
HAL Id: hal-00561015
https://hal.science/hal-00561015v1

Preprint submitted on 31 Jan 2011 (v1), last revised 2 Jul 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A test for parameter change in general causal time series
models

William Charky Kengne

To cite this version:
William Charky Kengne. A test for parameter change in general causal time series models. 2011.
�hal-00561015v1�

https://hal.science/hal-00561015v1
https://hal.archives-ouvertes.fr


A test for parameter change in general causal time series models

William Charky Kengne1,∗

SAMM, Université Paris 1 Panthéon-Sorbonne, 90 rue de Tolbiac 75634-Paris Cedex 13, France

Abstract

We consider a process X = (Xt)t∈Z belonging to a large class of causal models. We assume that the model
depends on a parameter θ0 and consider the problem of test for change of the parameter. The test statistic
is based on the quasi-maximum likelihood estimator (QLME) of the parameter. Given a significance level
α ∈ (0, 1), it is shown that the asymptotic size of the test less than α. Under the local alternative that
there is one change, we show that the test statistic converges almost surely to ∞. Some simulation results
for AR(1), ARCH(1) and GARCH(1,1) models are reported.

Keywords: Semi-parametric test; Change of parameters; Causal processes; Quasi-maximum likelihood
estimator; Weak convergence.

1. Introduction

Many statistical data can be represented by models which may change over time, for instance hydraulic
flow, climate data. Before any inference on these data, it is crucial to test whether a change has not oc-
curred in the model.

Since Page [20] in 1955, real advances have been done about tests for change detection. Horvath [9]
proposed a test for detecting change in parameter of autoregressive processes based on weighted supre-
mum and Lp-functionals of the residual sums. The CUSUM statistic which was introduced by Brown et
al. [7] in 1975, was modified by Inclan and Tiao [11] for testing change in variance of independent random
variable. Their test has asymptotically correct size but the consistency in power is unknown. Numerous
work devoted to the CUSUM-type procedure (see for instance Lee et al. [17] in the regression models
with ARCH errors, Kokoszka and Leipus [14] the case of ARCH(∞) or Aue et al. [1] for testing break
in covariance). Horváth et al. [10] suggested to compute the ratio of the CUSUM functionals instead of
the differences for testing change in the mean of a time series. Berkes et al. [5] used a test based on
approximate likelihood scores for testing parameter constancy in GARCH(p,q) models. These procedures
are either done in a parametric case, either the asymptotic power is unknown. The present work is a new

∗Tel.: +33(0)144078706.
Email address: William-Charky.Kengne@malix.univ-paris1.fr (William Charky Kengne )

1Supported by AUF (Agence Universitaire de la Francophonie) and Edulink ACP-EU project.

Preprint submitted to Stochastic Processes and their Applications January 31, 2011



2

contribution to the problem of test for change detection.

In this paper, we consider a general class MT (M,f) of causal (non-anticipative) time series. Let
M,f : IRIN → IR be measurable functions, (ξt)t∈Z be a sequence of centered independent and identically
distributed (iid) random vectors called the innovations and satisfying var(ξ0) = σ2 and Θ a compact subset
of IRd . Let T ⊂ Z, for any θ ∈ Θ , define

Class MT (Mθ, fθ): The process X = (Xt)t∈Z belongs toMT (Mθ, fθ) if it satisfies the relation:

Xt+1 = Mθ

(
(Xt−i)i∈IN

)
ξt + fθ

(
(Xt−i)i∈IN

)
for all t ∈ T . (1.1)

The existence and properties of these general affine processes were studied in Bardet and Wintenberger [2].
Numerous classical time series are included inMZ(M,f): for instance AR(∞), ARCH(∞), TARCH(∞),
ARMA-GARCH or bilinear processes.

Now, assume that a trajectory (X1, · · · , Xn) of X = (Xt)t∈Z is observed and consider the following
hypothesis:

H0 : there exists θ0 ∈ Θ such that (X1, · · · , Xn) belong in the classM{1,··· ,n}(Mθ0 , fθ0) ;
H1 : there exists K ≥ 2, θ1, · · · , θK ∈ Θ a partition {Tn1 , · · · , TnK} of {1, · · · , n} such that (X1, · · · , Xn)

belong in
K⋂
j=1

MTnj
(Mθj , fθj ).

Thus, it is easy to see that under H1 all stationary property is lost after the first change. This is not
the case in many existing works (for instance Kouamo et al. [12] ) where the stationarity or both K-th
order stationarity after the change is an essential assumption.

This work is devoted to the test for change detection (see Bardet et al. [3] for procedure of estimation
of instants of change). We consider semi-parametric test statistics based on the QLME (see Bardet and
Wintenberger [2] for more reference for QLME) which is notably a modification of the statistic introduced
by Lee et al. [15]. Then, we obtain the consistency in power under the alternative of one change and
simulation results compared to some other approaches show that our procedure is more powerful. In
Section 2 we present assumptions and construct test statistics. In Section 3 we give some asymptotic
results. The empirical study of AR(1), ARCH(1) and GARCH(1,1) are detailed in Section 4 and the
proofs of main results are presented in Section 5.

2. Assumptions and test statistics

2.1. Assumptions on the class of modelsMZ(fθ,Mθ)

Let θ ∈ IRd and Mθ and fθ be numerical functions such that for all (xi)i∈IN ∈ IRIN , Mθ

(
(xi)i∈IN

)
6= 0

and fθ
(
(xi)i∈IN

)
∈ IR. We use the following different norms:
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1. ‖ · ‖ applied to a vector denotes the Euclidean norm of the vector;

2. for any compact set Θ ⊆ IRd and for any g : Θ −→ IRd
′
; ‖g‖Θ = supθ∈Θ(‖g(θ)‖).

Let Ψθ = fθ, Mθ and i = 0, 1, 2, then for any compact set Θ ⊆ IRd, define

Assumption Ai(Ψθ,Θ): Assume that ‖∂iΨθ(0)/∂θi‖Θ < ∞ and there exists a sequence of non-negative

real number (α
(k)
i (Ψθ,Θ))i≥1 such that

∞∑
k=1

α
(i)
k (Ψθ,Θ) <∞ satisfying

∥∥∥∂iΨθ(x)

∂θi
− ∂iΨθ(y)

∂θi

∥∥∥
Θ
≤
∞∑
k=1

α
(i)
k (Ψθ,Θ)|xk − yk| for all x, y ∈ IRIN .

The sequel refer to the particular case called "ARCH-type process" if fθ = 0 and if the following assump-
tion holds on hθ = M2

θ :

Assumption Ai(hθ,Θ): Assume that ‖∂ihθ(0)/∂θi‖Θ < ∞ and there exists a sequence of non-negative

real number (α
(k)
i (hθ,Θ))i≥1 such as

∞∑
k=1

α
(i)
k (hθ,Θ) <∞ satisfying

∥∥∥∂ihθ(x)

∂θi
− ∂ihθ(y)

∂θi

∥∥∥
Θ
≤
∞∑
k=1

α
(i)
k (hθ,Θ)|x2

k − y2
k| for all x, y ∈ IRIN .

Assumption D(Θ): ∃h > 0 such that inf
θ∈Θ

(|hθ(x)|) ≥ h for all x ∈ IRIN .

Assumption Id(Θ): For all θ, θ′ ∈ Θ2,(
fθ(X0, X−1, · · · ) = fθ′(X0, X−1, · · · ) and hθ(X0, X−1, · · · ) = hθ′(X0, X−1, · · · ) a.s.

)
⇒ θ = θ′.

Assumption Var(Θ): For all θ ∈ Θ, one of the families
(∂fθ
∂θi

(X0, X−1, · · · )
)

1≤i≤d or
(∂hθ
∂θi

(X0, X−1, · · · )
)

1≤i≤d
is a.s. linearly independent.

Assumption D(Θ) will be required to define the QMLE, Id(Θ) to the consistence of the QMLE and Var(Θ)
to asymptotic normality.

As in [2], make the convention that if Ai(Mθ,Θ) holds then α
(i)
` (hθ,Θ) = 0 and if Ai(hθ,Θ) holds

then α(i)
` (Mθ,Θ) = 0. Denote :

Assumption K(fθ,Mθ,Θ) : for i= 0, 1, 2, Ai(fθ,Θ) and Ai(Mθ,Θ) (or Ai(hθ,Θ)) hold with α(i)
j (f,Θ)+

α
(i)
j (M,Θ) + α

(i)
j (h,Θ) = O(j−l) for some l > 2, for i= 0, 1.
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Also define the set :

Θ(r) := {θ ∈ Θ, A0(fθ, {θ}) andA0(Mθ, {θ})hold with
∑
k≥1

α
(0)
k (fθ, θ)+(IE|ξ0|r)1/r

∑
k≥1

α
(0)
k (Mθ, θ) < 1}

∪ {θ ∈ Θ, fθ = 0 and A0(hθ, {θ})hold with (IE|ξ0|r)2/r
∑
k≥1

α
(0)
k (hθ, θ) < 1}.

Throughout the following, we assume that the functions θ 7→Mθ, fθ are 2-times continuously differentiable
on Θ.

2.2. Test statistics

Assume that a trajectory (X1, · · · , Xn) is observed. It is clear that if (X1, · · · , Xn) ∈M{1,··· ,n}(Mθ, fθ),
then for T ⊂ {1, · · · , n}, the conditional quasi-(log)likelihood computed on T is given by :

Ln(T, θ) := −1

2

∑
t∈T

qt(θ) with qt(θ) =
(Xt − f tθ)2

htθ
+ log(htθ)

where f tθ = fθ
(
Xt−1, Xt−2 . . .

)
, M t

θ = Mθ

(
Xt−1, Xt−2 . . .

)
and htθ = M t

θ
2. Therefore, we approximate the

conditional log-likelihood with :

L̂n(T, θ) := −1

2

∑
t∈T

q̂t(θ) where q̂t(θ) :=

(
Xt − f̂ tθ

)2
ĥtθ

+ log
(
ĥtθ
)

with f̂ tθ = fθ
(
Xt−1, . . . , X1, 0, 0, · · ·

)
, M̂ t

θ = Mθ

(
Xt−1, . . . , X1, 0, 0, · · ·

)
and ĥtθ = (M̂ t

θ)
2.

For T ⊂ {1, · · · , n}, define the estimator θ̂n(T ) := argmax
θ∈Θ

(L̂n(T, θ)). Moreover, for 1 ≤ k ≤ n, denote

Tk = {1, · · · , k} and T k = {k + 1, · · · , n}.

Now, define

Ĝn(T ) :=
1

Card(T )

∑
t∈T

(∂q̂t(θ̂n(T ))

∂θ

)(∂q̂t(θ̂n(T ))

∂θ

)′
and F̂n(T ) := − 2

Card(T )

(∂2L̂n(T, θ̂n(T ))

∂θ∂θ′

)
.

For k = 1, · · · , n− 1, denote :

Σ̂n,k :=
k

n
F̂n(Tk)Ĝn(Tk)−1F̂n(Tk)1det(Ĝn(Tk)) 6=0 +

n− k
n

F̂n(T k)Ĝn(T k)−1F̂n(T k)1det(Ĝn(Tk)) 6=0.

Let (vn)n∈IN be a sequences satisfying vn ≤ n, vn → ∞ and vn/n → 0 ( as n → ∞). Denote
Πn = [vn, n− vn] ∩ IN and define the statistics:

Q̂
(1)
n := max

k∈Πn
Q̂

(1)
n,k where Q̂

(1)
n,k :=

k2

n

(
θ̂n(Tk)− θ̂n(Tn)

)′
Σ̂n,k

(
θ̂n(Tk)− θ̂n(Tn)

)
.

Q̂
(2)
n := max

k∈Πn
Q̂

(2)
n,k where Q̂

(2)
n,k :=

(n− k)2

n

(
θ̂n(T k)− θ̂n(Tn)

)′
Σ̂n,k

(
θ̂n(T k)− θ̂n(Tn)

)
.

Q̂n := max
(
Q̂

(1)
n , Q̂

(2)
n

)
which is the test statistic.

Remark 2.1. In our simulation, we choice vn = (lnn)3. Note that, in practice the computation of Q̂(j)
n,k

is not easy if k is too small or very close to n.
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3. Asymptotic results

3.1. Asymptotic under null hypothesis

Theorem 3.1. Assume D(Θ), Id(Θ), Var and K(fθ,Mθ,Θ). Under null hypothesis, if θ0 ∈
◦
Θ(4), then

for j = 1, 2

Q̂(j)
n

D−→
n→∞

sup
0≤τ≤1

‖Wd(τ)‖2

where Wd is a d-dimensional Brownian bridges.

For any α ∈ (0, 1), Cα denotes the (1− α/2)-quantile of the distribution of sup
0≤τ≤1

‖Wd(τ)‖2. Then, the

following corollary is a direct application of Theorem 3.1.

Corollary 3.1. Under assumptions of Theorem 3.1 :

∀α ∈ (0, 1) lim sup
n→∞

P
(
Q̂n > Cα

)
≤ α.

Remark 3.1. 1. Theorem 3.1 and Corollary 3.1 imply that a large value of Q̂n means there is a change
in the model. At a nominal level α, the critical region of the test is (Q̂n > Cα).

2. Quantile values of the distribution of sup
0≤τ≤1

‖Wd(τ)‖2 are known (see Kieffer [13] for d ∈ {1, · · · , 5}

or Lee et al. [15] for d ∈ {1, · · · , 10}).

Figure 1 is an illustration of the test procedure for AR(1) process. At a level α = 0.05, the empirical
(1 − α/2) quantile of sup

0≤τ≤1
(W1(τ))2 is equal to 2.20. 1 a-) and b-) show that, the values of Q̂(1)

n,k and

Q̂
(2)
n,k are all below the red line which represents the limit of the critical region. Figure 1 c-) and d-) show

that Q̂(1)
n,k and Q̂(2)

n,k are larger and increases around the point where the change occurred. We will show in
the next section that under the alternative that there is one change, the statistic Q̂n = max(Q̂

(1)
n ; Q̂

(2)
n ) is

asymptotically infinite.

3.2. The asymptotic under some local alternative

In this subsection, we consider a local alternative that there is one change in the model. More precisely,
define

H
(loc)
1 : there exists τ∗ ∈ (0, 1) and θ∗1 , θ

∗
2 ∈ Θ with θ∗1 6= θ∗2 such thatX1, · · ·X[nτ∗] ∈MT[nτ∗](Mθ∗1 , fθ∗1 )

and X[nτ∗]+1, · · · , Xn ∈MT [nτ∗]
(Mθ∗2 , fθ∗2 ).

Theorem 3.2. Assume D(Θ), Id(Θ), Var and K(fθ,Mθ,Θ). Under H(loc)
1 , if θ∗1 , θ

∗
2 ∈

◦
Θ(4), then

Q̂n
a.s.−→
n→∞

∞.

Remark 3.2. 1. Theorem 3.2 shows that the test with local alternative H(loc)
1 is consistent in power.

2. This procedure can be used to test multiple change using ICSS type algorithm developed by Inclán
and Tiao [11].
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a-) Q(1)_n,k for AR(1) with not change
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b-) Q(2)_n,k for AR(1) with not change

Time

 

0 200 400 600 800 1000

0
.0

1
.5

3
.0

c-) Q(1)_n,k for AR(1) with one change at k*=400
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d-) Q(2)_n,k for AR(1) with one change at k*=400
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Figure 1: The previous statistics compute for 1000 sample of AR(1). a-) and b-) are respectively Q̂(1)
n,k and Q̂

(2)
n,k for AR(1) with

parameter φ1 = 0.3 does not change. c-) and d-) are Q̂(1)
n,k and Q̂(2)

n,k for AR(1) with parameter φ1 = 0.3 changes to 0.5 at k∗ = 400

4. Some examples.

In this section, we evaluate the performance of our procedure through empirical study. We compare
our results with those obtained by Kouamo et al. [12], Lee and Na [16] and Lee et al. [17]. For a sample
size n, Q̂n is computed with vn = (lnn)3 and is compared to the critical value of the test.

4.1. Test for parameter change in AR(p) models.

Let us consider a AR(p) process : Xt =
p∑
k=1

φkXt−k + ξt with p ∈ IN∗. The parameter of model is

denote by θ = (φ1, · · · , φp) and let Θ = {θ = (φ1, · · · , φp) ∈ IRp /
p∑
i=1

|φi| < 1}. Since Mθ ≡ 1, Θ(r) = Θ
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for any r ≥ 1. Assume (X1, · · · , Xn) is observed, we have for any θ ∈ Θ, q̂t(θ) =
(
Xt −

p∑
k=1

φkXt−k
)2,

∂q̂t(θ)

∂θ
= −2

(
Xt −

p∑
k=1

φkXt−k
)
· (Xt−1, Xt−2, · · · , Xt−p) and for 1 ≤ i, j ≤ n ∂2q̂t(θ)

∂φi∂φj
= 2Xt−iXt−j .

We consider a AR(1) process with one parameter. At level α = 0.05, the critical value is Cα = 2.20.
For n = 1024, 2048, 4096 ; we simulate n observations of AR(1), in the following situations : (i) there is not
change, the parameter of model is θ0 = 0.9 and (ii) there is one change, the parameter θ0 = 0.9 changes
to θ1 at n/2. The following table indicate the proportion of number of rejections of null hypothesis out of
100 repetitions.

n = 1024 n = 2048 n = 4096

Empirical levels 0.080 (0.134 ; 0.092) 0.070 (0.100 ; 0.062) 0.050 (0.082 ; 0.040)

Empirical powers when θ1 = 0.5 0.980 (0.590 ; 0.530) 0.990 (0.720 ; 0.680) 0.990 (0.810 ; 0.790)

Table 1: Empirical levels and powers at nominal level 0.05 of test for parameter change in AR(1) model. Empirical levels
are computed when θ0 = 0.9 ; empirical powers are computed when θ0 changes to θ1 at n/2. Figures in brackets the results
obtained by Kouamo et al. [12] at the scale J=4 with KSM and CVM statistic in wavelet domain.

Table 1 shows that the empirical level of the test decreases as n increases and equals to 0.05 when n
= 4096. These levels are close to those obtained by Kouamo et al. with CVM (Cramér-Von Mises) test
statistics. However, our test is more powerful.

4.2. Test for parameter change in GARCH(1,1) models.

Consider the GARCH(1,1) model defined by:

∀t ∈ Z, Xt = σtξt with σ2
t = a0 + a1X

2
t−1 + b1σ

2
t−1 a0, a1, b1 ≥ 0.

Assume a0 > 0 and a1 + b1 < 1 . From Nelson and Cao , 1992 ( see [19]), we have σ2
t = a0/(1 − b1) +

a1

∑
k≥1

bk−1
1 X2

t−k. Thus, the ARCH (∞) representation of model is given by

Xt =

√
a0/(1− b1) + a1X2

t−1 + a1

∑
k≥2

bk−1
1 X2

t−k · ξt for all t ∈ Z.

Assume IEξ4 = 1 and denote Θ(4) = Θ = {θ = (a0, a1, b1) ∈ (IR+)3 ; a0 > 0, a1 + b1 < 1}. For all θ ∈ Θ,
denote f tθ ≡ 0 and htθ = (M t

θ)
2 with M t

θ =
√
a0/(1− b1) + a1X2

t−1 + a1

∑
k≥2

bk−1
1 X2

t−k.

Assume (X1, · · · , Xn) is observed, for any θ ∈ Θ and t = 2, · · · , n , we have

ĥtθ = a0/(1− b1) + a1X
2
t−1 + a1

t∑
k=2

bk−1
1 X2

t−k and q̂t(θ) = X2
t / ĥ

t
θ + log(ĥtθ).

Therefore, it follows that
∂q̂t(θ)

∂θ
=

1

ĥtθ

(
1− X2

t

ĥtθ

)(∂ĥtθ
∂a0

,
∂ĥtθ
∂a1

,
∂ĥtθ
∂b1

)
with ∂ĥtθ/∂a0 = 1/(1− b1), ∂ĥtθ/∂a1 =

X2
t−1 +

t∑
k=2

bk−1
1 X2

t−k and ∂ĥtθ/∂b1 = a0/(1− b1)2 + a1X
2
t−2 + a1

t∑
k=3

(k − 1)bk−2
1 X2

t−k.
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Let θ = (a0, a1, b1) = (θ1, θ2, θ3) ∈ Θ, for 1 ≤ i, j ≤ 3, we have

∂2q̂t(θ)

∂θi∂θj
=

1

(ĥtθ)
2

(2X2
t

ĥtθ
− 1
)∂ĥtθ
∂θi

∂ĥtθ
∂θj

+
1

ĥtθ

(
1− X2

t

ĥtθ

) ∂2ĥtθ
∂θi∂θj

with ∂2ĥtθ/∂a
2
0 = 0 , ∂2ĥtθ/∂a0∂a1 = 0 , ∂2ĥtθ/∂a0∂b1 = 1/(1 − b1)2 , ∂2ĥtθ/∂a

2
1 = 0 , ∂2ĥtθ/∂a1∂b1 =

X2
t−2 +

t∑
k=3

(k − 1)bk−2
1 X2

t−k , and ∂ĥtθ/∂b
2
1 = 2a0/(1− b1)3 + 2a1X

2
t−3 + a1

t∑
k=4

(k − 1)(k − 2)bk−3
1 X2

t−k.

1. Case of ARCH(1). Takes b1 = 0 and θ = (a0, a1). At level α = 0.05, the critical value is Cα = 3.02.
For n = 500, 800, 1000 ; we simulate n observations of ARCH(1), in the following situations : (i) there
is not change, the parameter of model is θ0 = (1, 0.3) and (ii) there is one change, the parameter
θ0 = (1, 0.3) changes to θ1 at n/2. The following table indicate the proportion of number of rejections
of null hypothesis out of 500 repetitions.

n = 500 n = 800 n = 1000

Empirical levels 0.068 (0.088) 0.048 (0.080) 0.036 (0.074)

Empirical powers when θ1 = (0.5, 0.3) 0.948 (0.922) 0.972 (0.987) 0.998 (0.995)

Empirical powers when θ1 = (0.5, 0.9) 0.862 (0.626) 0.968 (0.687) 0.994 (0.716)

Table 2: Empirical levels and powers at nominal level 0.05 of test for parameter change in ARCH(1) model. Empirical levels
are computed when θ0 = (1, 0.3) ; empirical powers are computed when θ0 changes to θ1 at n/2. Figures in brackets the
results obtained by Lee and Na [16].

2. Case of GARCH(1,1). Now θ = (a0, a1, b1). At level α = 0.05, the critical value is Cα = 3.47. For
n = 500, 800, 1000 ; we simulate n observations of GARCH(1,1), in the following situations : (i)
there is not change, the parameter of model is θ0 = (0.5, 0.2, 0.2) and (ii) there is one change, the
parameter θ0 = (0.5, 0.2, 0.2) changes to θ1 at n/2. The following table indicate the proportion of
number of rejections of null hypothesis out of 500 repetitions.

n = 500 n = 800 n = 1000

Empirical levels 0.080 (0.026) 0.070 (0.033) 0.066 (0.049)

Empirical powers when θ1 = (3.0, 0.2, 0.2) 0.592 (0.306) 0.716 (0.866) 0.870 (0.990)

Empirical powers when θ1 = (0.5, 0.2, 0.6) 0.740 (0.537) 0.942 (0.806) 0.960 (0.902)

Table 3: Empirical levels and powers at nominal level 0.05 of test for parameter change in GARCH(1,1) model. Empirical
levels are computed when θ0 = (0.5, 0.2, 0.2) ; empirical powers are computed when θ0 changes to θ1 at n/2. Figures in
brackets the results obtained by Lee et al. [17].

Table 2 and Table 3 show that the empirical level of the test decreases and the empirical power increases
as n increases. For ARCH model, we can see that the level less than 0.05 when n = 800 it is not the case
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for GARCH model. This is explained by the fact that the application of the procedure to GARCH model
requires ARCH(∞) representation. Thus, the information contained in all the past of the process is not
used because it is not observed. The comparison with results of Lee et al. and Lee and Na shows that in
general, our procedure is more powerful.

5. Proofs of the main result

Let (ψn)n and (rn)n be sequences of random variables. Throughout this section, we use the notation
ψn = oP (rn) to mean : for all ε > 0, P (|ψn| ≥ ε|rn|) → 0 as n → ∞. Write ψn = OP (rn) to mean : for
all ε > 0, there exists C > 0 such that P (|ψn| ≥ C|rn|) < ε for n large enough.

5.1. Some preliminary result

First, let us prove a useful technical lemma.
Under the null hypothesis that the observation (X1, · · · , Xn) belong in the classM{1,··· ,n}(Mθ0 , fθ0),

define the matrix G := IE
[∂q0(θ0)

∂θ

∂q0(θ0)

∂θ

′]
( where ′ denotes the transpose) and F := IE

[∂2q0(θ0)

∂θ∂θ′

]
.

Under assumption Var, F is a non-singular matrix (see [2] ).

Lemma 5.1. Assume the functions θ 7→ Mθ and θ 7→ fθ are 2-times continuously differentiable on Θ.
Under null hypothesis D(Θ) and Var, G is a symmetric, positive definite matrix.

Proof It is clear that G is symmetric. Moreover, for 1 ≤ i ≤ d, we have :
∂q0(θ0)

∂θi
= −2

ξ0√
h0
θ0

∂f0
θ0

∂θi
− ξ2

0

h0
θ0

∂h0
θ0

∂θi
+

1

h0
θ0

∂h0
θ0

∂θi
. Thus, using independence of ξ0 and X−1, X−2, · · · we

obtain :

IE
[∂q0(θ0)

∂θ

′
∂q0(θ0)

∂θ

]
= 4IE

[ 1

h0
θ0

∂f0
θ0

∂θ

′
∂f0

θ0

∂θ

]
+ IE

(
(ξ2

0 − 1)2
)
IE
[ 1

(h0
θ0

)2

∂h0
θ0

∂θ

′
∂h0

θ0

∂θ

]
. (5.1)

Since IEξ2
0 = 1, it is easy to see that IE

(
(ξ2

0 − 1)2
)
> 0.

Under Var, one of the two matrix of the right-hand side of relation (5.1) is positive definite and the
other is semi-positive definite. Thus, G is positive definite.

Now, recall that F := IE
[∂2q0(θ0)

∂θ∂θ′

]
. Let T ⊂ {1, · · · , n}. For any θ ∈ Θ and i = 1, · · · , d, by Taylor

expansion of ∂Ln(T, θ0)/∂θi, there exist θn,i ∈ [θ0, θ] such that:

∂Ln(T, θ)

∂θi
=
∂Ln(T, θ0)

∂θi
+
∂2Ln(T, θn,i)

∂θ∂θi
(θ − θ0) (5.2)

where [a, b] = {λa + (1 − λ)b ; λ ∈ [0, 1]}. Denote Fn(T, θ) = −2
( 1

card(T )

∂2Ln(T, θn,i)

∂θ∂θi

)
1≤i≤d. Then,

(5.2) implies,

Card(T )Fn(T, θ)(θ − θ0) = −2
(∂Ln(T, θ)

∂θ
− ∂Ln(T, θ0)

∂θ

)
. (5.3)
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Similarly, for any θ ∈ Θ we can find a matrix F̃n(T, θ) such that

Card(T )F̃n(T, θ)(θ − θ0) = −2
(∂L̂n(T, θ)

∂θ
− ∂L̂n(T, θ0)

∂θ

)
. (5.4)

Takes in (5.4) θ = θ̂n(T ) and uses the fact that ∂L̂n(T, θ̂n(T ))/∂θ = 0 (because θ̂n(T ) is a local extremum
of L̂n(T, ·)), it comes

Card(T )F̃n(T, θ̂n(T ))(θ̂n(T )− θ0) = 2
∂L̂n(T, θ0)

∂θ
. (5.5)

Remark 5.1. If Card(T ) −→
n→∞

∞ and θ = θ(n) −→
n→∞

θ0, then Fn(T, θ)
a.s.−→
n→∞

F and F̃n(T, θ)
a.s.−→
n→∞

F

(see [2] and [3]). In particular, if Card(T ) −→
n→∞

∞ , then Fn(T, θ̂n(T ))
a.s.−→
n→∞

F and F̃n(T, θ̂n(T ))
a.s.−→
n→∞

F.

Lemma 5.2. Under assumptions of Theorem 3.1

1√
n

max
k∈Πn

∥∥k(F̃n(Tk, θ̂n(Tk))− F
)
(θ̂n(Tk)− θ0)

∥∥ = oP (1).

Proof For k ∈ Πn, we know that
√
k(θ̂n(Tk)) − θ0) converges in distribution to the Gaussian law as

n −→ ∞ (see Theorem 2 of [2]). Therefore, max
k∈Πn

∥∥√k(θ̂n(Tk) − θ0)
∥∥ = OP (1). Remark 5.1 implies that

max
k∈Πn

∥∥F̃n(Tk, θ̂n(Tk))− F
∥∥ = o(1) a.s. Thus

1√
n

max
k∈Πn

∥∥k(F̃n(Tk, θ̂n(Tk))− F
)
(θ̂n(Tk)− θ0)

∥∥ ≤ max
k∈Πn

∥∥F̃n(Tk, θ̂n(Tk))− F
∥∥× max

k∈Πn

∥∥√k(θ̂n(Tk)− θ0)
∥∥

= o(1)OP (1) a.s.

= oP (1).

Under assumptions of Theorem 3.1, the matrix G is invertible. Denote Σ = FG−1F

Q(1)
n := max

k∈Πn
Q

(1)
n,k where Q

(1)
n,k :=

k2

n

(
θ̂n(Tk)− θ̂n(Tn)

)′
Σ
(
θ̂n(Tk)− θ̂n(Tn)

)
and

Q(2)
n := max

k∈Πn
Q

(2)
n,k where Q

(2)
n,k :=

(n− k)2

n

(
θ̂n(T k)− θ̂n(Tn)

)′
Σ
(
θ̂n(T k)− θ̂n(Tn)

)
.

Lemma 5.3. Under assumptions of Theorem 3.1

max
k∈Πn

∣∣Q̂(j)
n,k −Q

(j)
n,k

∣∣ = oP (1) for j = 1, 2.

Proof The proof is made for j = 1, proceed the same for j = 2. For any k ∈ Πn, we have

∣∣Q̂(1)
n,k −Q

(1)
n,k

∣∣ ≤ k2

n
‖θ̂n(Tk)− θ̂n(Tn)‖2‖Σ̂n,k − Σ‖

≤ 2
k2

n

(
‖θ̂n(Tk)− θ0‖2 + ‖θ̂n(Tn)− θ0‖2

)
‖Σ̂n,k − Σ‖

≤ 2
(
‖
√
k(θ̂n(Tk)− θ0)‖2 + ‖

√
n(θ̂n(Tn)− θ0)‖2

)
‖Σ̂n,k − Σ‖. (5.6)
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Since k ∈ Πn, k, n− k −→∞ as n −→∞. Therefore,
√
k(θ̂n(Tk)− θ0) = OP (1) as n −→∞,

√
n(θ̂n(Tn)−

θ0) = OP (1), F̂n(Tk)
a.s.−→
n→∞

F , F̂n(T k)
a.s.−→
n→∞

F , Ĝn(Tk)
a.s.−→
n→∞

G and Ĝn(T k)
a.s.−→
n→∞

G which is invertible.

Thus, for n large enough, Ĝn(Tk) and Ĝn(T k) are invertible. It follows that as n −→∞,

‖Σ̂n,k − Σ‖ =
∥∥k
n
F̂n(Tk)Ĝn(Tk)−1F̂n(Tk) +

n− k
n

F̂n(T k)Ĝn(T k)−1F̂n(T k)− FG−1F
∥∥

=
∥∥k
n

(k
n
F̂n(Tk)Ĝn(Tk)−1F̂n(Tk)− FG−1F

)
+
n− k
n

(
F̂n(T k)Ĝn(T k)−1F̂n(T k)− FG−1F

)∥∥
≤ ‖F̂n(Tk)Ĝn(Tk)−1F̂n(Tk)− FG−1F‖+ ‖F̂n(T k)Ĝn(T k)−1F̂n(T k)− FG−1F‖ = o(1) a.s.

Therefore, (5.6) implies max
k∈Πn

∣∣Q̂(1)
n,k −Q

(1)
n,k

∣∣ = oP (1).

Lemma 5.4. Under assumptions of Theorem 3.1

−2√
n

∂Ln(T[nτ ], θ0)

∂θ

D−→ WG(τ) in D([0, 1], IRd)

where WG is a d-dimensional Gaussian process with zero mean and covariance matrix min(τ, s)G.

Proof Recall that −2
∂Ln(T[nτ ], θ0)

∂θ
=

[nτ ]∑
t=1

∂qt(θ0)

∂θ
. Denote Ft = σ(Xt−1, · · · ). Since X is stationary and

ergodic, the same for the process (
∂qt(θ0)

∂θ
)t∈Z. Moreover, (

∂qt(θ0)

∂θ
,Ft) is a square integrable martingale

difference process (see [2]) with covariance matrix G. Then, the result follow by using Theorem 23.1
Billingsley (1968) (see [6] page 206).

Lemma 5.5. Under assumptions of Theorem 3.1

−2√
n
G−1/2

(∂Ln(T[nτ ], θ0)

∂θ
− [nτ ]

n

∂Ln(Tn, θ0)

∂θ

)
D−→ Wd(τ) in D([0, 1], IRd)

where Wd is a d-dimensional Brownian bridges.

Proof By Lemma 5.4, it comes

−2√
n

(∂Ln(T[nτ ], θ0)

∂θ
− [nτ ]

n

∂Ln(Tn, θ0)

∂θ

)
D−→ WG(τ)− τWG(1) in D([0, 1], IRd).

Since the process {WG(τ)− τWG(1), 0 ≤ τ ≤ 1} have covariance matrix (min(τ, s)− τs)G, the covariance
matrix of the process {G−1/2(WG(τ)−τWG(1)), 0 ≤ τ ≤ 1} is (min(τ, s)−τs)Id (where Id is d-dimensional
identity matrix). Therefore, the process is equal (in distribution) to a d-dimensional Brownian bridge.
Thus, the result follows.

Lemma 5.6. Under assumptions of Theorem 3.1

−2√
n
G−1/2 ∂L̂n(T[nτ ], θ̂n(Tn))

∂θ

D−→ Wd(τ) in D([0, 1], IRd).
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Proof From [2], we have
1√
n

∥∥∂Ln(Tn, ·)
∂θ

− ∂L̂n(Tn, ·)
∂θ

∥∥
Θ

= oP (1), it implies,

1√
n

max
k∈Πn

∥∥∂Ln(Tk, ·)
∂θ

− ∂L̂n(Tk, ·)
∂θ

∥∥
Θ

= oP (1). (5.7)

Let k ∈ Πn. Apply (5.3) with T = Tk and θ = θ̂n(Tn), we have

kFn(Tk, θ̂n(Tn))(θ̂n(Tn)− θ0) = −2
(∂Ln(Tk, θ̂n(Tn))

∂θ
− ∂Ln(Tk, θ0)

∂θ

)
.

By plugging it in (5.7), we have

1√
n

max
k∈Πn

∥∥∂L̂n(Tk, θ̂n(Tn))

∂θ
− ∂Ln(Tk, θ0)

∂θ
+

1

2
kFn(Tk, θ̂n(Tn))(θ̂n(Tn)− θ0)

∥∥ = oP (1). (5.8)

But, by Remark 5.1, it comes that

1√
n

max
k∈Πn

∥∥k(Fn(Tk, θ̂n(Tn))− Fn(Tn, θ̂n(Tn))
)
(θ̂n(Tn)− θ0)

∥∥
≤ 1√

n
max
k∈Πn

∥∥k(Fn(Tk, θ̂n(Tn))− Fn(Tn, θ̂n(Tn))
)∥∥× ‖√n(θ̂n(Tn)− θ0)‖

= o(1)OP (1) a.s.

= oP (1).

Thus, (5.8) becomes

1√
n

max
k∈Πn

∥∥∂L̂n(Tk, θ̂n(Tn))

∂θ
− ∂Ln(Tk, θ0)

∂θ
+

1

2
kFn(Tn, θ̂n(Tn))(θ̂n(Tn)− θ0)

∥∥ = oP (1). (5.9)

Applying (5.3) with T = Tn , θ = θ̂n(Tn), and using (1/
√
n)(∂Ln(Tn, θ̂n(Tn))/∂θ) = oP (1) (see [2]), it

follows
Fn(Tn, θ̂n(Tn))(θ̂n(Tn)− θ0) =

2

n

∂Ln(Tn, θ0)

∂θ
+ oP (

1√
n

). (5.10)

Therefore, (5.9) becomes

1√
n

max
k∈Πn

∥∥∂L̂n(Tk, θ̂n(Tn))

∂θ
− ∂Ln(Tk, θ0)

∂θ
+
k

n

∂Ln(Tn, θ0)

∂θ

∥∥ = oP (1). (5.11)

Now, let 0 < τ < 1, for large value of n, we have [τn] ∈ Πn; write

−2√
n
G−1/2 ∂L̂n(T[nτ ], θ̂n(Tn))

∂θ
=
−2√
n
G−1/2

[∂L̂n(T[nτ ], θ̂n(Tn))

∂θ
−
(∂Ln(T[nτ ], θ0)

∂θ
− [nτ ]

n

∂Ln(Tn, θ0)

∂θ

)
+
(∂Ln(T[nτ ], θ0)

∂θ
− [nτ ]

n

∂Ln(Tn, θ0)

∂θ

)]
and the result follows by using (5.11) and Lemma 5.5.
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5.2. Proof Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1 .
We make the proof for j = 1, proceed the same for j = 2. By Lemma 5.3, it suffices to show that
Q

(1)
n

D−→
n→∞

sup
0≤τ≤1

‖Wd(τ)‖2. Uses (5.7), (5.5) with T = Tk and Lemma 5.2 it follows

1√
n

max
k∈Πn

∥∥∂Ln(Tk, θ0)

∂θ
− 1

2
kF (θ̂n(Tk)− θ0)

∥∥ =
1√
n

max
k∈Πn

∥∥∂L̂n(Tk, θ0)

∂θ
− 1

2
kF (θ̂n(Tk)− θ0)

∥∥+ oP (1)

=
1√
n

max
k∈Πn

∥∥1

2
kF̃n(Tk, θ̂n(Tk))(θ̂n(Tn)− θ0)− 1

2
kF (θ̂n(Tk)− θ0)

∥∥+ oP (1)

=
1√
n

max
k∈Πn

∥∥1

2
k
(
F̃n(Tk, θ̂n(Tk))− F

)
(θ̂n(Tn)− θ0)

∥∥+ oP (1) = oP (1). (5.12)

Using (5.11) and 5.12, we have

1√
n

max
k∈Πn

∥∥∂Ln(Tk, θ̂n(Tn))

∂θ
− 1

2
kF (θ̂n(Tk)− θ̂n(Tn))

∥∥
=

1√
n

max
k∈Πn

∥∥∂Ln(Tk, θ0)

∂θ
− k

n

∂Ln(Tn, θ0)

∂θ
− 1

2
kF (θ̂n(Tk)− θ̂n(Tn))

∥∥+ oP (1)

=
1√
n

max
k∈Πn

∥∥1

2
kF (θ̂n(Tk)−θ0)− k

n

∂Ln(Tn, θ0)

∂θ
− 1

2
kF (θ̂n(Tk)− θ̂n(Tn))

∥∥+oP (1)

=
1√
n

max
k∈Πn

∥∥1

2
kF (θ̂n(Tn)− θ0)− k

n

∂Ln(Tn, θ0)

∂θ

∥∥+ oP (1)

≤
√
n
∥∥1

2
F (θ̂n(Tn)− θ0)− 1

n

∂Ln(Tn, θ0)

∂θ

∥∥+ oP (1). (5.13)

Note that∥∥√n(F − Fn(Tn, θ̂n(Tn))) (θ̂n(Tn)− θ0)
∥∥ ≤ ∥∥F − Fn(Tn, θ̂n(Tn))

∥∥ ∥∥√n(θ̂n(Tn)− θ0)
∥∥

= o(1)OP (1) a.s.

= oP (1).

By plugging it in (5.13) and applying (5.3) with T = Tn and θ = θ̂n(Tn), we have

1√
n
max
k∈Πn

∥∥∂Ln(Tk, θ̂n(Tn))

∂θ
− 1

2
kF (θ̂n(Tk)− θ̂n(Tn))

∥∥ ≤ √n∥∥1

2
Fn(Tn, θ̂n(Tn))(θ̂n(Tn)− θ0)− 1

n

∂Ln(Tn, θ0)

∂θ

∥∥
+ oP (1). (5.14)

Therefore, using (5.10), (5.14 ) implies

1√
n
max
k∈Πn

∥∥∂Ln(Tk, θ̂n(Tn))

∂θ
− 1

2
kF (θ̂n(Tk)− θ̂n(Tn))

∥∥ = oP (1). (5.15)

Now, let 0 < τ < 1, for large value of n, we have [τn] ∈ Πn; write
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−2√
n
G−1/2 ∂L̂n(T[nτ ], θ̂n(Tn))

∂θ
= − [nτ ]√

n
G−1/2F (θ̂n(T[nτ ])− θ̂n(Tn))

− 2G−1/2 1√
n

[∂L̂n(T[nτ ], θ̂n(Tn))

∂θ
− 1

2
[nτ ]F (θ̂n(T[nτ ])− θ̂n(Tn))

]
.

Therefore, using (5.15) we have

− [nτ ]√
n
G−1/2F (θ̂n(T[nτ ])− θ̂n(Tn)) =

−2√
n
G−1/2 ∂L̂n(T[nτ ], θ̂n(Tn))

∂θ
+ oP (1)

and the result follows by using Lemma 5.6. �

Proof of Theorem 3.2 .
Let τ∗ ∈ (0, 1) the true value of break. Denote k∗ = [nτ∗]. For n large enough , k∗ ∈ Πn. Therefore, we
have for j = 1, 2, Q̂

(j)
n = max

k∈Πn
Q̂

(j)
n,k ≥ Q̂

(j)
n,k∗ . Thus, it follows that

Q̂n = max(Q̂(1)
n , Q̂(2)

n ) ≥ max(Q̂
(1)
n,k∗ , Q̂

(2)
n,k∗). (5.16)

Since θ∗1 , θ∗2 ∈
◦
Θ(4), it comes from [2] that the model MZ(Mθ∗1 , fθ∗1 ) and MZ(Mθ∗2 , fθ∗2 ) have a 4-order

stationary solution which we denote (Xt,j)t∈Z for j = 1, 2.
For j = 1, 2 denote for any t ∈ Z, qt,j(θ) := (Xt,j−f t,jθ )2/(ht,jθ )+log(ht,jθ ) with f t,jθ := fθ(Xt−1,j , Xt−2,j , . . .),
ht,jθ := (M t,j

θ )2 where M t,j
θ := Mθ(Xt−1,j , Xt−2,j , . . .). Also denote for j = 1, 2

F (j) = IE[
∂2q0,j(θ

∗
j )

∂θ∂θ′
] and G(j) = IE

[(∂q0,j(θ
∗
j )

∂θ

)(∂q0,j(θ
∗
j )

∂θ

)′]
.

For j = 1, 2, Lemma 5.1 implies that the matrix G(j) is symmetric positive definite and Corollary 5.1 of
[3] implies Ĝn(Tk∗)

a.s.−→
n→∞

G(1) and Ĝn(T k∗)
a.s.−→
n→∞

G(2). Lemma 4 of [2] implies F̂n(Tk∗)
a.s.−→
n→∞

F (1) and

F̂n(T k∗)
a.s.−→
n→∞

F (2). Therefore, it follows that

Σ̂n,k∗ :=
k∗

n
F̂n(Tk∗)Ĝn(Tk∗)

−1F̂n(Tk∗)1det(Ĝn(Tk∗ )) 6=0+
n− k∗

n
F̂n(T k∗)Ĝn(T k∗)

−1F̂n(T k∗)1det(Ĝn(Tk∗ )) 6=0

a.s.−→
n→∞

τ∗F (1)(G(1))−1F (1) + (1− τ∗)F (2)(G(2))−1F (2). (5.17)

Denote Σ = τ∗F (1)(G(1))−1F (1) + (1− τ∗)F (2)(G(2))−1F (2). It is easy to see that Σ is symmetric positive
definite.
For all ρ > 0 and θ ∈ Θ, denote Bo(θ, ρ) (rep. Bc(θ, ρ) ) the open (resp. closed) ball centered at θ of
radius ρ in Θ. i.e.

Bo(θ, ρ) = {x ∈ Θ ; ‖θ − x‖ < ρ} and Bc(θ, ρ) = {x ∈ Θ ; ‖θ − x‖ ≤ ρ}.

For A ⊂ Θ, we denote Ac = {x ∈ Θ ; x /∈ A}.
Since θ∗1 6= θ∗2 and θ∗1 , θ∗2 ∈

◦
Θ(4) ⊂

◦
Θ , then there exists ρ1, ρ2 > 0 such that Bo(θ∗1 , ρ1) ∩Bo(θ∗2 , ρ2) = ∅.
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For all n ∈ IN , denote

δ(j)
n = inf

x∈Bc(θ∗j ,ρj/2); y∈Bco(θ∗j ,ρj)

(
(x− y)′Σ̂n,k∗(x− y)

)
for j = 1, 2.

Also denote δ(j) = inf
x∈Bc(θ∗j ,ρj/2); y∈Bco(θ∗j ,ρj)

(
(x−y)′Σ(x−y)

)
and it is easy to see that δ(j) > 0 for j = 1, 2.

Using (5.17), we have
δ(j)
n

a.s.−→
n→∞

δ(j) for j = 1, 2. (5.18)

From [2] and [3], we have θ̂n(Tk∗)
a.s.−→
n→∞

θ∗1 and θ̂n(T k∗)
a.s.−→
n→∞

θ∗2 . Therefore, for n large enough, θ̂n(Tk∗) ∈

Bo(θ
∗
1 , ρ1/2) and θ̂n(T k∗) ∈ Bo(θ∗2 , ρ2/2). Thus, two situations may occur

• if θ̂n(Tn) ∈ Bo(θ∗2 , ρ2) i.e. θ̂n(Tn) ∈ Bco(θ∗1 , ρ1) then (θ̂n(Tk∗)−θ̂n(Tn))′Σ̂n,k∗(θ̂n(Tk∗)−θ̂n(Tn)) ≥ δ(1)
n .

Therefore,

Q̂
(1)
n,k∗ :=

(k∗)2

n
(θ̂n(Tk∗)− θ̂n(Tn))′Σ̂n,k∗(θ̂n(Tk∗)− θ̂n(Tn)) ≥ (k∗)2

n
δ(1)
n ' n(τ∗)2δ(1)

n .

• else θ̂n(Tn) ∈ Bco(θ∗2 , ρ2) and (θ̂n(T k∗)− θ̂n(Tn))′Σ̂n,k∗(θ̂n(T k∗)− θ̂n(Tn)) ≥ δ(2)
n . Therefore,

Q̂
(2)
n,k∗ =

(n− k∗)2

n
(θ̂n(T k∗)− θ̂n(Tn))′Σ̂n,k∗(θ̂n(T k∗)− θ̂n(Tn) ≥ (n− k∗)2

n
δ(2)
n ' n(1− τ∗)2δ(2)

n .

In all cases, we have Q̂n ≥ max(Q̂
(1)
n,k∗ , Q̂

(2)
n,k∗) ≥ min

(
n(τ∗)2δ

(1)
n , n(1− τ∗)2δ

(2)
n

)
.

Thus the result follows by using (5.18). �
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