrastriate cortex re-

sponded greatest when humans viewed images that contain

only contour regions. The increased activation due to contour

information corroborates theories that object recognition is

largely driven by contour information (i.e., shape perception)

in natural images.

In summary, NICE performs very well as a utility estimator

by extracting, comparing, and quantifying the degradation to

image contour information in a distorted image with respect

to a reference image. Together, the theories that contour in-

formation mediates object recognition and the performance of

NICE as a utility estimator demonstrate that NICE is a viable

signal analysis tool that estimates the usefulness of distorted

natural images.

8. CONCLUSIONS

Natural images from imaging systems supply information that

facilitate human observers performing various tasks. This pa-

per examined human performance when performing a broad

task with natural images: reporting the content of a distorted

image. Novel experiments were conducted to measure the

usefulness of distorted natural images in terms of this task.

In addition, experiments were conducted to measure the

perceived quality of these same distorted natural images. Re-

sults from both subjective experiments were compared and

revealed the perceived quality does not imply an image’s

perceived utility. In particular, a distortion that removes

low-frequency content from an image demonstrated that per-

ceived utility is largely based on the fidelity of high-frequency

content and is less affected by distortions to low-frequency

content, whereas distortions to any frequency content affects

perceived quality. The observed relationship between utility

and quality implies that accurate objective quality (utility) es-

timators will not accurately estimate perceived utility (qual-

ity) for a broad class of distortions.

Several objective estimators, mostly designed to estimate

perceived quality with one proposed by the authors to esti-

mate perceived utility, were assessed in terms of their perfor-

mance as utility and quality estimators. Two estimators were

shown to accurately estimate utility. One is the VIF criterion,

which is customarily used as a quality estimator. A modifica-

tion to VIF, denoted VIF*, was proposed that outperforms VIF

as a quality estimator on the current database of distorted

images. The signal analyses conducted by VIF and VIF* are
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consistent with the observations from the subjective experi-

ments. Specifically, VIF primarily analyzes disruptions to

high-frequency content and accurately estimates perceived

utility but not perceived quality, whereas VIF* exhibits in-

creased sensitivity to low-frequency distortions relative to

VIF and analyzes disruptions to all frequency content and ac-

curately estimates perceived quality but not perceived utility.

The NICE utility estimator was also shown to accurately

estimate utility. NICE estimates utility as a function of both

lost and introduced contour information in a distorted image

when compared with a reference image. In contrast with VIF,

NICE abstractly represents the reference and test images as

contours and compares these contours to estimate utility.

NICE was shown to be a viable signal analysis tool to estimate

the usefulness of a distorted natural image. This result sup-

ports hypotheses about the importance of contour informa-

tion to the HVS for object perception.

APPENDIX A

The VIF criterion is an extension of the information fidelity

criterion (IFC) that incorporates a simple HVS model

[23,107]. VIF*, a modified version of VIF, adjusts the relative

importance of fidelity measurements computed across spatial

frequencies to the overall objective estimate by normalizing

VIF’s channel measurements before linearly pooling across

image scales. VIF* provides accurate estimates of perceived

quality for a broader set of distortions than VIF. The calcula-

tion of VIF* is specified in terms of IFC and followed by a de-

tailed mathematical description of VIF in terms of IFC.

1. VIF* Specification
VIF extends IFC by modeling the HVS as an additive Gaussian

noise source that was conjectured by VIF’s authors to model

aspects of low-level HVS processing [23]. VIF’s assessment of

a test image is based on spatially local SNR measurements,

computed at multiple image scales, of both the reference

and test images contaminated with the modeled, low-level

HVS noise. VIF compares wavelet coefficients of the test im-

age to those of reference images.

VIF emphasizes fidelity measurements of finer image scales

(i.e., higher spatial frequencies) over those of coarser image

scales (i.e., lower spatial frequencies). Thus, VIF is invariant

to disruptions to low-frequency content (see Fig. 10), which is

functionally due to the variation in the number of coefficients

blocks Bk for channels at different image scales. Channels cor-

responding to finer image scales have more wavelet coeffi-

cients than channels corresponding to coarser image scales

due to the use of a decimated wavelet transform; for a fixed

block size P, the number of coefficient blocks is smaller for

channels corresponding to coarser image scales. The pro-

posed modifications of VIF, denoted VIF*, normalizes the

channel measurements by the number of blocks Bk for that

channel.

Let the elements of the length Nk vector C
k denotes the wa-

velet coefficients of the kth channel of the reference image

[124]. The elements of the length Nk vectors E
k and Fk denote

the wavelet coefficients of the kth channel of the respective

reference and test images that have been contaminated with

visual noise. VIF* is given as

VIF� ¼
P

K
k¼1

1

Bk
IFCðCk;FkÞ

P

K
k¼1

1

Bk
IFCðCk;EkÞ ; ðA1Þ

where IFCðCk;FkÞ and IFCðCk;EkÞ are defined as in Eq. (A3).

As illustrated in Fig. 10, VIF* produces distinct scores that

reflect the changes in the perceived quality scores for these

images. In particular, disruptions to low-frequency content

affect VIF*’s estimate, whereas VIF’s estimate does not.

The details of Eq. (A1) are defined in Section 8.

2. VIF Specification
VIF parses each wavelet channel into disjoint blocks com-

posed of P coefficients. The following discussion assumes

only one channel, so the superscript k is omitted in the sub-

sequent discussion. Let ~Cb and ~Db correspond to the bth block

of P spatially adjacent coefficients of C and D, respectively.

The bth block of wavelet coefficients in the channel of the re-

ference image may be modeled as a Gaussian scale mixture

[125,126] random vector given as ~Cb ¼ sb ~U , where sb is a po-

sitive random scalar and ~U is a zero-mean Gaussian random

vector of length P with covariance K ~U
. Given sb, the coeffi-

cient block ~Cb is a zero-mean Gaussian random scalar with

covariance s2bK ~U
, and ~Cb is conditionally independent of

~Cm for all m ≠ b. VIF relates the bth block of wavelet coeffi-

cients of the test and reference images using the linear model
~Db ¼ gb ~Cb þ ~Vb, where gb is a deterministic scalar defined for

each block and ~Vb is a zero-mean Gaussian random vector

of length P with covariance matrix σ2
~Vb

I specified for each

block b. Thus, given sb, the block of coefficients ~Db is also

a Gaussian random vector with covariance g2bs
2

bK ~U
þ σ ~Vb

I.

Independent zero-mean additive Gaussian noise sources

model low-level HVS noise in VIF; coefficients of the reference

and test images are contaminated with visual noise. Let ~Eb and
~Fb correspond to the bth block of P spatially adjacent coeffi-

cients of E and F, respectively. The output of the HVS model

for the reference image is ~Eb ¼ ~Cb þ ~Mb, and the output of the

HVS model for the test image is ~Fb ¼ ~Db þ ~Nb. The terms ~Mb

and ~Nb are zero-mean Gaussian random vectors of length P
with covariance σ2MI ¼ σ2NI, where σ2N ¼ σ2M is the HVS model

parameter. Thus, given sb, the block of coefficients ~Eb is a

Gaussian random vector with covariance s2bK ~U
þ σ2NI, and

the block of coefficients ~Fb is also a Gaussian random vector

with covariance g2bs
2

bK ~U
þ σ2

~Vb

Iþ σ2NI.

VIF combines two fidelity measurements to yield an overall

assessment of a test image. First, a fidelity measurement com-

paring the reference coefficients before and after the HVS

model value is computed. Second, a fidelity measurement

comparing the reference coefficients before the HVS model

to the processed coefficients after the HVS model is com-

puted. These two fidelity measurements are computed for

each wavelet channel. The ratio of the sum of these fidelity

measurements across the channels provides an overall assess-

ment of the test image. Let s be a length Bk vector whose bth
element is sb. Given s, the VIF value is given by

VIF ¼
P

K
k¼1

IFCðCk;FkÞ
P

K
k¼1

IFCðCk;EkÞ : ðA2Þ

The terms IFCðCk;FkÞ and IFCðCk;EkÞ are based on IFC [107]

and are defined as
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IFCðCk;FkÞ ¼
X

Bk

b¼1

log2

�jg2bs2bK ~U
þ ðσ2

~Vb

þ σ2NÞIj
jðσ2

~Vb

þ σ2NÞIj

�

ðA3Þ

and

IFCðCk;EkÞ ¼
X

Bk

b¼1

log2

�js2bK ~U
þ σ2NIj

jσ2NIj

�

; ðA4Þ

where j · j denotes the matrix determinant and the terms gb, sb,
K ~U

, and σ ~Vb
vary with k and are computed fromCk andDk. For

channel k, the term gb is estimated as the linear regression of

block ~Db on the block ~Cb, and the variance of the additive

zero-mean Gaussian noise ~V b is the MSE of the regression.
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