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Christian Schäfer∗ Nicolas Chopin†

January 31, 2011

Abstract

A Monte Carlo algorithm is said to be adaptive if it automat-
ically calibrates its current proposal distribution usingpast
simulations. The choice of the parametric family that de-
fines the set of proposal distributions is critical for a good
performance. In this paper, we present such a parametric
family for adaptive sampling on high-dimensional binary
spaces.

A practical motivation for this problem is variable selec-
tion in a linear regression context. We want to sample from
a Bayesian posterior distribution on the model space using
an appropriate version of Sequential Monte Carlo.

Raw versions of Sequential Monte Carlo are easily im-
plemented using binary vectors with independent compo-
nents. For high-dimensional problems, however, these sim-
ple proposals do not yield satisfactory results. The key to
an efficient adaptive algorithm are binary parametric fami-
lies which take correlations into account, analogously to the
multivariate normal distribution on continuous spaces.

We provide a review of models for binary data and make
one of them work in the context of Sequential Monte Carlo
sampling. Computational studies on real life data with about
a hundred covariates suggest that, on difficult instances, our
Sequential Monte Carlo approach clearly outperforms stan-
dard techniques based on Markov chain exploration by or-
ders of magnitude.

Keywords Adaptive Monte Carlo· Multivariate binary
data· Sequential Monte Carlo· Linear regression· Variable
selection

1 Introduction

We present a Sequential Monte Carlo (Del Moral et al.,
2006) algorithm for adaptive sampling from a binary dis-
tribution. A Monte Carlo algorithm is said to be adap-
tive if it adjusts, sequentially and automatically, its sam-
pling distribution to the problem at hand. Besides Se-
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quential Monte Carlo, important classes of adaptive Monte
Carlo are Adaptive Importance Sampling (e.g.Cappé et al.,
2008) and Adaptive Markov chain Monte Carlo (e.g.
Andrieu and Thoms, 2008).

A central aspect of adaptive algorithms is their need for
a parametric family of auxiliary distributions which should
have the following three properties: (a) the family is suf-
ficiently flexible to guarantee a reasonable performance in
the context of the specific algorithm; (b) it allows to quickly
draw independent samples; (c) it can, with reasonable effort,
be calibrated using past simulations.

For problems in continuous sampling spaces, the typi-
cal example is the multivariate normal distribution, which
clearly fulfils (b) and (c), and complies with (a) in many
practical problems. In this paper, we propose an analogue
for high-dimensional binary sampling spaces.

1.1 Adaptive Monte Carlo on multivariate binary spaces

Our objective is to construct a parametric family for Sequen-
tial Monte Carlo on the binary sampling spaceB

d = {0,1}d,
whered is too large to allow for exhaustive enumeration of
the whole spaceBd. Since there is no multivariate binary
family which we can easily parametrise by its first and sec-
ond order moments like the multivariate normal, the con-
struction of suitable proposal distributions seems more dif-
ficult for the discrete adaptive sampling problem than for its
continuous counterpart.

The major application for our algorithm is variable selec-
tion in linear regression models. In this context, a binary
vectorγ ∈ B

d encodes whether each ofd possible covari-
ates are included in the linear regression model or not. In
a Bayesian framework, and for a judicious choice of prior
distributions, we can explicitly calculate the posterior distri-
bution up to a constant.

We want to sample from this distribution in order to ap-
proximate quantities like the expected value, that is the
marginal probability of inclusion of each variable. Often,
the marginal probabilities provide a richer picture of the pos-
terior distribution than a collection of modes found using
stochastic optimisation techniques.
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1.2 Global versus local methods

Our Sequential Monte Carlo approach to variable selection
views a well studied problem from a different angle and pro-
vides new perspectives. The reason is two-fold.

Firstly, there is growing evidence that global methods,
which track a population of particles, initially well spread
over the sampling spaceBd, are often more robust than lo-
cal methods based on Markov chain Monte Carlo. The latter
are more prone to get trapped in the neighbourhood of local
modes. We largely illustrate this effect in our simulationsin
Section6.

Secondly, global methods have the property to be easily
parallelisable. Parallel implementations of Monte Carlo al-
gorithms have gained a tremendous interest in the very re-
cent years (Lee et al., 2009; Suchard et al., 2010), due to the
increasing availability of multi-core (central or graphical)
processing units in standard computers.

1.3 Plan and notations

The paper is organised as follows.
In Section2, we recapitulate the basics of Bayesian vari-

able selection in linear regression models as the motivating
application.

In Section3, we briefly review the principal Markov chain
Monte Carlo methods which are commonly used to integrate
with respect to a binary distributions.

In Section4, we describe an alternative approach to the
same problem using Sequential Monte Carlo methods. The
key ingredient of this algorithm is a parametric family which
is flexible enough to come close to the target distribution.

In Section5, we extensively discuss approaches for con-
structing rich parametric families on binary spaces. This is
the core of our work. Some of the binary models discussed
are not suitable in the framework of our Sequential Monte
Carlo algorithm but mentioned for completeness of the sur-
vey.

In Section6, we construct two examples of variable se-
lection problems which yield challenging posterior distri-
butions. We show that standard Markov chain techniques
fail to produce reliable estimates of the marginal probabili-
ties while our Sequential Monte Carlo approach successfully
copes with the integration problem.

Notation For a vectorx ∈X d, we writexM for the sub-
vector indexed byM ⊆ {1, . . . ,d}. We write xi: j if the in-
dices are a complete sequencei, . . . , j. We denote byx−i the
sub-vectorx{1,...,d}\{i}. We write|x| for ∑d

k=1xk.
For a matrixA, the determinant is denoted by|A|. The

operator diag[x] transforms the vectorx into a diagonal ma-
trix. For a finite setM, we denote by #M the number of
elements inM.

2 Variable selection: A binary sampling problem

The standard linear normal model postulates that the rela-
tionship between the observed explained variabley ∈ R

m

and the observationsZ = [z1, . . . ,zd] ∈ R
m,d is

y | β ,γ,σ2,Z ∼N
(
Z diag[γ]β ,σ2Im

)
.

Here, β is a vector of regression coefficients andσ2 the
variance ofy. We denote byIm the identity matrix and as-
sume the first columnZ·,1 to be constant. The parameter
γ ∈ B

d = {0,1}d determines which covariates are included
in or dropped from the linear regression model. In total,
we can construct 2d different linear normal models from the
data.

We assign a prior distributionπ(β ,σ2,γ | Z) to the pa-
rameters. From the posterior distribution

π(β ,σ2,γ | y,Z) ∝ π(y | β ,σ2,γ,Z)π(β ,σ2,γ | Z)

we may compute the posterior probability of each model

π(γ | y,Z) =
∫

π(β ,σ2,γ | y,Z)d(β ,σ2) (1)

by integrating out the parametersβ andσ2.

Hierarchical Bayesian model In a purely Bayesian con-
text, we obtain, up to a constant, an explicit formula for
the integral in (1) by decomposing the full posterior and
choosing conjugate hierarchical priors, that is a normal
π(β | σ2,γ,Z) and an inverse-gammaπ(σ2 | γ,Z). For all
Bayesian posterior distributions in this paper, we use the
prior distributions

π(β | σ ,γ,Z) = N
(
0,σ2v2diag[γ]

)
, σ2 > 0,

π(σ2 | γ,Z) = I (w/2,λw/2), w> 0, λ > 0,

π(γ | Z) = U (Bd),

whereI denote an Inverse-Gamma andU a uniform law.
For our numerical examples in Section6, we assume not

to have any prior information about the data. We follow
the recommendations ofGeorge and McCulloch(1997) and
choose the hyper-parameters

w= 4.0, λ = σ̂2
1 , v2 = 10.0/λ , (2)

whereσ̂2
1 is the least square estimate ofσ2 based on the

saturated model. The rationale behind this choice is to have
a flat prior onβ and provideσ2 with sufficient mass on the
interval(σ̂2

1 , σ̂2
0 ), whereσ̂2

0 denotes the variance ofy.
Next, we quickly state the form of the log-posterior mass

function. We writeZγ for Z diag[γ] without zero columns.
Let bγ = Z⊺

γ y and

Cγ ,vC
⊺

γ,v = Z⊺

γ Zγ + v−2I |γ | (3)
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a Cholesky decomposition. We denote the least square esti-
mate ofσ2 based on the modelγ by

σ̂2
γ,v =

1
m

(
y⊺y− (C−1

γ ,vbγ )
⊺(C−1

γ ,vbγ )
)
.

We find the log-posterior probability to be

logπ(γ | y,Z) = µ−∑|γ|i=1 logc(γ,v)i,i −|γ| log(v)

−
w+m

2
log(w/m+ σ̂2

γ,v),

whereµ is an unknown normalization constant.

Bayesian Information Criterion Alternatively, in a Fre-
quentist framework, we choose a model which minimizes a
certain criterion. A popular one is the Bayesian Information
Criterion introduced bySchwarz(1978), which basically is
a second degree Laplace approximation of (1):

logπ(γ | y,Z)≈ µ−
|γ|
2

log(m)−
m
2

log(σ̂2
γ ),

whereσ̂2
γ = limv→∞ σ̂2

γ ,v is the maximum likelihood estima-
tor of σ2 based on the modelγ. Note that for a large sample
sizem the Hierarchical Bayesian approach and the Bayesian
Information Criterion coincide.

3 Markov chain Monte Carlo on binary spaces

Markov chain Monte Carlo is a well-studied approach to
approximate the expected value of a posteriorπ given by
a Bayesian model choice problem (George and McCulloch,
1997). In this section, we rapidly review the standard
methods we are going to compare our Sequential Monte
Carlo approach against. For background on Markov chain
Monte Carlo methods, we refer to standard literature (e.g.
Robert and Casella, 2004, chaps. 7-12).

3.1 Framework

The idea is to construct a transition kernelκ , typically some
version of a Metropolis-Hastings kernel, which admitsπ as
unique invariant distribution. The distribution of the Markov
chainxt+1 ∼ κ(xt , ·) started at some randomly chosen point
x0 ∈ B

d converges toπ .
We obtain an estimateEπ (γ) ≈ n−1∑n+b

t=b xt of the ex-
pected value via the ergodic theorems for Markov chains.
The firstb states are usually discarded to give the chain some
time to converge towards the invariant distribution beforewe
start to average.

Markov chain methods on binary spaces work locally,
that is they propose moves to neighbouring models in the
Metropolis-Hastings steps. A neighbouring model is a copy
of the current model where just a few components are al-
tered.

Algorithm We loop over a uniformly drawn subset of com-
ponentsI ∼ U ({M ⊆ {1, . . . ,d} | |M| = k) and propose to
change the componentsi ∈ I . The number of components
k might be fixed or drawn from some distributionGq on the
index set{1, . . . ,d}.

Precisely, we take a copyy of the current statext and
replaceyi by Yi ∼Bpi(x) for all i ∈ I , where

Bpi(x)(γ) = pi(x)γ (1− pi(x))1−γ

is a Bernoulli distribution with parameterpi(x) ∈ (0,1). We
setxt+1 = y with probability

π(y)
π(xt)

∏i∈I Bpi(y)(xt)

∏i∈I Bpi(xt )(y)
∧1, (4)

andxt+1 = xt otherwise. This framework, summarized in
Algorithm 1, yields a Markov chain with unique invariant
distributionπ for any fixedp ∈ (0,1)d. The interesting spe-
cial cases, however, use ap(x) which depends on the current
state of the chain.

Algorithm 1 Generic metropolised Gibbs kernel

Input: x ∈ B
d

U ∼U ([0,1]), k∼ Gk∗

I ∼U ({M ⊆ {1, . . . ,d} | |M|= k})

y← x

for i ∈ I do yi ∼Bpi(x)

if
π(y)
π(x)

∏i∈I Bpi(y)(x)

∏i∈I Bpi(x)(y)
>U then x← y

return x

Performance We refer to the ratio (4) as the acceptance
probability of the Metropolis-Hastings step. In binary
spaces, however, accepting a proposal does not imply we
are changing the state of the chain, since we are likely to re-
propose the current statey= xt . We are actually interested
in how fast the chain explores the state spaces, precisely its
mutation probabilityP(xt+1 6= xt).

3.2 Standard Markov chain methods

For this section, letk= 1 be constant. Algorithm1 collapses
to changing a single component. Instead of independently
drawing the indexi ∼ U ({1, . . . ,d}), we could also iterate
i through a uniformly drawn permutationsσ({1, . . . ,d}) of
the index set{1, . . . ,d}.

Kernels of this kind are often referred to as metropolised
Gibbs samplers, since they proceed component-wise as does
the classical Gibbs sampler, but also involve a Metropolis-
Hastings step. In the sequel, we discuss some special cases.
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Classical Gibbs The Gibbs sampler sequentially draws
each component from the full marginal distribution, which
corresponds to

pi(x)
de f
= π(γi = 1 | γ−i = x−i)

=
π(γi = 1,γ−i = x−i)

π(γi = 1,γ−i = x−i)+π(γi = 0,γ−i = x−i)
.

By construction, the acceptance probability is 1. The muta-
tion probability isπ(y)/(π(xt)+π(y)), wherey is a copy
of the current statext with componenti altered.

Adaptive metropolised GibbsNott and Kohn(2005) pro-
pose an adaptive version of the metropolised Gibbs. The full
marginal distributionπ(γ j = 1 | γ− j = x− j) is approximated
by a linear predictor. In their notation,

pi(x)
de f
=

[(
ψi−

W−ix−i

wi,i

)
∨δ

]
∧ (1− δ ),

whereψ is the estimated mean,W−1 the estimated covari-
ance matrix andδ ∈ (0,1/2) a design parameter which en-
sures thatpi(x) is a probability. Analogously to our vector
notation,W−i denotes the matrixW without theith row and
column. We obtain the estimates from the past trajectory of
the chainxb, . . . ,xt−1 and update them periodically.

The mutation probability is of the same order as that of
the Gibbs kernel, but adaption largely avoids the computa-
tionally expensive evaluations ofπ . The non-adaptive Gibbs
sampler already requires evaluation ofπ(y) just to produce
the proposaly. In contrast, the adaptive metropolised Gibbs
samples from a proxy and only evaluatesπ(y) if y 6= xt .

Modified metropolised GibbsLiu (1996) observes that, in
comparison to the classical Gibbs kernel, we obtain a more
efficient chain from

pi(x)
de f
= 1− x j .

Since we always propose to change the current state, the
acceptance and mutation probabilities are the same. They
amount toπ(y)/π(x)∧1, wherey is a copy of the current
statex with componenti altered. Comparing the mutation
probabilities of the two kernels, we see that the modified
metropolised Gibbs chain moves, on average, faster than the
classical Gibbs chain.

3.3 Block updating

The modified metropolised Gibbs easily generalises to the
case wherek may take values larger than one. Suppose, for
example, we propose to change

k∼ Gk∗(k) ∝
(1−1/k∗)k−1

k∗
1{1,...,d}(k)

components simultaneously, whereGk∗ is a truncated geo-
metric distribution. Note that we suggest, on average, to
change approximatelyk∗ components. In other words, for
larger values ofk∗, we are more likely to propose further
steps in the sampling space.

Large step proposals improve the mixing properties of the
chain and help to escape from the attraction of local modes.
They are, however, less likely to be accepted than single
component steps which leads to a problem-dependent trade-
off. In our numerical examples, we could not observe any
benefit from block updating, and we do not further consider
it to keep the comparison with our Sequential Monte Carlo
method more concise.

3.4 Independent proposals

We can construct a fast mixing Markov chain based on inde-
pendent proposals. Letq be some distribution withπ ≪ q,
that isq(γ) = 0 ⇒ π(γ) = 0 for all γ ∈ B

d. We propose a
new statey∼ q and accept it with probability

π(y)
π(xt)

q(xt)

q(y)
∧1. (5)

The associated Markov chain has the unique invariant mea-
sureπ . This kernel is referred to as the independent Metro-
polis-Hastings kernel, since the proposal distribution isnot
a function of the current stateXt . The mutation rate is the
acceptance rate minusq(Xt), so the two notions practically
coincide in large spaces.

Obviously, in order to make this approach work, we need
to chooseq sufficiently close toπ , which implies high ac-
ceptance rates on average. In absence of reliable prior infor-
mation, however, we are not able to produce such a distribu-
tion q. We shall, however, use precisely this Markov kernel
as part of our Sequential Monte Carlo algorithm. In this con-
text, we can calibrate sequencesqt of proposal distributions
to be close to our current particle approximation.

4 Sequential Monte Carlo on binary spaces

In this section, we show how to estimate the expected value
with respect to a probability mass functionπ(γ) defined on
B

d using Sequential Monte Carlo (Del Moral et al., 2006).
This general class of algorithms alternates importance sam-
pling steps, resampling steps and Markov chain transitions,
to recursively approximate a sequence of distributions, us-
ing a set of weighted ‘particles’ which represent the current
distribution. In the following, we present a version which is
tailored to work on binary spaces.

For readers not familiar with Sequential Monte Carlo, the
following algorithm described might seem rather complex
at first glance. We introduce the steps separately before we
look at the complete algorithm. We give comprehensive
instructions which correspond exactly to our implementa-
tion in order to make our results plausible and easily repro-
ducible for the reader.
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4.1 Building a sequence of distributions

The first ingredient of Sequential Monte Carlo is a smooth
sequence of distributions(πt)

τ
t=0, which ends up at the dis-

tribution of interestπτ = π . The intermediary distributions
πt are purely instrumental: the idea is to depart from a dis-
tribution π0 with broad support and to progress smoothly
towards the distribution of interestπ .

Initial distribution Theoretically, we can use anyπ0 with
π ≪ π0 that can sample from as initial distribution. Numer-
ical experiments taught us, however, that premature adjust-
ment ofπ0, for example using Markov chain pilot runs, leads
to faster but less robust algorithms.

Thus, in practice, we recommend the uniform distribution
for its simplicity and reliability. Therefore, in the sequel, we
let π0 = U (Bd).

Geometric bridge In our context, a natural strategy is the
following geometric bridge (Gelman and Meng, 1998; Neal,
2001; Del Moral et al., 2006):

πt(γ)
de f
∝ π0(γ)1−ρt π(γ)ρt ∝ π(γ)ρt , (6)

where(ρt)
τ
t=0 is an associated real sequence running from

zero to one. In the following, we present a procedure to
determine an optimal sequence(ρt)

τ
t=0.

4.2 Assigning importance weights

Suppose we have already produced a samplex[ t−1]
1 , . . . ,x[ t−1]

n

of sizen from πt−1. We can roughly approximateπt by the
empirical distribution

πt(γ)≈
n

∑
k=1

wt(x
[t−1]
k )δ

x[ t−1]
k

(γ), (7)

where the corresponding importance functionwt is

wt(xk)
de f
=

ut(xk)

∑n
k=1ut(xk)

, ut(x)
de f
=

πt(x)
πt−1(x)

= παt (x). (8)

Note thatαt = ρt − ρt−1 is the step length at timet. As
we chooseαt larger, that isπt further fromπt−1, the weights
become more uneven and the accuracy of the importance
approximation deteriorates.

Procedure 1Importance weights

Input: α, π , X = (x1, . . . ,xn)
⊺

uk← πα(xk) for all k= 1, . . . ,n
wk← uk/(∑n

i=1ui) for all k= 1, . . . ,n
return w = (w1, . . . ,wn)

If we repeat the weighting steps until we reachπτ = π ,
we obtain a classical importance sampling estimate with in-
strumental distributionπ0. The idea of the Sequential Monte

Carlo algorithm, however, is to control the weight degener-
acy such that we can intersperse resample and move steps
before loosing track of our particle approximation.

Effective sample sizeWe measure the weight degeneracy
through the effective sample size criterion, seeKong et al.
(1994). In our case, we have

η(α,x)
de f
=

(∑n
k=1wα(xk))

2

n∑n
k=1wα (xk)2 =

(∑n
k=1 πα(xk))

2

n∑n
k=1 πα(xk)2 ∈ [1/n,1].

The effective sample size is 1 if all weights are equal and
1/n if all mass is concentrated in a single particle.

For a geometric bridge (6), the effective sample size is
merely a function ofα. We can thus control the weight de-
generacy by judicious choice of the step lengthsαt .

4.3 Finding the step length

We pick a step lengthα such that the efficient sample size
η(α) equals a fixed valueη∗. Sinceη is continuous and
monotonously increasing inα, we can solve

η(α,x) = η∗ (9)

using bi-sectional search, see Procedure2. This approach is
numerically more stable than a Newton-Raphson iteration,
for the derivative∂η(α,x)/∂α involves fractions of sums
of exponentials which are difficult to handle.

Let α∗ be the unique solution to (9). We obtain an as-
sociated sequence settingρt = 1∧ (ρt−1 +α∗). Thus, the
number of stepsτ depends on the complexity of the integra-
tion problem at hand and is not known in advance.

In other words, for fixedη∗, the associated sequence(ρt)
τ
t

is a self-tuning parameter. In our simulations, we always
chooseη∗ = 0.9, which yields convincing results on both
example problems in Section6. Smaller values significantly
speed up the Sequential Monte Carlo algorithm but lead to a
higher variation in the results.

Procedure 2Find step length

Input: ρ , X = (x1, . . . ,xn)
⊺

l ← 0, u← 1.05−ρ ,α← 0.05
repeat

if η(α,x)< η∗ then u← α, α ← (α + l)/2
elsel ← α, α← (α +u)/2

until |u− l |< ε or l > 1−ρ
return α ∧ (1−ρ)

4.4 Resampling the system

Suppose we have a sampleX [t−1] = (x[t−1]
1 , . . . ,x[t−1]

n ) of sizen
fromπt−1 with importance weights as defined in (8). We can

obtain a samplêX
[t]
= (x̂[t]

1 , . . . , x̂
[t]
n ) which is approximately
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distributed according toπt by drawing from the empirical
approximation defined in (7).

For the implementation of the resampling step, there exist
several recipes. We could apply a multinomial resampling
(Gordon et al., 1993) which is straightforward. There are,
however, more efficient ways like residual (Liu and Chen,
1998), stratified (Kitagawa, 1996) and systematic resam-
pling (Carpenter et al., 1999). We use the latest in our sim-
ulations, see Procedure3.

In the resulting unweighted particle approximationX̂
[t]

,
the particles with small weights have vanished while the par-
ticles with large weights have bee multiplied.

If we repeat the weighting and resampling steps several
times, we will rapidly deplete our particle reservoir reducing
the number of different particles to a very few. Thus, the
particle approximation will be totally inaccurate. The key
to fighting the decay of our approximation is the following
move step.

Procedure 3Resample (systematic)

Input: w = (w1, . . . ,wn), X = (x1, . . . ,xn)
⊺

v← nw, j ← 1, c← v1

sampleu∼U ([0,1])
for k= 1, . . . ,n do

while c< u do
j ← j +1, c← c+ v j

end while
x̂k← x j , u← u+1

end for
return X̂ = (x̂1 . . . , x̂n)

⊺

4.5 Moving the system

The resampling step leaves us with an unweighted particle

approximation̂X
[t]
= (x̂[t]

1 , . . . , x̂
[t]
n ) of πt containing multiple

copies of many particles. The central idea of the Sequential
Monte Carlo algorithm is to diversify the resampled system,
replacing the particles by draws from a Markov kernelκt

with invariant measureπt .
Since the particlex[0]

k is, approximately, distributed ac-
cording toπt , a drawx[1]

k ∼ κt(x
[0]
k , ·) is again, approximately,

distributed according toπt . We can repeat this procedure
over and over without changing the target of the particle ap-
proximation.

Note that, even if the particlesx[0]
k = · · · = x[0]

m are equal
after resampling, the particlesx[s]

k , . . . ,x
[s]
m are almost inde-

pendent after sufficiently many move steps. In order to make
the algorithm practical, however, we need a transition kernel
which is rapidly mixing and therefore diversifies the particle
system within a few steps. Therefore, the locally operating
Markov kernels reviewed in Section3 are not suitable. In
fact, our numerical experiments suggest that making a Se-
quential Monte Carlo algorithm work with local kernels is

practically impossible.
Therefore, we use a Metropolis-Hastings kernel with in-

dependent proposals as described in Section3.4. Precisely,
we construct a kernelκt employing a parametric familyqθ
onB

d which, for someθ , is sufficiently close toπt to allow
for high acceptance probabilities.

For this purpose, we fit a parameterθt to the particle ap-
proximation(wt ,Xt) of πt according to some convenient cri-
terion. The choice of the parametric familyqθ is crucial to
a successful implementation of the Sequential Monte Carlo
algorithm. We come back to this issue in Section5.

Particle diversity We need to determine how often we
want to move the particle system before we return to the
weight-resample step. An easy criterion for the health of the
particle approximationX = (x1, . . . ,xn) is its particle diver-
sity

ζ (X)
de f
=

#{xk | k= 1, . . . ,n
n

∈ [1/n,1], (10)

that is the proportion of distinct particles. Note that the par-
ticle diversity is a quality criterion which has no simple ana-
logue in continuous sampling spaces.

For optimal results, we recommend to keep on moving
the particle system until the particle diversity cannot be aug-
mented any longer. In the first steps of the algorithm,πt

is still close to the uniform distribution, and we manage to
raise the particle diversity up to one.

As πt is approaching a strongly multi-modal target distri-
bution π , however, the particle diversity reaches a steady-
state we cannot push it beyond. Clearly, even if we could
draw a particle system independently fromπ , the particle
diversity would be a lot smaller than one, since we would
draw the modes ofπ several times.

Procedure 4Move

Input:
X [0] = (x[0]

1 , . . . ,x[0]
n )∼ πt

κ(y,γ) such thatπt(γ) = ∑y∈Bd πt(y)κ(y,γ)
s← 1
repeat

sample x[s]k ∼ κ(x[s−1]
k , ·) for all k= 1, . . . ,n

until |ζ (X [s])− ζ (X[s−1])|< 0.02or ζ (X [s])> 0.95

return X [s] = (x[s]
1 . . . ,x[s]

n )
⊺

4.6 The Resample-move algorithm

Finally, we summarize the complete Sequential Monte Carlo
method in Algorithm2. Note that, in practice, the sequence
πt = πρt is not indexed byt but rather byρt , that is the
countert is only given implicitly.

For an efficient implementation, we recommend to store
the valuesπ(x1), . . . ,π(xn) andqθ (x1), . . . ,qθ (xn) to avoid
unnecessary evaluations. When updating the latter set, we
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Algorithm 2 Resample-move

Input: π : Bd→ [0,∞)

sample xk
iid
∼U (Bd) for all k= 1, . . . ,n.

α ← find step length(0,X) (Procedure2)

w← importance weights(α,π ,X) (Procedure1)

while ρ < 1 do
qθ ← fit binary model(w,X) (Section5)

X̂← resample(w,X) (Procedure3)

X←move(κπ ,qθ , X̂) (Procedure4)

α ← find step length(ρ ,X) (Procedure2)

w← importance weights(α,π ,X) (Procedure1)

ρ ← ρ +α
end while

return ∑n
k=1 wkxk ≈ Eπ (γ)

can exploit the fact that, in a systematically resampled parti-
cle system, multiple copies of the same particles are neigh-
bours.

5 Multivariate binary models

In the section, we address the choice of a multivariate bi-
nary parametric family{qθ | θ ∈Θ} needed to construct the
Metropolis-Hastings kernel used in Procedure4.

5.1 Desired properties

We first frame the properties making a parametric family
suitable for our Sequential Monte Carlo algorithm.

(a) For reasons of parsimony, we want to construct a fam-
ily of distributions with at most dim(θ ) ≤ d(d+ 1)/2
parameters. More complex families are usually compu-
tationally too expensive to handle.

(b) Given a sampleX = (x1, . . . ,xn) from the target distri-
bution π , we want to estimateθ ∗ such that the binary
modelqθ∗ is close toπ . For instance,θ ∗ might be a
maximum likelihood or method of moments estimator.

(c) We want to generate independent samples fromqθ . If
we can compute the conditional or marginal distribu-
tions, we can writeqθ as

qθ (γ) = qθ (γ1)
d

∏
i=2

qθ (γ i |γ1:i−1) (11)

= qθ (γ1)
d

∏
i=2

qθ (γ1:i)/qθ (γ1:i−1).

Using the chain rule decomposition (11), we can sample
a random vectorγ ∼ qθ component-wise, conditioning
on the entries we already generated.

(d) We need to rapidly evaluateqθ (γ) for any γ ∈ B
d in

order to compute the Metropolis-Hastings ratio (5).

(e) Analogously to the multivariate normal, we want our
calibrated binary modelqθ∗ to produce samples with the
mean and covariance ofπ . If qθ is not flexible enough to
capture the dependence structure ofπ , the Metropolis-
Hastings kernel in Procedure4 cannot provide satisfac-
tory acceptance rates for complex target distributionsπ .

In the following we construct a suitable parametric family
and explain how to deploy it in Algorithm2.

Most of the literature on binary data stems from response
models, multi-way contingency tables and multivariate in-
teraction theory (Cox, 1972). For completeness, we append
a brief list of other binary models mentioned in the litera-
ture which fail, for various reasons, to work in Sequential
Monte Carlo applications. Providing parametric families
which meet the above requirements in high dimensions is
a difficult task and understanding the shortcomings of alter-
native approaches an important part of the discussion.

5.2 The logistic regression model

In the previous paragraph, we already mentioned that a fac-
torization (11) of the mass functionqθ (γ) into conditional
distributions permits to sample from the parametric family.
Unfortunately, for a complexd-dimensional binary model,
we usually cannot calculate closed-form expressions for the
conditional or marginal mass functions.

Construction of the modelWe get around computing the
marginal distributions ofqθ (γ) if we directly fit univariate
modelsqbi (γi | γ1:i−1) to the conditionalsπ(γi | γ1:i−1) of the
target function. Precisely, we adjust the logistic regressions

logit(Pπ (γi = 1))
de f
= bi,i +∑i−1

j=1bi, jγ j , i = 1, . . . ,d

where logit(p)= logp− log(1−p). In the context of our Se-
quential Monte Carlo application, we take the particle sys-
temX and regressy[i] = Xi on the columnsZ [i] = (X1:i−1,1),
where the columnZ [i]

i yields the intercept to complete the
logistic model.

For ad-dimensional lower triangular matrixB, we define
the logistic regression model as

qB(γ)
de f
=

d

∏
i=1

Bp(bi,i+bi,1:i−1γ⊺1:i−1)
(γi) (12)

wherep(y) = logit−1(y) = (1+exp(−y))−1. As in the pre-
ceding sections,Bp(γ) = pγ(1− p)1−γ is the Bernoulli dis-
tribution with parameterp∈ [0,1].

There ared! possible logistic regressions models and we
arbitrarily pick one while there should be a parametrization
which is optimal in a sense of nearness to the dataZ. We
observed, however, that permuting the components had, in
practice, no impact on the quality of the approximation.
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Keep in mind that the number of observations in the lo-
gistic regressions is the sizen of the particle system and typ-
ically very large. For instance, we run our numerical exam-
ples in Section6 usingn= 2×106 particles. Therefore, the
fit of the logistic regressions is usually very good.

Sparse version of the modelThe major drawback of all
multiplicative models is the fact that we have no closed-
form likelihood-maximizers such that the parameter estima-
tion requires costly iterative fitting procedures. Therefore,
even before discussing the fitting procedure, we construct a
sparse version of the logistic regression model which we can
estimate faster than the saturated model.

Instead of fitting the saturated modelq(γi | γ1:i−1), we
preferably work with a more parsimonious regression model
like q(γi | γLi ) for some index setLi ⊆ {1, . . . , i−1}, where
the number of predictors #Li is typically smaller thani−1.
We solve this nested variable selection problem using some
simple, fast to compute criteria.

Given a weighted particle systemw∈ [0,1]n, X ∈ B
n×d,

we denote fori, j ∈ {1, . . . ,d} the weighted sample mean by

x̄i = ∑n
k=1wkxk,i , x̄i, j = ∑n

k=1wkxk,ixk, j , (13)

and the weighted sample correlation by

r i, j =
x̄i, j − x̄i x̄ j√

x̄i(1− x̄i)x̄ j(1− x̄ j)
. (14)

For ε = 0.02, we define the index set

I
de f
= {i = 1, . . . ,d | x̄i /∈ (ε,1− ε)}.

which identifies the components which have, according to
particle system, a marginal probability close to either bound-
ary of the unit interval.

For the componentsi ∈ I , we do not consider fitting a
logistic regression, but setLi = /0 and draw them indepen-
dently. Precisely, we setbi,i = logit(x̄i) andbi,−i = 0 which
corresponds to logistic model without predictors. Firstly, in-
teractions do not really matter if the marginal probabilityis
excessively small or large. Secondly, these components are
prone to cause complete separation in the data or might even
be constant.

For the conditional distribution of the remaining compo-
nentsIc = {1, . . . ,d}\ I , we construct parsimonious logistic
regressions. Forδ = 0.075, we define the predictor sets

Li
de f
= { j = 1, . . . , i−1 | δ <

∣∣r i, j
∣∣}, i ∈ Ic,

which identifies the components with index smaller thani
and significant mutual association. Running our examples
in Section6 with δ = 0 show that a saturated logistic re-
gression kernel achieves about the same acceptance rates as
a sparse one, while settingδ = 0.075 dramatically reduces
the computational time we need to calibrate the model.

Fitting the model We maximise the log-likelihood function
ℓ(b) = ℓ(b | y,Z) of a weighted logistic regression model
by solving the first order condition∂ℓ/∂β = 0. We find a
numerical solution via Newton-Raphson iterations

−
∂ 2ℓ(b[r])

∂bb⊺
(b[r+1]−b[r]) =

∂ℓ(b[r])

∂b
, r > 0, (15)

starting at someb[0]; see Procedure5 for the exact terms.
Other updating formulas like Iteratively Reweighted Least
Squares or quasi-Newton iterations should work as well.

Procedure 5Fitting the weighted logistic regressions

Input: w = (w1, . . . ,wn), X = (x1, . . . ,xn)
⊺, B ∈R

d×d

for i ∈ Ic do
Z← (XLi ,1), y← X i , b[0]← Bi,Li∪{i}
repeat

pk← logit−1(Zkb
[r−1]) for all k= 1, . . . ,n

qk← pk(1− pk) for all k= 1, . . . ,n

b[r]← (Z⊺diag[w]diag[q]Z + εIn)
−1×

(Z⊺diag[w])
(
diag[q]Zb [r−1]+(y−p)

)

until |b[r]
j −b[r−1]

j |< 10−3 for all j
Bi,Li∪{i}← b

end for
return B

Sometimes, the Newton-Raphson iterations do not con-
verge because the likelihood function is monotone and thus
has no finite maximizer. This problem is caused by data
with complete or quasi-complete separation in the sample
points (Albert and Anderson, 1984). There are several ways
to handle this issue.

(a) We just halt the algorithm after a fixed number of iter-
ations and ignore the lack of convergence. Such pro-
ceeding, however, might cause uncontrolled numerical
problems.

(b) Firth (1993) proposes to use a Jeffrey’s prior onb. The
penalized log-likelihood does have a finite maximizer
but requires computing the derivatives of the Fisher in-
formation matrix.

(c) We just add a simple quadratic penalty termεβ ⊺β to
the log-likelihood to ensure the target-function is convex
and does not cause numerical problems.

(d) As we notice that some terms ofbi are growing beyond a
certain threshold, we move the componenti from the set
of components with associated logistic regression model
Ic to the set of independent componentsI .

In practice, we combine the approaches (c) and (d). In
Procedure5, we did not elaborate how to handle non-
convergence, but added a penalty term to the log-likelihood,
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which causes the extraεIn in the Newton-Raphson update.
Since we solve the update equation via Cholesky factoriza-
tions, adding a small term on the diagonal ensures that the
matrix is indeed numerically decomposable.

Starting points The Newton-Raphson procedure is known
to rapidly converge for starting valuesb[0]

i not too far from
the solutionb[∗]

i . In absence of prior information aboutb[∗]

i ,
we would naturally start with a vector of zeros and maybe
settingb[0]

i,i = logit(x̄i).
In the context of our Sequential Monte Carlo algorithm

we can do better than that. Recall that, we constructed a
smooth sequence(πt)

τ
t=0 of distributions which corresponds

to a sequence of proposal distributions(qt)
τ
t=0 = (qθt )

τ
t=0,

which is associated to a sequence(θt)
τ
t=0 of parameters.

It significantly speeds up the Newton-Raphson procedure
if we chooseθt = Bt as starting point for the estimation
of Bt+1. Indeed, towards the end of the Sequential Monte
Carlo algorithm, we fit a single next logistic regression
logit(Xi) ∼ XLi in less than four iterations on average when
starting atBt−1, compared to about 13 iterations on average
when starting at zero.

Sampling and evaluating In the move step of Sequential
Monte Carlo we discussed in Section4.5, we need to sam-
ple a proposal statey from qθ and evaluate the likelihood
qθ (y) to compute the Metropolis-Hastings ratio5. For the
logistic regression modelqB, we can do both in one go, see
Procedure6.

Procedure 6Sampling from the model

Input: B
y← (0, . . . ,0), p← 1
for i = 1. . . ,d do

q← logit−1(bi,i +∑ j∈Li
bi, jy j)

sample γi ∼Bq

p←

{
p×q if yi = 1

p× (1−q) if yi = 0

end for
return y , p

5.3 Why not use a simpler model?

We briefly justify why we should not use a simpler paramet-
ric family for our Sequential Monte Carlo application. In-
disputably, the easiest parametric family onB

d that we can
think of is a product model

qp(γ)
de f
= ∏d

i=1Bpi (γi)

whereBpi(x)(γ) = pi(x)γ (1− pi(x))1−γ denotes a Bernoulli
distribution with parameterpi(x) ∈ [0,1].

Let us check the requirement list: the product model is
parsimonious with dim(θ ) = d; the maximum likelihood es-
timatorθ ∗ is the sample mean̄x = n−1∑n

k=1 xk; the decom-
position (11) holds trivially, which allows us to sample from
qp and evaluateqp(γ) in O(d).

Obviously, however,qp does not reproduce any depen-
dencies we might observe inX. Could we just forget about
this last point and use the product model for its simplicity?

Toy example We visualize the strinking impracticalness of
the product model by means of a toy example in a low di-
mensiond=3. We take a simple linear relationY =V1+V2

and construct a variable selection problem with high depen-
dencies.

Figure 1: Toy example showing how well the product modelqp
and the logistic regression modelqB replicate the mass function of
a difficult posterior distributionπ.

(a) true mass functionπ(γ)
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(b) product modelqp(γ)
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(c) logistic regression modelqB(γ)
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Forn= 100 andµ = 10, we draw normal variates

v1∼N (−µ , In) , v2 ∼N (µ , In) , y = v1+ v2

and then generate observations

z1,z2 ∼N
(
w1,(µ2/4) In

)
, z3,z4 ∼N

(
w2,(µ2/4) In

)
.

The posterior distributionπ(γ) = π(γ | y, Z), using the prior
distributions as described in Section2, typically exhibits
strong dependencies between its components due to the cor-
relation in the data.

Now we generate pseudo-random dataX from π and fit
both a product modelqp and a logistic regression modelqB.
Looking at the corresponding mass function in Figure1, we
notice how badly the product model mimics the true poste-
rior. This observation carries over to larger sampling spaces.

Acceptance rates A good way to analyse the importance
of reproducing the dependencies ofπ is in terms of accep-
tance rates and particle diversities. As we already remark
in Section4.5, the particle diversity naturally diminishes as
our particle system approaches a strongly multi-modal target
distributionπ . However, we want our algorithm to keep up
the particle diversity a long as possible to ensure the particle
system is well spread out over the entire state space.

In Figure2, we show a comparison (based on the Boston
Housing data set explained in Section6.1) between two Se-
quential Monte Carlo algorithms, using a product modelqp
and a logistic regression modelqB as proposal distribution
of the Metropolis-Hastings kernel (3.4).

Clearly, in Figure2(a), the acceptance rates achieved by
the product kernel rapidly decrease and dwell around 5% for
the second half of the run. In contrast, the logistic regres-
sion kernel always provides acceptance rates greater than
20%. As a consequence, in Figure2(b), the particle diver-
sity sustained by the product kernel decreases at an early
stage, while the logistic regression kernel holds it up until
the very last steps.

At first sight, it might seem odd that the acceptance rates
of the logistic regression kernel increase during the final
steps of the algorithm. If we jump ahead, however, and take
a look at the results of the Boston Housing problem, see
Figure3(a), we notice that quite a few marginal probabili-
ties of the posteriorπ turn out to be zero, which makes it
easier to reproduce the distributions towards the end of the
Resample-Move algorithm.

However, if we already decide at an early stage that for
some componentP(γi = 1) = 0, we fail to ever consider
statesγ ∈Bd with γi = 1 for the rest of the algorithm. There-
fore, the advantage of the logistic regression kernel over the
simple product kernel is that we do not completely drop any
components from the variable selection problem until the fi-
nal steps.

Figure 2: We compare the use of a product modelqp to a logis-
tic regression modelqB as proposal distribution of the Metropolis-
Hastings kernel (3.4). We monitor a typical run (ρ on the x-axis)
of our Sequential Monte Carlo algorithm (for the Boston Housing
data set described in Section6.1) and plot the acceptance rates and
particle diversities (on the y-axis).
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(b) particle diversities
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5.4 Review of alternative binary models

In the following, we review some alternative approaches to
modeling multivariate binary data. Unfortunately, we can-
not incorporate any of these models in our Sequential Monte
Carlo algorithm. Still, it is instructive to understand whyal-
ternative strategies fail to provide suitable proposal distribu-
tions in the sense of Section5.1. For a more detailed review
of parametric families suitable for adaptive Monte Carlo al-
gorithms on binary spaces, seeSchäfer(2010).

Additive models For suitable coefficientsa∈ R
2d

, we can
write any mass function onBd as

π(γ) = ∑S⊆{1,...,d}aS∏i∈Sγi .

It is tempting to construct ad(d+1)/2 parameter model

qµ,A(γ)
de f
= µ + γ⊺Aγ

by removing interaction terms of order higher than two. As
Bahadur(1961) points out, the main problem of any additive
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approach is the fact that a truncated model might not be non-
negative and thus not define a probability distribution.

Although the linear structure allows to derive explicit
and recursive formulae for the marginal and conditional
distributions, we hardly ever find a useful application for
the additive model. As other authors (Park et al., 1996;
Emrich and Piedmonte, 1991) remark, additive representa-
tions like the much-citedBahadur(1961) expansion are
quite instructive but, unfortunately, impractical.

Log-linear models For suitable coefficientsa ∈ R
2d

, we
can write any mass function onBd as

π(γ) = exp
(
∑S⊆{1,...,d}aS∏i∈Sγi .

)

Removing higher order interaction terms, we can construct
a d(d+1)/2 parameter model

qµ,A(γ)
de f
= µ exp(γ⊺Aγ), (16)

whereA is a symmetric matrix. Log-linear models define a
well studied class of distributions, but there is no simple re-
cursive structure for their marginal distributions. Therefore,
we cannot compute the factorization (11) we need to sample
from qA .

Cox and Wermuth(1994) propose an approximation to
the marginal distributions by expressions of the form (16),
omitting higher order terms in a Taylor expansion. If we
write the parameterA as

A =

(
A′ b⊺

b c

)
,

the parameter of the marginal distributionqA1:d−1(γ 1:d−1) is
approximately given by

A1:d−1≈ A′+(1+ tanh(c/2))diag[b]+
1
2

sech2(c/2)bb⊺,

which is a symmetric matrix of sized− 1. The normal-
ization constant isµ1:d−1 = µ(1+exp(c)). We can recur-
sively compute approximations to all marginal distributions
qA1:d−1, . . . ,qA1:1 and derive logistic forms

logit(P(γi = 1 | γ1:i−1)) = log
qA1:i (γi = 1,γ1:i−1)

qA1:i (γi = 0,γ1:i−1)
,

which takes us back to (12). However, there is no reason
to fit a log-linear model and compute approximate logistic
models if we can directly fit a logistic regression model in
the same time.

Latent variable models Let pθ be a parametric family on
X ands: X → B

d a mapping into the binary state space.
We can sample from a latent variable model

qθ (γ) =
∫

s−1(γ) pθ (v)dv

by settingy = s(v) for a drawv ∼ pθ from the latent para-
metric family.

Note that evaluating the probability mass functionqθ (y)
is usually a difficult task. Hence, we cannot use this class of
models in a Sequential Monte Carlo context. These models
can be useful, however, in other adaptive Monte Carlo algo-
rithms that do not require evaluation ofqθ (y), for instance
the Cross-Entropy method (Rubinstein, 1997).

Non-normal parametric families withd(d−1)/2 depen-
dence parameters seem to either have a very limited de-
pendence structure or unfavourable properties (Joe, 1996).
Therefore, the multivariate normal

p(µ,Σ)(v) = (2π)−d/2 |Σ|−1/2e−1/2(v−µ)⊺Σ−1(v−µ),

s(v) = (1(∞,0](v1), . . . ,1(∞,0](vd)),

appears to be the natural and almost the only option forpθ .
This kind of model has been discussed repeatedly in the
literature (Emrich and Piedmonte, 1991; Leisch et al., 1998;
Cox and Wermuth, 2002).

The first and second order marginal probabilities of the
model q(µ,Σ) are given byΦ1(µi) and Φ2(µi ,µ j ;σi, j), re-
spectively, whereΦ1(vi) andΦ2(vi ,v j ;σi, j) denote the cu-
mulative distribution functions of the univariate and bivari-
ate normal distributions with zero mean, unit variance and
correlationσi, j ∈ [−1,1].

We can fit the modelq(µ,Σ) to a particle system(w,X) by
matching the moment, that is adjustingµ andΣ such that

Φ1(µi) = x̄i , Φ1(µi ,µ j ;σi, j) = r i, j

with x̄i andr i, j as defined in (13) and (14). However, the lo-
cally constructed correlation matrixΣ might not be positive
definite. Still, we can obtain a feasible parameter replac-
ing Σ by Σ∗ = (Σ+ |λ | I)/(1+ |λ |), whereλ is the smallest
eigenvalue of the locally adjusted matrixΣ.

Archimedean copula modelsGenest and Neslehova
(2007) discuss the potentials and pitfalls of applying copula
theory, which is well developed for bivariate, continuous
random variables, to multivariate discrete distribution.
There have been earlier attempts to sample binary vectors
via copulae: Lee (1993) describes how to construct an
Archimedean copula, more precisely the Frank family
(Nelsen, 2006, p.119), for sampling multivariate binary
data. Unfortunately, this approach is limited to very low
dimensions.

Multivariate reduction models Several approaches to gen-
erating multivariate binary data are based on a representa-
tion of the componentsγ i as functions of sums of indepen-
dent variables (Park et al., 1996; Lunn and Davies, 1998;
Oman and Zucker, 2001). These techniques are limited to
certain patterns of non-negative correlation, and do, there-
fore, not yield suitable proposal distributions in a Sequential
Monte Carlo application. We mention them for the sake of
completeness.
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6 Numerical examples

In this section we compare our Sequential Monte Carlo algo-
rithm to standard Markov chain methods. We created model
choice problems with high dependencies between the co-
variates which yield particularly challenging, multi-modal
posterior mass functions. Our examples are build from
freely available datasets by adding logarithms, polynomials
and interaction terms.

6.1 Construction of the data sets

Boston Housing The first example is based on
the Boston Housing data set, originally treated by
Harrison and Rubinfeld(1978), which is freely available
at the StatLib data archive. The data set provides co-
variates ranging from the nitrogen oxide concentration to
the per capita crime rate to explain the median prices of
owner-occupied homes. The data has yet been treated by
several authors, mainly because it provides a rich mixture of
continuous and discrete variables, resulting in an interesting
variable selection problem.

Specifically, we aim at explaining the logarithm of the
corrected median values of owner-occupied housing. We
enhance the 13 columns of the original data set by adding
first order interactions between all covariates. Further, we
add a constant column and a squared version of each covari-
ate (except for CHAS, since it is binary).

This gives us a model choice problem with 104 possi-
ble predictors and 506 observations. We use a hierarchical
Bayesian approach, with priors as explained in the above
Section2, to construct a posterior distributionπ . By con-
struction, there are strong dependencies between the possi-
ble predictors which leads to a rather complex, multi-modal
posterior distribution.

Concrete Compressive StrengthThe second example
is constructed from a less known data set, originally
treated byYeh (1998), which is freely available at the
UCI Machine Learning Repository. The data provides in-
formation about composing concrete to explain its compres-
sive strength. The compressive strength appears to be a
highly non-linear function of age and ingredients.

In order to explain the compressive strength, we take the
8 covariates of the original data set and add the logarithms
of some covariates (cement, water, coarse aggregate, fine
aggregate, age). Further, we add interactions between all 13
covariates of the augmented data set and a constant column.

This gives us a model choice problem with 79 possible
predictors and 1030 observations. We use a hierarchical
Bayesian approach, with priors as explained in the above
Section2, to construct a posterior distributionπ .

6.2 How to compare to Markov chain Monte Carlo

We do not think it is reasonable to compare two completely
different algorithms in terms of pure computational time.
We cannot guarantee that our implementations are optimal
nor that the time measurements can exactly be reproduced
in other computing environments.

We suppose that the number of evaluations of the target
functionπ is more of a fair stopping criterion, since it shows
how well the algorithms exploit the information obtained
from π . Precisely, we parameterise the Sequential Monte
Carlo algorithm to not exceed a fixed numberν of evalua-
tions and stop the Markov chains whenν evaluations have
been performed.

Assets and drawbacksThe Sequential Monte Carlo and
the Markov chain Monte Carlo algorithms both have exten-
sions and numerical speed-ups which make it hard to settle
on a fair comparison.

Advocates of Markov chain methods might criticise that
the number of target evaluations is a criterion biased towards
the Sequential Monte Carlo approach, for there are updating
schemes which allow for faster computation of the Cholesky
decomposition (3) given the decomposition of a neighbour-
ing model, seeDongarra et al.(1979, chaps. 8,10). Thus,
Markov chains which propose to change one component in
each step can evaluateπ with less effort and perform more
evaluations ofπ in the same time.

On the other hand, however, the Sequential Monte Carlo
algorithm can be parallelised in the sense that we can, on
suitable hardware, run many evaluations ofπ in parallel dur-
ing the move step, see Procedure4. No analogue speed-up
can be performed in the context of Markov chains. We did
not yet exploit this advantage but are confident that we shall
see this feature in a follow-up of this paper. Further, Sequen-
tial Monte Carlo methods are more suitable than Markov
chain Monte Carlo to approximate the evidence, that is the
normalization constant of the posterior distribution. We can
exploit this property to compare, for instance, regression
models with different monotonic link functions.

Parameters We run our Sequential Monte Carlo (SMC) al-
gorithm withn= 2×104 particles and a target effective sam-
ple sizeη = 0.9, as explained in Section4. For these param-
eters, the Sequential Monte Carlo algorithm needs less than
ν = 2×106 evaluations ofπ on both examples problems.

We compare our algorithm to both the Adaptive Markov
chain Monte Carlo (Nott and Kohn, 2005, AMCMC) and
the standard metropolised Gibbs (Liu, 1996, MCMC) de-
scribed in Section3. As stated earlier, we could not observe
any positive effect from block updating and do therefore not
consider it in our examples.

For the AMCMC, we useδ = 0.01 andλ = 0.01, fol-
lowing the recommendations ofNott and Kohn(2005). We
update the estimatesψ andW every 2× 105 iterations of

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls
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chain. Before we start adapting, we generate 2× 105 iter-
ations with a metropolised Gibbs kernel (after a discarded
burn-in of 2×104 iterations).

6.3 Implementation

The numerical work was completely done inPython 2.6us-
ing SciPypackages. Scientific work in applied fields is often
more accessible to the reader if the source code which gen-
erated numerical evidence is released along with the publi-
cation. The complete sources used in this work can be found
athttp://code.google.com/p/smcdss.

We also provide instructions on how to install and run our
project. The program can process data sets in standardcsv-
format and generateR scripts for graphical visualisation of
the results. The released version was tested to run on both
Windows and Linux machines.

6.4 Discussion and conclusion

We run each algorithm 200 times and visualize the varia-
tion of the results in box-plots, see Figures3 and4. The
white boxes on contain 80% of the results, while the black
boxes contain the 20% outliers. The horizontal line in the
white box indicates the median. We draw a coloured bar be-
low the minimal value to improve the readability; otherwise
components with a small variation are hard to see.

The Sequential Monte Carlo algorithm ist extremely ro-
bust. For 200 test runs and for both data sets, the algorithm
did not produce a single outlier in any of the components.

This not true for either of the Markov chain algorithms.
The size of white boxes indicate that adaptive Markov chain
Monte Carlo works quite better than the standard Markov
chain procedure. However, even the adaptive chain is rather
vulnerable to outliers. The large black boxes indicate that,
for some starting points of the chain, the estimates of some
marginal probabilities might be completely wrong.

The outliers, that is the black boxes, in Figures4(b) and
4(c) are strikingly similar. The adaptive and the standard
Markov chains apparently both fall into the same trap, which
in turn implies that adaption makes the method faster but
not more robust against outliers. An adapted local method is
still a local method and does not yield reliable estimates for
difficult sampling problems.

In Tables1 and2, we gathered some key performance in-
dicators, each averaged over the 200 runs of the respective
algorithms. Note that the time needed to perform 2× 106

evaluations ofπ is a little less than the running time of the
standard Markov chain. Thus, even in terms of computa-
tional time, the adaptive Markov chain can hardly compete
with our Sequential Monte Carlo method, even if evalua-
tions ofπ were at no cost.
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Figure 3: Boston Housing data set. We ran the Sequential Monte Carlo, Adaptive Markov chain Monte Carlo and standard Markov chain
Monte Carlo algorithms each 200 times. The white boxes contain 80% of the results with the line indicating the median. We added the
coloured bars to make the plot easier to read.

(a) SMC∼ 1.6×106 evaluations ofπ
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(b) AMCMC 2.0×106 evaluations ofπ
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(c) MCMC 2.0×106 evaluations ofπ
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Table 1: Boston Housing data set. The table shows some averaged key indicators complementary to Figure3

Sequential MC Adaptive MCMC Standard MCMC

computational time 0 : 22 : 12 h 2 : 07 : 20 h 0 : 14 : 46 h
evaluations ofπ 1.91×106 2.00×106 2.00×106

average acceptance rate 36.4% 27.2% 0.02%
lengtht of the chainxt 5.39×107 2.00×106

movesxt 6= xt−1 of the chain 5.46×105 0.33×105
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Figure 4: Concrete Compressive Strength data set. We ran the Sequential Monte Carlo, Adaptive Markov chain Monte Carlo and standard
Markov chain Monte Carlo algorithms each 200 times. The white boxes contain 80% of the results with the line indicating the median.
We added the coloured bars to make the plot easier to read.

(a) SMC∼ 1.6×106 evaluations ofπ
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(b) AMCMC 2.0×106 evaluations ofπ

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

0.0

0.2

0.4

0.6

0.8

1.0

(c) MCMC 2.0×106 evaluations ofπ
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Table 2: Concrete Compressive Strength data set. The table shows some averaged key indicators complementary to Figure4

Sequential MC Adaptive MCMC Standard MCMC

computational time 20 : 54 min 53 : 45 min 19 : 18 min
evaluations ofπ 1.62×106 2.01×106 2.00×106

average acceptance rate 30.7% 67.1% 0.124%
lengtht of the chainxt 1.86×107 2.00×106

movesxt 6= xt−1 of the chain 1.35×105 0.25×105
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