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Testing for parameter constancy in general causal time series models

Introduction

Many statistical data can be represented by models which may change over time, for instance hydraulic flow, climate data. Before any inference on these data, it is crucial to test whether a change has not occurred in the model.

Since Page [START_REF] Page | A test for a change in a parameter occurring at an unknown point[END_REF] in 1955, real advances have been done about tests for change detection. Horvath [START_REF] Horváth | Change in autoregressive processes[END_REF] proposed a test for detecting a change in the parameter of autoregressive processes based on weighted supremum and L p -functionals of the residual sums. The CUSUM statistic which was introduced by Brown et al. [START_REF] Brown | Techniques for testing the constancy of regression relationships over time[END_REF] in 1975, was modified by Inclan and Tiao [START_REF] Inclan | Use of cumulative sums of squares for retrospective detection of changes of variance[END_REF] for testing change in variance of independent random variables.

Their test has asymptotically correct size but the asymptotic power is unknown. Numerous works devoted to the CUSUM-type procedure, for instance Kim et al. [START_REF] Kim | On the CUSUM test for parameter changes in GARCH(1, 1) models[END_REF] for testing change in parameters of GARCH(1,1), Kokoszka and Leipus [START_REF] Kokoszka | Leipus Testing for parameter changes in ARCH models[END_REF] in the specific case of ARCH(∞) or Aue et al. [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] for testing breaks in covariance. Kulperger and Yu [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF] studied the high moment partial sum process based on residuals and applied it to residual CUSUM test in GARCH model. Horváth et al. [START_REF] Horváth | Ratio tests for change point detection[END_REF] suggested to compute the ratio of the CUSUM functionals instead of the differences for testing change in the mean of a time series. Berkes et al. [START_REF] Berkes | Testing for parameter constancy in GARCH(p; q) models[END_REF] used a test based on approximate likelihood scores for testing parameter constancy in GARCH(p,q) models. These procedures are mostly developed in a parametric framework and their asymptotic powers are unknown. The present work is a new contribution to the challenging problem of test for change detection.

In this paper, we consider a general class M T (M, f ) of causal (non-anticipative) time series. Let M, f : IR I N → IR be measurable functions, (ξ t ) t∈Z be a sequence of centered independent and identically distributed (iid) random variables called the innovations and satisfying var(ξ 0 ) = σ 2 and Θ a compact subset of IR d . Let T ⊂ Z, and for any θ ∈ Θ, define Class M T (M θ , f θ ): The process X = (X t ) t∈Z belongs to M T (M θ , f θ ) if it satisfies the relation:

X t+1 = M θ ( (X t-i ) i∈I N ) ξ t + f θ ( (X t-i ) i∈I N ) for all t ∈ T . ( 1 
)
The existence and properties of this general class of affine processes were studied in Bardet and Wintenberger [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. Numerous classical time series are included in M Z (M, f ): for instance AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH or bilinear processes. Now, assume that a trajectory (X 1 , • • • , X n ) of X = (X t ) t∈Z is observed and consider the following hypothesis:

H 0 : there exists θ 0 ∈ Θ such that (X 1 , • • • , X n ) belongs to the class M {1,••• ,n} (M θ0 , f θ0 ) ;

H 1 : there exist K ≥ 2, θ 1 , • • • , θ K ∈ Θ such that (X 1 , • • • , X n ) belongs to K ∩ j=1 M T n j (M θj , f θj ) where T n j = {t j-1 + 1, t j-1 + 2, • • • , t j } with 0 = t 0 < t 1 < • • • < t K-1 < t K = n .
Thus, it is easy to see that under H 1 the property of stationary is lost after the first change. This is not the case in many existing works (for instance Kouamo et al. [START_REF] Kouamo | Testing for homogeneity of variance in the wavelet domain[END_REF] ) where the stationarity or the K-th order stationarity after the change is an essential assumption.

In this paper we study a new test for change detection (see Bardet et al. [3] for the procedure of the estimation of the instants of change). We consider a semi-parametric test statistic based on the QLME which is a modification of the statistic introduced by Lee et al. [START_REF] Lee | The Cusum Test for Parameter Change in Time Series Models[END_REF]

. For k, k ′ ∈ {2, • • • , n -1} (with k ≤ k ′ ) let θ n (X k , • • • , X k ′ ) be the QLME of the parameter computed on {k, • • • , k ′ }. The basic idea of our procedure is that : under H 0 , θ n (X 1 , • • • , X k ) and θ n (X k+1 , • • • , X n ) are close to θ n (X 1 , • • • , X n ) and the distances ∥ θ n (X 1 , • • • , X k ) -θ n (X 1 , • • • , X n )∥ and ∥ θ n (X k+1 , • • • , X n ) -θ n (X 1 , • • • , X n )∥ are not too large. Therefore,
we show that the test statistic is finite under the null hypothesis and diverges to infinity under the alternative of one change. Simulation results compared to some other procedures show that our procedure is more powerful. In Section 2 we present assumptions, some examples and construct the test statistic. In Section 3 we give some asymptotic results. The empirical studies of AR(1), ARCH(1) and GARCH [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF][START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] are detailed in Section 4 and the proofs of the main results are presented in Section 5.

Assumptions and test statistics 2.1 Assumptions on the class of models M

Z (f θ , M θ )
Let θ ∈ IR d and M θ and f θ be numerical functions such that for all

(x i ) i∈I N ∈ IR I N , M θ ( (x i ) i∈I N ) ̸ = 0 and f θ ( (x i ) i∈I N )
∈ IR. We will use the following norms:

1. ∥ • ∥ applied to a vector denotes the Euclidean norm of the vector;

2. for any compact set Θ ⊆ IR d and for any g : Θ -→ IR d ′ , ∥g∥ Θ = sup θ∈Θ (∥g(θ)∥).

Let Ψ θ = f θ , M θ and i = 0, 1, 2, then for any compact set Θ ⊆ IR d , define

Assumption A i (Ψ θ , Θ): Assume that ∥∂ i Ψ θ (0)/∂θ i ∥ Θ < ∞
and there exists a sequence of non-negative real number (α

(k) i (Ψ θ , Θ)) i≥1 such that ∞ ∑ k=1 α (i) k (Ψ θ , Θ) < ∞ satisfying ∂ i Ψ θ (x) ∂θ i - ∂ i Ψ θ (y) ∂θ i Θ ≤ ∞ ∑ k=1 α (i) k (Ψ θ , Θ)|x k -y k | for all x, y ∈ IR I N .
In the sequel we refer to the particular case called "ARCH-type process" if f θ = 0 and if the following assumption holds with h θ := M 2 θ :

Assumption A i (h θ , Θ): Assume that ∥∂ i h θ (0)/∂θ i ∥ Θ < ∞
and there exists a sequence of non-negative real number (α

(k) i (h θ , Θ)) i≥1 such as ∞ ∑ k=1 α (i) k (h θ , Θ) < ∞ satisfying ∂ i h θ (x) ∂θ i - ∂ i h θ (y) ∂θ i Θ ≤ ∞ ∑ k=1 α (i) k (h θ , Θ)|x 2 k -y 2 k | for all x, y ∈ IR I N .
Then define the set:

Θ(r) := {θ ∈ Θ, A 0 (f θ , {θ}) and A 0 (M θ , {θ}) hold with ∑ k≥1 α (0) k (f θ , θ) + (E |ξ 0 | r ) 1/r ∑ k≥1 α (0) k (M θ , θ) < 1} ∪ {θ ∈ Θ, f θ = 0 and A 0 (h θ , {θ}) hold with (E |ξ 0 | r ) 2/r ∑ k≥1 α (0) k (h θ , θ) < 1}.
The Lipschitz-type hypothesis A i (Ψ θ , Θ) are classical when studying the existence of solutions of the general model. If θ ∈ Θ(r) the existence of a unique causal, stationary and ergodic solution

X = (X t ) t∈Z ∈ M Z (f θ , M θ )
is assured (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). The subset Θ(r) is defined as a reunion to consider accurately general causal models and ARCH-type models simultaneously.

The following assumptions are needed to study QLME property. Assumption D(Θ): ∃h > 0 such that inf

θ∈Θ (|h θ (x)|) ≥ h for all x ∈ IR I N . Assumption Id(Θ): For all θ, θ ′ ∈ Θ 2 , ( f θ (X 0 , X -1 , • • • ) = f θ ′ (X 0 , X -1 , • • • ) and h θ (X 0 , X -1 , • • • ) = h θ ′ (X 0 , X -1 , • • • ) a.s. ) ⇒ θ = θ ′ .
Assumption Var(Θ): For all θ ∈ Θ, one of the families

( ∂f θ ∂θ i (X 0 , X -1 , • • • ) ) 1≤i≤d or ( ∂h θ ∂θ i (X 0 , X -1 , • • • ) ) 1≤i≤d is a.s. linearly independent.
As in [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we will make the convention that if A i (M θ , Θ) holds then α

(i) ℓ (h θ , Θ) = 0 and if A i (h θ , Θ) holds then α (i) ℓ (M θ , Θ) = 0. Denote : Assumption K(f θ , M θ , Θ) : for i= 0, 1, 2, A i (f θ , Θ) and A i (M θ , Θ) (or A i (h θ , Θ)) hold and there exists l > 2 such that α (i) j (f θ , Θ) + α (i) j (M θ , Θ) + α (i) j (h θ , Θ) = O(j -l ), for i= 0, 1.
Throughout the sequel, we will assume that the functions θ → M θ and θ → f θ are twice continuously differentiable on Θ.

Examples

1. AR(∞) models.

Consider the AR(∞) process defined by :

X t = ∑ k≥1 ϕ k (θ * 0 )X t-k + ξ t , t ∈ Z with θ * 0 ∈ Θ, where Θ is a compact subset of IR d such that ∑ k≥1 ∥ϕ k (θ)∥ Θ < 1. The process belongs to the class M Z (M θ * 0 , f θ * 0 ) where f θ (x 1 , • • • ) = ∑ k≥1 ϕ k (θ)
x k and M θ ≡ 1 for all θ ∈ Θ. Then Assumptions D(Θ) and A 0 (f θ , Θ) hold with h = 1 and α

(0) k (f θ , Θ) = ∥ϕ k (θ)∥ Θ . If there exists ℓ > 2 and ϕ k twice differentiable such as ∥ϕ k (θ)∥ Θ = ∥ϕ ′ k (θ)∥ Θ = ∥ϕ ′′ k (θ)∥ Θ = O(k -ℓ
), then Assumptions K(f θ , M θ , Θ) holds. Moreover, if ξ 0 is a nondegenerate random variable, Id(Θ) and Var(Θ) hold. For any r ≥ 1 such

that E |ξ 0 | r < ∞, Θ(r) = Θ.
2. GARCH(p,q) models.

Consider the GARCH(p,q) process defined by :

X t = σ t ξ t , σ 2 t = α * 0 + q ∑ k=1 α * k X 2 t-k + p ∑ k=1 β * k σ 2 t-k , t ∈ Z with E (ξ 2 0 ) = 1 and θ * 0 := (α * 0 , • • • , α * q , β * 1 , • • • , β * p ) ∈ Θ where Θ is a compact subset of ]0, ∞[×[0, ∞[ p+q such that ∑ q k=1 α k + ∑ p k=1 β k < 1 for all θ ∈ Θ.
Then there exists (see Bollerslev [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] or Nelson and Cao [START_REF] Nelson | Inequality Constraints in the Univariate GARCH Model[END_REF]) a nonnegative sequence ( 

ψ k (θ * 0 )) k≥0 such that σ 2 t = ψ 0 (θ * 0 ) + ∑ k≥1 ψ k (θ * 0 )X 2 t-k with ψ 0 (θ * 0 ) = α * 0 /(1 - ∑ p k=1 β * k ). This process belongs to a class M Z (M θ * 0 , f θ * 0 ) where M θ (x 1 , • • • ) = √ ψ 0 (θ) + ∑ k≥1 ψ k (θ)x k and f θ ≡ 0 ∀θ ∈ Θ. Assumptions D(Θ) holds with h = inf θ∈Θ (α 0 ). If there exists 0 < ρ 0 < 1 such that for any θ ∈ Θ, ∑ q k=1 α k + ∑ p k=1 β k ≤ ρ 0 then the sequences (∥ψ k (θ)∥ Θ ) k≥1 , (∥ψ ′ k (θ)∥ Θ )
Θ(r) = { θ ∈ Θ ; (E |ξ 0 | r ) 2/r q ∑ k=1 α k + p ∑ k=1 β k < 1 } .

Test statistics

Assume that a trajectory (X

1 , • • • , X n ) is observed. It is clear that if (X 1 , • • • , X n ) ∈ M {1,••• ,n} (M θ , f θ ), then
for T ⊂ {1, • • • , n}, the conditional quasi-(log)likelihood computed on T is given by :

L n (T, θ) := - 1 2 and h t θ = ( M t θ ) 2 . For T ⊂ {1, • • • , n}, define the estimator θ n (T ) := argmax θ∈Θ ( L n (T, θ)). Moreover, for 1 ≤ k ≤ n, denote T k = {1, • • • , k} and T k = {k + 1, • • • , n}. Now, define G n (T ) := 1 Card(T ) ∑ t∈T ( ∂ q t ( θ n (T )) ∂θ )( ∂ q t ( θ n (T )) ∂θ ) ′ and F n (T ) := - 2 Card(T ) ( ∂ 2 L n (T, θ n (T )) ∂θ∂θ ′ ) . For k = 1, • • • , n -1, denote : Σ n,k := k n F n (T k ) G n (T k ) -1 F n (T k )1 det( Gn(T k ))̸ =0 + n -k n F n (T k ) G n (T k ) -1 F n (T k )1 det( Gn(T k ))̸ =0 . Let (v n ) n∈I N be a sequence satisfying v n → ∞ and v n /n → 0 (as n → ∞). Denote Π n = [v n , n -v n ] ∩ IN and
define the statistics:

Q (1) n := max k∈Πn Q (1) n,k
where

Q (1) n,k := k 2 n ( θ n (T k ) -θ n (T n ) ) ′ Σ n,k ( θ n (T k ) -θ n (T n ) ) ; Q (2) n := max k∈Πn Q (2) n,k
where

Q (2) n,k := (n -k) 2 n ( θ n (T k ) -θ n (T n ) ) ′ Σ n,k ( θ n (T k ) -θ n (T n ) ) ; Q n := max ( Q (1) n , Q (2) n
) which is the test statistic.

Remark 2.1 Note that, the choice of (v n ) is crucial in practice. We evaluated the procedure with

v n = [log n], [(log n) 2 ], [(log n) 3 ] and recommend to use v n = [(log n) 2 ] for linear model and v n = [(log n) 5/2 ] for GARCH-type model.
Lee and Song [START_REF] Lee | Test for parameter change in ARMA models with GARCH innovations[END_REF] constructed a test for detecting changes in parameters of ARMA-GARCH models. Their test statistic uses a matrix Σ n which depends on the estimator θ n (T n ). Under the null hypothesis (the parameter

θ 0 does not change), Σ n is a consistent estimator of F G -1 F where G = E [(∂q 0 (θ 0 )/∂θ)(∂q 0 (θ 0 )/∂θ) ′ ] and F = E [∂ 2 q 0 (θ 0 )/∂θ∂θ ′ ].
Under the alternative, the model depends on several parameters and θ n (T n ) may not be a consistent estimator of one of them. Therefore, the convergence of the matrix Σ n is not assured. Thus, the asymptotic behavior of the test statistic may be very difficult to study. To solve this problem, we introduce the family of matrices { Σ n,k , k ∈ Π n }. It is easy to see that under the null hypothesis, any sequence ( Σ n,kn ) n>1,kn∈Πn is consistent. We show (see proof of Theorem 3.2) that under the local alternative where there is one change in the model, there exists a sequence ( Σ n,k * n ) n>1,k * n ∈Πn which converges.

3 Asymptotic results

Asymptotic under the null hypothesis

Theorem 3.1 Assume D(Θ), Id(Θ), Var and K(f θ , M θ , Θ). Under the null hypothesis H 0 , if θ 0 ∈ • Θ(4), then for j = 1, 2, Q (j) n D -→ n→∞ sup 0≤τ ≤1 ∥W d (τ )∥ 2
where W d is a d-dimensional Brownian bridge.

For any α ∈ (0, 1), let C α denote the (1 -α/2)-quantile of the distribution of sup

0≤τ ≤1 ∥W d (τ )∥ 2 .
Then, the following corollary is a direct application of Theorem 3.1. n,k are all below the red line which represents the limit of the critical region. Figure 1 c-) andd

Corollary 3.1 Under assumptions of Theorem 3.1 :

∀α ∈ (0, 1) lim sup n→∞ P ( Q n > C α ) ≤ α.
-) show that Q (1) n,k and Q (2)
n,k are larger and increase around the point where the change occurs.

As it can be observed on the Figure 1 and Figure 2 , the statistics Q

(1)

n and Q (1)
n are not clearly equal. Figure 2 shows the typical example for ARCH [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] with one change where

Q (1) n < C α and Q (2)
n > C α . In general, we don't know if under the alternative hypothesis each of statistics

Q (1) n and Q (2)
n take large values. But, under the local alternative of one change, the maximum of these two statistics diverges to infinity (see Theorem 3.2). This is the reason why we define the critical region as {max( Q

(1) n , Q (2) n ) > C α }.

The asymptotic under a local alternative

In this subsection, we consider a local alternative that there is one change in the model. More precisely, define

H (loc) 1 : there exist τ * ∈ (0, 1) and θ * 1 , θ * 2 ∈ Θ with θ * 1 ̸ = θ * 2 such that X 1 , • • • X [nτ * ] ∈ M T [nτ * ] (M θ * 1 , f θ * 1 ) and X [nτ * ]+1 , • • • , X n ∈ M T [nτ * ] (M θ * 2 , f θ * 2 ).

Theorem 3.2 Assume D(Θ), Id(Θ), Var and K(f

θ , M θ , Θ). Under H (loc) 1 , if θ * 1 , θ * 2 ∈ • Θ(4), then Q n a.s.
-→ n→∞ ∞.

Remark 3.2 1-) Theorem 3.2 shows that the test with the local alternative H (loc) 1

is consistent in power. 2-) This procedure can also be used to test multiple changes using ICSS type algorithm developed by Inclán and Tiao [START_REF] Inclan | Use of cumulative sums of squares for retrospective detection of changes of variance[END_REF]. 

a-) Q n,k (1 

Some simulations results

In this section, we evaluate the performance of the procedure through empirical study. We compare our results with those obtained by Kouamo et al. [START_REF] Kouamo | Testing for homogeneity of variance in the wavelet domain[END_REF], Lee and Na [START_REF] Lee | Test for parameter change in stochastic processes based on conditional least-squares estimator[END_REF] and the results obtained from the residual CUSUM test by using the statistics defined by Kulperger and Yu [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF]. For a sample size n, Q n is computed with v n = [(ln n) 2 ] for AR model and v n = [(ln n) 5/2 ] for GARCH model and is compared to the critical value of the test. In the following models, (ξ t ) t∈Z are iid standard Gaussian random variables.

Test for parameter change in AR(p) models

Let us consider a AR(p) process :

X t = p ∑ k=1 ϕ * k X t-k + ξ t with p ∈ IN * .
The true parameter of the model is de-

noted by θ * 0 = (ϕ * 1 , • • • , ϕ * p ) ∈ Θ where Θ = {θ = (ϕ 1 , • • • , ϕ p ) ∈ IR p / p ∑ i=1 |ϕ i | < 1}. Since M θ ≡ 1, Θ(r) = Θ for any r ≥ 1. Assume (X 1 , • • • , X n ) is observed, we have for any θ ∈ Θ, q t (θ) = ( X t - p ∑ k=1 ϕ k X t-k ) 2 , ∂ q t (θ) ∂θ = -2 ( X t - p ∑ k=1 ϕ k X t-k ) • (X t-1 , X t-2 , • • • , X t-p ) and for 1 ≤ i, j ≤ n ∂ 2 q t (θ) ∂ϕ i ∂ϕ j = 2X t-i X t-j .
We consider a AR(1) process with one parameter. At level α = 0.05, the critical value is C α ≃ 2.20. For n = 1024, 2048, 4096 ; we generate a sample (X 1 , • • • , X n ) in the following situations : (i) there is no change and the parameter of the model is θ 0 = 0.9 and (ii) there is one change and the parameter θ 0 = 0.9 changes to θ 1 = 0. 

Test for parameter change in GARCH(1,1) models

Consider the GARCH(1,1) model defined by:

∀t ∈ Z, X t = σ t ξ t with σ 2 t = α * 0 + α * 1 X 2 t-1 + β * 1 σ 2 t-1 with θ * 0 = (α * 0 , α * 1 , β * 1 ) ∈ Θ ⊂]0, ∞[×[0, ∞[ 2 and satisfying α * 1 + β * 1 < 1. The ARCH(∞) representation is σ 2 t = α * 0 /(1 -β * 1 ) + α * 1 ∑ k≥1 (β * 1 ) k-1 X 2 t-k . For any θ ∈ Θ and t = 2, • • • , n , we have h t θ = α 0 /(1 -β 1 ) + α 1 X 2 t-1 + α 1 t ∑ k=2 β k-1 1 X 2 t-k and q t (θ) = X 2 t / h t θ + log( h t θ ).
Therefore, it follows that ∂ q t (θ) ∂θ = 1

h t θ ( 1 - X 2 t h t θ )( ∂ h t θ ∂α 0 , ∂ h t θ ∂α 1 , ∂ h t θ ∂β 1 ) with ∂ h t θ /∂α 1 = X 2 t-1 + t ∑ k=2 β k-1 1 X 2 t-k ∂ h t θ /∂α 0 = 1/(1 -β 1 ), and ∂ h t θ /∂β 1 = α 0 /(1 -β 1 ) 2 + α 1 X 2 t-2 + α 1 t ∑ k=3 (k -1)β k-2 1 X 2 t-k . Let θ = (α 0 , α 1 , β 1 ) = (θ 1 , θ 2 , θ 3 ) ∈ Θ, for 1 ≤ i, j ≤ 3, we have ∂ 2 q t (θ) ∂θ i ∂θ j = 1 ( h t θ ) 2 ( 2X 2 t h t θ -1 ) ∂ h t θ ∂θ i ∂ h t θ ∂θ j + 1 h t θ ( 1 - X 2 t h t θ ) ∂ 2 h t θ ∂θ i ∂θ j with ∂ 2 h t θ /∂α 2 0 = 0, ∂ 2 h t θ /∂α 0 ∂α 1 = 0, ∂ 2 h t θ /∂α 2 1 = 0, ∂ 2 h t θ /∂α 1 ∂β 1 = X 2 t-2 + t ∑ k=3 (k -1)β k-2 1 X 2 t-k , ∂ 2 h t θ /∂α 0 ∂β 1 = 1/(1 -β 1 ) 2 and ∂ h t θ /∂β 2 1 = 2α 0 /(1 -β 1 ) 3 + 2α 1 X 2 t-3 + α 1 t ∑ k=4 (k -1)(k -2)β k-3 1 X 2 t-k .
1. Case of ARCH(1). Assume β 1 = 0 and θ = (α 0 , α 1 ). At level α = 0.05, the critical value is C α ≃ 3.02.

For n = 500, 800, 1000 ; we generate a sample (X 1 , • • • , X n ) in the following situations : (i) there is no change, the parameter of the model is θ 0 = (1, 0.3) and (ii) there is one change, the parameter θ 0 = (1, 0.3) changes to two different values of θ 1 = (0.5, 0.3) and θ 1 = (0. (2) statistic defined by Kulperger and Yu [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF].

Table 2 and Table 3 show that the empirical level of the test decreases and the empirical power increases as n increases. For ARCH model, we can see that the empirical level is less than 0.05 when n = 800. It is not very surprising because the asymptotic size of the test is less than α = 0.05. This is not the case for GARCH model. It is explained by the fact that the application of the procedure to GARCH model requires ARCH(∞) representation. Thus, the information contained in all the past of the process is not used because it is not observed. In Table 2, figures in brackets are the results obtained by Lee and Na [START_REF] Lee | Test for parameter change in stochastic processes based on conditional least-squares estimator[END_REF] using the CUSUM test based on conditional least-squares estimator. In Table 3, figures in brackets are the results of the residual CUSUM test that we obtained by using CU SU M (2) statistic studied by Kulperger and Yu [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF]. Once again, our test statistic Q n provides best results.

Proofs of the main results

Let (ψ n ) n and (r n ) n be sequences of random variables. Throughout this section, we use the notation ψ n = o P (r n ) to mean : for all ε > 0, P (|ψ n | ≥ ε|r n |) → 0 as n → ∞. Write ψ n = O P (r n ) to mean : for all ε > 0, there exists C > 0 such that P (|ψ n | ≥ C|r n |) ≤ ε for n large enough.

Some preliminary results

First, let us prove useful technical lemmas.

Under the null hypothesis H

0 the observations (X 1 , • • • , X n ) belong in the class M {1,••• ,n} (M θ0 , f θ0 ), de- fine the matrix G := E [ ∂q 0 (θ 0 ) ∂θ ∂q 0 (θ 0 ) ∂θ ′]
( where ′ denotes the transpose) and

F := E [ ∂ 2 q 0 (θ 0 ) ∂θ∂θ ′ ] .
Under assumption Var, F is a non-singular matrix (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Proof. It is clear that G is symmetric. Moreover, for 1 ≤ i ≤ d, we have :

∂q 0 (θ 0 ) ∂θ i = -2 ξ 0 √ h 0 θ0 ∂f 0 θ0 ∂θ i - ξ 2 0 h 0 θ0 ∂h 0 θ0 ∂θ i + 1 h 0 θ0 ∂h 0 θ0 ∂θ i . Thus, using independence of ξ 0 and X -1 , X -2 , • • • we obtain : E [ ∂q 0 (θ 0 ) ∂θ ′ ∂q 0 (θ 0 ) ∂θ ] = 4E [ 1 h 0 θ0 ∂f 0 θ0 ∂θ ′ ∂f 0 θ0 ∂θ ] + E ( (ξ 2 0 -1) 2 ) E [ 1 (h 0 θ0 ) 2 ∂h 0 θ0 ∂θ ′ ∂h 0 θ0 ∂θ ] . ( 2 
)
Since E ξ 2 0 = 1, it is easy to see that E

( (ξ 2 0 -1) 2 ) > 0.
Under Var, one of the two matrix of the right-hand side of relation ( 2) is positive definite and the other is semi-positive definite. Thus, G is positive definite.

Now, recall that

F := E [ ∂ 2 q 0 (θ 0 ) ∂θ∂θ ′ ] . Let T ⊂ {1, • • • , n}. For any θ ∈ Θ and i = 1, • • • , d, by Taylor expansion of ∂L n (T, θ 0 )/∂θ i , there exist θ n,i ∈ [θ 0 , θ] such that: ∂L n (T, θ) ∂θ i = ∂L n (T, θ 0 ) ∂θ i + ∂ 2 L n (T, θ n,i ) ∂θ∂θ i (θ -θ 0 ) (3) 
where

[a, b] = {λa + (1 -λ)b ; λ ∈ [0, 1]}. Denote F n (T, θ) = -2 ( 1 card(T ) ∂ 2 L n (T, θ n,i ) ∂θ∂θ i ) 1≤i≤d . Then, (3) implies, Card(T )F n (T, θ)(θ -θ 0 ) = -2 ( ∂L n (T, θ) ∂θ - ∂L n (T, θ 0 ) ∂θ ) . (4) 
Similarly, for any θ ∈ Θ we can find a matrix F n (T, θ) such that

Card(T ) F n (T, θ)(θ -θ 0 ) = -2 ( ∂ L n (T, θ) ∂θ - ∂ L n (T, θ 0 ) ∂θ ) . (5) 
With θ = θ n (T ) in ( 5) and using the fact that

∂ L n (T, θ n (T ))/∂θ = 0 (because θ n (T ) is a local extremum of L n (T, •)), it comes Card(T ) F n (T, θ n (T ))( θ n (T ) -θ 0 ) = 2 ∂ L n (T, θ 0 ) ∂θ . ( 6 
) Remark 5.1 If Card(T ) -→ n→∞ ∞ and θ = θ(n) -→ n→∞ θ 0 , then F n (T, θ) a.s. -→ n→∞ F and F n (T, θ) a.s.
-→ n→∞ F (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF]). In particular, if

Card(T ) -→ n→∞ ∞ , then F n (T, θ n (T )) a.s. -→ n→∞ F and F n (T, θ n (T )) a.s.
-→ n→∞ F.

Lemma 5.2 Under assumptions of Theorem 3.1

1 √ n max k∈Πn k ( F n (T k , θ n (T k )) -F ) ( θ n (T k ) -θ 0 ) = o P (1).

Proof.

For k ∈ Π n , we know that √ k( θ n (T k )) -θ 0 ) converges in distribution to the Gaussian law as n -→ ∞ (see Theorem 2 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]). Therefore, max

k∈Πn √ k( θ n (T k ) -θ 0 ) = O P (1). Remark 5.1 implies that max k∈Πn F n (T k , θ n (T k )) -F = o(1) a.s. Thus 1 √ n max k∈Πn k ( F n (T k , θ n (T k )) -F ) ( θ n (T k ) -θ 0 ) ≤ max k∈Πn F n (T k , θ n (T k )) -F × max k∈Πn √ k( θ n (T k ) -θ 0 ) = o(1)O P (1) a.s. = o P (1).
Under assumptions of Theorem 3.1, the matrix

G is invertible. Denote Σ = F G -1 F Q (1) n := max k∈Πn Q (1) n,k
where

Q (1) n,k := k 2 n ( θ n (T k ) -θ n (T n ) ) ′ Σ ( θ n (T k ) -θ n (T n ) ) and 
Q (2) n := max k∈Πn Q (2) n,k
where

Q (2) n,k := (n -k) 2 n ( θ n (T k ) -θ n (T n ) ) ′ Σ ( θ n (T k ) -θ n (T n ) ) . Lemma 5.3 Under assumptions of Theorem 3.1 max k∈Πn Q (j) n,k -Q (j) n,k = o P (1) for j = 1, 2.
Proof. The proof is provided for j = 1, proceed similarly for j = 2. For any k ∈ Π n , we have

Q (1) n,k -Q (1) n,k ≤ k 2 n ∥ θ n (T k ) -θ n (T n )∥ 2 ∥ Σ n,k -Σ∥ ≤ 2 k 2 n ( ∥ θ n (T k ) -θ 0 ∥ 2 + ∥ θ n (T n ) -θ 0 ∥ 2 ) ∥ Σ n,k -Σ∥ ≤ 2 ( ∥ √ k( θ n (T k ) -θ 0 )∥ 2 + ∥ √ n( θ n (T n ) -θ 0 )∥ 2 ) ∥ Σ n,k -Σ∥. ( 7 
) Since k ∈ Π n , k, n-k -→ ∞ as n -→ ∞. Therefore, √ k( θ n (T k )-θ 0 ) = O P (1) as n -→ ∞, √ n( θ n (T n )-θ 0 ) = O P (1), F n (T k ) a.s. -→ n→∞ F , F n (T k ) a.s. -→ n→∞ F , G n (T k ) a.s. -→ n→∞ G and G n (T k ) a.s. -→ n→∞ G which is invertible. Thus, for n large enough, G n (T k ) and G n (T k ) are invertible. It follows that as n -→ ∞, ∥ Σ n,k -Σ∥ = k n F n (T k ) G n (T k ) -1 F n (T k ) + n -k n F n (T k ) G n (T k ) -1 F n (T k ) -F G -1 F = k n ( k n F n (T k ) G n (T k ) -1 F n (T k ) -F G -1 F ) + n -k n ( F n (T k ) G n (T k ) -1 F n (T k ) -F G -1 F ) ≤ ∥ F n (T k ) G n (T k ) -1 F n (T k ) -F G -1 F ∥ + ∥ F n (T k ) G n (T k ) -1 F n (T k ) -F G -1 F ∥ = o(1) a.s.
Therefore, [START_REF] Billingsley | Convergence of Probability Measures[END_REF] 

implies max k∈Πn Q (1) n,k -Q (1)
n,k = o P (1).

Lemma 5.4 Under assumptions of Theorem 3.1

-2 √ n ∂L n (T [nτ ] , θ 0 ) ∂θ D -→ W G (τ ) in D([0, 1], IR d )
where W G is a d-dimensional Gaussian process with zero mean and covariance matrix min(τ, s)G.

Proof. Recall that -2 ∂L n (T [nτ ] , θ 0 ) ∂θ = [nτ ] ∑ t=1 ∂q t (θ 0 ) ∂θ . Denote F t = σ(X t-1 , • • • ).
Since X is stationary and ergodic, it is the same for the process ( ∂q t (θ 0 ) ∂θ ) t∈Z . Moreover, ( ∂q t (θ 0 ) ∂θ , F t ) is a square integrable martingale difference process (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]) with covariance matrix G. Then, the result follow by using Theorem 23.1 Billingsley (1968) (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF] page 206). Lemma 5.5 Under assumptions of Theorem 3.1

-2 √ n G -1/2 ( ∂L n (T [nτ ] , θ 0 ) ∂θ - [nτ ] n ∂L n (T n , θ 0 ) ∂θ ) D -→ W d (τ ) in D([0, 1], IR d )
where W d is a d-dimensional Brownian bridge.

Proof. By Lemma 5.4, it comes

-2 √ n ( ∂L n (T [nτ ] , θ 0 ) ∂θ - [nτ ] n ∂L n (T n , θ 0 ) ∂θ ) D -→ W G (τ ) -τ W G (1) in D([0, 1], IR d ).
Since the covariance matrix of the process {W G (τ ) -τ W G (1), 0 ≤ τ ≤ 1} is (min(τ, s) -τ s)G, the covariance matrix of the process {G -1/2 (W G (τ )-τ W G (1)), 0 ≤ τ ≤ 1} is (min(τ, s)-τ s)I d (where I d is the d-dimensional identity matrix). Therefore, the process is equal (in distribution) to d-dimensional Brownian bridge and the result follows.

Lemma 5.6 Under assumptions of Theorem 3.1

-2 √ n G -1/2 ∂ L n (T [nτ ] , θ n (T n )) ∂θ D -→ W d (τ ) in D([0, 1], IR d ).
Proof. From [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], we have 1

√ n ∂L n (T n , •) ∂θ - ∂ L n (T n , •) ∂θ Θ = o P (1). This implies, 1 √ n max k∈Πn ∂L n (T k , •) ∂θ - ∂ L n (T k , •) ∂θ Θ = o P (1). (8) 
Let k ∈ Π n . Applying (4) with T = T k and θ = θ n (T n ), we have

kF n (T k , θ n (T n ))( θ n (T n ) -θ 0 ) = -2 ( ∂L n (T k , θ n (T n )) ∂θ - ∂L n (T k , θ 0 ) ∂θ ) .
By plugging it in (8), we have

1 √ n max k∈Πn ∂ L n (T k , θ n (T n )) ∂θ - ∂L n (T k , θ 0 ) ∂θ + 1 2 kF n (T k , θ n (T n ))( θ n (T n ) -θ 0 ) = o P (1). (9) 
But, by Remark 5.1, it comes that

1 √ n max k∈Πn k ( F n (T k , θ n (T n )) -F n (T n , θ n (T n )) ) ( θ n (T n ) -θ 0 ) ≤ 1 √ n max k∈Πn k ( F n (T k , θ n (T n )) -F n (T n , θ n (T n )) ) × ∥ √ n( θ n (T n ) -θ 0 )∥ = o(1)O P (1) a.s.
= o P (1).

Thus, (9) becomes

1 √ n max k∈Πn ∂ L n (T k , θ n (T n )) ∂θ - ∂L n (T k , θ 0 ) ∂θ + 1 2 kF n (T n , θ n (T n ))( θ n (T n ) -θ 0 ) = o P (1). (10) 
Applying ( 4) with T = T n , θ = θ n (T n ), and using (1/ √ n)(∂L n (T n , θ n (T n ))/∂θ) = o P (1) (see [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]), it follows

F n (T n , θ n (T n ))( θ n (T n ) -θ 0 ) = 2 n ∂L n (T n , θ 0 ) ∂θ + o P ( 1 √ n ). (11) 
Therefore, [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF] becomes

1 √ n max k∈Πn ∂ L n (T k , θ n (T n )) ∂θ - ∂L n (T k , θ 0 ) ∂θ + k n ∂L n (T n , θ 0 ) ∂θ = o P (1). ( 12 
)
Now, let 0 < τ < 1, for large value of n, we have [τ n] ∈ Π n ; write

-2 √ n G -1/2 ∂ L n (T [nτ ] , θ n (T n )) ∂θ = -2 √ n G -1/2 [ ∂ L n (T [nτ ] , θ n (T n )) ∂θ - ( ∂L n (T [nτ ] , θ 0 ) ∂θ - [nτ ] n ∂L n (T n , θ 0 ) ∂θ ) + ( ∂L n (T [nτ ] , θ 0 ) ∂θ - [nτ ] n ∂L n (T n , θ 0 ) ∂θ ) ]
and the result follows by using ( 12) and Lemma 5.5.

Proof of Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1 .

We give the proof for j = 1, proceed similarly for j = 2. By Lemma 5. 

∂L n (T k , θ 0 ) ∂θ - 1 2 kF ( θ n (T k ) -θ 0 ) = 1 √ n max k∈Πn ∂ L n (T k , θ 0 ) ∂θ - 1 2 kF ( θ n (T k ) -θ 0 ) + o P (1) = 1 √ n max k∈Πn 1 2 k F n (T k , θ n (T k ))( θ n (T n ) -θ 0 ) - 1 2 kF ( θ n (T k ) -θ 0 ) + o P (1) = 1 √ n max k∈Πn 1 2 k ( F n (T k , θ n (T k )) -F ) ( θ n (T n ) -θ 0 ) + o P (1) = o P (1). (13) 
Using ( 12) and 13, we have

1 √ n max k∈Πn ∂L n (T k , θ n (T n )) ∂θ - 1 2 kF ( θ n (T k ) -θ n (T n )) = 1 √ n max k∈Πn ∂L n (T k , θ 0 ) ∂θ - k n ∂L n (T n , θ 0 ) ∂θ - 1 2 kF ( θ n (T k ) -θ n (T n )) + o P (1) = 1 √ n max k∈Πn 1 2 kF ( θ n (T k ) -θ 0 ) - k n ∂L n (T n , θ 0 ) ∂θ - 1 2 kF ( θ n (T k ) -θ n (T n )) + o P (1) = 1 √ n max k∈Πn 1 2 kF ( θ n (T n ) -θ 0 ) - k n ∂L n (T n , θ 0 ) ∂θ + o P (1) ≤ √ n 1 2 F ( θ n (T n ) -θ 0 ) - 1 n ∂L n (T n , θ 0 ) ∂θ + o P (1). ( 14 
) Note that √ n(F -F n (T n , θ n (T n ))) ( θ n (T n ) -θ 0 ) ≤ F -F n (T n , θ n (T n )) √ n( θ n (T n ) -θ 0 )
= o(1)O P (1) a.s.

= o P [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF].

By plugging it in [START_REF] Kierfer | K-sample analogues of the Kolmogorov-Smirnov and Cramér-v.Mises tests[END_REF] and applying (4) with T = T n and θ = θ n (T n ), we have

1 √ n max k∈Πn ∂L n (T k , θ n (T n )) ∂θ - 1 2 kF ( θ n (T k ) -θ n (T n )) ≤ √ n 1 2 F n (T n , θ n (T n ))( θ n (T n ) -θ 0 ) - 1 n ∂L n (T n , θ 0 ) ∂θ + o P (1). (15) 
Therefore, using ( 11), ( 15) implies

1 √ n max k∈Πn ∂L n (T k , θ n (T n )) ∂θ - 1 2 kF ( θ n (T k ) -θ n (T n )) = o P (1). (16) 
Now, let 0 < τ < 1, for large value of n, we have

[τ n] ∈ Π n ; write -2 √ n G -1/2 ∂ L n (T [nτ ] , θ n (T n )) ∂θ = - [nτ ] √ n G -1/2 F ( θ n (T [nτ ] ) -θ n (T n )) -2G -1/2 1 √ n [ ∂ L n (T [nτ ] , θ n (T n )) ∂θ - 1 2 [nτ ]F ( θ n (T [nτ ] ) -θ n (T n ))
] .

Therefore, using ( 16) we have

- [nτ ] √ n G -1/2 F ( θ n (T [nτ ] ) -θ n (T n )) = -2 √ n G -1/2 ∂ L n (T [nτ ] , θ n (T n )) ∂θ + o P (1)
and the result follows by using Lemma 5.6.

Proof of Theorem 3.2 .

Let τ * ∈ (0, 1) the true value of break. Denote k * = [nτ * ]. For n large enough , k * ∈ Π n . Therefore, we have

for j = 1, 2, Q (j) n = max k∈Πn Q (j) n,k ≥ Q (j)
n,k * . Thus, it follows that

Q n = max( Q (1) n , Q (2) n ) ≥ max( Q (1) n,k * , Q (2) n,k * ). ( 17 
) Since θ * 1 , θ * 2 ∈ • Θ(4), it comes from [2] that the model M Z (M θ * 1 , f θ * 1 ) and M Z (M θ * 2 , f θ * 2 )
have a 4-order stationary solution which we denote (X t,j ) t∈Z for j = 1, 2.

For j = 1, 2 denote for any t ∈ Z, q t,j (θ) := (X t,j -f t,j θ ) 2 /(h t,j θ ) + log(h t,j θ ) with f t,j θ := f θ (X t-1,j , X t-2,j , . . .), h t,j θ := (M t,j θ ) 2 where M t,j θ := M θ (X t-1,j , X t-2,j , . . .). Also denote for j = 1, 2 F (j) = E [ ∂ 2 q 0,j (θ * j ) ∂θ∂θ ′ ] and G (j) = E [( ∂q 0,j (θ * j ) ∂θ )( ∂q 0,j (θ * j ) ∂θ

) ′ ]
.

For j = 1, 2, Lemma 5.1 implies that the matrix G (j) is symmetric positive definite and Corollary 5.1 of [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF] implies G n (T k * ) a.s.

-→ n→∞ G (1) and G n (T k * ) a.s.

-→ n→∞ G (2) . Lemma 4 of [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] implies F n (T k * ) a.s.

-→ n→∞ F (1) and

F n (T k * ) a.s.
-→ n→∞ F (2) . Therefore, it follows that

Σ n,k * := k * n F n (T k * ) G n (T k * ) -1 F n (T k * )1 det( Gn(T k * ))̸ =0 + n -k * n F n (T k * ) G n (T k * ) -1 F n (T k * )1 det( Gn(T k * ))̸ =0
a.s.

-→ n→∞ τ * F (1) (G (1) ) -1 F (1) + (1 -τ * )F (2) (G (2) ) -1 F (2) . [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF] Denote Σ = τ * F (1) (G (1) ) -1 F (1) + (1 -τ * )F (2) (G (2) ) -1 F (2) . It is easy to see that Σ is a symmetric positive . It is easy to see that δ (j) > 0 for j = 1, 2.

Using [START_REF] Kulperger | High moment partial sum processes of residuals in GARCH models and their applications[END_REF], we have

δ (j) n a.s.
-→ n→∞ δ (j) for j = 1, 2. (

From [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] and [START_REF] Bardet | Detecting multiple change-points in general causal time series using penalized quasi-likelihood[END_REF] n . Therefore, (1) n ≃ n(τ * ) 2 δ (1) n .

Q (1) n,k * := (k * ) 2 n ( θ n (T k * ) -θ n (T n )) ′ Σ n,k * ( θ n (T k * ) -θ n (T n )) ≥ (k * ) 2 n δ
• else θ n (T n ) ∈ B c o (θ * 2 , ρ 2 ) and (

θ n (T k * ) -θ n (T n )) ′ Σ n,k * ( θ n (T k * ) -θ n (T n )) ≥ δ (2)
n . Therefore,

Q (2) n,k * = (n -k * ) 2 n ( θ n (T k * ) -θ n (T n )) ′ Σ n,k * ( θ n (T k * ) -θ n (T n ) ≥ (n -k * ) 2 n δ (2) n ≃ n(1 -τ * ) 2 δ (2) n .
In all cases, we have

Q n ≥ max( Q (1) n,k * , Q (2) n,k * ) ≥ min ( n(τ * ) 2 δ (1) n , n(1 -τ * ) 2 δ (2) n
) .

Thus the result follows by using [START_REF] Lee | The Cusum Test for Parameter Change in Time Series Models[END_REF].

Remark 3 . 1

 31 Quantile values of the distribution of sup 0≤τ ≤1∥W d (τ )∥ 2 are known (see for instance Kieffer[START_REF] Kierfer | K-sample analogues of the Kolmogorov-Smirnov and Cramér-v.Mises tests[END_REF] for d ∈ {1, • • • , 5} or Lee et al.[START_REF] Lee | The Cusum Test for Parameter Change in Time Series Models[END_REF] for d ∈ {1, • • • , 10}). Theorem 3.1 and Corollary 3.1 imply that a large value of Q n means there is a change in the model. At a nominal level α, the critical region of the test is ( Q n > C α ).

Figure 1

 1 Figure 1 is an illustration of the test procedure for AR(1) process. At a level α = 0.05, for d = 1, C α ≃ 2.20.

Figure 1 a

 1 Figure 1 a-) and b-) show that, the values of Q (1) n,k and Q (2)

Figure 1 :Figure 2 :

 12 Figure 1 : Typical realization of the statistics Q (1) n,k and Q (2) n,k for 1000 sample of AR(1) with v n = [log n]. a-) and b-) are the case of AR(1) where parameter ϕ 1 = 0.3 remains constant. c-) and d-) are the case of AR(1) with parameter ϕ 1 = 0.3 changing to 0.5 at k * = 400.

Lemma 5 . 1

 51 Assume the functions θ → M θ and θ → f θ are 2-times continuously differentiable on Θ. Under the null hypothesis D(Θ) and Var, G is a symmetric, positive definite matrix.

  definite matrix. For all ρ > 0 and θ ∈ Θ, denote B o (θ, ρ) (rep. B c (θ, ρ) ) the open (resp. closed) ball centered at θ of radius ρ in Θ. i.e.B o (θ, ρ) = {x ∈ Θ ; ∥θ -x∥ < ρ} and B c (θ, ρ) = {x ∈ Θ ; ∥θ -x∥ ≤ ρ}. For A ⊂ Θ, we denote A c = {x ∈ Θ ; x / ∈ A}. Since θ * 1 ̸ = θ * 2 and θ * 1 , θ * 2 ∈ • Θ(4) ⊂ • Θ, then there exist ρ 1 > 0 and ρ 2 > 0 such as B o (θ * 1 , ρ 1 ) ∩ B o (θ * 2 , ρ 2 ) = ∅. For all n ∈ IN , denote δ (j) n = inf x∈Bc(θ * j ,ρj /2); y∈B c o (θ * j ,ρj ) ( (x -y) ′ Σ n,k * (x -y) ) for j = 1, 2. Also denote δ (j) = inf x∈Bc(θ * j ,ρj /2); y∈B c o (θ * j ,ρj ) ( (x -y) ′ Σ(x -y) )

Table 1 :

 1 [START_REF] Berkes | GARCH processes: structure and estimation[END_REF] at n/2. The following table indicates the proportion of the number of rejections of the null hypothesis out of 100 repetitions. Empirical levels and powers at nominal level 0.05 of the test for parameter change in AR(1) model. The empirical levels are computed when θ 0 = 0.9 ; the empirical powers are computed when θ 0 changes to θ 1 = 0.5 at n/2. Figures in brackets are the results obtained by Kouamo et al.[START_REF] Kouamo | Testing for homogeneity of variance in the wavelet domain[END_REF] at the scale J=4 with KSM and CVM statistic in wavelet domain.

		n = 1024	n = 2048	n = 4096
	Empirical levels	0.080 (0.134 ; 0.092) 0.070 (0.100 ; 0.062) 0.050 (0.082 ; 0.040)
	Empirical powers when θ 1 = 0.5 0.980 (0.590 ; 0.530) 0.990 (0.720 ; 0.680) 0.990 (0.810 ; 0.790)

Table 1

 1 shows that the empirical level of the test decreases as n increases and equals to 0.05 when n = 4096. These levels are close to those obtained byKouamo et al. with CVM (Cramér-Von Mises) test statistic. The results obtained with our test statistic Q n are clearly more accurate.

Table 2 :

 2 Empirical levels and powers at nominal level 0.05 of the test for parameter change in ARCH(1) model. The empirical levels are computed when θ 0 = (1, 0.3) ; the empirical powers are computed when θ 0 changes to θ 1 at n/2. Figures in brackets are the results obtained by Lee and Na [20].2. Case of GARCH[START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF][START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF]. Now θ = (α 0 , α 1 , β 1 ). At level α = 0.05, the critical value is C α ≃ 3.47. For n = 500, 1000, 1500 ; we generate a sample (X 1 , • • • , X n ) in the following situations : (i) there is no change, the parameter of the model is θ The following table indicates the proportion of the number of rejections of the null hypothesis out of 500 repetitions.

		n = 500	n = 800	n = 1000
	Empirical levels	0.068 (0.088) 0.048 (0.080) 0.036 (0.074)
	Empirical powers when θ 1 = (0.5, 0.3) 0.948 (0.922) 0.972 (0.987) 0.998 (0.995)
	Empirical powers when θ 1 = (0.5, 0.6) 0.876 (0.498) 0.976 (0.589) 0.984 (0.606)
		n = 500	n = 1000	n = 1500
	Empirical levels	0.100 (0.030) 0.078 (0.032) 0.052 (0.042)
	Empirical powers when θ 1 = (0.7, 0.4, 0.1) 0.498 (0.334) 0.752 (0.658) 0.934 (0.848)
	Empirical powers when θ 1 = (1, 0.4, 0.3)	0.654 (0.404) 0.968 (0.772) 0.976 (0.922)

5, 0.6) 

at n/2. The following table indicates the proportion of the number of rejections of the null hypothesis out of 500 repetitions. 0 = (1, 0.4, 0.1) and (ii) there is one change, the parameter θ 0 = (1, 0.4, 0.1) changes two different values of θ 1 = (0.7, 0.4, 0.1) and θ 1 = (1, 0.4, 0.3) at n/2.

Table 3 :

 3 Empirical

levels and powers at nominal level 0.05 of test the for parameter change in GARCH(1,1) model. The empirical levels are computed when θ 0 = (1, 0.4, 0.1) ; the empirical powers are computed when θ 0 changes to θ 1 at n/2. Figures in brackets are the results of the residual CUSUM test using CU SU M

  , we have θ n (T k

* ) a.s. -→ n→∞ θ * 1 and θ n (T k * ) a.s. -→ n→∞ θ * 2 . Therefore, for n large enough, θ n

(T k * ) ∈ B o (θ * 1 , ρ 1 /2) and θ n (T k * ) ∈ B o (θ * 2 , ρ 2 /2

). Thus, two situations may occur

• if θ n (T n ) ∈ B o (θ * 2 , ρ 2 ) i.e. θ n (T n ) ∈ B c o (θ * 1 , ρ 1 ) then ( θ n (T k * ) -θ n (T n )) ′ Σ n,k * ( θ n (T k * ) -θ n (T n )) ≥ δ (1)
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