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Dynamically ordered energy function for

Morse-Smale diffeomorphisms on 3-manifolds

V. Grines∗ F. Laudenbach† O. Pochinka‡

January 31, 2011

Abstract

This note deals with arbitrary Morse-Smale diffeomorphisms in di-
mension 3 and extends ideas from [3], [4], where gradient-like case was
considered. We introduce a kind of Morse-Lyapunov function, called
dynamically ordered, which fits well dynamics of diffeomorphism. The
paper is devoted to finding conditions to the existence of such an en-
ergy function, that is, a function whose set of critical points coincides
with the non-wandering set of the considered diffeomorphism. We show
that the necessary and sufficient conditions to the existence of a dy-
namically ordered energy function reduces to the type of embedding of
one-dimensional attractors and repellers of a given Morse-Smale diffeo-
morphism on a closed 3-manifold.

2000 Mathematics Subject Classification: 37B25, 37D15, 57M30.
Keywords: Morse-Smale diffeomorphism, Morse-Lyapunov function, energy
function.

1 Introduction and formulation of the results

We limit ourselves to dimension 3, even if some concepts do not depend on
dimension. Let M be a closed 3-manifold and f : M → M be a Morse-Smale
diffeomorphism, that is: its nonwandering set Ωf is finite, hence consists of
periodic points; f is hyperbolic along Ωf and the stable and unstable manifolds
have transverse intersections. For the first important results on Morse-Smale
diffeomorphisms we refer to [11], [8].
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Definition 1 A Morse function ϕ :M → R is said to be a Lyapunov function
for f if:

1) ϕ(f(x)) < ϕ(x) for every x 6∈ Ωf ;
2) ϕ(f(x)) = ϕ(x) for every x ∈ Ωf .

Let us recall that a function ϕ :M → R is called a Morse function if all its
critical points are non-degenerate. It is easy to construct Lyapunov functions
for f . For instance, one considers the suspension of f , a 4-dimensional manifold
which is fibered over the circle and is endowed with a Morse-Smale vector field
X transverse to the fibration. Thus the method introduced by Smale in [12]
applies and yields a Lyapunov function Φ for X . The restriction of Φ to the
base fibre, identified with M , is a Lyapunov function for f .

The periodic points of f are easily seen to be critical points of its Lyapunov
function ϕ and the index of ϕ at p ∈ Ωf equals the dimension ofW u

p . Moreover
any periodic point p is a maximum of the restriction of ϕ to the unstable
manifold W u

p and a minimum of its restriction to the stable manifold W s
p (see

statement 4 below). If these extremums are non-degenerate then the invariant
manifolds of p are transversal to all regular level sets of ϕ in some neighborhood
Up of p. This local property is useful for the construction of a (global) Lyapunov
function. Next definition was introduced in [4].

Definition 2 A Lyapunov function ϕ : M → R for the Morse-Smale diffeo-
morphism f : M → M is called a Morse-Lyapunov function if every periodic
point p is a non-degenerate maximum (resp. minimum) of the restriction of ϕ
to the unstable (resp. stable) manifold W u

p (resp. W s
p ).

Among the Lyapunov functions of f those which are Morse-Lyapunov form
a generic set in the C∞-topology (see [4], theorem 1). In general, a Morse-
Lyapunov function may have critical points which are not periodic points of
f .

Definition 3 A Morse-Lyapunov function ϕ is called an energy function for a
Morse-Smale diffeomorphism f if the set Critϕ of critical points of ϕ coincides
with Ωf .

D. Pixton [9] was the first who proved that there is a gradient-like diffeo-
morphism without heteroclinic curves on S3 which has no an energy function.
Let us recall that a Morse-Smale diffeomorphism f :M →M is called gradient-
like if for any pair of periodic points x, y (x 6= y) the condition W u

x ∩W s
y 6= ∅

implies dimW s
x < dimW s

y . It follows from the definition that a Morse-Smale
diffeomorphism is gradient-like if and only if there are no heteroclinic points
that is, intersection points of two-dimensional and one-dimensional invariant
manifolds of different saddle points. Notice that two-dimensional invariant
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manifolds of different saddle points of a gradient-like diffeomorphism may have
a non-empty intersection along the so-called heteroclinic curves (see figure 1).

In [4] (Theorem 4) we gave necessary and sufficient conditions to the ex-
istence of a self-indexing energy function for a Morse-Smale diffeomorphism
f :M →M and showed that a non gradient-like diffeomorphism does not pos-
sess a self-indexing energy function. Here self-indexing means ϕ(p) = dimW u

p

for every point p ∈ Ωf .
In the present paper we introduce the notion of dynamically ordered

Morse-Lyapunov function for an arbitrary Morse-Smale diffeomorphism on 3-
manifold. By the argument above-mentioned such a function always exists.
We find conditions to the existence of such an energy function. We show
that the necessary and sufficient conditions to the existence of dynamically or-
dered energy function is reduced to the type of embedding of one-dimensional
attractors and repellers of a given Morse-Smale diffeomorphism on a closed
3-manifold. More details are given below.

Let f : M → M be a Morse-Smale diffeomorphism. Following to S. Smale
we introduce a partial order relation ≺ on the set of periodic orbits of f in the
following way:

Op ≺ Or ⇐⇒ W s
Op

∩W u
Or

6= ∅ .

This definition means intuitively that all wandering points flow down along
unstable manifolds to less elements. A sequence of different periodic orbits
Op = Op0,Op1, . . . ,Opk = Or (k ≥ 1) such that Op0 ≺ Op1 ≺ . . . ≺ Opk

is called a chain of length k connecting Or to Op. The maximum length of
such chains is called, by J. Palis in [8], the behaviour of Or relative to Op and
denoted by beh(Or|Op). For completeness it is assumed beh(Or|Op) = 0 if
W u

Or
∩W s

Op
= ∅.

For each q ∈ {0, 1, 2, 3}, denote Ωq the subset of periodic points r such that
dim W u

r = q and denote kq the number of periodic orbits in the set Ωq. Set
kf = k0 + k1 + k2 + k3 the number of all periodic orbits. For each periodic
orbit Or set q

Or
= dim W u

Or
and b

Or
= max

p∈Ω0

{beh(Or|Op)}.

It is clear that the condition Op ≺ Or implies bOp
< bOr

. Notice that if
Op ≺ Or then qOp

≤ qOr
. Indeed, as the intersection W s

Op
∩W u

Or
is transverse,

the condition Op ≺ Or implies the inequality dim W s
Op

+ dim W u
Or

− 3 ≥ 0.
Then 3− qOp

+ qOr
− 3 ≥ 0 and, hence, qOp

≤ qOr
.

Thus, it is possible to numerate all periodic orbits: O1, . . . ,Okf such way
that this numeration preserves the partial order ≺ and satisfies to following
conditions:

qOi
< qOj

⇒ i < j; qOi
= qOj

and bOi
< bOj

⇒ i < j. (1)

On figure 1 it is represented a phase portrait of a Morse-Smale diffeomor-
phism f : S3 → S3 with Ωf consisting of fixed points which are numerated
according to conditions (1).
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Figure 1: Phase portrait of a Morse-Smale diffeomorphism f : S3 → S3 with
ordered periodic orbits according to conditions (1)

Definition 4 A Morse-Lyapunov function ϕ is said to be dynamically ordered
when ϕ(Oi) = i for i ∈ {0, . . . , kf}.

For each i = 1, . . . , kf − 1, set Ai =
i⋃

j=1

W u
Oj
. It follows from [11] (theorem

2.3) that (cl W u
Oi
)\W u

Oi
⊂ Ai−1. Thus Ai is compact. It is well known (see, for

example [10]) that the set Ai is an attractor, that is it has a trapping neighbor-
hoodMi such that f(Mi) ⊂ int Mi (Mi is f -compressed) and

⋂

k≥0

fk(Mi) = Ai.

We will say that Ai is q-dimensional attractor if q
Oi

= q.
For each i = 1, . . . , kf − 1, denote by mi the number of connected compo-

nents of Ai. Notice that for each i = 1, . . . , k0, the attractor Ai has dimension
0 and consists of mi hyperbolic sinks.

Proposition 1 Each zero-dimensional attractor Ai of the Morse-Smale dif-
feomorphism f on a 3-manifold M has a trapping neighborhood Mi consisting
of mi pairwise disjoint smooth 3-balls.

For each i = k0+1, . . . , k1 the attractor Ai is one-dimensional and possesses
a handle trapping neighborhood Mi in the sense of the next definition.
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1

0

Figure 2: One-dimensional attractor of Pixton’s example is not tightly embed-
ded

Definition 5 A trapping neighborhood Mi of a one-dimensional attractor Ai

is called a handle if:
1) Mi has mi connected components each of them being a smooth handle-

body;
2) W s

σ ∩Mi consists of exactly one two-dimensional closed disc for each
saddle point σ ∈ Oi.

Proposition 2 Each one-dimensional attractor Ai of Morse-Smale diffeomor-
phism f on a 3-manifold M has a handle trapping neighborhood Mi.

Denote g
Mi

the total genus of connected components of the handle trapping
neighborhood Mi. For i = k0 + 1, . . . , k1 denote by ri the number of saddle
points in Ai. Set gi = mi + ri −mk0 . It is easily shown that gi ≤ gMi

.

Definition 6 A handle trapping neighborhood Mi of some one-dimensional
attractor Ai is said to be tight if g

Mi
= gi. One-dimensional attractor Ai

possessing tight trapping neighborhood Mi is said to be tightly embedded.

By definition a repeller for f is an attractor for f−1. Then a one-dimensional
repeller for f is said to be tightly embedded if it is such an attractor for f−1.

Notice that the property for a one-dimensional attractor (repeller) to be
tightly embedded gives a topological information about the embedding of the
unstable manifolds of its saddle periodic points. In the example which was
constructed by D. Pixton in [9] the unique one-dimensional attractor cl W u

σ

has the following property: any 3-ball around cl W u
σ intersects W s

σ at more
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Figure 3: A Morse-Smale diffeomorphism without heteroclinic curves given on
S
3

than one 2-disc (see figure 2, where are drawn the phase portrait of Pixton’s
diffeomorpfism f and a 3-ball). Hence, this one-dimensional attractor is not
tightly embedded.

Our main results are the following theorems.

Theorem 1 If a Morse-Smale diffeomorphism f : M → M possesses a dy-
namically ordered energy function then all one-dimensional attractors and re-
pellers of f are tightly embedded.

Definition 7 A tight trapping neighborhoodMi of a one-dimensional attractor
Ai is called strongly tight if Mi \ Ai is diffeomorphic to ∂Mi × (0, 1]. A one-
dimensional attractor Ai possessing a strongly tight trapping neighborhood Mi

is said to be strongly tightly embedded.

Theorem 2 Let f be a Morse-Smale diffeomorphism on a closed 3-manifold
M . If all one-dimensional attractors and repellers of f are strongly tightly
embedded then f possesses a dynamically ordered energy function.

Notice that the condition in the last theorem is not necessary. For example
in section 5 of paper [4] there was constructed a diffeomorphism on S

2 × S
1

possessing a dynamically ordered energy function, but whose one-dimensional
attractor and repeller are not strongly tightly embedded.

The next theorem states a criterion for the existence of some dynamically
ordered energy function for a Morse-Smale diffeomorphism without heteroclinic
curves given on S

3. It is based on paper [2], where it is specified interrelation
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between topology of the ambient 3-manifold M and structure of the non-
wandering set of a Morse-Smale diffeomorphism without heteroclinic curves
given on M . In particular, the number k of saddles and the number l of sinks
and sources satisfy the equality k = l−2 for any diffeomorphism of S3 without
heteroclinic curves (see statement 6 below). Methods from [1] for realizing
Morse-Smale diffeomorphisms show that this class is not empty. Moreover,
it contains diffeomorphisms with chains of intersections of saddle invariant
manifolds of arbitrary length (see figure 3, where it is represented a phase
portrait of a diffeomorphism from the class under consideration).

Theorem 3 A Morse-Smale diffeomorphism f : S3 → S3 without heteroclinic
curves possesses a dynamically ordered energy function if and only if each one-
dimensional attractor and repeller of f has a tight trapping neighborhood which
is a union of 3-balls.

First and third authors thank grant RFBR of Russian Academy No 11-
01-007300 and grant of government of Russian Federation No 11.G34.31.0039
for partial financial support. The second author is supported by the French
programme ANR Floer power.

2 Auxiliary facts

In this section, we recall some statements that we need in the proof and give
references.

Statement 1 (λ-lemma, [8]). Let x0 be a hyperbolic fixed point of a diffeo-
morphism f : Mn → Mn, dimW u

x0
= ℓ, 0 < ℓ < n, Let Bu ⊂ W u

x0
and

Bs ⊂ W s
x0

be small ℓ-disc and (n − ℓ)-disc respectively centered at x0. Let
V := Bu × Bs be their product in a chart about x0. Let B be an ℓ-disc trans-
verse to W s

x0
at q 6= x0. Then, for any ε > 0, there exists a positive integer k0

such that the connected component of fk(B)∩V containing fk(q) is ε-C1-close
to Bu for each k ≥ k0.

Definition 8 Let S be a compact surface properly embedded in a 3-manifold
W (that is, ∂S ⊂ ∂W ). A disc D embedded in W with D ∩ S = ∂D is called
a compressing disc for S if the curve ∂D in S does not bound a disc in S.

The surface S is said to be compressible in W if there is a compressing disc
for S. In the opposite case S is called incompressible1, if S is not the 2-sphere.

1It is well known to topologists that a bicollared surface is incompressible if and only if
the inclusion S →֒ W induces an injection of fundamental groups.
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Statement 2 ([13], corollary 3.2) Let Sg be an orientable surface of genus
g ≥ 1 and let F be an incompressible orientable surface properly embedded in
Sg × [0, 1] such that ∂F ⊂ Sg × {1}. Then there is a surface F1 ⊂ Sg × {1}
which is homeomorphic to F , such that ∂F = ∂F1 and F ∪ F1 bounds domain
∆ in Sg× [0, 1] such that cl∆ is homeomorphic to F × [0, 1], where cl(·) stands
for the closure.

A particular case of statement 2 is the following fact.

Corollary 1 ([5], theorem 3.3) Let Sg be a closed orientable surface of genus
g ≥ 1 and let surface F ⊂ int(Sg× [0, 1]) be a closed surface which has genus g
and does not bound a domain in Sg× [0, 1]. Then the closure of each connected
component of Sg × [0, 1] \ F is homeomorphic to Sg × [0, 1].

Proof: According to the preceding statement, it is sufficient to check that F
is incompressible. If F is compressible, there exists some incompressible surface
F ′ whose genus g′ is less than g and which still does not bound a domain in
Sg × [0, 1]. So F ′ is not a sphere and g′ > 0. As F ′ is incompressible, the
preceding statement tells us that F ′ is diffeomorphic to Sg. Contradiction. ⋄

Statement 3 ([7], theorem 5.2) Let Mn be a closed manifold, ϕ : Mn → R

be a Morse function, Cq be the number of all its critical points with index
q, βq(M

n) be the q-th Betti number and χ(Mn) be the Euler characteristic.

Then βq(M
n) ≤ Cq and χ(Mn) =

n∑

q=0

(−1)qCq.

Statement 4 Let ϕ : Mn → R be a Lyapunov function for a Morse-Smale
diffeomorphism f :Mn → Mn. Then

1) −ϕ is Lyapunov function for f−1;
2) if p is a periodic point of f then ϕ(x) < ϕ(p) for every x ∈ W u

p \ p and
ϕ(x) > ϕ(p) for every x ∈ W s

p \ p;
3) if p is a periodic point of f then p is a critical point of ϕ whose index is

dimW u
p .

Statement 5 ([4], lemma 2.2) Let f :Mn →Mn be a Morse-Smale diffeomor-
phism on an n-dimensional manifold and let O be a periodic orbit. For p ∈ O,
set q = dimW u

p . Then, there is some neighborhood U and an energy function
ϕ : U → R for f such that (W u

p ∩ U) ⊂ Ox1 . . . xq, (W s
p ∩ U) ⊂ Oxq+1 . . . xn

for Morse coordinates x1, . . . , xn of ϕ near p and ϕ(O) = 0.

Statement 6 ([2], theorem) Let M be a three-dimensional closed, connected,
orientable manifold. Let f : M → M be any Morse-Smale diffeomorphism
without heteroclinic curves whose non-wandering set consists of k saddles and
l sinks. The following holds true:
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1) if k = l − 2, then M is the 3-sphere;
2) if k 6= l − 2, then M is the connected sum of k−l+2

2
copies S2 × S1.

Conversely, for any non negative integers k, l,m such that k−l+2

2
= m, there

exists some Morse-Smale diffeomorphism f of M such that:
a) the non-wandering set of f consists of k saddles and l sinks and sources;
b) the wandering set of f has no heteroclinic curves.

3 A trapping neighborhood for attractors

Proof of proposition 1

For each i = 1, . . . , k0, let us prove the existence of a trapping neighborhood
Mi consisting of mi pairwise disjoint smooth 3-balls.
Proof: By construction the set Ai is the set of mi hyperbolic sinks belonging
to the periodic orbits numerated 1 to i. According to statement 5, there are
some neighborhood UAi

⊂ W s
Ai

of Ai and an energy function ϕAi
: UAi

→ R

for f with ϕAi
(Ai) = 0. For εi > 0 small enough, the set Mi = ϕ−1

Ai
([0, εi]) is a

union of 3-balls. As ϕAi
is a Lyapunov function for f then f(Mi) ⊂ int Mi. As

Mi ⊂W s
Ai
, for every x ∈Mi, f

k(x) tends to Ai as k → +∞. As a consequence,
Ai =

⋂

k≥0

fk(Mi). ⋄

Proof of proposition 2

For each i = k0 + 1, . . . , k1 let us prove the existence of a trapping neigh-
borhood Mi of attractor Ai with the following properties:

1) Mi is a union of mi pairwise disjoint handlebodies;
2) W s

σ ∩ Mi consists of exactly one two-dimensional closed disc for each
saddle point σ ∈ Oi.
Proof: According to proposition 1, there is a trapping neighborhood Mk0

consisting of mk0 pairwise disjoint smooth 3-balls. Let us construct Mi+1 for
i = k0.

Without loss of generality we can suppose that Si = ∂Mi intersects W
u
Oi+1

transversely; let ni be the number of intersection points. Set Vi = W s
Ωf∩Ai

\Ai.
On this open set f acts freely and discontinuously. So, it is allowed to consider
the quotient V̂i = Vi/f ; let pi

: Vi → V̂i denote the natural projection. Notice
that V̂i is made of the cobordism Mi \ int f(Mi) by gluing its boundaries by
f . Then p

i
(W u

Oi+1
) is a union of knots which intersect p

i
(Si) transversely at

ni points. Thus, there is a tubular neighborhood T̂ u
i+1 ⊂ V̂ i of p

i
(W u

Oi+1
) such

that T̂ u
i+1 ∩ pi

(Si) consists of ni 2-discs. Set T
u
i+1 = p−1(T̂ u

i+1).
According to the λ-lemma (see statement 1), T u

i+1∪W
s
Oi+1

is a neighborhood
of Oi+1. According to statement 5, there are some neighborhood UOi+1

⊂
(T u

i+1 ∪W
s
Oi+1

) of Oi+1 and an energy function ϕOi+1
: UOi+1

→ R for f with
ϕOi+1

(Oi+1) = 0. When ε > 0 is small enough, each connected component of
Hi+1 = ϕ−1

Oi+1
((−∞, ε]) reads {(x1, x2, x3) ∈ UOi+1

| −x21+x
2
2+x

2
3 ≤ ε} in local
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Figure 4: Construction of a handle trapping neighborhood for one-dimensional
attractor

coordinates. According to the λ-lemma, when k ∈ N is large enough, f−k(Si)
intersects both Hi+1 and f(Hi+1), and its intersection with these domains
consists of ni 2-discs. Moreover f(Hi+1)\int f

−k(Mi) ⊂ intHi+1 (see figure 4).
Thus, Mi+1 = f−k(Mi)∪Hi+1 is a union of handlebodies, as it is obtained from
the union of handlebodies f−k(Mi) by gluing one-handles Hi+1 \ int f

−k(Mi).
Moreover f(Mi+1) ⊂ intMi+1; indeed, it is true for a point x ∈ f−k(Mi) as
f−k(Mi) is f -compressed and it is true for a point x ∈ (Hi+1 \ f

−k(Mi)) as
f(Hi+1) \ int f

−k(Mi) ⊂ intHi+1.
Let us prove the equality

⋂

k≥0

fk(Mi+1) = Ai+1. As Ai ⊂ Mi and f
k(Ai) =

Ai for k ∈ Z then Ai ⊂
⋂

k≥0

fk(Mi). Let us set Ãi =
⋂

k≥0

fk(Mi) and show that

Ãi = Ai. Assume contrary: there is a point x ∈ (Ãi \Ai). Due to theorem 2.3
in [11] there is a point p ∈ (Ωf \Ai) such that x ∈ W u

p . As the set Ãi is closed

and invariant then cl (Ox) ⊂ Ãi and, hence, p ∈ Ãi. This is a contradiction
with the fact Ãi ⊂W s

Ai∩Ωf
. A smoothing of the setMi+1 is the required handle

trapping neighborhood.
Applying arguments above in series for each i = k0 + 1, . . . , k1 − 1 we will

get a handle trapping neighborhood Mi+1 for Ai+1. ⋄
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Proposition 3 The one-dimensional attractor Ak1 is connected.

Proof: Firstly, let us prove that any trapping neighborhoodMk1 of Ak1 is con-
nected. Let us assume the contrary: Mk1 is a union of pairwise disjoint closed
sets B1 and B2. AsMk1 is f -compressed then without loss of generality we can
suppose that f(Bi) ⊂ intBi, i = 1, 2. By construction, B̃1 =

⋃

k>0

f−k(intB1),

B̃2 =
⋃

k>0

f−k(intB2) are pairwise disjoint open sets and B̃1 ∪ B̃2 = W s
Ω0∪Ω1

.

On the other hand W s
Ω0∪Ω1

=M \W s
Ω2∪Ω3

and, hence, W s
Ω0∪Ω1

is connected as
dim M = 3 and dim W s

Ω2∪Ω3
≤ 1. This is a contradiction.

Thus Ai is connected as intersection of nested connected compact setsMi ⊃
f(Mi) ⊃ . . . ⊃ fk(Mi) ⊃ . . .. ⋄

Using notation introduced after proposition 2, due to proposition 3 we
have mk1 = 1 and, hence gk1 = 1 + |Ω1| − |Ω0|, where | · | stands for the
cardinality. We shall equip with a tilde all notations concerning repellers.
Then g̃k1 = 1 + |Ω2| − |Ω3| by the same argument applied to f−1.

Statement 7 ([4], lemma 3.3) For any Morse-Smale diffeomorphism f :M →
M we have that gk1 = g̃k1.

4 Necessary condition for existence of dynam-

ically ordered energy function

Proof of theorem 1

Let us prove that if a Morse-Smale diffeomorphism f : M3 → M3 has a
dynamically ordered energy function, then its one-dimensional attractors and
repellers are tightly embedded.
Proof: Notice that f and f−1 possess dynamically ordered energy functions
simultaneously. Indeed, if ϕ :M → R is such function for f then ϕ̃ = kf +1−
ϕ :M → R is such function for f−1 (see statement 4). Therefore, it is enough
to prove the fact for attractors.

Let ϕ :M → R be a dynamically ordered energy function for f :M →M .
By definition, the set Ak0 consists of the union of all sinks and mk0 = |Ak0|.
Each sink is a critical point of index 0 for ϕ (see statement 4) and ϕ(Oi) =
i, i = 1, . . . , k0. According to the Morse theory, there is εk0 > 0 such that
Mk0 = ϕ−1([1, k0 + εk0]) is a union of mk0 3-balls. One checks that Mk0 is a
trapping neighborhood for Ak0 (see proposition 1).

For i ∈ {k0 + 1, . . . , k1}, let us prove that there is εi > 0 such that Mi =
ϕ−1([1, i+εi]) is a tight trapping neighborhood. First, let us prove the fact for
Mi+1, when i = k0. As ϕ is a Morse-Lyapunov function then there is εi+1 > 0
such that W s

σ ∩Mi+1 consists of exactly one closed 2-disc for each saddle point
σ ∈ Oi+1. With our notation after proposition 2, the number of points in
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the orbit Oi+1 equals ri+1 − ri. According to Morse theory, Mi+1 has the
homotopy type of Mi with gluing of (ri+1− ri) 1-handles

2. As Mi is a union of
handlebodies (3-balls) thenMi+1 is also such. Denote by g

Mi+1
the sum of genus

of handlebodies from Mi+1. According to statement 3, χ(Mi+1) = mk0 − ri+1.
Then −g

Mi+1
+ mi+1 = mk0 − ri+1 or g

Mi+1
= gi+1. As ϕ is a Lyapunov

function for f then Mi+1 is f -compressed. Similar to proposition 1 equality⋂

k≥0

fk(Mi+1) = Ai+1 is proved.

Applying this argument in series for each i = k0, . . . , k1 − 1 we will prove
that that Mi is a tight trapping neighborhood. ⋄

5 Construction of a dynamically ordered en-

ergy function for f

Now f is a Morse-Smale diffeomorphism on a closed 3-manifold M and its
one-dimensional attractors and repellers are strongly tightly embedded. For
each i = k0, . . . , k1 set Si = ∂Mi, Ni = W s

Ai∩Ωf
and Vi = Ni \ Ai. According

to corollary 1, Vi is diffeomorphic to Si × R. We recall that notations related
to repellers are equipped with a tilde.

Let us notice that we can suppose, without loss of generality, that
Mk1 ⊂ (M \ M̃k̃1

) (in the opposite case we can consider trapping neighbor-
hoods fk(Mk0), . . . , f

k(Mk1) having the required property when k ∈ N is large
enough). The open sets Vk1 and Ṽk̃1 coincide; both are obtained from M by

removing Ak1 and Ãk̃1
. Moreover, Vk1 is connected as dim (Ak1 ∪ Ãk̃1

) ≤ 1,

it the same for Mk1, M̃k̃1
, Nk1 , Ñk̃1

, Ak1 , Ãk̃1
. Due to statement 7 the han-

dlebodies Mk1 and M̃k̃1
have the same genus. Thus, according to corollary 1,

K =M \ (Mk1 ∪ M̃k̃1
) is a product.

We are going to describe shortly how to construct a dynamically ordered
energy function ϕ : M → R for f . After that, we shall prove the needed
lemmas.

1. We construct a dynamically ordered energy function ϕk0 on Mk0 using
lemma 4.

2. We construct a dynamically ordered energy functions ϕk0+1, . . . , ϕk1

successively on Mk0+1, . . . ,Mk1 using lemmas 2, 1 and 3.
3. By changing f to f−1 we can similarly construct a dynamically ordered

energy function ψ for f−1 on M̃k̃1
. Then ϕ̃k̃1

= kf + 1 − ψ is a dynamically

ordered energy function for f on M̃k̃1
.

4. Finally, we find a common extension to K of the functions ϕk1 and ϕ̃k̃1

due to lemma 1.

2A 3-dimensional 1-handle is the product of an interval with a 2-disc.
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Definition 9 Let D be a subset of M which is diffeomorphic to product S ×
[0, 1] for some (possibly non connected) surface S. Then D is said to be an
(f, S)-compressed product when there is a diffeomorphism g : D → S × [0, 1]
such that g−1(S×{t}) bounds an f -compressed domain in M for any t ∈ [0, 1].

Remark 4 Let D be an (f, S)-compressed product. Then the function ϕ
D

:
D → R defined by ϕ

D
(x) = t for x ∈ g−1(S × {t}) is an energy function for

f |D with g−1(S × {t}) as level set for every t ∈ [0, 1].

Definition 10 Let i ∈ {k0, . . . , k1}. A set Pi is said to be parallel to Mi if Pi

is f -compressed union of mi pairwise disjoint handlebodies with sum of genuses
gi such that Ai ⊂ Pi ⊂ Ni.

Lemma 1 Let i ∈ {k0, . . . , k1}. Let Pi and Qi be sets which are parallel to Mi

with Qi ⊂ Pi. If there is a dynamically ordered energy function ϕ
Qi

: Qi → R

for f with SQi
= ∂Qi as a level set then there is a dynamically ordered energy

function ϕ
Pi

: Pi → R for f with SPi
= ∂Pi as a level set.

Proof: The arguments for a proof of the lemma are similar to the arguments
for the proof of lemma 4.2 from [3] with some modifications.

Firstly notice that as Vi is diffeomorphic to Si × R then, according to
corollary 1, Gi = Pi \ intQi is a product. Secondly notice that fn(SPi

) and
fn(SQi

) are incompressible in Vi for any n ∈ Z. Now let us construct the
function ϕ

Pi
.

There are two cases: 1) SPi
∩ (

⋃

n>0

f−n(SQi
)) = ∅ and 2) SPi

∩

(
⋃

n>0

f−n(SQi
)) 6= ∅.

In case 1), let m be the first positive integer such that fm(Pi) ⊂ intQi. If
m = 1, then Gi is (f, Si)-compressed product and remark 4 yields the required
function.

If m > 1, the surfaces f−1(SQi
), f−2(SQi

), . . . , f−m+1(SQi
) are mutually

“parallel”, that is: two by two they bound a product cobordism (see corollary
1). Therefore they subdivide Gi in (f, Si)-compressed products and, hence,
the required function exists due to remark 4.

In case 2), without loss of generality we may assume that SPi
is transverse to⋃

n>0

f−n(SQi
), which implies that there is a finite family C of intersection curves.

We are going to describe a process of decreasing the number of intersection
curves by an isotopy of Qi among handlebodies which are contained in Pi and
parallel to Mi; they will be all equipped with a dynamically ordered energy
function for f which is constant on the boundary.

Firstly we consider all intersection curves which are homotopic to zero in
SPi

. Let c be an innermost such curve. Then there is a disc δ ⊂ SPi
which is

bounded by c and such that int δ contains no curves from the family C. As
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c ⊂ f−n(SQi
) for some n and f−n(SQi

) is incompressible in Vi, then c bounds
a disc d ⊂ f−n(SQi

). The 2-sphere δ ∪ d is embedded and bounds a 3-ball b in
Ni (when the component of f−n(SQi

) containing d is a 2-sphere, replace d by
the complementary disc if necessary).

There are two occurrences: (a) fn(b) ⊂ Qi and (b) fn(b) ⊂ f−1(Qi). We
define Q′

i as cl(Qi \ f
n(b)) in the case (a) and Qi ∪ f

n(b) in the case (b). The
fact that c is an innermost curve implies f(Qi) ⊂ Q′

i ⊂ Qi in case (a) and
Qi ⊂ Q′

i ⊂ f−1(Qi) in case (b). In both cases there is a smooth approximation
Q̃i of Q

′
i such that f(Qi) ⊂ int Q̃i ⊂ Qi if (a), Qi ⊂ int Q̃i ⊂ f−1(Qi) if (b),

and the number of intersection curves in SPi
∩ (

⋃

n>0

f−n(∂Q̃i)) is less than the

cardinality of C.
In case (a), ϕ

f(Qi)
= ϕ

Qi
f−1 : f(Qi) → R is a dynamically ordered energy

function which is constant on the boundary. Therefore Q̃i \ int f(Qi) is an
(f, Si)-compressed product and, hence, due to remark 4, there is a similar
function on Q̃i. Similarly in case (b), Q̃i is equipped with a dynamically
ordered energy function which is constant on the boundary as Q̃i \ int Qi is
an (f, Si)-compressed product.

We will repeat this process until getting a set Q̂i which are parallel to Mi

and such that SPi
∩(

⋃

n>0

f−n(∂Q̂i)) does not contain curves which are homotopic

zero in SPi
.

Thus we may assume that SPi
∩ (

⋃

n>0

f−n(Si)) does not contain intersection

curves which are homotopic to zero in SPi
. We denote by m the largest integer

such that fm(SPi
)∩Si 6= ∅. Let F be a connected component of fm(SPi

)∩Gi.
We have ∂F ⊂ ∂SQi

. We claim that F is incompressible in Gi. Indeed, if δ
is a disc in Gi with boundary γ ⊂ F then γ is homotopic to zero in fm(SPi

)
as fm(SPi

) is incompressible in Vi. As none component of ∂F is homotopic to
zero in fm(SPi

), γ is homotopic to zero in F .
Therefore, according to statement 2 there is some surface F1 ⊂ SQi

diffeo-
morphic to F , with ∂F = ∂F1, and F ∪F1 bounds a domain ∆ in Gi which, up
to smoothing of the boundary, is diffeomorphic to F × [0, 1]. We then define
Q̃i as Q

′
i = Qi ∪ ∆ up to smoothing. By the choice of m, Q̃i is f -compessed

as f(∆) ⊂ Qi. As Q̃i is obtained by an isotopy supported in a neighborhood
of ∆ from Qi then Q̃i \ int Qi is an (f, Si)-compressed product. Thus we get
a dynamically ordered energy function on Q̃i with ∂Q̃i as a level set. Arguing
recursively, we are reduced to case 1). ⋄

Lemma 2 Let i ∈ {k0, . . . , k1 − 1} and Di+1 = Mi+1 ∩ W s
Oi+1

. There is a
tubular neighborhood N(Di+1) ⊂ Mi+1 of Di+1 such that the set Pi = Mi+1 \
int N(Di+1) is parallel to Mi.

Proof: Choose a tubular neighborhood N(Di+1) ⊂ Mi+1 of Di+1 such that
N(Di+1) ∩ Ai = ∅ and Pi is f -compressed. Recall that mi is the number of
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connected components of Ai, ri the number of saddle points in the set Ai and
put gi = mi + ri − mk0 . Then the number of point in the orbit Oi+1, as the
number of discs in the set Di+1, equals ri+1−ri. Since (cl (W

u
Oi+1

)\W u
Oi+1

) ⊂ Ai

and Ai+1 = Ai∪W
u
Oi+1

, then mi+1 ≤ mi. Thus (mi−mi+1) saddle points from
Oi+1 divide the set Ai+1 and, accordingly, (mi − mi+1) 2-discs from the set
Di+1 divide the setMi+1. Moreover, removing such discs does not decrease the
genus, but removing any of the remaining discs decreases the genus by 1. Thus
the number m

Pi
of connected components of Pi equals mi+1+(mi−mi+1) = mi

and sum g
Pi

of their genera equals gi+1 − (ri+1 − ri − (mi −mi+1)) = mi+1 +
ri+1 −mk0 − ri+1 + ri +mi −mi+1 = mi + ri −mk0 = gi. Since Pi contains Ai,
is contained in Ni and is f -compressed, then it is parallel to Mi. ⋄

Lemma 3 Let i ∈ {k0, . . . , k1 − 1} and Pi is as in lemma 2. If there is a
dynamically ordered energy function ϕPi

: Pi → R for f with SPi
as a level

set then there is a dynamically ordered energy function ϕi+1 :Mi+1 → R for f
with Si+1 as a level set.

Proof: The arguments for a proof of the lemma are similar to the arguments
of section 4.3 from [3] with some modifications.

According to lemma 5, the orbit Oi+1 has a neighborhood UOi+1
⊂ M

endowed with a Morse-Lyapunov function ϕOi+1
: UOi+1

→ R of f with
ϕOi+1

(Oi+1) = i+ 1.
Each connected component Uσ of UOi+1

, σ ∈ Oi+1, is endowed with Morse
coordinates (x1, x2, x3) as in the conclusion of lemma 5: ϕOi+1

(x1, x2, x3) =
i+ 1− x21 + x22 + x23, the x1-axis is contained in the unstable manifold and the
(x2, x3)-plane is contained in the stable manifold.

Without lost of generality we can suppose that ϕ
Pi
(SPi

) = i+1. Moreover,
ε > 0 and N(Di+1) are chosen such that:

(1) SPi
and SP ε

i
= ∂P ε

i are transverse to all level sets from ϕ−1

Oi+1
(i + 1 − ε)

to ϕ−1

Oi+1
(i+ 1 + ε) and f(Pi) ⊂ int P ε

i , where P
ε
i = ϕ−1

Pi
([1, i+ 1− ε]);

(2) ϕOi+1
(f−1(Eε)) > i + 1 + ε, where Eε = (Pi \ int (P

ε
i )) ∩ {i + 1 − ε ≤

ϕOi+1
≤ i+1+ε} (it is possible as ϕOi+1

(f−1(ϕ−1

Oi+1
(i+1)\Oi+1)) > i+1);

(3) Hi+1 ⊂ int Mi+1, where Hi+1 the closure of {x ∈ UOi+1
| x /∈

Pi, ϕOi+1
(x) ≤ i+ 1 + ε} (see figure 5).

Due to lemma 2 there is a smoothing Qi+1 of Pi ∪Hi+1 which are parallel
toMi+1. Then, using lemma 1, we can construct a dynamically ordered energy
function ϕ

i+1
: Mi+1 → R with a level set Si+1 if we have similar function on

Qi+1. Thus, it is enough to construct such function on Qi+1.
Denote dε the part of the level set ϕ

−1

Oi+1
(i+1−ε) belonging to UOi+1

\int P ε
i .

By construction dε is the union of 2-discs. Denote D′
ε the union of 2-discs in
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Figure 5: Illustration to proof of lemma 3

∂P ε
i such that ∂dε = ∂D′

ε. Set S = P ε
i \ D′

ε ∪ dε. Denote Q(S) the union
of handlebodies bounded by S and containing Ai. We check that Q(S) is f -
compressed. Indeed, it is true for P ε

i . Moreover, f(dε) does not intersect dε nor
P ε
i \D′

ε. The first intersection is empty as ϕOi+1
is a Lyapunov function and

dε lies in a level set of it. The second one is empty as ϕOi+1
(dε) = i+ 1− ε ≤

ϕOi+1
(x), for any x ∈ UOi+1

, x ∈ (P ε
i \D

′
ε). Thus Q(S) is parallel toMi+1 and,

by lemma 1, there is a dynamically ordered energy function on Q(S) with S
as a level set.

Let K be the domain between ∂Qi+1 and S. We define a function ϕ
K

:
K → R whose value is i+1+ ε on ∂Qi+1, i+1− ε on S, coinciding with ϕOi+1

on K ∩ Hi+1 and without critical points outside of Hi+1. This last condition
is easy to satisfy as the domain in question is a product cobordism due to
condition (1). With all the informations that we have on the image of f , it
is easy to check that ϕ

K
is a Lyapunov function. Indeed, it is obvious for the

points of K which are not in Hi+1. Suppose that x ∈ (K ∩ Hi+1). Then we
have two possibilities: a) f(x) ∈ Hi+1; b) f(x) /∈ Hi+1. In the first case the
conclusion follows from the Lyapunov property of ϕOi+1

. In the second case we
are going to show that f(x) ∈ {ϕOi+1

< i+1−ε} and then the conclusion also
holds. Suppose on the contrary that f(x) /∈ {ϕOi+1

< i + 1 − ε}. Then f(x)
belongs to the domain Eε. But it follows from the choice of Eε (see condition
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(2)) that f−1(Eε) does not intersect Hi+1. We get a contradiction.
Thus we get the desired function on Qi+1. ⋄

Lemma 4 There is a dynamically ordered energy function ϕk0 on Mk0.

Proof: By the construction the set Ak0 consists of mk0 hyperbolic sinks
and Mk0 consists of mk0 pairwise disjoint 3-balls. According to statement
5, there is mk0 pairwise disjoint 3-balls Qk0 ⊂ Mk0 around Ak0 equipped a
dynamically ordered energy function ϕ

Qk0
: Qk0 → R for f with ∂Qk0 as a

level set. According to lemma 1, there is similar function on Mk0 . ⋄

6 Dynamically ordered energy function for

diffeomorphisms on 3-sphere

In this section f : S3 → S3 is a Morse-Smale diffeomorphism without hetero-
clinic curve. We prove theorem 3: the one-dimensional attractors and repellers
have tight trapping neighborhoods which are 3-balls if and only if there exists
a dynamically ordered energy function for f .

Proof: Let i = k0+1, . . . , k1. Then Ai =
i⋃

j=1

W u
j is one-dimensional attractor

with mi connected components. Moreover, let ri be a number of saddle points
inAi and gi = mi+ri−|Ω0|, where |Ω0| is number of sinks of the diffeomorphism
f . We first prove an auxiliary proposition.

Proposition 5 If f : S3 → S3 is a Morse-Smale diffeomorphism without het-
eroclinic curve then gi = 0 for each i = k0 + 1, . . . , k1.

Proof: We start from gk1 . According to proposition 3, the attractor Ak1 is
connected, that ismk1 = 1 and, hence gk1 = 1+|Ω1|−|Ω0|. Due to statement 7,
gk1 = g̃k1 , where g̃k1 = 1+|Ω2|−|Ω3|. By statement 6, 2+|Ω1∪Ω2|−|Ω0∪Ω3| = 0
for any Morse-Smale diffeomorphism without heteroclinic curve on S3. Thus
gk1 + g̃k1 = 0 and, hence, gk1 = 0.

Now let us show that gi+1 ≥ gi. Indeed, by the construction Ai+1 =
Ai ∪W

u
i+1 and cl (Ai+1) \Ai+1 ⊂ Ai. In our denotation the orbit Oi+1 consists

of ri+1− ri saddle points. Then mi+1 ≥ mi− (ri+1− ri) and, hence, gi+1−gi =
mi+1 −mi + ri+1 − ri ≥ 0.

Thus 0 ≤ gk0+1 ≤ gk0+2 ≤ . . . ≤ gk1 = 0. It means that gi = 0 for each
i = k0 + 1, . . . , k1. ⋄

Necessity. Let f : S3 → S3 be a Morse-Smale diffeomorphism without
heteroclinic curve and possessing a dynamically ordered energy function ϕ.
According to theorem 1, each one-dimensional attractor and repeller has a
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tight trapping neighborhood. Due to proposition 5 this neighborhood is a
union of 3-balls.

Sufficiency. Let f : S3 → S3 be a Morse-Smale diffeomorphism without
heteroclinic curve, whose one-dimensional attractors and repellers have tight
trapping neighborhoods which are 3-balls. Let us show that all one-dimensional
attractors and repellers of f are strongly tightly embedded. We give a proof
for attractors; for repellers the proof is similar by looking at f−1.

Let i = k0 + 1, . . . , k1 and Mi be a tight trapping neighborhood of a one-
dimensional attractor Ai. By assumption Mi is a union of 3-balls. Since a
pair of nested balls is unique up to diffeomorphism, Ki = Mi \ int f(Mi) is a
disjoint union of copies of S2 × [0, 1]. As Mi \ Ai =

⋃

k≥0

fk(Mi), then Mi \ Ai

is diffeomorphic to ∂Mi × (0, 1]. Thus the attractor Ai is strongly tight and,
according to theorem 2, f possesses a dynamically ordered energy function.

⋄
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