
HAL Id: hal-00560970
https://hal.science/hal-00560970

Submitted on 1 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conceptual Workflow for Complex Data Integration
using AXML

Rashed Salem, Omar Boussaid, Jérôme Darmont

To cite this version:
Rashed Salem, Omar Boussaid, Jérôme Darmont. Conceptual Workflow for Complex Data Integration
using AXML. International Conference on Machine and Web Intelligence (ICMWI 10), Oct 2010,
Algiers, Algeria. pp.6. �hal-00560970�

https://hal.science/hal-00560970
https://hal.archives-ouvertes.fr


Conceptual Workflow for Complex Data Integration
using AXML

Rashed Salem, Omar Boussaı̈d and Jérôme Darmont
Université de Lyon (ERIC Lyon 2)

5 av. P. Mendès-France, 69676 Bron Cedex, France
Email: firstname.lastname@univ-lyon2.fr

Abstract—Relevant data for decision support systems are
available everywhere and in various formats. Such data must
be integrated into a unified format. Traditional data integration
approaches are not adapted to handle complex data. Thus, we
exploit the Active XML language for integrating complex data.
Its XML part allows to unify, model and store complex data.
Moreover, its services part tackles the distributed issue of data
sources. Accordingly, different integration tasks are proposed as
services. These services are managed via a set of active rules that
are built upon metadata and events of the integration system. In
this paper, we design an architecture for integrating complex
data autonomously. We have also designed the workflow for data
integration tasks.

I. INTRODUCTION

Data warehousing is a very successful approach for
decision-support. Data warehousing processes involve inte-
grating, storing and analyzing large amounts of business data.
Classical data warehousing is very well adapted to structured
data, but structured data only represent a small part of relevant
data that need to be warehoused for several enterprises.
Indeed, there are huge volumes of heterogeneous data (e.g.,
structured, relational, multidimensional, semi-structured/XML,
emails, Web, text, and multimedia data) that are available over
networks. We term these data complex data [1]. As ”simple”
data, complex data must be warehoused into a unified storage
to be later analyzed for decision-support purposes. However,
the classical warehousing approach [2] is not very adequate
when dealing with complex data, particularly in the data
integration phase.

Moreover, we are motivated by handling complex data
and performing integration tasks ”intelligently”, i.e., in an
autonomous and active way. Thus, we propose a system that
integrates complex data from heterogeneous and distributed
sources into a unified repository autonomously. Our integration
system is mainly based on the concept of data integration
services. Indeed, a service provides transparent access to a
variety of relevant data sources as if such sources represented
as a single source. Data integration services can be effectively
applied utilizing the Active XML (AXML) language [3]. An
AXML document is an XML document with embedded calls
to Web services. We use XML to unify complex data into a
unified format, while Web services provide a uniform access
to information, independent from platform, system, language,
communication protocol and data format. In order to automate,
reactivate data integration tasks and enrich the system with

intelligent features, our architecture is managed and controlled
using active rules (called ECA, Event-Condition-Action).

Building an integration system involves designing, modeling
and using that system. In this paper, we focus only on
designing the system. Thus, the main contributions of this
paper are:

• propose and design a general AXML-based architecture
enriched with active and intelligent features (active rules
and services), in order to integrate complex data from
heterogeneous and distributed data sources;

• design the workflow that depicts the sequence of data
integration tasks and steps.

The rest of this paper is organized as follows. Section II
presents our architecture for integrating complex data. The
detailed data integration workflows are demonstrated in section
III. Related works are discussed in section IV. Finally, we
conclude and highlight future trends in section V.

II. AXML-BASED ARCHITECTURE FOR INTEGRATING
COMPLEX DATA

Our architecture handles complex data integration, which
integrates data residing at distributed and heterogeneous data
sources into a unified repository (Fig. 1). Data sources are
integrated without making any changes on their design or
structure. Data integration services are utilized to perform
Extraction-Transformation-Loading (ETL) tasks. Integration
tasks extract data from a variety of data sources, transform
them into XML format, and load them into a repository
of AXML documents. The workflow of integration tasks is
organized via a set of rules, managed and controlled by ECA
and AXML engines.

Indeed, metadata of architecture components can play an
important role with events logged from these components,
in order to automate data integration tasks. Metadata include
data not only about different data sources (e.g., type, location,
access information, format, structure, etc.), but also about
several integration tasks (e.g., service name, methods, parame-
ters, sources-to-services mapping, services-to-target mapping,
etc.), AXML repository (e.g., URL, port, user identification,
destination documents, etc.), events (e.g., event type, target
log, event origin, event type, etc.), and rules (e.g., events-to-
actions mapping, conditions, trigger timing, etc.). Active rules
are built upon logged events (section III-D1) and follow the
ECA form.



Fig. 1. Complex data integration architecture

III. CONCEPTUAL WORKFLOW FOR INTEGRATING
COMPLEX DATA

Integrating complex data into a unified repository in an
autonomous way consists of several steps and tasks, which
requires a complex integration system. However, a workflow
can describe the sequence of these steps and tasks simply. We
design the workflow that describes the sequence of integration
steps (Fig. 2). To simplify the system workflow, we subdivide
it into four sub-workflows. The first workflow handles prepa-
ration tasks before integrating relevant data; it depicts how to
construct the input schema based on metadata of data sources.
The second workflow deals with monitoring changes of data
sources and filtering relevant changes, then applying these
changes into the input schema. The third workflow describes
how to integrate relevant data from the input schema into the
AXML repository, using open-source tools for carrying out
the ETL tasks. The fourth workflow addresses the mining and
analyzing tasks that can be performed upon event logs.

A. Constructing the Input Schema

Data sources have enough metadata that can help automate
the data integration process. However, all metadata of a spe-
cific data source may not be relevant to a particular application.
Relevant metadata are extracted and stored into a so-called
input schema. An input schema identifies all relevant data
sources, their characteristics and structures.

Let us address the workflow scenario of constructing the
input schema (Fig. 3). A particular user can login to the
integration framework identifying his role. The user selects
data sources identifying their location path or URL and their
access information. For each selected data source, a dispatcher
service is directed to the appropriate service for retrieving
metadata and schema. Then, the user selects only relevant
metadata and schema from the service’s results via a graphical
interface. The selected metadata are written into the input
schema. It is the first step in building this important document.

1) Types of users: There are three types of user roles: ad-
ministrator, steward and normal user. In general, an administra-
tor is someone who can manage and control different modules
of the framework. A steward is someone who has enough
expertise of data integration and its processes. A normal user

Fig. 2. Complex data integration workflow

Fig. 3. Constructing input schema based on metadata workflow

is an end-user who can query the AXML repository. It is not
necessary for normal users to have any knowledge about data
integration or its processes. From here onwards in this paper,
user refers to steward.

2) Explicit input schema evolution: Different data sources
are subject to continuous changes of their structures and/or
their contents. User requirements are also primordial for
successful data integration. These requirements might change
over time and should be taken into consideration. For this
reason, the framework allows users to add new data sources,
alter and/or drop existing data sources. Altering data sources
involve adding new relevant objects, altering and/or dropping
existing objects. Such structure changes in data sources are



written into the input schema. As a result, the input schema
is always up-to-date. If such structure changes are carried out
by the user, it is called explicit input schema evolution.

3) Resource metadata versus input schema: Resource
metadata are data about data sources that describe, locate, ease
to retrieve, utilize, or manage data sources (Fig. 4). In our
framework, resource metadata can be obtained automatically
using metadata processing or manually using a graphical
interface. Resource metadata are a superset of (or include) the
input schema. The input schema represents relevant metadata
to a particular application.

B. Monitoring Change Detection

Data sources should always be monitored for detecting
changes. We distinguish two types of event changes, namely
structure changes and content changes. Structure changes of
data sources are changes related to the structure of data
sources, such as adding new object (e.g., table, view, etc.)
to a specified database or deleting a field from a specified
spreadsheet. Content changes are changes related to the con-
tents of data sources, such as adding record(s) to a specified
table or changing the value of XML document element(s).
As depicted in Fig. 5, Several alternatives are proposed for
detecting changes from heterogeneous data sources. New de-
tected changes are compared against previous versions of input
schema or metadata in order to determine if these changes
are relevant or not. Only relevant changes are taken into
consideration in order to update the input schema.

1) Data source change detection alternatives : Due to the
heterogeneity of data sources, there are several alternatives for
detecting changes.

• Triggers. The first alternative is to apply triggers at data
sources that support them (i.e., databases, XML, etc.).
Triggers are responsible for monitoring content changes,
rather than structure changes. However, applying triggers
at data sources is not always allowable due to access
limitations. Indeed, most data sources do not ”know” that
they are part of an integration system.

• Metadata comparison. The second alternative is to gener-
ate metadata for some types of data sources periodically
and compare them against previous extracted versions.
Metadata comparison can be effectively utilized for mon-
itoring structure changes.

• Third-party applications. The third alternative is to em-
ploy third-party applications designed for change detec-
tion purposes in order to detect content changes for some
types of data sources. For instance, there are several third-
party applications to monitor web pages for changes (e.g.,
changedetection.com, WebSite-watcher, etc.).

2) Change detection module: The change detection module
monitors changes that may occurr in different data sources.
Notice that not all encountered changes at data sources are
relevant. Such changes are called irrelevant changes and
should not affect the input schema. The change detection
module (Fig. 5) deals with different types of changes monitor
alternatives (section III-B1) with some minor differences.

Firstly, changes coming from triggers (either structure changes
or content changes) are compared and filtered in order to
get only the delta of relevant changes. The corresponding
module affects the input schema and metadata with these
relevant structure changes. However, it notifies the integration
server with content changes in order to invoke the appropriate
integration service to engage these changes. Secondly, the
corresponding module gets a new version of metadata and
compares it against the previous extracted version. If it finds
encountered changes, it filters them against the input schema
in order to get only a delta of relevant changes. Such relevant
changes affect the input schema and metadata with structure
changes. Thirdly, there are rich third-party applications that
can notify a specific server with encountered changes. Such
changes need to be filtered by the change detection module for
getting only relevant data. However, the user checks relevant
changes manually when using limited third-party applications,

3) Automatic filtering of irrelevant changes: Irrelevant
changes can be filtered automatically by comparing them to
the input schema. If any change entry does not match with
input schema entries, the change detection module marks this
entry as irrelevant. On the other hand, not all ”irrelevant”
changes should be neglected. Some irrelevant changes may
be important. For example, if the change detection module
detects new object ”X”, thant not found extracted versions of
input schemas and metadata, the module considers this object
as irrelevant. But in fact, this object is important for the user
and was not available when constructing the input schema. So,
the change detection module should notify the user with any
new irrelevant changes. Then, the user decides if a new object
is actually relevant or not.

4) Implicit input schema evolution & change detection: The
input schema needs to be frequently updated and refreshed
in order to meet new requirements of the application. Up-
dating the input schema is done either explicitly (by user),
or implicitly (by detecting changes automatically using the
change detection module). The change detection module can
be configured to detect changes periodically.

Moreover, the input schema needs to be monitored for
changes. Because the input schema is represented in XML,
active XQuery triggers can be applied to the input schema for
detecting changes. When any updates detected in the input
schema, some actions may be taken such as invoking the
appropriate integration services in order to integrate the new
relevant data.

C. Metadata & AXML-based Integration of Complex Data
Constructing the input schema rather than defining Sources-

to-Services mappings are important components before exe-
cuting the integration tasks. Each relevant data source is dis-
patched to the appropriate integration service. The integration
service is managed using Pentaho Data Integration (Kettle)1.
The output of integration services is a set of AXML documents
that can be later queried by calling embedded Web services
(Fig. 6).

1http://kettle.pentaho.org/



Fig. 4. Resource metadata

Fig. 5. Monitoring change detection workflow

Fig. 6. Integrating complex data using open-source tool workflow

1) Integrating data: From an implementation viewpoint,
using an open source tool for performing ETL tasks saves
implementation time. Our framework utilizes Pentaho Data

Integration (PDI). PDI is a powerful, metadata-driven ETL
tool. It has a graphical user interface (called Spoon) that
allows users to design and execute transformations and jobs.
Transformations and jobs can be saved in binary format or can
be described in XML format. Our framework utilizes PDI’s
Java library to manage the integration tasks. It adapts the
structure of relevant data sources from the input schema into
XML files handled by PDI’s tools. Then, PDI’s tools (e.g.,
Pan or Kitchen) can be invoked to execute transformations
or jobs, which are described also in XML format. The XML
file of a specific transformation involves metadata about the
input data source and its detailed characteristics, metadata
about transformation rules, and metadata about output targets.
Such metadata describe the ETL operation. The target of the
integration tasks is always a set of AXML documents that are
stored in a native XML database, namely eXist 2.

2) Explicit versus implicit elements of AXML documents:
To specify automatically explicit AXML elements versus
implicit AXML elements, our framework should add a flag
attribute for each target element as static or dynamic (explicit
or implicit) in the mapping step. A static element (default) is
written as a traditional XML element and a dynamic element
is written as a call to a Web service. We assume that we can
apply some statistical operation on event changes to know
which object or sub-objects of data sources are frequently
changed. If an object/sub-object exceeds a specific threshold

2http://exist-db.org/



of number of changes in a particular period, it is expressed
automatically as invocation of Web services and its type flag
should be changed into dynamic.

3) Querying AXML documents: AXML documents can be
queried by the user or by analysis modules built upon the
AXML repository. When querying AXML document, embed-
ded Web services should be invoked. The services’ results
replace the node calling the service, or append to it. Appending
results after call’s node permits the service to be reused later.

D. Mining and analyzing events

Different events are logged when constructing the input
schema, detecting changes in data sources, and integrating
data using an open-source tool. Such events need to be mined
and analyzed in order to maintain, and automate different
integration tasks (Fig. 7) . The user defines several events-
to-action rules using a graphical interface. When mining and
analyzing events, if a specific event is encountered and its
associated condition is met, then the associated action is taken.

Fig. 7. Mining and analyzing different events log workflow

1) Event log types: Event logs are categorized according
to their origin modules.

• User & session log. This log contains events logged
by accessing users. It includes their identifications, their
roles, and starting and ending times of sessions.

• Data source structure & contents change log. This log
contains events logged when changing the structure and
contents of data sources.

• Integration services log. This log contains events logged
by executing extraction, transformation, and loading ser-
vices.

• AXML query log. This log contains events logged when
querying AXML documents, and invoking embedded
Web services.

• Messaging log. This log contains information, warning,
and error messages.

2) Event repository: Different events are modeled and
stored into a specific repository, in order to be easily mined and
analyzed. The event repository can be modeled by applying
a star schema model [2], where a single fact document
represents all events. However, there are multiple dimension
documents (e.g., user dimension, machine dimension, session
dimension, data source dimension, AXML document dimen-
sion, date and time dimension). Another solution is to apply
a constellation schema model [2], where there are several fact

documents; one fact document for each type of the following
event types: data source contents and structure changes, ETL
services, querying AXML repository, and messaging. How-
ever, there are still multiple dimension documents.

3) Event mining and analysis: Each event type is mined and
analyzed for a specific purpose. Events are described in XML,
which results in mining XML documents. Both structure and
contents of XML documents are interesting to be mined and
analyzed. Examples of mining and analyzing tasks are given
for event types.

a) Data source structure events mining and analysis.:
Finding similarity of events (e.g., adding new data sources) can
result in applying the same integration services automatically
to integrate relevant data, taking the new parameters into
account. Moreover, association rules can be mined in order
to find the relationship between the most frequently accessed
data sources and the nature of the application.

b) Data source contents event mining and analysis.:
Content change events affect AXML explicit parts by replacing
old elements with newest ones. They also affect the AXML
implicit part by notifying the integration server to execute
the appropriate services for getting changes. For this reason,
content change events should be mined and analyzed in order
to execute appropriate actions. Finding the most frequently
updatable pattern of a specific data source can also lead to
change this pattern to be expressed as calls to services instead
of defining it explicitly.

c) Integration (ETL) service event mining and analysis.:
PDI already generates logs containing the status of integration
tasks such as the total number of lines read, written, input,
output, updated, and rejected. Such logs are mined in order to
maintain the integration services themselves. For instance, let
us assume that the total number of lines read, written, input, or
output are equal to zero. In this case, the framework indicates
that run-time errors or logic errors have happened.

d) AXML repository query event mining and analysis.:
Finding the most frequently queried AXML documents and
their embedded services may be interesting. Finding the most
frequently queried explicit pattern and calculating its changing
rate is also important. If changing rate exceeds a specific
threshold, then we can recommend the user to express this
pattern as service calls.

e) Messaging event analysis and mining.: Event logs are
an excellent source of information for monitoring the system.
Information that is stored in event logs can be useful for
analysis at a later time (e.g., for audit and maintain procedures,
retrospective incident analysis, etc.).

IV. DISCUSSION AND RELATED WORK

There are several approaches to integrate data: virtual views,
materialized views (warehousing), and hybrid approaches. In a
virtual view (or lazy) approach, data are accessed from sources
on demand when a user submits a query. In a materialized
view (or eager) approach, relevant data are filtered from
data sources and pre-stored (materialized) into a repository
(namely a warehouse) that can be later queried by users. A



hybrid approach is applied when integrated data are selectively
materialized. Data are extracted from data sources on-demand,
but some query results are pre-computed and stored.

Some of the integration architectures that use the virtual
view approach are federated database systems and mediated
systems. A Federated Database System (FDBS) is a collec-
tion of autonomous database components that cooperate in
order to share data [4]. Mediated systems integrate data from
heterogeneous and autonomous data sources by providing a
virtual view of all data sources [5]. They handle not only
operational databases, but also legacy systems, Web sources,
etc. Mediated systems provide one schema to the user (called
the Mediated Schema) and users pose their queries w.r.t. this
schema. Although the materialized view approach provides
a unified view of relevant data similar to a virtual view, it
stores these data in a data warehouse. This approach is mainly
designed for decision-making purposes and supports complex
query operations.

Our architecture follows the hybrid approach, taking the
advantages of both materialized and virtual view approaches. It
gains advantage from the virtual view approach by integrating
data from a large number of data sources that are likely
to be updated frequently, and there are no predefined user
queries. It also gains advantage from the data warehousing
approach by storing relevant data into a unified repository. As a
consequence, better performance can be achieved from saving
response time when querying data, especially if their data
sources are physically located far away from the integration
system.

Furthermore, Our architecture is designed around XML
data warehousing approaches. The main purpose of such ap-
proaches is to enable a native XML storage of the warehouse,
and allow querying it with XML query languages, mainly
XQuery. Several researchers address the problem of designing
and building XML warehouses, focusing either on Web data
warehousing [6], [7], [8], XML data warehousing [9], [10],
[11], [12], or XML document warehousing [13], [14], [15].

Technically, our architecture is based on the AXML lan-
guage [3]. AXML is a useful paradigm for distributed data
management on the Web. Several AXML issues have been
studied in Peer-to-Peer (P2P) architectures, such as distribu-
tion, replication of dynamic XML data, semantics of docu-
ments and queries, terminations and lazy query evaluation.
Moreover, our architecture is managed and controlled using
different active rules (or ECA) [16], [17]. Active rules are
also proposed for analysis purposes in data warehousing
environments, as analysis rules [18].

V. CONCLUSION AND FUTURE TRENDS

In this paper, we designed an architecture for integrating
complex data into an AXML repository. In this architecture,
the integration tasks are expressed as Web services. The work
of such services conforms to the work of ECA rules, achieving
some form of intelligence when integrating complex data. The
choice of AXML results in unifying various data formats,
accessing them independently from their platform, system,

physical location, and communication protocol. Moreover,
AXML documents are always up-to-date due to invoking
embedded Web services. The workflow of integration tasks
is designed for describing the different steps of the integration
architecture. It is subdivided into four smaller ones (section
III), each of which describes a specific task in more details.

In the near future, we intend to give more attention to min-
ing and analyzing different events logged from the proposed
architecture, in order to achieve intelligent ETL. Moreover,
we will implement and validate the data integration system.
We aim at developing the complex data integration system
as a Web-based application, to help users run and manage it
entirely through a lightweight client (i.e., a web browser).

REFERENCES

[1] J. Darmont, O. Boussaid, J. Ralaivao, and K. Aouiche, “An architecture
framework for complex data warehouses,” 7th International Conference
on Enterprise Information Systems (ICEIS’05), Miami, USA, pp. 370–
373, 2005.

[2] R. Kimball, The data warehouse toolkit. John Wiley & Sons, 1996.
[3] S. Abiteboul, O. Benjelloun, and T. Milo, “The active XML: an

overview,” in VLDB Journal, 2008, pp. 1019–1040.
[4] A. Sheth and J. Larson, “Federated database systems for managing

distributed and autonomous databases,” ACM Computing Surveys, pp.
183–236, 1990.

[5] H. Garcia-Molina, J. Ulman, and J. Widom, Database System Imple-
mentation, chapter 11: Information Integration. Prentice Hall, 2000.

[6] M. Golfarelli, S. Rizzi, and B. Vrdoljak, “Data warehouse design from
XML sources,” 4th International Workshop on Data Warehousing and
OLAP (DOLAP’01), Atlanta, USA, pp. 40–47, 2001.

[7] B. Vrdoljak, M. Banek, and S. Rizzi, “Designing Web warehouses from
XML schemas,” 5th International Conference on Data Warehousing and
Knowledge Discovery (DaWaK’03), Prague, Czech, pp. 89–98, 2003.

[8] L. Xyleme, “A dynamic warehouse for XML data of the Web,” Inter-
national Database Engineering & Applications Symposium(IDEAS’01),
Grenoble, France, pp. 3–7, 2001.

[9] O. Boussaid, R. Ben Messaoud, R. Choquet, and S. Anthoard, “X-
warehousing: An XML-based approach for warehousing complex data,”
10th East-European on Advances in Databases and Information Systems
(ADBIS’06), Thessaloniki, Greece, pp. 39–54, 2006.

[10] W. Hummer, A. Bauer, and G. Harde, “Xcube: XML for data ware-
houses,” 6th International Workshop on Data Warehousing and OLAP
(DOLAP’03), New Orleans, USA,, pp. 33–40, 2003.

[11] H. Mahboubi, M. Hachicha, and J. Darmont, “XML warehousing and
OLAP,” Encyclopedia of Data Warehousing and Mining, 2nd Edition,
IGI Publishing, USA, pp. 2109–2116, 2008.

[12] L. Rusu, J. Rahayu, and D. Taniar, “A methodology for building XML
data warehouses,” International Journal of Data Warehousing & Mining,
vol. 1, no. 2, pp. 67–92, 2005.

[13] X. Baril and Z. Bellahsène, “Designing and managing an XML ware-
house,” In XML Data Management: Native XML and XML-enabled
Database Systems, Addison Wesley, pp. 455–473, 2003.

[14] V. Nassis, R. Rajugan, T. Dillon, and J. Rahayu, “Conceptual and sys-
tematic design approach for XML document warehouses,” International
Journal of Data Warehousing & Mining, vol. 1, no. 3, pp. 63–86, 2005.

[15] R. Rajugan, E. Chang, and T. Dillon, “Conceptual design of an XML
FACT repository for dispersed XML document warehouses and XML
marts,” 5th International Conference on Computer and Information
Technology (CIT’05), Shanghai, China, pp. 141–149, 2005.

[16] J. Bailey, A. Poulovassilis, and P. T. Wood, “Analysis and optimisation
of event-condition-action rules on XML,” Computer Networks, vol. 39,
pp. 239–259, 2002.

[17] A. Bonifati, S. Ceri, and S. Paraboschi, “Active rules for XML: A
new paradigm for E-Services,” in Proceedings of TES Workshop
(VLDB’00), Cairo, Egypt, 2000.

[18] T. Thalhammer, M. Schrefl, and M. Mohania, “Data warehouses: Com-
plementing OLAP with active rules,” Data and Knowledge Engineering,
vol. 39, no. 3, pp. 241–269, 2001.


