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Sequential Monte Carlo on large binary sampling spaces
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Abstract guential Monte Carlo, important classes of adaptive Monte
Carlo are Adaptive Importance Sampling (edgppé et a).
A Monte Carlo algorithm is said to be adaptive if it automat-200§ and Adaptive Markov chain Monte Carlo (e.g.
ically calibrates its current proposal distribution usip@st  Andrieu and Thoms2008§.
simulations. The choice of the parametric family that de- A central aspect of adaptive algorithms is their need for
fines the set of proposal distributions is critical for a gooda parametric family of auxiliary distributions which shdul
performance. In this paper, we present such a parametrigave the following three properties: (a) the family is suf-
family for adaptive sampling on high-dimensional binaryficiently flexible to guarantee a reasonable performance in
spaces. the context of the specific algorithm; (b) it allows to quigkl
A practical motivation for this problem is variable selec- draw independent samples; (c) it can, with reasonabletgffor
tion in a linear regression context. We want to sample fronbe calibrated using past simulations.
a Bayesian posterior distribution on the model space using For problems in continuous sampling spaces, the typi-
an appropriate version of Sequential Monte Carlo. cal example is the multivariate normal distribution, which
Raw versions of Sequential Monte Carlo are easily imclearly fulfils (b) and (c), and complies with (a) in many
plemented using binary vectors with independent compopractical problems. In this paper, we propose an analogue
nents. For high-dimensional problems, however, these sinfor high-dimensional binary sampling spaces.
ple proposals do not yield satisfactory results. The key to
an efficient adaptive algorithm are binary parametric fami- _ . )
lies which take correlations into account, analogousipe t 11 Adaptive Monte Carlo on multivariate binary spaces

multivariate normal distribution on continuous spaces. oy opjective is to construct a parametric family for Sequen
We provide a review of models for binary data and make;5| Monte Carlo on the binary sampling spaé= {0, 1}¢

one of them work in the context of Sequential Monte Carlayhered is too large to allow for exhaustive enumeration of
sampling. Comp.utatlonal studies on rea! Ilfe da}tawnh abolihe whole spac@Y. Since there is no multivariate binary
a hundred covariates suggest that, on difficult instana@s, 0 tamily which we can easily parametrise by its first and sec-
Sequential Monte Carlo approach clearly outperforms stansng order moments like the multivariate normal, the con-
dard techniques based on Markov chain exploration by Orsirction of suitable proposal distributions seems mofe di

ders of magnitude. ficult for the discrete adaptive sampling problem than fer it

Keywords Adaptive Monte Carlo Multivariate binary continuous counterpart. S
data- Sequential Monte CarloLinear regressionVariable The major application for our algorithm is variable selec-
selection tion in linear regression models. In this context, a binary

vectory € BY encodes whether each dfpossible covari-
ates are included in the linear regression model or not. In
a Bayesian framework, and for a judicious choice of prior
distributions, we can explicitly calculate the posterimtid-
bution up to a constant.

We want to sample from this distribution in order to ap-
proximate quantities like the expected value, that is the
marginal probability of inclusion of each variable. Often,
‘the marginal probabilities provide a richer picture of tlosp
*CREST and Université Paris Dauphinehristian.schafe@ensae.fr terior distribution than a collection of modes found using
TCREST and ENSAE nicolas.chopi@ensae. fr stochastic optimisation techniques.

1 Introduction

We present a Sequential Monte Carlbe( Moral et al,

2009 algorithm for adaptive sampling from a binary dis-
tribution. A Monte Carlo algorithm is said to be adap-
tive if it adjusts, sequentially and automatically, its sam
pling distribution to the problem at hand. Besides Se
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1.2 Global versus local methods 2 Variable selection: A binary sampling problem

Our Sequential Monte Carlo approach to variable selectioffhe standard linear normal model postulates that the rela-
views a well studied problem from a different angle and protionship between the observed explained varigbte R™

vides new perspectives. The reason is two-fold. and the observatiors = [z1,...,24] € R™Md js
Firstly, there is growing evidence that global methods, 5 _ 5
which track a population of particles, initially well spka y|B,y,0%Z ~.# (Zdiagly| B,0%Im).

over the sampling spad, are often more robust than lo- . _ o
cal methods based on Markov chain Monte Carlo. The latteFlere, B is a vector of regression coefficients aod the
are more prone to get trapped in the neighbourhood of locfariance ofy. We denote by the identity matrix and as-

modes. We largely illustrate this effect in our simulatioms ~ SUme the first colum ; to be constant. The parameter
Sections. y € B4 = {0,1}9 determines which covariates are included

'&;1 or dropped from the linear regression model. In total,

Secondly, global methods have the property to be easil b !
parallelisable. Parallel implementations of Monte Catlo a;vetcan construct2different linear normal models from the
ata.

gorithms have gained a tremendous interest in the very re- ) ) o 2
centyearsl(ee et al, 2009 Suchard et a|2010, due to the We assign a prior dlstr|but|o_n([_§,a_ '¥|2) to the pa-
increasing availability of multi-core (central or graphly ~"@meters. From the posterior distribution

rocessing units in standard computers.
P J P n(B,02y|y,z) O nly| B,0% v,2)m(B, a2y |Z)

13 Plan and notations we may compute the posterior probability of each model

The paper is organised as follows. n(y|y.Z) = / m(B,0%y|y,2)d(B,0%) 1)
In Section2, we recapitulate the basics of Bayesian vari-

able selection in linear regression models as the motiyatinby integrating out the parametg8sanda?.

application.

In SeCtiorB, we brleﬂy review the principal Markov chain Hierarchical Bayesian modelln a pure|y Bayesian con-
Monte Carlo methods which are commonly used to integratgext, we obtain, up to a constant, an explicit formula for
with respect to a binary distributions. the integral in {) by decomposing the full posterior and

In Section4, we describe an alternative approach to thechoosing conjugate hierarchical priors, that is a normal
same problem using Sequential Monte Carlo methods. The( | 62,y,Z) and an inverse-gamnra o | y,Z). For all
key ingredient of this algorithm is a parametric family winic Bayesian posterior distributions in this paper, we use the
is flexible enough to come close to the target distribution. prior distributions

In Section5, we extensively discuss approaches for con-
structing rich parametric families on binary spaces. Taisi (B |0.v.Z) = .4 (0,0%?diagly]) , 0% >0,
the core of our work. Some of the binary models discussed n(02 |y, Z) = .7 (W/2,Aw/2), w>0, A >0,
are not suitable in the framework of our Sequential Monte d
Carlo algorithm but mentioned for completeness of the sur- n(y|Z)=%®),

vey. ) , where.# denote an Inverse-Gamma a#ta uniform law.
In Section6, we construct two examples of variable se-  £qr our numerical examples in Secti6nwe assume not

lection problems which yield challenging posterior distri 5 have any prior information about the data. We follow

butions. We show that standard Markov chain techniqueg,e recommendations Gfeorge and McCulloctL997 and
fail to produce reliable estimates of the marginal probabil ., 50se the hyper-parameters

ties while our Sequential Monte Carlo approach succegsfull
copes with the integration problem. w=40, )= 5i2, V2 — 10.0/A, 2)

where? is the least square estimate @f based on the
Notation For a vectoix € 279, we writexy for the sub-  saturated model. The rationale behind this choice is to have
vector indexed byM C {1,...,d}. We writex;;; if the in-  a flat prior ong and provides? with sufficient mass on the
dices are a complete sequengce., j. We denote byx_;j the  interval (612, 602), Whereao2 denotes the variance gf
sub-vectoxy _ qy\ i} We write|x| for g X Next, we quickly state the form of the log-posterior mass

For a matrixA, the determinant is denoted ¥|. The  function. We writeZ, for Z diag[y] without zero columns.
operator diagx] transforms the vectorinto a diagonal ma- Letb, =Z]y and
trix. For a finite setM, we denote by ¥ the number of
elements irM. Cy\Clv=Z}Z,+V 2, (3)
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a Cholesky decomposition. We denote the least square esAdgorithm We loop over a uniformly drawn subset of com-

mate ofa? based on the modegiby ponentd ~ % ({M C {1,...,d} | [M| = k) and propose to
1 change the componenits |. The number of components
62 — =~ (yiy_ (C-ipyT(c1 k might be fixed or drawn from some distributigfy on the
oy, = C,,b,)T(C,yby)).
o m (1Y = (Cruby)T(Cyby) index set{1,...,d}.
We find the log-posterior probability to be Precisely, we take a copy of the current state; and

replaceyi by Yi ~ %, ) foralli € I, where

logm(y|y.Z) = u— 3"y logc! — |yilog(v)

'%,pi(x)(y) = pi (X)y(l_ pi(x))liy

w+m 2
- log(w/m+ O'V’V),
is a Bernoulli distribution with parametgx(x) € (0,1). We
wherep is an unknown normalization constant. setxq,1 =y with probability
Bayesian Information Criterion Alternatively, in a Fre- mi(y) Miet py) %) Al (4)
quentist framework, we choose a model which minimizes a (%) Miel @pi(xt)(Y) ’

certain criterion. A popular one is the Bayesian Informatio

Criterion introduced byschwarz(197§, which basically is  andXi+1 = X otherwise. This framework, summarized in
a second degree Laplace approximationidf Algorithm 1, yields a Markov chain with unique invariant
distribution7t for any fixedp € (0,1)¢. The interesting spe-
cial cases, however, usgéx) which depends on the current
state of the chain.

m ~
ogrty|y.2) ~ 1~ iogm) - Tlog(a?).

/\2 o /\2 . . . . .
whereoy = limy.... 0y, is the maximum likelihood estima- ‘Ajqorithm 1 Generic metropolised Gibbs kernel
tor of 02 based on the modgl Note that for a large sample

sizemthe Hierarchical Bayesian approach and the BayesiaH‘

put: x € BY

Information Criterion coincide. U~ 7([0,1]), K~ %
I ~7({MC{1....d} | |M]=k})
3 Markov chain Monte Carlo on binary spaces y X

_ _ ) foriel doyi~ %y
Markov chain Monte Carlo is a well-studied approach to

approximate the expected value of a posteriagiven by o 1Y) Miet Bpiy) (%)
a Bayesian model choice proble@d€orge and McCullogh (%) Miet Zpx(Y)
1997. In this section, we rapidly review the standard
methods we are going to compare our Sequential Monte
Carlo approach against. For background on Markov chain
Monte Carlo methods, we refer to standard literature (e.
Robert and Casell2004 chaps. 7-12).

>U then x<«vy

return x

Yerformance We refer to the ratio4) as the acceptance
probability of the Metropolis-Hastings step. In binary
spaces, however, accepting a proposal does not imply we

3.1 Framework are changing the state of the chain, since we are likely to re-

propose the current staye= x;. We are actually interested

in how fast the chain explores the state spaces, precisely it

mutation probability? (X1 # Xt).

The idea is to construct a transition kerrelypically some
version of a Metropolis-Hastings kernel, which adniitas
unique invariant distribution. The distribution of the Nkaw
chainxi11 ~ K (X, -) started at some randomly chosen point

xo € B converges tat. 3.2 Standard Markov chain methods
We obtain an estimat&;(y) ~ n*lz{‘jg’xt of the ex-
pected value via the ergodic theorems for Markov chaingkor this section, lek = 1 be constant. Algorithrf collapses
The firstb states are usually discarded to give the chain somt® changing a single component. Instead of independently
time to converge towards the invariant distribution befeee ~ drawing the index ~ % ({1,...,d}), we could also iterate
start to average. i through a uniformly drawn permutationg{1,...,d}) of
Markov chain methods on binary spaces work locallythe index se{1,...,d}.
that is they propose moves to neighbouring models in the Kernels of this kind are often referred to as metropolised
Metropolis-Hastings steps. A neighbouring model is a copyGibbs samplers, since they proceed component-wise as does
of the current model where just a few components are althe classical Gibbs sampler, but also involve a Metropolis-

tered. Hastings step. In the sequel, we discuss some special cases.
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Classical Gibbs The Gibbs sampler sequentially draws components simultaneously, whefg is a truncated geo-
each component from the full marginal distribution, whichmetric distribution. Note that we suggest, on average, to

corresponds to change approximately* components. In other words, for
larger values ok*, we are more likely to propose further
pi(X) def my=1]y_i=x) steps in the sampling space.

Ty =1y i —x_i) Large step proposals improve the mixing properties of the
= v l/' 7. Vi = :'() —. chain and help to escape from the attraction of local modes.
My =1,y =X=i) + 7y = 0,y—i = X-i) They are, however, less likely to be accepted than single

By construction, the acceptance probability is 1. The mutaSomponent steps which leads to a problem-dependent trade-

tion probability isi(y)/((x) + 7i(y)), wherey is a copy °ff- In our numerical examples, we could not observe any
of the current statg, with component altered. benefit from block updating, and we do not further consider

it to keep the comparison with our Sequential Monte Carlo
method more concise.

Adaptive metropolised GibbsNott and Kohn(2009 pro-
pose an adaptive version of the metropolised Gibbs. The ful}) 4

Ind dent I
marginal distributiorri(y; = 1| y_; = X_j) is approximated naependent proposais

by a linear predictor. In their notation, We can construct a fast mixing Markov chain based on inde-
pendent proposals. Letbe some distribution witht < q,
def W _iX_ i — — d
pi(X) et | (g — | Vel a@-s), thatisq(y) =0 = m(y) qur allye BF. We propose a
i new statey ~ g and accept it with probability

wherey is the estimated meakly ~! the estimated covari- my) g4oe) AL (5)

ance matrix and € (0,1/2) a design parameter which en- nix) aly)

sures thafpj(x) is a probability. Analogously to our vector The associated Markov chain has the unique invariant mea-

notation,W_; denotes the matri¥/ without theith rowand  surert. This kernel is referred to as the independent Metro-

column. We obtain the estimates from the past trajectory opolis-Hastings kernel, since the proposal distributionds

the chainxy, ..., x;_1 and update them periodically. a function of the current stat§. The mutation rate is the
The mutation probability is of the same order as that oficceptance rate minagX;), so the two notions practically

the Gibbs kernel, but adaption largely avoids the computacoincide in large spaces.

tionally expensive evaluations af The non-adaptive Gibbs ~ Obviously, in order to make this approach work, we need

sampler already requires evaluationrdfy) just to produce to chooseq sufficiently close torr, which implies high ac-

the proposay. In contrast, the adaptive metropolised Gibbsceptance rates on average. In absence of reliable priar info

samples from a proxy and only evaluatey) if y # x;. mation, however, we are not able to produce such a distribu-

tion g. We shall, however, use precisely this Markov kernel

as part of our Sequential Monte Carlo algorithm. In this con-

rtext, we can calibrate sequenag®f proposal distributions

fo be close to our current particle approximation.

Modified metropolised GibbsLiu (1996 observes that, in
comparison to the classical Gibbs kernel, we obtain a mo
efficient chain from

(%) def 1-x;. 4 Sequential Monte Carlo on binary spaces

R this section, we show how to estimate the expected value

Since we always propose to change the current state, th ) o X )
th respect to a probability mass functieniy) defined on

acceptance and mutation probabilities are the same. They™" ° i
amount torr(y)/7i(x) A 1, wherey is a copy of the current 2 USing Sequential Monte Carl@¢l Moral et al, 2009.

statex with component altered. Comparing the mutation 11iS general class of algorithms alternates importance sam
probabilities of the two kernels, we see that the modifiein9 Steps, resampling steps and Markov chain transitions

metropolised Gibbs chain moves, on average, faster than tﬁ% recursively 'c_lpprox[matt_e a s’equ_ence of distributions, us
classical Gibbs chain. ing a set of weighted ‘particles’ which represent the curren

distribution. In the following, we present a version whigh i
) tailored to work on binary spaces.
3.3 Block updating For readers not familiar with Sequential Monte Carlo, the

The modified metropolised Gibbs easily generalises to thg)IIOWing algorithm described might seem rather complex

case wher& may take values larger than one. Suppose, forlt fl'(rSt glz;nce. W‘T '””O‘ljuc_ert]he steps s_eparately br(]efore_ we
example, we propose to change ook at the complete algorithm. We give comprehensive

instructions which correspond exactly to our implementa-
(1—1/k*)k1 tion in order to make our results plausible and easily repro-
Ko G (k) O —— 1 ay(K) ducible for the reader.
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4.1 Building a sequence of distributions Carlo algorithm, however, is to control the weight degener-
cy such that we can intersperse resample and move steps

_ . . . a
The first ingredient of Sequential Monte Carlo is a smootfbefore loosing track of our particle approximation

sequence of distributiongt){_,, which ends up at the dis-
tribution of interestrg = 1. The intermediary distributions ) . .
7% are purely instrumental: the idea is to depart from a disEffective sample sizeWe measure the weight degeneracy
tribution 7 with broad support and to progress Smootmythrough the effective sample size criterion, $eeg et al.

towards the distribution of interest (1994. In our case, we have

. . N W (X)? N % (x))?
Initial distribution Theoretically, we can use amp with ~ n(a,x) =" (z"gl a k))z = (an*l n"( k))z e [1/n,1].
T < 1p that can sample from as initial distribution. Numer- NY k-1 Wa (X0) N Y k=17 (%)

ical experiments taught us, however, that premature adjusfe effective sample size is 1 if all weights are equal and
ment ofrp, for example using Markov chain pilot runs, leads 1/nif all mass is concentrated in a single particle.
to faster but less robust algorithms. For a geometric bridgesy, the effective sample size is

Thus, in practice, we recommend the uniform distributionmere|y a function ofr. We can thus control the weight de-
forits S|mpl|c‘|jty and reliability. Therefore, in the sedquee generacy by judicious choice of the step lengths
let o = % (BY).
S . 4.3 Finding the step length
Geometric bridge In our context, a natural strategy is the g pleng
following geometric bridgeGelman and Mendl998 Neal  We pick a step lengtlr such that the efficient sample size
2001, Del Moral et al, 2006: n(a) equals a fixed valug*. Sincen is continuous and

monotonously increasing im, we can solve

w(y) 1wy Py 0y, (6)

where(py){_, is an associated real sequence running from
zero to one. In the following, we present a procedure td/sing bi-sectional search, see Procedur€his approach is
determine an optimal sequeng®)!_. numerically more stable than a Newton-Raphson iteration,
for the derivativedn (a,x)/da involves fractions of sums
of exponentials which are difficult to handle.

Let o* be the unique solution td®). We obtain an as-
Suppose we have already produced a sarx{}ﬂ& X sociated sequence settipg= 1A (p_1 + a*). Thus, the
of sizen from 1g_1. We can roughly approximatg by the  number of stepg depends on the complexity of the integra-

n(avx):n* (9)

4.2 Assigning importance weights

empirical distribution tion problem at hand and is not known in advance.
N In other words, for fixed) *, the associated sequerige){
mi(y) ~ Wt(thil]) 5)(“71]0,)7 7) is a self-tuning para_metq. In our §imulations, we always
K=1 k choosen* = 0.9, which yields convincing results on both

example problems in Sectiéh Smaller values significantly

where the corresponding importance functiaris speed up the Sequential Monte Carlo algorithm but lead to a

higher variation in the results.
g O SOy det OOy gy
Zi=1 U O) -1 Procedure 2Find step length
Note thatay = pr — py—1 is the step length at time As  |nput: p, X = (X1, Xn)T
we choose, larger, that isg further fromrz_1, the weights | < 0,u<+ 1.05—p,a + 0.05
become more uneven and the accuracy of the importance repeat
approximation deteriorates. if n(a,x)<n*thenu«a,a « (a+1)/2
elsel + o, o + (a+u)/2
Procedure 1importance weights until u—lj<eorl>1—p
Input: a, 1, X = (Xg,...,%Xn)7 return aA(1-p)

ug < m(xc) forall k=1,...,n
Wi < U/(3L u) forall k=1,...,n
return w = (Wi, ..., Wp)

4.4 Resampling the system

If we repeat the weighting steps until we reagh= 1, ~ Suppose we have a sampé " = (xy Y. -.7X[rtfl]) of sizen
we obtain a classical importance sampling estimate with infrom 7g—1 with mlp[)t]ortance weights as defined ) (We can
strumental distributiomp. The idea of the Sequential Monte obtain a samplX™ = ()”(T, ...,%y which is approximately
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distributed according teg by drawing from the empirical practically impossible.
approximation defined inj. Therefore, we use a Metropolis-Hastings kernel with in-
For the implementation of the resampling step, there exisiependent proposals as described in Se@idnPrecisely,
several recipes. We could apply a multinomial resamplingve construct a kerned; employing a parametric familgjg
(Gordon et al. 1993 which is straightforward. There are, onBY which, for somed, is sufficiently close tag to allow
however, more efficient ways like residualif and Chen  for high acceptance probabilities.
199§, stratified Kitagawa 1996 and systematic resam-  For this purpose, we fit a parametgrto the particle ap-
pling (Carpenter et 811999. We use the latest in our sim- proximation(w;, X;) of 7§ according to some convenient cri-
ulations, see Proceduge terion. The choice of the parametric famdy is crucial to
In the resulting unweighted particle approximatfsiﬁ, a successful implementation of the Sequential Monte Carlo
the particles with small weights have vanished while the paralgorithm. We come back to this issue in Section
ticles with large weights have bee multiplied.

_ If we repeat the weighting and resampling steps severaarticle diversity We need to determine how often we
times, we will rapidly deplete our particle reservoir resigc  want to move the particle system before we return to the
the number of different particles to a very few. Thus, theweight-resample step. An easy criterion for the health ef th

particle approximation will be totally inaccurate. The key particle approximatiot = (X1,...,%) is its particle diver-
to fighting the decay of our approximation is the following sity

move step. Z(X)dif#{xﬂk;l’m’nG[l/n,l], (10)
Procedure 3Resample (systematic) that is the proportion of distinct particles. Note that tlae-p
Input: W = (Wy,...,Wn), X = (X1,...,Xn)T ticle diversity is a quality criterion which has no simplesan
Venw j1 cevy logue in continuous sampling spaces.
sampleu ~ % ([0,1]) For optimal results, we recommend to keep on moving
fork=1,...,ndo the particle system until the particle diversity cannot bg-a
while c <udo mented any longer. In the first steps of the algorittmn,
jJ+1 cecty; is still close to the uniform distribution, and we manage to
end while raise the particle diversity up to one.
Xk = Xj, U+—u+1 As 1% is approaching a strongly multi-modal target distri-
end for R bution 17, however, the particle diversity reaches a steady-
return X = (X1...,%n)7 state we cannot push it beyond. Clearly, even if we could

draw a particle system independently fromthe particle
diversity would be a lot smaller than one, since we would

) draw the modes oft several times.
4.5 Moving the system

The resampling step leaves us with an unweighted partic!grocedure 4Move

approximatiorX ' = (XY,.... %) of 7§ containing multiple Input: X = (xg.xn) ~ TR

copies of many particles. The central idea of the Sequential K(y,y) such thatig(y) = ¥ ycpa TR(Y)K (Y, Y)
Monte Carlo algorithm is to diversify the resampled system, s< 1

replacing the particles by draws from a Markov kerrgl repeat

with invariant measures. sample >{f ~ K(X ) forall k=1,.

Since the particlegiJ is, approximately, distributed ac-  jniil 17 (X9) — ( ~1)| < 0.020r (X! )> 095
cording torg, a drawx, ~ k(x,-) is again, approximately,
distributed accordlng tag. We can repeat this procedure
over and over without changing the target of the particle ap-
proximation.

Note that, even if the particleg’ = --- = x are equal
after resampling, the partlclee’f ., X are almost inde-
pendent after sufficiently many move steps. In order to make&inally, we summarize the complete Sequential Monte Carlo
the algorithm practical, however, we need a transition&ern method in Algorithm2. Note that, in practice, the sequence
which is rapidly mixing and therefore diversifies the pdetic 7 = ™ is not indexed byt but rather byp;, that is the
system within a few steps. Therefore, the locally operatingountett is only given implicitly.

Markov kernels reviewed in Sectidghare not suitable. In For an efficient implementation, we recommend to store
fact, our numerical experiments suggest that making a Sehe values(xy),..., T(Xn) andqg(X1),...,ds(Xn) to avoid
guential Monte Carlo algorithm work with local kernels is unnecessary evaluations. When updating the latter set, we

return X9 = (x7 ... x§)7

4.6 The Resample-move algorithm
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Algorithm 2 Resample-move (d) We need to rapidly evaluatg(y) for any y € BY in
Input: 77: BY — [0, 0) order to compute the Metropolis-Hastings rat. (
sample x(iq @/(Bd) forall k=1,...,n. (e) Analogously to the multivariate normal, we want our
a < find step length(0, X) (Procedure?) calibrated binary modejy- to produce samples with the

mean and covariance of If gg is not flexible enough to
capture the dependence structurgmthe Metropolis-

Hastings kernel in Procedu#iecannot provide satisfac-
tory acceptance rates for complex target distributimns

w «+ importance weightda, m, X) (Procedurel)
while p < 1do
ge < fit binary model (w, X) (Section5

X « resample(w, X) Procedure3 In the following we construct a suitable parametric family

)
( )
X < MOVE(Kr gy, X) (Procedure4) and explain how to deploy it in Algorithra.
( ) Most of the literature on binary data stems from response
( )

a <+ find step length(p, X) Procedure?2 i ) L
. ) models, multi-way contingency tables and multivariate in-
w « importance weighta, 7, X) ~ (Procedurel teraction theory@ox, 1979. For completeness, we append
p«—p+a a brief list of other binary models mentioned in the litera-
end while ture which fail, for various reasons, to work in Sequential

Monte Carlo applications. Providing parametric families
which meet the above requirements in high dimensions is
a difficult task and understanding the shortcomings of alter
native approaches an important part of the discussion.

return $R_; Wixy &~ Ex (y)

can exploit the fact that, in a systematically resampletipar

cle system, multiple copies of the same patrticles are neigh-
bours. 5.2 The logistic regression model

In the previous paragraph, we already mentioned that a fac-
5 Multivariate binary models torization (L1) of the mass functiomjg (y) into conditional
) . o distributions permits to sample from the parametric family
In the section, we address the choice of a multivariate b'Unfortunater, for a compler-dimensional binary model,

nary parametric familyqe | 6 € ©} needed to construct the e ysually cannot calculate closed-form expressions for th
Metropolis-Hastings kernel used in Proceddre conditional or marginal mass functions.

5.1 Desired properties Construction of the modelWe get around computing the

We first frame the properties making a parametric fam”ymarginal distributions ofjg(y) if we directly fit univariate

suitable for our Sequential Monte Carlo algorithm. modelsap, (v | y1i-1) to the conditionalsi(y | y1i-1) of the
target function. Precisely, we adjust the logistic regmess
(a) For reasons of parsimony, we want to construct a fam-

ily of distributions with at most _o_lir(ﬂ) <d(d+1)/2 logit(Pr(y = 1)) def bij + Zij;ll bijy;, i=1...,d
parameters. More complex families are usually compu- _
tationally too expensive to handle. where logitp) =logp—log(1—p). In the context of our Se-

) ~quential Monte Carlo application, we take the particle sys-
(b) Given a sampl&X = (x1,...,Xn) from the target distri-  temX and regresg' = X; on the column&! = (X1 1,1),
bution 77, we want to estimat®” such that the binary \here the columrz!’ yields the intercept to complete the
modelqg- is close torr. For instancef” might be a  |ogistic model.
maximum likelihood or method of moments estimator. For ad-dimensional lower triangu'ar matrB’ we define

(c) We want to generate independent samples foggmiIf the logistic regression model as

we can compute the conditional or marginal distribu- def d
tions, we can writglg as as(y) = |_l%p(bi,i+bi.1:i—ly1'i—l)(VI) (12)
! : :
d
do(y) =ds(y1) qug(yi|y1;i,l) (11)  wherep(y) = logit 1(y) = (1+exp(—y)) L. Asin the pre-
= ceding sectionsz,(y) = p¥(1— p)*~Yis the Bernoulli dis-

d tribution with parametep € [0, 1].
=do(y1) _rLQf?(Vlii)/QG(Vlii*l)' There aral! possible logistic regressions models and we
= arbitrarily pick one while there should be a parametrizatio
Using the chain rule decompositiohl]), we can sample which is optimal in a sense of nearness to the datale
a random vectoy ~ g component-wise, conditioning observed, however, that permuting the components had, in
on the entries we already generated. practice, no impact on the quality of the approximation.
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Keep in mind that the number of observations in the lo-Fitting the model We maximise the log-likelihood function
gistic regressions is the sin@f the particle system and typ- ¢(b) = ¢(b | y,Z) of a weighted logistic regression model
ically very large. For instance, we run our numerical examby solving the first order conditiod//d3 = 0. We find a
ples in Sectiors usingn = 2 x 10° particles. Therefore, the numerical solution via Newton-Raphson iterations
fit of the logistic regressions is usually very good.

gistic reg yveg ~ 92u(bl) o)

Sparse version of the modelThe major drawback of all ) opbr o

multiplicative models is the fact that we have no closed-Starting at somé[®; see Procedurs for the exact terms.
form likelihood-maximizers such that the parameter estimaOther updating formulas like Iteratively Reweighted Least
tion requires costly iterative fitting procedures. Therefo Squares or quasi-Newton iterations should work as well.
even before discussing the fitting procedure, we construct.a _ i — i
sparse version of the logistic regression model which we caRrocedure SFitting the weighted logistic regressions

(b1 — i) >0

, (19)

estimate faster than the saturated model. Input: W = (Wy,...,Wn), X = (Xg,...,Xn)T, B € RIxd
Instead of fitting the saturated modg(y | y1:i-1), we forieclcdo
preferably work with a more parsimonious regression model 7 (XL, 1), y « Xi, b9 BiLugi)
like q(y | y;) for some index selt; C {1,...,i — 1}, where repeat
the number of predictorsl#is typically smaller tham — 1. Py Iogitfl(Zkb“*”) forall k=1,...,
We solve this nested variable selection problem using some
simple, fast to compute criteria. G = P(1—P) forall k=1,...,n
Given a weighted particle systeme [0,1]", X € B4,
we denote foi, j € {1,...,d} the weighted sample mean by bl «+ (ZTdiag[w] diag[q] Z + 1) * x
ZTdiag[w]) (diag[g]Zb" -
%= S0 W R = S Wi (13) (Z7diag|w]) (diag[q] +(y—p))
_ _ until b’ —bf | < 10~ for all |
and the weighted sample correlation by Biyugi) < b
o Xi,j — XiX; end for
R O LR 9 eum B

Fore = 0.02, we define the index set Sometimes, the Newton-Raphson iterations do not con-

def . _ verge because the likelihood function is monotone and thus
I'={i=1...d[x¢(el-¢)} has no finite maximizer. This problem is caused by data

with complete or quasi-complete separation in the sample

which identifies the components which have, according t(boints @lbert and Andersosi1984. There are several ways
particle system, a marginal probability close to eitherdmbu to handle this issue '

ary of the unit interval.
For the componentse |, we do not consider fitting a (&) We just halt the algorithm after a fixed number of iter-

logistic regression, but sét = 0 and draw them indepen- ations and ignore the lack of convergence. Such pro-
dently. Precisely, we sék; = logit(x;) andb; _j = 0 which ceeding, however, might cause uncontrolled numerical
corresponds to logistic model without predictors. Firgtly problems.

teractions do not really matter if the marginal probability
excessively small or large. Secondly, these components a
prone to cause complete separation in the data or might even
be constant.

For the conditional distribution of the remaining compo-
nentsl®={1,...,d}\ I, we construct parsimonious logistic (c) We just add a simple quadratic penalty teg®T3 to
regressions. Fad = 0.075, we define the predictor sets the log-likelihood to ensure the target-function is convex

and does not cause numerical problems.

Fb) Firth (1993 proposes to use a Jeffrey’s prior bnThe

e ’ S I -
penalized log-likelihood does have a finite maximizer
but requires computing the derivatives of the Fisher in-
formation matrix.

_def .. i . i~ c
Li={i=1..i-1[d< ‘r"l‘}’ el (d) Aswe notice that some termslpfare growing beyond a
certain threshold, we move the componieindm the set
of components with associated logistic regression model

1€ to the set of independent componeints

which identifies the components with index smaller than
and significant mutual association. Running our examples
in Section6 with & = 0 show that a saturated logistic re-
gression kernel achieves about the same acceptance ratedrapractice, we combine the approaches (c) and (d). In
a sparse one, while settirdg= 0.075 dramatically reduces Procedure5, we did not elaborate how to handle non-
the computational time we need to calibrate the model.  convergence, but added a penalty term to the log-likelihood
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which causes the extrd,, in the Newton-Raphson update. Let us check the requirement list: the product model is

Since we solve the update equation via Cholesky factorizgparsimonious with dirtg) = d; the maximum likelihood es-

tions, adding a small term on the diagonal ensures that th@mator 6* is the sample meaxn= nflzﬂzlxk; the decom-

matrix is indeed numerically decomposable. position (L1) holds trivially, which allows us to sample from
gp and evaluatey,(y) in O(d).

Starting points The Newton-Raphson procedure is known Obviously, howevergy, does not reproduce any depen-

to rapidly converge for starting valu®§' not too far from ~ dencies we might observe K. Could we just forget about

the solutionb”. In absence of prior information abodf] this last point and use the product model for its simplicity?
[ !

we would naturally start with a vector of zeros and maybe
settingb;] = logit(x).

In the context of our Sequential Monte Carlo algorithm
we can do better than that. Recall that, we constructed
smooth sequendgg);_, of distributions which corresponds

i i i T _— T
;[/(\;hfiicl's] ?sq:(segggi;tfesrt?) p;)Ssilqii:q”e%%tl(fg)é?r;mgaé2;:.0' and c_onstruct a variable selection problem with high depen-

It significantly speeds up the Newton-Raphson procedurgenCIes'
if we choosef = B; as starting point for the estimation
of B;1. Indeed, towards the end of the Sequential Montd-igure 1: Toy example showing how well the product modgl|
Carlo algorithm, we fit a single next logistic regressiona”q t.he logistic regrgss@on modﬁ replicate the mass function of
logit(X;) ~ X, in less than four iterations on average when? difficult posterior distribution
starting atB;_1, compared to about 13 iterations on average
when starting at zero.

Toy example We visualize the strinking impracticalness of
fhe product model by means of a toy example in a low di-
mensiord = 3. We take a simple linear relatioh=V1+ V>

(a) true mass functior(y)

Sampling and evaluatingIn the move step of Sequential
Monte Carlo we discussed in Sectidrb, we need to sam-
ple a proposal statg from gg and evaluate the likelihood
ge(y) to compute the Metropolis-Hastings rafio For the
logistic regression modejs, we can do both in one go, see

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Procedure. . D
B S N S e P
Procedure 6Sampling from the model £E828gg3JJ€EgE88¢88 g4

Input: B
y<(0,...,0), p+1
fori=1...,ddo
q <« logit ™ (bij + ¥ et bijy)
sample y ~ %y

p%{pxq if yi=1

(b) product modety, (y)

px(1-q) if yi=0
end for
return y, p
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(c) logistic regression mode(y)

5.3 Why not use a simpler model?

We briefly justify why we should not use a simpler paramet-
ric family for our Sequential Monte Carlo application. In-
disputably, the easiest parametric family Bt that we can
think of is a product model

def

a(Y) = N1 Zn ()

0.00 0.05 0.10 0.15 0.20 0.25 0.30
L

— —m
whereZ, i (y) = pi(x)¥(1— pi(x))*"¥ denotes a Bernoull 8332883338 ¢g828¢88d
o o o o o o o o — — — — — — — —

distribution with parametep; (x) € [0,1].
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Forn= 100 andu = 10, we draw normal variates Figure 2: We compare the use of a product modglto a logis-
tic regression modejg as proposal distribution of the Metropolis-

Hastings kernel3.4). We monitor a typical rung on the x-axis)

of our Sequential Monte Carlo algorithm (for the Boston Hogs
data set described in Secti6éri) and plot the acceptance rates and
particle diversities (on the y-axis).

VlNJV(il'laln)a VZN‘/V(“aln)v y:V1+V2

and then generate observations

2 2
2,2~ N (le (u /4)|n) , Bu~N (W27 (H /4)|n) . (a) acceptance rates
The posterior distributiom(y) = m(y | y, Z), using the prior
distributions as described in Secti@ typically exhibits S| - —=— product model
. . -+ logistic regression model

strong dependencies between its components due to the cor-
relation in the data. =

Now we generate pseudo-random d&térom 7T and fit
both a product model, and a logistic regression modw. S

Looking at the corresponding mass function in Figiireve
notice how badly the product model mimics the true poste-§ 1
rior. This observation carries over to larger sampling spac

=
o

0.0 0.2 0.4 0.6 0.8 1.0
Acceptance rates A good way to analyse the importance

of reproducing the dependenciesmfs in terms of accep- 3 |
tance rates and particle diversities. As we already remark | ™
in Section4.5, the particle diversity naturally diminishes as <«
our particle system approaches a strongly multi-modaétarg

distribution7t. However, we want our algorithm to keep up ¢ |
the particle diversity a long as possible to ensure theglarti

(b) particle diversities

system is well spread out over the entire state space. ol
In Figure2, we show a comparison (based on the Boston
Housing data set explained in Secti®d) between two Se- o | —=— product model
quential Monte Carlo algorithms, using a product magjel -+ logistic regression model
and a logistic regression modag as proposal distribution g |
of the Metropolis-Hastings kernes (4). 00 0.2 0.4 056 058 0

Clearly, in Figure2(a), the acceptance rates achieved by
the product kernel rapidly decrease and dwell around 5% for
the second half of the run. In contrast, the logistic regress 4 Review of alternative binary models
sion kernel always provides acceptance rates greater than . ) .
20%. As a consequence, in Figutéo), the particle diver- In the following, we review some alternative approaches to
sity sustained by the product kernel decreases at an ea,qgodelmg multivariate binary data. Unfortunately, we can-

stage, while the logistic regression kernel holds it upluntinotincorporate any of these models in our Sequential Monte
the very last steps. Carlo algorithm. Still, it is instructive to understand waly
At first sight, it might seem odd that the acceptance ratelS'native strategies fail to provide suitable proposatihis-
jlons in the sense of Sectignl. For a more detailed review

of the logistic regression kernel increase during the fina X I . ,
steps of the algorithm. If we jump ahead, however, and tak8f parametric families suitable for adaptive Monte Carlo al

a look at the results of the Boston Housing problem, se@or'tl"mS on binary spaces, séehafer(2010.
Figure3(a), we notice that quite a few marginal probabili-
ties of the posteriort turn out to be zero, which makes it Additive models For suitable coefficienta € de, we can
easier to reproduce the distributions towards the end of therite any mass function o9 as
Resample-Move algorithm.
However, if we already decide at an early stage that for n(y) = Zsc(a,...d} 8s[lies -
some componenk (y = 1) = 0, we fail to ever consider |t s tempting to construct é(d + 1),/2 parameter model
statesy € BY with y; = 1 for the rest of the algorithm. There-
f(_)re, the advantage of_the logistic regression kernel dwer t dua(y) e U+ Yy Ay
simple product kernel is that we do not completely drop any
components from the variable selection problem until the fiby removing interaction terms of order higher than two. As
nal steps. Bahadui(1967) points out, the main problem of any additive
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approach is the fact that a truncated model might not be norby settingy = s(v) for a drawv ~ pg from the latent para-
negative and thus not define a probability distribution. metric family.

Although the linear structure allows to derive explicit Note that evaluating the probability mass functipty)
and recursive formulae for the marginal and conditionals usually a difficult task. Hence, we cannot use this class of
distributions, we hardly ever find a useful application formodels in a Sequential Monte Carlo context. These models
the additive model. As other authorBegrk et al. 1996  can be useful, however, in other adaptive Monte Carlo algo-
Emrich and Piedmonfel997) remark, additive representa- rithms that do not require evaluation @§(y), for instance
tions like the much-citedBahadur(1961) expansion are the Cross-Entropy metho&(binstein1997.
quite instructive but, unfortunately, impractical. Non-normal parametric families witti(d — 1)/2 depen-
dence parameters seem to either have a very limited de-
pendence structure or unfavourable propertiks: (1996.

Log-linear models For suitable coefficienta € de, we -
Therefore, the multivariate normal

can write any mass function @f' as

p(u,Z) (V) — (szd/z |z|71/2671/2(V7H)Tzfl(v7u)7

S(V) = (L0 (V1) -+ s L0 (Vd))

Catlppears to be the natural and almost the only optiopgor
This kind of model has been discussed repeatedly in the

def literature Emrich and Piedmontd 997 Leisch et al. 1998
dua(y) = Hexp(yTAy), (16)  Cox and Wermuth2002.

The first and second order marginal probabilities of the
modelq, ) are given by®(pi) and @z(ui, Uj; i j), re-
spectively, whereb; (v;) and @,(v;,vj; gi j) denote the cu-
mulative distribution functions of the univariate and biva
ate normal distributions with zero mean, unit variance and
correlationg; j € [-1,1].

We can fit the moded , 5) to a particle systeniw, X) by
matching the moment, that is adjustingand such that

1(y) = exp(yscqa...dy as[lies¥-)

Removing higher order interaction terms, we can constru
ad(d+1)/2 parameter model

whereA is a symmetric matrix. Log-linear models define a
well studied class of distributions, but there is no simple r
cursive structure for their marginal distributions. THere,
we cannot compute the factorizatidrlj we need to sample
fromga.

Cox and Wermuth(1994 propose an approximation to
the marginal distributions by expressions of the forif)(
omitting higher order terms in a Taylor expansion. If we

write the parameteh as O1(li) =X, DPi(Mi, Mj; 0 j) =Tij
A bT with X andr; j as defined in13) and (L4). However, the lo-
A= ( b ¢ ) , cally constructed correlation matrimight not be positive

definite. Still, we can obtain a feasible parameter replac-

the parameter of the marginal distributiqR, , ,(y1.q_1)is  N9ZPYZ" = (Z+[A[1)/(1+]A]), where is the smallest
approximately given by ' eigenvalue of the locally adjusted matix

1 .
Asq 1~ A+ (1+tanHc/2))diaglb] + = sec(c/2)bbT, Archimedean copula modelsGenest and Neslehova
i ( "(¢/2)) diaglb] 2 (/2) (2007 discuss the potentials and pitfalls of applying copula

theory, which is well developed for bivariate, continuous
random variables, to multivariate discrete distribution.
There have been earlier attempts to sample binary vectors
via copulae: Lee (1993 describes how to construct an
Archimedean copula, more precisely the Frank family

which is a symmetric matrix of sizd — 1. The normal-
ization constant igi;.4_1 = H(1+exp(c)). We can recur-
sively compute approximations to all marginal distribngo
OA1q 1:-- -+ Oa., @nd derive logistic forms

_ Oas (Vi = 1, y1i 1) (Nelsen 2006 p.119), for sampling multivariate binary
logit(P(y = 1] y1:-1)) = log 0 -?(y ~0 Vl:_ D’ data. Unfortunately, this approach is limited to very low
S dimensions.

which takes us back tal@). However, there is no reason

to fit a log-linear model and compute approximate logisticMultivariate reduction models Several approaches to gen-

models if we can directly fit a logistic regression model inerating multivariate binary data are based on a representa-

the same time. tion of the componentg as functions of sums of indepen-
dent variables Rark et al. 1996 Lunn and Davies1998

Latent variable models Let pg be a parametric family on Oman and Zuckei200]). These techniques are limited to

2 ands: 2 — BY a mapping into the binary state space.certain patterns of non-negative correlation, and do.ether

We can sample from a latent variable model fore, not yield suitable proposal distributions in a Sediag¢n
Monte Carlo application. We mention them for the sake of

do(Y) = Js-1¢y) Pe(V)dv completeness.
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6 Numerical examples 6.2 How to compare to Markov chain Monte Carlo

inthi . S M Carlo al We do not think it is reasonable to compare two completely
n this section we compare our Sequential Monte Carlo algogjfrerent algorithms in terms of pure computational time.

n:}hm to statr:ldard M?Lk%\_/ %hzm me(tjhodg. Wg created LnOdQ)\/e cannot guarantee that our implementations are optimal
choice problems wit Igh dependencies etwee_n the CQior that the time measurements can exactly be reproduced
variates which yield particularly challenging, multi-add in other computing environments

posterior mass functions. Our_ exampl_es are build frpm We suppose that the number of evaluations of the target

freel_y avalla_ble datasets by adding loganithms, polyndsnia functionrtis more of a fair stopping criterion, since it shows

and interaction terms. how well the algorithms exploit the information obtained
from 1. Precisely, we parameterise the Sequential Monte
Carlo algorithm to not exceed a fixed numbeof evalua-

6.1 Construction of the data sets tions and stop the Markov chains wherevaluations have

been performed.
Boston Housing The first example is based on

the Boston Housing data set, originally treated by .
Harrison and Rubinfeld1979, which is freely available Assets and drawbacksThe Sequential Monte Carlo and

at the StatLib data archive. The data set provides co-the Markgv cham M?nte C(;;lrlo algﬁ.rltrf:ms EOI.? r:la\;etexte?[l—
variates ranging from the nitrogen oxide concentration t 'ons and numerical speed-ups which make it hard to settie

the per capita crime rate to explain the median prices of" a fair comparison.

owner-occupied homes. The data has yet been treated b Advocstes fOf Markov Icha_ln mgthod; ”?'ghé.c r|t|c(:j|s§ that
several authors, mainly because it provides a rich mixttire gne number of target evaluations is a criterion biased taw/ar

continuous and discrete variables, resulting in an intergs the Sequential Monte Carlo approach, for there are updating
variable selection problem schemes which allow for faster computation of the Cholesky
o . ' - . decomposition¥) given the decomposition of a neighbour-
Specifically, we aim at explaining the logarithm of the

d medi | p iod housi Wing model, seédongarra et al(1979 chaps. 8,10). Thus,
corrected median values of owner-occupied housing. Wiy oy chains which propose to change one component in

e_nhance the 13 cplumns of the original c_iata set by adding, 1, step can evaluatewith less effort and perform more
first order interactions between all covariates. Further, W evaluations oftin the same time.

add a constant column and a squared version of each covari-o ihe other hand, however, the Sequential Monte Carlo

ate (exceptfor CHAS, since itis binary). algorithm can be parallelised in the sense that we can, on
This gives us a model choice problem with 104 possiyjtable hardware, run many evaluationsw parallel dur-

ble predictors and 506 observations. We use a hierarchiCﬁ,{g the move step, see ProceddreNo analogue speed-up

Bayesian approach, with priors as explained in the abovgan pe performed in the context of Markov chains. We did

Section2, to construct a posterior distributiam By con- ot yet exploit this advantage but are confident that we shall

struction, there are strong dependencies between the- posgge this feature in a follow-up of this paper. Further, Segue

ble predictors which leads to a rather complex, multi-modatja| Monte Carlo methods are more suitable than Markov

posterior distribution. chain Monte Carlo to approximate the evidence, that is the
normalization constant of the posterior distribution. V@ c
exploit this property to compare, for instance, regression

Concrete Compressive Strengtifhe second example models with different monotonic link functions.

is constructed from a less known data set, originally

treated byYeh (1999, which is freely available at the parameters We run our Sequential Monte Carlo (SMC) al-
UCI Machine Learning RepositoryThe data provides in-  4qrithm withn = 2 x 10* particles and a target effective sam-
f(_)rmatlon about composing concrete to explain its COMPresyje sizen — 0.9, as explained in Sectioh For these param-
sive strength. The compressive strength appears 10 begerg the Sequential Monte Carlo algorithm needs less than
highly non-linear function of age and ingredients. v = 2 x 10P evaluations of on both examples problems.
In order to explain the compressive strength, we take the We compare our algorithm to both the Adaptive Markov
8 covariates of the original data set and add the logarithmghain Monte Carlo I{ott and Kohn 2005 AMCMC) and
of some covariates (cement, water, coarse aggregate, fifige standard metropolised Gibbisit(, 1996 MCMC) de-
aggregate, age). Further, we add interactions betweeB all kcribed in Sectios. As stated earlier, we could not observe
covariates of the augmented data set and a constant columyhy positive effect from block updating and do therefore not
This gives us a model choice problem with 79 possibleconsider it in our examples.
predictors and 1030 observations. We use a hierarchical For the AMCMC, we us& = 0.01 andA = 0.01, fol-
Bayesian approach, with priors as explained in the abovlewing the recommendations &fott and Kohn(2005. We
Section2, to construct a posterior distribution update the estimateg andW every 2x 10° iterations of


http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls
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chain. Before we start adapting, we generate 10" iter- We acknowledge the StatLib data archive and the UCI
ations with a metropolised Gibbs kernel (after a discardedlachine Learning Repository for providing the data sets
burn-in of 2x 10* iterations). used in this work.

6.3 Implementation References

The numerical work was completely doneRgthon 2.6us-

ing SciPypackages. Scientific work in applied fields is often
more accessible to the reader if the source code which gen-
erated numerical evidence is released along with the publi-

cation. The complete sources used in this work can be foungingrieu, C. and Thoms, J. (2008). A tutorial on adaptive
athttp://code. googl e. conl p/ sntdss. MCMC. 18(4):343-373.
We also provide instructions on how to install and run our

project. The program can process data sets in stamdard Bahadur, R. (1961). A representation of the joint distridot
format and generate scripts for graphical visualisation of ~ of responses to n dichotomous items. In Solomon, H.,
the results. The released version was tested to run on botheditor,Studies in ltem Analysis and Predictigrages pp.
Windows and Linux machines. 158-68. Stanford University Press.

Albert, A. and Anderson, J. A. (1984). On the existence of
maximum likelihood estimates in logistic regression mod-
els. Biometrikg (72):1-10.

Cappé, O., Douc, R., Guillin, A., Marin, J., and Robert, C.
(2008). Adaptive importance sampling in general mixture
We run each algorithm 200 times and visualize the varia- classesStatistics and Computing8(4):447—-459.
tion of the results in box-plots, see Figuréand4. The )
white boxes on contain 80% of the results, while the blackcarpenter, J., Clifford, P., and Fearnhead, P. (1999). Im-
boxes contain the 20% outliers. The horizontal line in the Proved particle filter for nonlinear problemsEE Proc.
white box indicates the median. We draw a coloured bar be- Radar, Sonar NavigatiqrL46(1):2-7.
low the minima_l value to impr_ov_e the readability; otherwiseCOX, D. (1972). The analysis of multivariate binary data.
components W|t_h a small variation are har(_JI to see. Applied Statisticspages 113-120.
The Sequential Monte Carlo algorithm ist extremely ro-
bust. For 200 test runs and for both data sets, the algorithimox, D. and Wermuth, N. (1994). A note on the quadratic
did not produce a single outlier in any of the components.  exponential binary distributionBiometrika 81(2):403—
This not true for either of the Markov chain algorithms.  408.
The size of white boxes indicate that adaptive Markov chain
Monte Carlo works quite better than the standard Marko¥Cox, D. and Wermuth, N. (2002). On some models
chain procedure. However, even the adaptive chain is rather for multivariate binary variables parallel in complexity
vulnerable to outliers. The large black boxes indicate,that With the multivariate Gaussian distributiofgiometrika
for some starting points of the chain, the estimates of some 89(2):462.
marginal probabilities might be completely wrong.
The outliers, that is the black boxes, in Figurgb) and

6.4 Discussion and conclusion

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential

4(c) are strikingly similar. The adaptive and the standard njotnt.esc ar_lo Sg“;?'?_ripurlnl\jl ?:]tze IR oyal gtf’ztﬁlcilggo'
Markov chains apparently both fall into the same trap, which ciety: Series B(Statistical Methodolog8f(3):411-436.

in turn implies that adaption makes the method faster b“l’_‘)ongarra, J., Moler, C., Bunch, J., and Stewart, G. (1979).
not more robust against outliers. An adapted local method is | \NpACK: users’ guide Society for Industrial and Ap-
still a local method and does not yield reliable estimates fo plied Mathematics.

difficult sampling problems.

In Tablesl and2, we gathered some key performance in-Emrich, L. and Piedmonte, M. (1991). A method for gener-
dicators, each averaged over the 200 runs of the respectiveating high-dimensional multivariate binary variatekhe
algorithms. Note that the time needed to perform 20° American Statisticiajd5(4):302-304.
evaluations oftis a little less than the running time of the ) ) ) o
standard Markov chain. Thus, even in terms of computaFirth, D. (1993). Bias reduction of maximum likelihood es-
tional time, the adaptive Markov chain can hardly compete timates.Biometrika (80):27-38.

Wlth our Sequential Monte Carlo method, even if evalua'GeIman, A. and Meng, X. (1998). Simulating normalizing
tions of rwere at no cost.

constants: From importance sampling to bridge sampling

o to path samplingStatistical Sciencel 3(2):163-185.
AcknowledgementsN. Chopin is supported by the ANR

grant ANR-008-BLAN-0218 “BigMC” of the French Min- Genest, C. and Neslehova, J. (2007). A primer on copulas
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Figure 3: Boston Housing data set. We ran the Sequential Monte Cadaptive Markov chain Monte Carlo and standard Markov chain
Monte Carlo algorithms each 200 times. The white boxes @oi@@% of the results with the line indicating the median. Wded the
coloured bars to make the plot easier to read.
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Table 1: Boston Housing data set. The table shows some averageddiegtiors complementary to Figuge

| Sequential MC  Adaptive MCMC  Standard MCMC

computational time 0:22:12h 2:07:20h 0:14:46h
evaluations oft 1.91x 10° 2.00x 10° 2.00x 10°
average acceptance rate 36.4% 272% 002%
lengtht of the chairx 5.39x 107 2.00x 1(°

movesx; # X;_1 of the chain 5.46x 10° 0.33x 10°
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Figure 4: Concrete Compressive Strength data set. We ran the Seajudotite Carlo, Adaptive Markov chain Monte Carlo and stadda
Markov chain Monte Carlo algorithms each 200 times. The avhiixes contain 80% of the results with the line indicatirg riredian.
We added the coloured bars to make the plot easier to read.
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Table 2: Concrete Compressive Strength data set. The table shovwesamraged key indicators complementary to Figure

| Sequential MC  Adaptive MCMC  Standard MCMC

computational time 20 : 54 min 53:45 min 19:18 min
evaluations oft 1.62x 10° 2.01x 10° 2.00x 10°
average acceptance rate 30.7% 67.1% 0124%
lengtht of the chainx; 1.86x 10’ 2.00x 1(°

movesx; # X;_1 of the chain 1.35x 10° 0.25x 10°
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