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Efficient recovery of smooth functions which are s-sparse with respect to the base of so-called Prolate Spheroidal Wave Functions from a small number of random sampling points is considered. The main ingredient in the design of both the algorithms we propose here consists in establishing a uniform L ∞ bound on the measurement ensembles which constitute the columns of the sensing matrix. Such a bound provides us with the Restricted Isometry Property for this rectangular random matrix, which leads to either the exact recovery property or the "best s-term approximation" of the original signal by means of the ℓ 1 minimization program. The first algorithm considers only a restricted number of columns for which the L ∞ holds as a consequence of the fact that eigenvalues of the Bergman's restriction operator are close to 1 whereas the second one allows for a wider system of PSWF by taking advantage of a preconditioning technique. Numerical examples are spread throughout the text to illustrate the results.

Introduction

Compressed sensing (CS), or Compressive Sampling, is a recent field of research which hinges on a simple yet fascinating idea which led to a major rethinking of data acquisition protocols. It is well known that signals of interest are generally endowed with a specific structure making them concisely representable (that is, by means of quite a small number of generalized Fourier coefficients) in specific orthogonal bases. Hence, with the development of e.g. new wavelet systems, transmission of these signals has been progressively reduced to the one of a limited quantity of significant numbers. However, the acquisition protocols for these signals were still working in a massive and expensive manner: the totality of the amount of digital data was first acquired, and then later encoded in the appropriate orthogonal basis. It was at this level that filtering was applied in order to reduce the number of coefficients to be actually considered; in general, a big proportion of them was discarded which resulted in a wasteful processing. CS changed the whole framework by showing that, under the same hypothesis on the original scene (the possibility of being expressed by very few meaningful coefficients in a convenient basis, which is usually referred to as sparsity), the computational cost of the data acquisition protocol can be drastically reduced. Indeed, instead of acquiring the totality of the data to be later encoded, it limits itself to acquire directly all the important information by measuring the projections of this sparse signal onto a fixed set of well defined but randomly sampled basis vectors (which put together constitute the random sensing matrix). The signal can therefore be under-sampled according to the classical Shannon-Nyquist theory because the quantity of measurements is proportional to the number of non-zero coefficients, and not to the width of the support of the spectrum. This collection of basis vectors, sometimes referred to as a measurement ensemble, was originally taken as a realization of Gaussian white noise or a sequence of Bernoulli random variables as this choice asks for a near-minimal amount of sampling points [START_REF] Candès | Compressive sampling[END_REF]. However, in practical applications, it is desirable to derive a CS strategy for signals which are sparse in structured measurement ensembles, like e.g. the discrete Fourier basis, a Multi-Resolution framework, or very recently the Legendre polynomial base [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF]. In [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF], the case of a sensing matrix which originates from an orthonormal matrix is studied and sufficient conditions ensuring the Restricted Isometry Property (RIP) [START_REF] Baraniuk | A simple proof of the restricted isometry property for random matrices[END_REF] which leads to the exact recovery by ℓ 1 minimization are given. These conditions have been later refined in e.g. [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF][START_REF] Foucart | A note on guaranteed sparse recovery via ℓ 1 -minimization[END_REF][START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1[END_REF][START_REF] Rauhut | Compressive sensing and structured random matrices[END_REF].

In this paper, we follow this research program and show that another class of matrices can be used in order to set up a CS algorithm: considering the so-called "Prolate Spheroidal Wave functions" (PSWF), one gets for any value of their Slepian parameter c > 0 an orthonormal base of L 2 (-1, 1) [START_REF] Shkolniskya | Approximation of bandlimited functions[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]. These functions are restrictions to a compact interval of bandlimited functions, hence entire functions of exponential type when extended to the whole complex plane [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty. I[END_REF][START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF][START_REF] Hogan | Time-frequency and time-scale methods[END_REF][START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF][START_REF] Moore | Prolate Spheroidal wave functions, an introduction to the Slepian series and its properties[END_REF]. Entire functions, as they can be expressed as convergent series for any value of their argument, may be viewed as "infinite degree generalization" of polynomials. Moreover, it is a well-known fact that PSWF admit an expansion in the Legendre polynomial basis, a feature which is useful for their practical computation [START_REF] Gubner | A Simple Method for Computing Projections onto Subspaces of Prolate Spheroidal Wave Functions[END_REF].

In §2, the derivation of PSWF is recalled, starting from the inversion of Bergman's restriction operator with Seip's theorem on doubly-orthogonal sequences and composition of two orthogonal projections in Hilbert space [START_REF] Shapiro | Stefan Bergman's theory of doubly-orthogonal functions: an operator-theoretic approach[END_REF][START_REF] Seip | Reproducing formulas and double orthogonality in Bargmann and Bergman spaces[END_REF][START_REF] Nees | Products of orthogonal projections as Carleman operators[END_REF]. We made this choice for 2 reasons: first, this emphasizes the very particular properties of this type of orthogonal bases, and second, it shows that the doubly-orthogonal Slepian's functions are by no means a unique object [START_REF] Zayed | A generalization of the prolate spheroidal wave functions[END_REF]. Besides that, these bases allow to perform extrapolation of signals even if this illconditioned problem has to be stabilized (see for instance [START_REF] Coifman | Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions[END_REF][START_REF] Drouiche | Regularization of the ill-posed problem of extrapolation with the Malvar-Wilson wavelets[END_REF]): hence in this perspective, the exact recovery property for sparse signals of CS algorithms may become very valuable as a limited amount of measurements can permit to reconstruct the signal's very disconnected spectrum with supposedly machine's accuracy and then allow to extrapolate observations made in, say, [-1, 1] to a bigger interval (see Remark 8). Usual interpolation properties for PSWF are recalled in §2.2 together with error estimates for spectral approximation [START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF]; in particular, the recent estimates by Wang [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] are included. §3 is devoted to proving a L ∞ bound on a subset of the PSWF base on [-1, 1]; like Legendre polynomials, PSWF can display sharp "tails" close to the edges of this interval. However, the situation here is better compared to polynomials because there exists a collection of indexes for which both a L ∞ bound and spectral accuracy hold as stated in Lemma 1; roughly speaking, it corresponds to the PSWF endowed with eigenvalues not too far from 1 (this statement can be made precise by means of the classical Landau-Widom estimate, see [START_REF] Landau | Eigenvalue distribution of time and frequency limiting[END_REF]). With this L ∞ bound at hand, it is possible to follow the canvas of [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] and estimate the concentration measure parameter µ which leads to the RIP under technical assumptions. We followed the approach of [START_REF] Rauhut | Compressive sensing and structured random matrices[END_REF][START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] which permits to reach similar conclusions under slightly milder restrictions. Once the RIP is established, the results by Foucart [START_REF] Foucart | A note on guaranteed sparse recovery via ℓ 1 -minimization[END_REF][START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1[END_REF] ensure that either the exact recovery occurs, either accurate error estimates hold between the original signal and its best k-term approximation [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF]. Numerical test-cases are performed in §3.4 and illustrate previous theoretical results with some indications of success/failure statistics.

In §4, we follow the original idea of Rauhut and Ward [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] of including preconditioning techniques inside a CS framework. Indeed, since the L ∞ bound of Lemma 1 blows up as more and more PSWF are added in the sensing matrix, it became desirable to derive another methodology to handle more complex problems. It turned out that a simple diagonal preconditioner (the same as used in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF]) allows to control the concentration measure of the sensing matrix columns in a more robust way, see Lemma 8. This comes from the fact that Slepian's functions can be written as a series of Legendre polynomials for which fine estimates have been proven on the coefficients [START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]. The exact recovery property is shown the same way as in §3, see Theorem 9, and the Corollary 2 is given concerning the recovery of functions belonging to the Hilbert spaces Hr c (-1, 1) studied in [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] for which spectral accuracy always holds. Again, numerical tests are displayed in §4.4, involving more complex and possibly noisy signals. In §5, we present some preliminary results on the "analogical problem" consisting in trying to recover a reconstructed approximation f of a smooth function f ∈ H r out of limited number of its samples.

To the best of the author's knowledge, the idea of performing CS with a sensing matrix built from PSWF seems to be new; classical sampling theorems involving PSWF already exist, see e.g. [START_REF] Khare | Bandpass sampling and bandpass analogues of prolate spheroidal wave functions[END_REF][START_REF] Walter | Sampling with Prolate Spheroidal Functions[END_REF][START_REF] Gilbert G Walter | Wavelet based on prolate spheroidal wave functions[END_REF] and also [START_REF] Senay | Reconstruction of nonuniformly sampled time-limited signals using prolate spheroidal wave functions[END_REF] with references therein. However, no proof of the restricted isometry property or the exact recovery of sparse signals appears.

2 Bergman's restriction operator and Prolate spheroidal wave functions

Composition of orthogonal projections and doubly-orthogonal sequences

Our starting point is the Bergman-Shapiro problem for the inversion of a truncation operator in a separable Hilbert space with scalar product •, • H . Let us denote H = L 2 (R), V a closed linear subspace of H with P the orthogonal projection H → V and T : f ∈ V → f χ A with χ A the characteristic function of a measurable set A ⊂ R. In this framework, a special case of a result of Seip [START_REF] Seip | Reproducing formulas and double orthogonality in Bargmann and Bergman spaces[END_REF] can be stated: Theorem 1 Assume V is a reproducing kernel Hilbert space (RKHS) and let (f k ) k∈N be an orthonormal basis of V . Then (f k ) k∈N is furthermore orthogonal for the induced scalar product •, • A := ., .χ A H if and only if f k are singular functions of PT ; in such a case, (f k ) k∈N is said to be a doubly orthogonal sequence (DOS).

Let us recall that the general structure of the composition product of 2 orthogonal projections in a Hilbert space is studied by Nees in [START_REF] Nees | Products of orthogonal projections as Carleman operators[END_REF]. Such DOS seem to have been first studied by Bergman in the context of analytic functions [START_REF] Shapiro | Stefan Bergman's theory of doubly-orthogonal functions: an operator-theoretic approach[END_REF]; they are useful when it comes to recover a function from its values on a subset of its domain of definition [START_REF] Shapiro | Reconstructing a function from its values on a subset of its domain-A Hilbert space approach[END_REF]. However, in most cases, T P is a compact Hilbert-Schmidt operator (except if the Lebesgue measure |R \ A| is small enough to ensure that the operator norm (Id -T )P < 1 which allows for stable inversion by means of Neumann series, see e.g. [START_REF] Youla | Generalized image restoration by the method of alternating orthogonal projections[END_REF][START_REF] Donoho | Uncertainty principles and signal recovery[END_REF]) therefore performing inversion leads to a (possibly severely) ill-posed problem [START_REF] Diaz | On iteration procedures for equations of the first kind, Ax = y and Picard's criterion for the existence of a solution[END_REF]; see however [START_REF] Drouiche | Regularization of the ill-posed problem of extrapolation with the Malvar-Wilson wavelets[END_REF] for an original regularization method and [START_REF] Coifman | Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions[END_REF] for the recent approach called "geometric harmonics" [START_REF] Coifman | Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions[END_REF].

A RKHS V ⊂ L 2 (R) with kernel K is a linear subspace which corresponding orthogonal projection P rewrites as an integral operator:

f ∈ V ⇔ ∀t, f (t) = Pf (t) = f (•), K(•, t) H = R K(s, t)f (s)ds. (1) 
Hence, given a measurable set A ⊂ R, one can define the so-called concentration operator on A, T P, for the functions of V ; for V a subset of smooth functions and |A| bounded, the Ascoli's theorem ensures that T P is compact and there holds:

T P 2 = PT 2 = PT P = λ 0 with PT Pψ 0 = λ 0 ψ 0 and PT f (t) = f (•), K(•, t) A .
More generally, a sufficient condition for compactness is as follows [START_REF] Seip | Reproducing formulas and double orthogonality in Bargmann and Bergman spaces[END_REF]:

A A |K(s, t)| 2 ds dt = A K(s, s)ds < ∞.
The first eigenfunction ϕ 0 is the function of V which realizes the maximum of concentration on the set A; its corresponding eigenvalue λ 0 can be understood as the concentration ratio:

T P = sup f ∈L 2 (R) T Pf L 2 (R) f L 2 (R) = sup g∈V T g L 2 (R) g L 2 (R) = T ψ 0 L 2 (R) ψ 0 L 2 (R) = λ 0 ≤ 1.
This equation is the starting point of the presentation by Slepian in [START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF] in the particular case where V is chosen to be the Paley-Wiener space of ω-bandlimited functions:

P W ω = f ∈ L 2 (R) such that f (ξ) := R f (t) exp(2iπtξ)dt is supported in [-ω, ω] .
We stress that it is not the unique example to which these ideas can be applied: for instance, one can choose V = V j , one of the nested linear subspaces of L 2 (R) constituting a Multi-Resolution Analysis (MRA). In this case, the reproducing kernel in (1) reads [START_REF] Liu | Irregular sampling in wavelet subspaces[END_REF] where j ∈ Z is the scale index and φ is the so-called "scaling function" whose integer shifts generate V 0 ; see e.g. [START_REF] Lin | On theory and regularization of scale-limited extrapolation[END_REF][START_REF] Gosse | A Donoho-Stark criterion for stable signal recovery in discrete wavelet subspaces[END_REF].

K j (s, t) = 2 j n∈Z φ(2 j s -n)φ(2 j t -n)
The reproducing kernel for P W ω is the standard "sinc" function,

K ω (s, t) = sin(2πω(t -s)) π(t -s) ,
and one is led to seek the singular value decomposition (SVD) of the compact operator,

PT f (t) = A f (s) sin(2πω(t -s)) π(t -s) ds, A = [-T, T ], (2) 
which has been thoroughly studied by Slepian, Landau and Pollak: see e.g. [START_REF] Hogan | Time-frequency and time-scale methods[END_REF][START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF][START_REF] Moore | Prolate Spheroidal wave functions, an introduction to the Slepian series and its properties[END_REF][START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty. I[END_REF].

In particular, the integral operator (2) commutes with a second order differential operator: Daubechies gives a geometric explanation of this "lucky accident" in [START_REF] Daubechies | Time-frequency localization operators: a geometric phase-space approach[END_REF]. Such a property eases considerably the task of computing numerically the DOS associated to V = P W ω :

T PT ϕ k = λ k ϕ k , PT Pψ k = λ k ψ k , k ∈ N.
Many efforts have been dedicated to the derivation of efficient algorithms to compute the peculiar PSWF system associated to P W ω : see [START_REF] Gubner | A Simple Method for Computing Projections onto Subspaces of Prolate Spheroidal Wave Functions[END_REF][START_REF] Karoui | New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues[END_REF][START_REF] Khare | Bandpass sampling and bandpass analogues of prolate spheroidal wave functions[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]. As P W ω contains entire func-tions of exponential type, 0 < λ k < 1 and an easy computation shows that:

ψ k = Pϕ k √ λ k , T ψ k = λ k ϕ k .
Trying to solve directly the integral equations ( 2) is a very difficult task because the nonnegative eigenvalues λ k display a sharp behaviour depending on c = 2πωT , the so-called Slepian parameter representing the area in the time-frequency plane, which makes them decay supergeometrically [START_REF] Boyd | Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions[END_REF] (see also [START_REF] Chang | Sharp inequalities of singular values of smooth kernels[END_REF][START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF]) to zero:

λ k ≃ 1 for k ≤ 2c π . (3) 

Spectral approximation with Prolate Spheroidal wave functions

Prolate Spheroidal wave functions (PSWF) constitute an orthogonal base of L 2 (-T, T ): see [START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF][START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF][START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF][START_REF] Hogan | Time-frequency and time-scale methods[END_REF][START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF]. Thus they can serve as an interpolator on any compact interval of R as an alternative choice which can enjoy spectral accuracy instead of classical polynomial systems like Legendre, see [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] for very precise error estimates in this direction. The following theorem (taken from [START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]) summarizes the main properties of (ϕ k ) k∈N as an interpolator:

Theorem 2 For any positive real value c, the eigenfunctions ϕ k , k ∈ N are purely real and complete in L 2 (-T, T ). The even-numbered eigen functions are even, and the odd-numbered are odd according to the order of decreasing eigenvalues which are non-zero and simple. The eigenfunctions constitute a Chebyshev system on [-T, T ], in particular, ϕ k has exactly k zeros in this interval.

PSWF satisfy also another eigenvalue problem which reads [START_REF] Karoui | New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues[END_REF][START_REF] Gilbert G Walter | Wavelet based on prolate spheroidal wave functions[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]:

µ k ϕ k (t) = T -T ϕ k (ξ) exp(icts)ds, λ k = c 2π |µ k | 2 . (4) 
This formulation has the drawback of involving imaginary eigenvalues µ k when k is odd; however, it involves a kernel K which depends only on the product st (compare with (1)).

At this point, it is important in the context of PSWF to make a clear distinction between

• approximation of bandlimited functions on R, that is, approximation in P W ω by means of ψ k , k ∈ N which are normalized so as to have ψ k L 2 (R) = 1 (which implies that ϕ k L 2 (-T,T ) = √ λ k → 0 when k grows) as studied for instance in [START_REF] Shkolniskya | Approximation of bandlimited functions[END_REF],

• and approximation in the space L 2 (-T, T ), as presented in Theorem 2 or in [START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF][START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF],

which is made with functions ϕ k normalized so as ϕ k L 2 (-T,T ) = 1 (which implies that

ψ k L 2 (R) = 1 √ λ k
→ +∞, especially for very delocalized functions such that k ≫ 2c/π).

Theorem 3 Let f ∈ H r (-T, T ) the Sobolev space of functions of L 2 (-T, T ) having all derivatives up to order r ≥ 0 in L 2 (-T, T ) have the expansion:

f (t) = k∈N f k ϕ k (t). Then, if the parameter c associated to ϕ k is such that ̺ N (c) := 2c π(N + 1
2 ) < 1, the following bound holds for the N th coefficient of the expansion:

|f N | ≤ C N -2 3 r f H r (-T,T ) + ̺ N (c) δN f L 2 (-T,T ) . ( 5 
)
The constants C, δ are independent of f, N , and the Slepian parameter c.

This error estimate appears in [START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF][START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] in slightly different forms. Following Wang [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF], we recall the singular Sturm-Liouville operator associated with the system of PSWF ϕ k , k ∈ N, for a fixed value c > 0 of the Slepian parameter:

∀t ∈ [-1, 1], D c u(t) = - d dt w(t) du(t) dt + (ct) 2 u(t) with w(t) = 1 -t 2 . (6) 
It is claimed in e.g. [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF][START_REF] Wang | A new generalization of the PSWF with applications to spectral approximations on quasi-uniform grids[END_REF] that D c is positive on its domain of self-adjointness. However, as the explicit definition of this domain seems difficult to find in the existing literature, we intend to give some details here. According to the monograph [START_REF] Zettl | Sturm-Liouville theory[END_REF] (see chapter 10), a "global domain" for the unbounded differential operator D c is:

G w = {u and wu ′ absolutely continuous on all compact subintervals of (-1, 1)} .

Since D c u is well defined and belongs to L1 loc (-1, 1) for any u ∈ G w , the Sturm-Liouville operator (6) defined on the domain,

D = u ∈ G w such that u, D c u ∈ L 2 (-1, 1) dense in L 2 (-1, 1),
is usually called the maximal operator. The minimal operator follows by considering (6) on C ∞ 0 (-1, 1), the space of infinitely differentiable functions with compact support in (-1, 1), see [START_REF] Baxley | A criterion for discrete spectra of partial differential operators[END_REF] (it is shown to be bounded below in [START_REF] Rollins | Criteria for discrete spectrum of singular self-adjoint differential operators[END_REF] because both w(t) ≥ 0 and (ct) 2 ≥ 0). It has self-adjoint extensions which are obtained by imposing boundary conditions on the domain of the adjoint operator; in particular, it has the Friedrichs extension [START_REF] Niessen | Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues[END_REF]. Given any function v(t) which, in a neighborhood of |t| = 1, is a solution of D c v = χv, for some (arbitrarily chosen) fixed real value of χ, the domain of the Friedrichs extension of (6) corresponds to the boundary conditions:

lim |t|→1 (1 -t 2 ) u ′ (t)v(t) -u(t)v ′ (t) = 0. (7) 
For c = 0, it is difficult to find an explicit expression for v hence this characterization is not very easy to handle. However, we can proceed by invoking a perturbation argument: for any value of the Slepian parameter c ≥ 0, the multiplication operator M given by

∀t ∈ [-1, 1], (M u)(t) = (ct) 2 u(t)
is bounded in L 2 (-1, 1) and symmetric. Let us now introduce F as the Friedrichs self-adjoint realization of the Legendre operator (corresponding to D c in the special case c = 0) as in [START_REF] Niessen | Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues[END_REF]; F gives a self-adjoint operator with compact resolvent. Thus by standard operator theory, F +M is a self-adjoint operator on the domain of F . In particular, one can use the expressions given in [START_REF] Niessen | Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues[END_REF] (page 571) to describe the domain of F + M . These expressions corresponds to the choice v ≡ 1 in [START_REF] Cai | New bounds for Restricted Isometry Constants[END_REF]: in particular, it suffices to impose that u ∈ L ∞ (-1, 1) 1 .

Rellich [START_REF] Rellich | Halbbeschrankte gewohnliche Differentialoperatoren zweiter Ordnung[END_REF] proved, in a much more general context, that the Friedrichs extension of ( 6) is precisely the one for which the eigenfunctions ϕ k are principal solutions in the neighborhood of the singular endpoints. For any integer r ≥ 0, Wang [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] defines the Hilbert space:

Hr c (-1, 1) = u ∈ L 2 (-1, 1) such that u Hr c = (D c ) r u, u [-1,1] < +∞ . (8) 
Thanks to the "lucky accident", PSWF also satisfy D c ϕ k = χ k ϕ k and it turns out that:

u 2 Hr c (-1,1) = k≥0 (χ k ) r u, ϕ k [-1,1] 2 , c > 0.
Theorem 4 ( [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF]) Let f ∈ Hr c (-1, 1) with r ≥ 0 as defined in [START_REF] Cai | Shifting inequality and recovery of sparse signals[END_REF]; it holds that,

f - N k=0 f, ϕ k [-1,1] ϕ k L 2 (-1,1) ≤ N -r f Hr c (-1,1) . (9) 
Hence spectral accuracy holds without restriction for functions belonging to the Hilbert spaces [START_REF] Cai | Shifting inequality and recovery of sparse signals[END_REF]. The first PSWF ψ 0 has been used as a scaling function to construct a Multiresolution analysis (MRA) of L 2 (R) enjoying specific properties; see [START_REF] Gilbert G Walter | Wavelet based on prolate spheroidal wave functions[END_REF]. On Fig. 1, we display the first 10 PSWF ϕ k with c = 85, T = 1 and 256 grid points in the t variable: 3 Restricted Isometry Property (RIP) and sparse ℓ 1 -recovery

In this section, we shall only be interested in the "single" orthogonal system of PSWF ϕ k , k ∈ N, complete in L 2 (-T, T ) and normalized according to a probability measure on A = [-T, T ]. Without loss of generality, the value of T can often be fixed to T = 1 as suggested in [START_REF] Gilbert G Walter | Wavelet based on prolate spheroidal wave functions[END_REF], Remark 1.

Preliminaries on Compressed Sensing (CS)

Let us begin by recalling the ℓ p norm in R N for N ∈ N:

x ℓ p = N k=1 |x k | p 1 p , 0 < p < ∞, x := (x k ) k=1,...,N .
The 2 extreme cases p = 0 and p = ∞ are defined as follows:

x ℓ ∞ = max k=1,...,N |x k |, x ℓ 0 = #{x k , x k = 0} ∈ N,
with the symbol # denoting the cardinal number of a set. Any given vector x in R N is said to be sparse as soon as x ℓ 0 is smaller than a certain threshold value, generally denoted by s ∈ N. An important quantity is the best s-term approximation [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF] of a vector x ∈ R N in ℓ p which reads:

σ s (x) ℓ p := inf y: y ℓ 0 ≤s y -x ℓ p .
A direct consequence of this definition is that σ s (x) ℓ p = 0 for all p if x is s-sparse; similarly, x is called compressible if σ s (x) ℓ 1 decays at a fast rate with increasing values of s. Actually, it has been proved rigorously (see e.g. [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF][START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF]) that, for any q < p, there holds σ s (x) ℓ p ≤ s 1 p -1 q x ℓ q . Care must be taken because sparse signals don't generate a linear space as the sum of two s-sparse vectors may only be 2s-sparse. The error estimate [START_REF] Boyd | Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions[END_REF] implies that functions in H r (-1, 1) yield compressible vectors in convenient PSWF bases for which

̺ N (c) < 1.
We need a bit of terminology as we aim at computing efficiently a sparse solution of a linear system of the following form: y = Φx where y ∈ R m is the information vector, m is therefore the number of samples. The matrix Φ is usually not square but m × N instead; it is referred to as to the encoder or the measurement matrix. In the present context, it is a portion of the matrix A written in Theorem 7.1 in [START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]. The integer N stands for the maximum number of components which is necessary to represent a signal of L 2 (-1, 1) in the PSWF base: according to [START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF][START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF], it depends linearly on the Slepian parameter c:

N = 2c π ⇒ ̺ N (c) < 1.
In order to recover the sparse (or at least, compressible) vector x, we need a decoder ∆; we stress that ∆ is not required to be linear, but is must have the exact recovery property for s-sparse signals (s ≪ N ):

x ℓ 0 ≤ s ⇒ ∆(Φx) = x.
At last, the number of samples m must be smaller than the total number of grid points used to represent a signal in the time variable: we call M ≫ m this number of grid points.

A fundamental stepping stone for establishing the exact recovery property for sparse signals is the so-called restricted isometry property (RIP) (see [START_REF] Candès | Compressive sampling[END_REF][START_REF] Baraniuk | A simple proof of the restricted isometry property for random matrices[END_REF]):

Definition 1 For any integer s ≤ N , the restricted isometry constant δ s of a (possibly rectangular) m × N measurement matrix Φ is the smallest nonnegative number such that it holds for every s-sparse vector:

(1 -δ s ) x 2 ℓ 2 ≤ Φx 2 ℓ 2 ≤ (1 + δ s ) x 2 ℓ 2 .
The following theorem is fundamental as it expresses the fact that if an encoder Φ is endowed with a restricted isometry constant which is small enough, then the corresponding decoding can be done simply by solving the ℓ 1 minimization problem:

Theorem 5 (see [START_REF] Candès | Compressive sampling[END_REF][START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF][START_REF] Foucart | A note on guaranteed sparse recovery via ℓ 1 -minimization[END_REF]) Let δ s stand for the restricted isometry constant (an increasing function of s ≪ N ) of the m × N measurement matrix Φ. Assume further that there holds:

δ 2s < 2 3 + 7 4 ≃ 0.4627
Then, if x * denotes the solution of the ℓ 1 minimization problem, inf z ℓ 1 such that Φz = Φx, [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF] then the following error estimate holds:

x -x * ℓ 2 ≤ C σ s (x) ℓ 1 √ s . ( 11 
)
The constant C depends only on δ 2s and the recovery is exact in case the vector is s-sparse.

Remark 1 The constant 0.4627 appearing in Theorem 5 has been recently improved in [START_REF] Cai | Shifting inequality and recovery of sparse signals[END_REF] by means of the so-called Shifting Inequality; see also Candès [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF] and the survey by Foucart [START_REF] Foucart | Sparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants[END_REF]. This leads to weaker requirements for the exact recovery of sparse signals through ℓ 1 minimization. For instance, it is written (page 1306 in [START_REF] Cai | Shifting inequality and recovery of sparse signals[END_REF]) that δ 1.625s < √ 2 -1 is enough to guarantee exact recovery by means of ℓ 1 minimization; this means in particular that one can recover exactly signals a little less sparse with the same number of samples. The best result in this direction seems to be contained in [START_REF] Cai | New bounds for Restricted Isometry Constants[END_REF] where it is claimed that even δ s < 0.307 suffices for exact recovery of s-sparse signals. We keep on working with the constant 0.4627 because it yields the error estimate [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] and allows for preconditioning too.

Uniform bound for a subset of N first PSWF and exact recovery property

Another step can be made when the encoder Φ is a matrix whose columns contains sampled values at random locations (which will be made precise in Theorem 6) of an orthonormal system of functions, as it is the case for the PSWF ϕ k normalized such that:

A ϕ i (t)ϕ j (t) dν(t) = δ i,j , (12) 
with ν is a probability measure on the measurable space A and δ i,j stands for the Kronecker symbol.

Theorem 6 (see [START_REF] Rauhut | Compressive sensing and structured random matrices[END_REF][START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF]) Assume that the orthogonal system ϕ k normalized like ( 12) is moreover bounded in L ∞ (A) for some value N ∈ N:

sup k<N sup t∈A |ϕ k (t)| ≤ K N , K N ≥ 1. ( 13 
)
Let the m × N measurement matrix Φ be built from this bounded basis functions by fixing its entries Φ ℓ,k := ϕ k (t ℓ ), where the m i.i.d. 2 samples t ℓ are drawn from the orthogonalization measure ν. Then under the restriction

m ≥ C K 2 N δ 2 s(log s) 3 log N, (14) 
2 Independent and identically distributed it holds that, with probability at least 1 -N -γ(log s) 3 , the restricted isometry constant δ s of

1 √ m Φ satisfies δ s ≤ δ. The constants C, γ > 0 are universal.
Remark 2 The bound [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF] which gives only that δ s ≤ δ. However, in order to apply the results of [START_REF] Foucart | A note on guaranteed sparse recovery via ℓ 1 -minimization[END_REF] which ensure the exact recovery property, one needs to have a bound on δ 2s . Hence it turns out that [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF] rigorously implies that the "ℓ 1 minimization decoder" ∆ recovers exactly s 2 -sparse signals (and even s-sparse signals when relying on [START_REF] Cai | New bounds for Restricted Isometry Constants[END_REF]). The stronger restriction m ≥ Cµ 2 s(log N ) 4 where µ is the concentration measure parameter (as studied in e.g. [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF]) yields directly the exact recovery property with higher probability 1 -N -γ(log N ) 3 (which is independent of s).

Theorem 6 is quite general as no particular restrictions are made on the probability measure ν; in the remaining of this section, we shall focus on the simplest case, namely ν is half the Lebesgue measure on A, which implies that ϕ k L 2 (A) = |A|. Moreover, these results suggest that a crucial ingredient toward establishing the exact recovery property for the encoder Φ ∈ R m×N being built out of the PSWF base ϕ k is a uniform bound like [START_REF] Chang | Sharp inequalities of singular values of smooth kernels[END_REF]. This is the purpose of the following lemma:

Lemma 1 Let 0 < α < 1 and N be the higher integer such that λ N -1 ≥ α. There hold: [START_REF] Baraniuk | A simple proof of the restricted isometry property for random matrices[END_REF] 

sup k<N sup t∈[-T,T ] |ϕ k (t)| ≤ cT πα ϕ k L 2 (-T,T ) := K N (c), (2) let U stand for the orthogonal N × N matrix whose entry at (j, k) ∈ [0, N -1] 2 reads ϕ k (-T +jh) √ N , h = 2T N , then µ(U ) := √ N max j,k |U j,k | ≤ T 2c πα where c = 2πT ω.
The bound (1) of Lemma 1 is quite logical: it grows together with ω because increasing the cut-off frequency allows for more concentrated functions in [-T, T ]. Increasing T means that a larger interval is considered and with the same cut-off frequency, a major concentration ratio can also be achieved.

Proof: From ( 4) and for all t ∈ [-T, T ], we get by Hölder's inequality:

|ϕ k (t)| ≤ 1 |µ k | T -T | exp(ictξ)| 2 dξ 1/2 ϕ k L 2 (-T,T ) ≤ √ 2T |µ k | ϕ k L 2 (-T,T ) .
Based on a result by Landau and Widom [START_REF] Landau | Eigenvalue distribution of time and frequency limiting[END_REF] (recalled in e.g. [START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]), given 0 < α < 1, the number of eigenvalues greater than α reads:

N = 2c π + log c π 2 log 1 -α α + O(log c).
Thus, since

1 |µ k | = c 2πλ k , we have for 0 ≤ k < N , |ϕ k (t)| ≤ cT πα ϕ k L 2 (-T,T ) ,
and the first point is proved. For the second assertion, with N discretization points uniformly griding the interval A = [-T, T ], U is an orthonormal matrix up to a small term:

ϕ k 2 L 2 (-T,T ) 2T = 1 = N -1 j=0 ϕ k (-T + jh) √ N 2 + o(1/N ) because h 2T = 1 N .
We can now define the parameter µ as in [START_REF] Candès | Compressive sampling[END_REF][START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] and since ϕ k 2 L 2 (-T,T ) = 2T , it comes that:

µ(U ) ≤ √ N cT πα 2T N = T 2c πα .
2

Remark 3 • The bound on µ can be compared with the one where U is the discrete Fourier transform matrix like in §3.4 of [START_REF] Candès | Compressive sampling[END_REF]. We insist on the fact that according to Theorem 3, the region where λ k ≃ 1 allows for high accuracy approximation for smooth functions belonging to H r (-T, T ). For the choice T = 1, one gets easily that µ 2 ≤ 4ω/α which implies a first bound on the minimum amount of samples for the exact recovery of a s-sparse signal in the N -component PSWF base with cut-off frequency ω > 0:

m ≥ C 4ω α s(log N ) 4 .
• A direct argument hints that one shouldn't expect any uniform bound in the infinity norm to exist for k ∈ N. Indeed, according to Proposition 1 in [START_REF] Beylkin | Wave propagation using bases for bandlimited functions[END_REF], the following estimate holds:

ϕ k H 1 (-1,1) = ϕ k L 2 (-1,1) + ϕ ′ k L 2 (-1,1) ≤ 1 + c √ λ k , ( 15 
)
thanks to Bernstein's inequality for bandlimited functions. It is well-known that in dimension 1, the H 1 norm controls the L ∞ one. The authors state ( [START_REF] Beylkin | Wave propagation using bases for bandlimited functions[END_REF], page 266) that the existence of a uniform bound K c for all k = 0, 1, ... can be proved by observing that PSWFs approach Legendre polynomials for j ≫ c (see Theorem 5.2 in [START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF]); however, a sharp bound on these Legendre polynomials (recalled in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF]) yields that their infinity norm grows like √ 2k + 1 hence this cannot lead to proving the existence of such a quantity K c . The growth of the amplitude of Legendre polynomials is fully compatible with the uniform bound on PSWFs proposed in [START_REF] Shkolniskya | Approximation of bandlimited functions[END_REF] (see formula [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF]) with identical normalization:

∀k ∈ N, sup t∈[-1,1] |ϕ k (t)| ≤ 2 √ 2k.
• The proof of Lemma 1 uses two main ingredients: the integral equation satisfied by ϕ k (and we know that the case of the Paley-Wiener subspace of L 2 is not unique) and the estimate on the number of eigenvalues greater than a certain threshold. Thus it may hopefully be extended in various directions: for instance, the case where A is a finite union of disjoint intervals allows for the same Landau-Widom estimate: see Theorem 3 in [START_REF] Scott Izu | Time-Frequency Localization and Sampling of Multiband Signals[END_REF] and [START_REF] Khare | Bandpass sampling and bandpass analogues of prolate spheroidal wave functions[END_REF] for the construction of corresponding PSWF. Moreover, assuming a similar estimate can be established, it may also be applied to the case where the reproducing kernel is K j (s, t), the one corresponding to a j-scale-limited subspace of L 2 , see [START_REF] Liu | Irregular sampling in wavelet subspaces[END_REF][START_REF] Lin | On theory and regularization of scale-limited extrapolation[END_REF][START_REF] Gosse | A Donoho-Stark criterion for stable signal recovery in discrete wavelet subspaces[END_REF].

Clearly, Lemma 1 shows a big difference with the case of Legendre polynomials studied in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] as they don't allow for any useful bound on the quantity µ which controls the minimum amount of samples m allowing for the exact recovery property. This drawback comes from the fact that sharp "tails" appear very quickly with k in the vicinity of t = ±1; on the contrary, these "tails" appear only for PSWF with an index k bigger than 2c/π, and these are precisely the ones that one doesn't need to have high accuracy. Hence the bigger amount of computational work which is required in order to generate the PSWF basis is somehow paid back through their nice properties.

Theorem 7 Let T = 1 and the normalization be ϕ k L 2 (-1,1) = √ 2 for all k ∈ N. Suppose Φ is the m × N random measurement matrix built as specified in Theorem 6 (the m i.i.d. locations are drawn randomly from the uniform probability measure on [-1, 1]) and,

m ≥ 18.7C ω α s(log s) 3 log N, λ k=0,1,...,N -1 ≥ α ∈]0, 1[, (16) 
then, with probability at least 1 -N -γ(log s) 3 , the ℓ 1 -minimization program [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF] recovers exactly s 2 -sparse vectors x ∈ R N ; otherwise the error estimate [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] holds accordingly.

Invoking the improvements of [START_REF] Cai | Shifting inequality and recovery of sparse signals[END_REF], one could improve part of the preceding conclusion by stating that the ℓ 1 -minimization program (10) recovers exactly s 1.625 -sparse vectors. We recall that ω > 0 is the cut-off frequency defining the Paley-Wiener space P W ω whose orthonormal base reads (with the normalization of Theorem 7) Pϕ k , k ∈ N. Moreover, the "good number" N of PSWF depends on c and α with 2c π ≤ N < c; a convenient value for α is 1 2 because in this case, the Landau-Widom estimate gives N = 2c π + O(log(c)).

Proof: From point (1) in Lemma 1, it suffices to insert T = 1 for which the normalization [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF] gives

ϕ k L 2 (-1,1) = √ 2 in order to derive that K N (c) 2 ≤ 2c πα = 4ω
α . Now, inserting this value inside [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF] gives that the restricted isometry constant of Φ/ √ m satisfies δ s ≤ δ for which we impose δ = 0.4627 by taking advantage of Theorem 5. It comes therefore that 4/δ 2 < 18.7 and since we have a bound on δ s with high probability, the results of Foucart [START_REF] Foucart | A note on guaranteed sparse recovery via ℓ 1 -minimization[END_REF] ensure that we exactly recover s 2 -sparse vectors through ℓ 1 minimization. The constants C, γ are identical in Theorems 6 and 7. 2

Recovery of functions which are sparse or "nearly sparse"

Theorem 7 deals with the exact recovery of a s 2 -sparse solution out of a small number of m random measurements. This extends in a straightforward manner to functions which are either sparse or compressible in the PSWF base:

Corollary 1 Let T = 1, c = 2πω be the Slepian parameter, f ∈ H r (-1, 1) such that, ∀t ∈ [-1, 1], f (t) = N -1 k=0 f k ϕ k (t), ( 17 
)
and y = [f (t 1 ), f (t 2 ), ..., f (t m )] a vector of m measurement values taken at i.i.d. random locations t i drawn independently from the uniform probability measure on [-1, 1]. If Φ is the m×N measurement matrix whose k th column contains the values ϕ k (t i ) with ϕ k L 2 (-1,1) = √ 2 and if m meets the requirement [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF], then the "best s 2 -term approximation" of the coefficient vector f := (f k ) k=0,...,N -1 is recoverable with probability exceeding 1 -N -γ(log s) 3 by means of the ℓ 1 minimization program [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF]. More precisely, if f ℓ 0 ≤ s 2 , the recovery is exact; otherwise, the following error estimate holds:

f -f * ℓ 2 ≤ C 2 σ s 2 ( f ) ℓ 1 s 2 , f * = arg min y=Φz z ℓ 1 . ( 18 
)
Proof: Having f exactly writable as a N -term expansion in the PSWF base corresponding to the Slepian parameter c allows to move from a continuous problem to the discrete one consisting in recovering f ∈ R N from y ∈ R m which can be handled by the methods recalled in §3.1. With the measurement matrix Φ built as indicated, the criterion ( 16) ensures that δ s ≤ 0.4626 with high probability and this is a sufficient condition allowing to apply Theorem 5 with a sparsity level equal to s 2 . The error estimate (18) follows. 2

Remark 4 Relying on Theorem 3, we know that any function in H r (-1, 1) which writes

f (t) = k≥0 f k ϕ k (t)
is strongly compressible (see for instance Figure 3 in [START_REF] Boyd | Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions[END_REF]) because its "best N -term approximation" is spectrally accurate as soon as ̺ N (c) < 1 meaning that N > 2c π -1 2 . A strategy for treating functions written as an infinite PSWF series for which the parameter c is already fixed by means of a coefficient vector f ∈ R N only consists in:

(1) adjusting N in order to satisfy both the spectral accuracy criterion, in such a way that the best N -term approximation becomes simply the "first N terms approximation" written in [START_REF] Coifman | Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions[END_REF], and a reasonable smallness level for the corresponding α; (2) recovering a "best s 2 -term approximation" out of the m random measurements with m satisfying [START_REF] Cohen | Compressed sensing and best k-term approximation[END_REF]; both L 2 errors between f and its N -term approximation and between f and f * can be controlled by ( 5) and ( 18) respectively.

(3) in case the strong criterion ̺ s 2 (c) < 1 is met, which means that c < π(s+1)

4

, then the coefficients f k will strongly decay for k ≥ s and either the recovery of f through [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF] will be exact, either the error [START_REF] Daubechies | Time-frequency localization operators: a geometric phase-space approach[END_REF] will be very small. Actually, point ( 1) is delicate as it asks for finding a compromise between two antagonist requirements. We shall study in the next section a preconditioning method which lightens this situation by allowing to handle much smaller values of α.

In order to fully exploit the potential of Corollary 1, the best choice is probably to select the functions belonging to the spaces Hr c (-1, 1) as defined in (8) because of the very fast convergence of finite sums expressed in Theorem 4. In this case, the approximation ( 17) is exponentially accurate and even for moderate values of s, it can be considered as being exact in practice. The ℓ 1 minimization process recovers therefore a "best s 2 -term approximation" of the coefficient vector in R N out of a collection of m samples taken at random; in case N is too low, a modified procedure adapted to noisy measurements should be used [START_REF] Candès | Compressive sampling[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF].

First set of numerical experiments

We intend now to show examples to demonstrate both the feasibility and the efficiency of the numerical processing presented in Theorem 7; in particular, we carried out the ℓ 1 minimization program by means of the algorithm called ROMP [START_REF] Needell | Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit[END_REF] to lower the CPU cost. Other numerical strategies exist for this minimization task: see also [START_REF] Chartrand | Exact reconstruction of sparse signals via nonconvex minimization[END_REF].

Verification of the exact recovery property for sparse signals

First, we set up a numerical test on the exact recovery of a strongly under-sampled signal admitting a M -term approximation in the PSWF base on [-1, 1] with c = 130 and 256 grid points. The code generates at random M = 10 coefficients between -1 and 1 together with 10 random indexes corresponding to integer positions between 0 and 2c/π ≃ 82 := N . Then the signal f (t) is formed by linear combination of the form [START_REF] Coifman | Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions[END_REF] but with only M ≪ N nonzero coefficients. Numerically, it seems that the restriction ( 16) is somehow too restrictive and we selected instead a number of samples equal to m = 3 2 M log(N ) to obtain the results displayed on Fig. 2. The ROMP algorithm had a very quick convergence and the pointwise absolute error is close to machine precision and it is impossible to distinguish between the original and the recovered signals. The location of the random m samples is indicated on the top left picture; on the bottom left one, one can see the exact value of the absolute value of the coefficients f k (the small triangles) compared to the recovered ones (the blue lines) and also to the approximation obtained by a least squares approximation (in light blue) which is known to not promote sparsity. The red curve displays the behavior of the eigenvalues λ k ; beyond N ≃ 2c/π, the bounds of Lemma 1 are likely to blow up and the minimum number of samples m to maintain the exact recovery property should grow up quickly before becoming greater than N , which makes the whole approach useless.

Case of a signal involving too many components in the PSWF base

Corollary allows to treat cases for which the number m is too small according to the complexity of the original signal; in other words, there are too many non-zero coefficients M ′ = f ℓ 0 and only a "best s-sparse approximation" can be recovered through ℓ 1 minimization from the limited number m of samples. For this numerical test, we set up a similar framework than in the preceding subsection, but this time we took c = 85 and M ′ = 19 = M + 9 with still m = 3 2 M log(N ). The coefficients are again chosen in random locations corresponding to indexes smaller that the transition value 2c/π ≃ 55 := N . Two sets of numerical results are displayed on Fig. 3: the left column shows a result where the recovery was rather good whereas the right one corresponds to a less satisfying one. Especially, the pointwise error on the right column grows substantially close to the left border and the recovery of coefficients suffers from noticeable errors. The number of samples used is roughly the same as in the preceding test, but it didn't allow for a good convergence of the ROMP algorithm, especially on the second test-case.

Statistics of success/failure of the numerical scheme

The numerical recovery algorithms relying on Compressed Sensing methods are probabilistic in nature. Thus one may argue that it is not enough to display a few cases of successful recoveries as they might be a result of pure luck. In order to deal with these issues, we plan to perform hundreds of recovery experiments on vectors x ∈ R N by means of a limited number of samples which reads like in the preceding subsections. From any such vector x, a signal can be deduced

f (t) = N -1 k=0 x k ϕ k (t), c = 85; hence if x * ∈ R N stands
for the outcome of the sparse recovery algorithm, another signal denoted f * follows, which can be compared to the original f . The quantity we are looking at is the relative error:

e := f -f * ℓ ∞ f ℓ ∞ . ( 19 
)
It turns out that even with such a small number of samples (well below what is asked for in Theorem 7), the recovery statistics remain good: see Fig. 4. On the top, left of Fig. 4, the levels of the relative error [START_REF] Diaz | On iteration procedures for equations of the first kind, Ax = y and Picard's criterion for the existence of a solution[END_REF] display a strong dichotomy between the exact recoveries (roughly 95% of the 101 experiments) for which e ≃ 10 -15 and the failures where the relative error is of the order of f ℓ ∞ thus producing a spike on the graph. We went a bit further by trying to recover signals f out of noisy observations where a random term η, η being having a uniform probability in [-ǫ, ǫ] is added. By keeping the same number of samples, we performed experiments with ǫ ranging from 0.01 to 0.1 and measured the relative error [START_REF] Diaz | On iteration procedures for equations of the first kind, Ax = y and Picard's criterion for the existence of a solution[END_REF]. The mean values for the relative error ( 19) read e = 0.045, 0.144, 0.288 for ǫ = 0.01, 0.05, 0.1 respectively. One can see on Fig. 4 that the dichotomy behavior observed in the noise-free case ǫ = 0 tends to disappear when the noise level ǫ increases.

4 Preconditioning the "tails" and non-uniformly distributed random samples

Amplitude estimate on PSWF with series of Legendre polynomials

It is a classical fact [START_REF] Moore | Prolate Spheroidal wave functions, an introduction to the Slepian series and its properties[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF] that any PSWF ϕ k defined on A = [-1, 1] and normalized such that ϕ k L 2 (-1,1) = 1 admits an expansion based on normalized Legendre polynomials; we denote Pj (t) the orthonormal system of normalized Legendre polynomials which satisfy:

∀i, j ∈ N 2 , Pi , Pj A = 1 -1 Pi (t) Pj (t)dt = δ i,j .
Accordingly, the Plancherel equality yields:

ϕ k (t) = j≥0 ϕ k , Pj A Pj (t), ϕ k 2 L 2 (-1,1) = j≥0 | ϕ k , Pj A | 2 = 1.
Usually, the coefficients are denoted β k j := ϕ k , Pj A and any sequence β k belongs to ℓ 2 (N). From [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF][START_REF] Rokhlin | Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit[END_REF], we get the following pointwise estimates for all t ∈ [-1, 1], j, k ∈ N 2 :

| Pj (±1)| ≤ j + 1 2 , ( 1 
-t 2 ) 1 4 | Pj (t)| ≤ 1 √ π , |ϕ k (±1)| ≤ k + 1 2 . ( 20 
)
Remark 5 The authors of [START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions and Spectral Approximation in Sobolev Spaces[END_REF] explain that the bound

|ϕ k (±1)| ≤ k + 1 2 ,

even if supported by convincing numerical evidence, has never been rigorously proved. It isn't used in the sequel of the present paper.

In order to improve the pointwise estimate of Lemma 1, it sounds appealing to compute:

√ π(1 -t 2 ) 1 4 |ϕ k (t)| ≤ j≥0 | ϕ k , Pj A | = j≥0 |β k j |.
Lemma 8 Let ⌊a⌋ denote the integer part of a ∈ R + , that is, ⌊a⌋ = max{n ∈ N, n ≤ a}.

For T = 1 and with the normalization ϕ k L 2 (-1,1) = 1, there holds for any k ∈ N:

∀t ∈ [-1, 1], √ π(1 -t 2 ) 1 4 |ϕ k (t)| ≤ j≥0 |β k j | ≤ 2(⌊ec⌋ + 1) + 1 2 2⌊ec⌋ µ k . ( 21 
)
Proof: The basic estimate is the one given inside Theorem 3.4 of [START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF]: for j ≥ 2(⌊ec⌋+1), one has β k j < 2 1-j /µ k . Thus, for any PSWF index k ∈ N, we can split the infinite summation as follows:

j≥0 |β k j | ≤ 2⌊ec⌋+1 j=0 |β k j | + j≥2⌊ec⌋+2 2 1-j µ k := I + II.
The term I is but a finite summation: for A = [-1, 1], Cauchy-Schwarz inequality yields,

|β k j | = | ϕ k , Pj A | ≤ ϕ k L 2 (-1,1) Pj L 2 (-1,1) = 1,
which gives automatically:

I = 2⌊ec⌋+1 j=0 |β k j | ≤ 2⌊ec⌋+1 j=0 1 = 2(⌊ec⌋ + 1).
Now, the second term rewrites as a geometric series:

II = 2 -2⌊ec⌋-1 µ k j≥0 2 -j = 2 -2⌊ec⌋-1 µ k 1 1 -1/2 . 2 Remark 6
The algorithms by Rauhut and Ward [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] efficiently recover signals which are sparse in the Legendre polynomial basis. But since PSWF are not sparse in this basis (as spectacularly shown in Theorem 11 of [START_REF] Rokhlin | Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit[END_REF]), it turns out that a signal which is sparse in the PSWF basis may not be sparse in the Legendre basis and vice-versa.

The estimate ( 21) is somewhat reminiscent of the expression of the H 1 norm given in [START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF]. It isn't as nice as the uniform bound obtained on Legendre polynomials in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] which is valid for any value of j ∈ N, however, it compares interestingly with the one obtained in Lemma 1. Indeed, this former one explodes quickly with √ λ k ≃ µ k as k grows beyond 2c/π and there is nothing in the denominator which may dampen this process whereas in [START_REF] Drouiche | Regularization of the ill-posed problem of extrapolation with the Malvar-Wilson wavelets[END_REF], the µ k in the denominator is multiplied by a factor 2 2⌊ec⌋ which helps in keeping it from going to zero too fast (but it will do eventually as k grows with c being fixed). This can be stated quantitatively once again thanks to the estimate by Landau and Widom:

Ñ = 2c π + log c π 2 log 1 -α α + O(log c), α = 2 -2⌊ec⌋ .
For applying Lemma 1, the easiest choice is to take α = 1 2 ; for Lemma 8, we get an extra number of usable indexes k > N , this number being approximately for c ≫ 1,

log 1 -2 -2⌊ec⌋ 2 -2⌊ec⌋ = log(2 2⌊ec⌋ -1) ≃ 2⌊ec⌋ log(2).

Preconditioning Ñ first PSWF gives RIP and exact recovery property

Here we follow completely the ideas presented in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF], that is to say we consider the Chebyshev probability measure ν(dt) = dt π √ 1-t 2 for t ∈ (-1, 1) and we observe that since PSWF are orthogonal with respect to the Lebesgue measure ϕ i , ϕ j A = δ i,j (the Kronecker symbol), multiplying each one by √ π(1 -t 2 )

1 4 makes them orthogonal with respect to the Chebyshev measure,

1 -1 π(1 -t 2 ) 1 2 ϕ i (t)ϕ j (t) dt π √ 1 -t 2 = 1 -1 ϕ i (t)ϕ j (t)dt = δ i,j , (22) 
and we recover a particular case of [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF]. We can therefore apply Theorem 6 to deduce:

Theorem 9 Let T = 1 and the normalization be

ϕ k L 2 (-1,1) = 1 for all k ∈ N. Suppose Ψ is the m × N measurement matrix whose columns read √ π(1 -t 2 i ) 1 4 ϕ k (t i ), t i randomly chosen i.i.d. according to Chebyshev probability for i = 1, ..., m, k = 0, 1, ..., Ñ -1 and m ≥ C 2(⌊ec⌋ + 1) + 1 0.4626 2 s(log s) 3 log Ñ , µ k=0,1,..., Ñ-1 ≥ 2 -2⌊ec⌋ ,
then, with probability at least 1 -Ñ -γ(log s) 3 , the preconditioned ℓ 1 -minimization,

inf z ℓ 1 subject to Ψz = Ψx, ( 23 
)
recovers exactly s 2 -sparse vectors x ∈ R Ñ ; otherwise the error estimate [START_REF] Candès | Sparsity and incoherence in compressive sampling[END_REF] holds accordingly.

Proof: From the expression of Chebyshev probability ν, the m × m diagonal preconditioning matrix

P built from √ π(1 -t 2 i ) 1 4 with i = 1, ..., m is invertible. Formula (22) implies that, √ π(1 -t 2 ) 1 4 ϕ k (t) k∈N ,
is an orthonormal complete system of L 2 (-1, 1; dν). Moreover, [START_REF] Drouiche | Regularization of the ill-posed problem of extrapolation with the Malvar-Wilson wavelets[END_REF] gives a L ∞ bound on a subset of this system for all indexes k < Ñ such that µ Ñ-1 ≥ 2 -2⌊ec⌋ . Hence we are in position to apply Theorem 6 with K N given by ( 21), δ = 0.4626 and Ψ = P Φ: this yields with high probability the restricted isometry constant of Ψ/ √ m being δ s < 0.4627 and thus allows to conclude the proof by invoking Theorem 5 with a sparsity index s 2 . 2

It is interesting to compare the contents of Theorems 7 and 9 with both give sufficient conditions for exact recovery of s 2 -sparse vectors: the first one involves only the N first PSWF which are endowed with eigenvalues greater than 1 2 which, after a random sampling according to the uniform probability on [-1, 1], constitute the columns of the measurement matrix Φ. The minimum number of samples is a consequence of the pointwise bound proved in Lemma 1. The "miracle" comes from the Theorem 3 which states that spectral accuracy holds in particular for this (small) subset of N first PSWF hence such a strategy can be considered reliable for recovering smooth functions belonging to H r (-1, 1). The second one, instead, takes advantage from both the preconditioning technique proposed in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] and the classical trick consisting in rewriting PSWF as a Legendre polynomials expansion. Then, preconditioning the Legendre system allows to derive another (possibly larger) bound for a larger subset of Ñ > N PSWF and this leads to similar recovery properties valid for a supposedly wider class of signals. On Fig. 6 a comparison of the location of "big values" inside the sensing matrices is shown: on the left, this is the Φ sensing matrix built in Theorem 7 for 256 points griding the interval [-1, 1], c = 85 and N = 2c/π which corresponds to α ≃ 1 2 . On the right, this is the Ψ preconditioned sensing matrix used in Theorem 9 for 300 points griding the interval [-1, 1]. The biggest value in modulus is visualized with the red points: on the left, it is located on the "tails" of the PSWF which correspond to the eigenvalues in the transition zone, dropping sharply from one to zero whereas on the right, it is on the mean value of the most concentrated eigenfunction ϕ 0 (0

) = 1 µ0 1 -1 ϕ 0 (t)dt.
As recalled in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF], computing a set of locations t i drawn from Chebyshev probability on [-1, 1] is easy: it suffices to get first a set of values τ i according to the uniform probability on [0, π], then t i = cos(τ i ) meets the requirement.

Preconditioning and efficient recovery of functions in Hr

c (-1, 1)
First, we state a variant of a result shown by Foucart and Lai [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1[END_REF] (see also [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF]):

Theorem 10 Let Φ and P be matrices of sizes m × N and m × m, respectively, and denote Ψ = P Φ for |P | = 0. Suppose that the restricted isometry constant of Ψ satisfies:

δ 2s < 0.4627.
Then, if x ∈ R N and y := Φx + η, η ∈ R m being a noise vector, with η ℓ 2 ≤ ε, the solution of the ℓ 1 minimization program,

min z∈R N z ℓ 1 subject to Ψz -P y ℓ 2 ≤ P ε, (24) 
satisfies the following error estimates:

x -x * ℓ 1 ≤ C 1 σ s (x) ℓ 1 + D 1 P ε √ s, x -x * ℓ 2 ≤ C 2 σ s (x) ℓ 1 √ s + D 2 P ε. (25) 
The ℓ 1 minimization program [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1[END_REF] is "noise aware". We recall that since P is a subordinated matrix norm, it can be defined as:

P := inf ζ∈R + P v ℓ 2 (R m ) ≤ ζ v ℓ 2 (R m ) for v ∈ R m .
And it is very natural to fix the noise level of the preconditioned program [START_REF] Foucart | Sparsest solutions of underdetermined linear systems via ℓ q -minimization for 0 < q ≤ 1[END_REF] as P η ℓ 2 .

With this result at hand, it is now possible to prove the following corollary of Theorem 9: Then, with probability exceeding 1 -N -γ(log s) 3 , the "best s 2 -term approximation" of the vector f := ( f, ϕ k [-1,1] ) k=0,...,N -1 ∈ R N can be recovered out of the set of values y := (f (t i )) i=1,...,m ∈ R m by solving the ℓ 1 minimization program:

Corollary 2 Let c > 0 be the Slepian parameter, T = 1, the normalization ϕ k L 2 (-1,1) = 1 for k ∈ N, f ∈ Hr c (-1,
f * = arg min z ℓ 1 (R N ) subject to Ψz -P y ℓ 2 (R m ) ≤ √ π f Hr c (-1,1) N -r .
Precisely, the following error estimates hold:

f -f * ℓ 1 ≤ C 1 σ s 2 ( f ) ℓ 1 + D 1 N -r f Hr c (-1,1) πs 2 , f -f * ℓ 2 ≤ C 2 σ s 2 ( f ) ℓ 1 s 2 + D 2 √ π N -r f Hr c (-1,1) . The constants C, γ, C 1 , D 1 , C 2 , D 2 are universal. Proof: The system ϕ k , k ∈ N is complete in L 2 (-1, 1) for any c > 0 thus f ∈ Hr c ⊂ L 2 (-1, 1
) admits an expansion of the form: (we dropped the [-1, 1] for clarity)

f = k≥0 f, ϕ k ϕ k =   N -1 k=0 + k≥N   f, ϕ k ϕ k := N -1 k=0 f, ϕ k ϕ k + η.
Thanks to the results of [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] recalled in Theorem 4, we get that η L 2 (-1,1) ≤ N -r f Hr c . We know from Theorem 6 that the condition ( 26) is enough to ensure that the restricted isometry constant for Ψ/ √ m satisfies δ s < 0.4627 with high probability. With probability 1, the diagonal preconditioning m × m matrix P is invertible and its operator norm is P = √ π. So, relying on Theorem 10, the ℓ 1 minimization program furnishes a "best s 2term solution" f * satisfying the error estimates [START_REF] Gosse | A Donoho-Stark criterion for stable signal recovery in discrete wavelet subspaces[END_REF] for ε := N -r f Hr c P . The constants C, γ are still the same as in the previous results. 2

Remark 7

The approach in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] is different: Rauhut and Ward establish the existence of a restricted isometry constant for their preconditioned matrix Ψ/ √ m with high probability, but they solve a non-preconditioned ℓ 1 program involving a supposedly higher noise level (multiplied by √ m). Here, we prove the same type of restricted isometry property, and then, for improving numerical efficiency, the preconditioned ℓ 1 program involving Ψ is treated.

Second set of numerical experiments (with preconditioning)

In this section too, ROMP is still used in order to lower as much as possible the CPU cost.

Exact recovery property for sparse signals with N < 2c/π

First, we verify that the exact recovery property works fine in practice: the same framework is set up than in §3.4.1 with c = 85, T = 1 and 300 grid points. We generate the same type of random signals which are sparse in the PSWF system of ϕ k , k ≤ 2c/π ≃ 55. The random sampling points are taken according to the Chebyshev probability measure which tends to give more importance to the areas close to the edges of the computational domain. The presentation of the numerical results is identical to the one of §3.4.1 except for the comparison with the least-squares selection procedure as we know that it doesn't deliver the expected sparse representation. Instead, the processing based on ROMP converges very quickly and the absolute pointwise error is below 10 -15 , which can be considered as fully satisfying. The values of the 9 PSWF coefficients is good too; m = 3 2 9 log(55) ≃ 54 samples have been used.

Taking advantage of preconditioning with N > 2c/π

We stress that for the present example, the bound on the non-preconditioned sensing matrix as computed in Lemma 1 would cease to be useful for practical computations because of the quick decay of √ λ k . Nevertheless, we set up the same framework than in the preceding subsection, but his time, we allow the index k to grow up to 2c/π + 35 ≃ 90, which results in the value √ λ 90 ≃ 10 -15 . The compensating factor 2 2⌊ec⌋ = 2 462 ≃ 1.19.10 139 would probably permit to go much beyond this limit. We built up a random signal such that f ∈ R 90 , f ℓ 0 = 9 and m = 3 2 9 log(90) ≃ 61 samples have been taken independently according to Chebyshev probability. On Fig. 8, we see that the ROMP algorithm converged nicely, but more iterations are needed when compared to former test-cases. Out of 9, 2 PSWF were located beyond the critical index 2c/π and they have been well recovered. The absolute errors are still of the order of 10 -15 thus the original and the recovered signals are indistinguishable from one another.

Remark 8

The PSWF functions inside the range 2c π ≤ k ≤ c are usually the most useful in order to carry out an extrapolation process based on the PSWF, seen this time as a DOS in the sense of Theorem 1 (see [START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF] p.388): let f ∈ P W ω with ω = c 2π , and suppose only its restriction T f to A = [-1, 1] is available:

T f = f χ [-1,1] = k≥0 1 -1 f (t)ϕ k (t)dt ϕ k ⇒ f = k≥0 1 -1 f (t)ϕ k (t)dt ψ k √ λ k ,
is the most direct way to recover values of such a bandlimited function outside the observations interval. Now, it is in general hopeless to try to recover coefficients corresponding to very small eigenvalues at indexes k > c, and even if it were feasible, numerical truncations errors would be highly amplified by the very small divisors √ λ k . However, if the function f under consideration is sparse in the base ψ k , or equivalently, if T f is sparse in ϕ k , then hopefully the preconditioned ℓ 1 minimization process will be able to recover its coefficients exactly for 2c/π ≤ k ≤ c and its bandlimited extrapolation might give good results.

Case of a noisy signal with N < 2c/π

We now aim at recovering a signal which has been slightly corrupted by noise. Our noise term η(t) is generated by a random number generator working with the uniform probability on [-1, 1]. Hence, we still generate a random s-sparse signal with a coefficient vector f N belonging to [-1, 1] N , but we perturb the resulting observations Φ f N with Φ being m × N by the vector of noisy terms 0.1η ∈ [-0.1, 0.1] m (ǫ = 0.1): these noisy observations are shown by means of the red curve on Fig. 9 (top, left). It is on this red curve that the m samples are taken, and the recovery algorithm recovers an approximate signal which the non-preconditioned recovery algorithm in §3.4.3, we show on Fig. 10 the relative errors [START_REF] Diaz | On iteration procedures for equations of the first kind, Ax = y and Picard's criterion for the existence of a solution[END_REF] generated by iterating hundreds of times the preconditioned approach developed in the present section. The statistics are slightly worse as successes count a bit less than 90% in the noise-free case and the relative error (19) e ≃ 0.114 for ǫ = 0.01.

Case of a noisy signal with N > 2c/π

This is a very unstable case because the recovering process "tries" to express the random noise term η by means of a linear combination of the supplementary PSWF we allow itself to consider inside the fast decay area (as shown on Fig. 3 of [START_REF] Boyd | Approximation of an analytic function on a finite real interval by a band-limited function and conjectures on properties of prolate spheroidal functions[END_REF]). Hence it produces very big coefficients associated with indexes k which are associated with very small eigenvalues λ k , the columns of the sensing matrix remaining bounded nonetheless thanks to the preconditioning. Since these PSWF with high index k > 2c π don't have a big influence on the general shape of the signal inside the observations interval [-1, 1], the absolute error in the recovery is roughly the same compared to the preceding test-case. However, the situation when looking at the recovery of the coefficient vector on Fig. 11 shows a much worse picture: in particular, setting up the extrapolation algorithm suggested in Remark 8 is completely doomed to failure because the division by √ λ k will amplify even more the spurious coefficients which result from the noise term (which perturbs Picard's conditions [START_REF] Diaz | On iteration procedures for equations of the first kind, Ax = y and Picard's criterion for the existence of a solution[END_REF]).

Preliminary numerical results on analogical recovery

Estimates on PSWF approximation of smooth functions

The main drawback with the error estimates given in both Theorems 3 and 4 (taken from [START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF] and [START_REF] Wang | Analysis of spectral approximations using prolate spheroidal wave functions[END_REF] respectively) is that they provide no indication on how to select a convenient value of the Slepian parameter c when it comes to approximate a smooth function belonging to the standard Sobolev space H r (-1, 1) by means of a PSWF expansion. To the best of our knowledge, only Bonami and Karoui [START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions and Spectral Approximation in Sobolev Spaces[END_REF] developed on this point hence we state here one of their main approximation results: Theorem 11 ( [START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions and Spectral Approximation in Sobolev Spaces[END_REF]) Let c ≥ 0 be the Slepian parameter, assume that f ∈ H r (-1, 1) for some positive integer r and for some N ∈ N, introduce the finite summation fN :

∀t ∈ (-1, 1), fN (t) = N k=0 f, ϕ k ϕ k (t).
The following error estimate holds:

f -fN L 2 ≤ C f H r (1 + c 2 ) r/2 + λ N f L 2 , ( 27 
)
where the constant C depends only on the Sobolev exponent s and can be taken equal to 1 in case f ∈ H r 0 (-1, 1).

The estimate ( 27) splits into two qualitatively different terms: the first one tends to behave like c -r thus depends essentially on the smoothness of f for c ≫ 1 whereas the second one decreases exponentially with N as soon as N > 2c π . In particular, [START_REF] Hogan | Time-frequency and time-scale methods[END_REF] shows that the error f -f N L 2 doesn't decay substantially with c as long as N remains below the critical level 2c π because the term √ λ N f L 2 (independent of c) dominates, even if f L 2 ≤ f H r . According to [START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions and Spectral Approximation in Sobolev Spaces[END_REF], a good candidate for a convenient truncation level N c reads:

N c = min N ∈ N such that λ N (1 + c 2 ) r ≤ f H r f L 2 2 .
The estimate ( 27) can be precised in case f belongs to the subspace of H r (-1, 1) containing functions that extend into 2-periodic functions endowed with the same regularity, see [START_REF] Bonami | Uniform Estimates of the Prolate Spheroidal Wave Functions and Spectral Approximation in Sobolev Spaces[END_REF].

Numerical recovery of a Gaussian function

We intend to test the sparse recovery algorithm with a simple Gaussian function which is "nearly band-limited" and reads: g(t) = exp -90(t/2) 2 , t ∈ (-1, 1).

We selected again c = 85 in order to set up the non-preconditioned algorithm [START_REF] Candès | The restricted isometry property and its implications for compressed sensing C[END_REF] with 300 grid points in the t variable and a sparsity parameter chosen equal to s = 9. We aim at recovering g from the knowledge of a small number m of random i.i.d. samples drawn from the uniform probability measure on [-1, 1]: the corresponding results are displayed on Fig. 12. On the left part of the figure, one can see that taking a relatively small number of samples randomly drawn according to the uniform probability on (-1, 1) allowed to recover the Gaussian function g with absolute errors of the order of 10 -5 in the absence of noise. When 5% of uniformly distributed noise is added, the right part of the figure reveals that stable recovery still occurs, but with absolute errors now of the order of 10 -2 and small oscillations close to the borders. Such an numerical result can still be considered satisfying.

Numerical recovery of a Gaussian pulse

We now consider a Gaussian pulse of the type: g(t) = sin(5πt) exp -45(t/2) 2 , t ∈ (-1, 1). This time, we intend to try the preconditioned recovery algorithm [START_REF] Foucart | Sparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants[END_REF] with c = 65 and a sparsity parameter s = 9. We considered also N = 15 + 2c/π PSWF elements with 300 grid points in the t variable. The left column of the figure 13 shows that taking a relatively small number of samples randomly drawn according to the Chebyshev probability allowed to recover the Gaussian pulse with absolute errors of the order of 10 -3 . On the right column, despite a uniformly distributed noise which is added to the measurements, one can see that the recovery is still satisfying even if some oscillations appear close to the borders. Statistics of success/failure are similar to the ones obtained in the former test-cases.

Conclusion and outlook

We presented in this paper a general way to apply Compressed Sensing methodology in order to perform an efficient recovery of signals having the peculiar feature of admitting a sparse representation in the PSWF base. Two distinct ways to proceed have been studied:

(1) either establishing a direct L ∞ bound on the sensing matrix (see Lemma 1) which is a technique which relies only on manipulating the eigenvalue problem satisfied by the measurement ensemble, (2) either taking advantage of the particular expansion of Slepian's functions in the Legendre polynomials in order to take advantage of the preconditioning technique proposed in [START_REF] Rauhut | Sparse Legendre expansions via ℓ 1 -minimization[END_REF] and proving an extended L bound (see Lemma 8) in this special case.

The advantage in proceeding this way lies in the possibility to recover PSWF coefficients in the area corresponding to small eigenvalues hence to try to extrapolate the observed signal outside the observations interval (as suggested in Remark 8). Clearly, this program cannot be set up in case the observations are corrupted by a small noise term.

This approach can be generalized to the newly introduced variants of classical Slepian functions: for instance, the PSWF associated to the fractional Fourier transform [START_REF] Pei | Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms[END_REF] and the ones in [START_REF] Wang | A new generalization of the PSWF with applications to spectral approximations on quasi-uniform grids[END_REF] which are "bandlimited in a weighted sense" and therefore generalize Chebyshev polynomials. This second construction could be the most straightforward one for extending the preconditioned framework proposed in §4 of the present paper, even at the price of heavier computations with bounds on Gegenbauer polynomials taken from [START_REF] Nevai | Generalized Jacobi weights, Christoffel functions and Jacobi polynomials[END_REF]31]. Finally, the "wavelet prolate functions" studied in [START_REF] Lin | On theory and regularization of scale-limited extrapolation[END_REF][START_REF] Gosse | A Donoho-Stark criterion for stable signal recovery in discrete wavelet subspaces[END_REF] may also be convenient, at least for the techniques developed in our §3.
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 8 Fig. 8. Exact recovery of f with f ℓ 0 = 9 from 61 samples taken as random.
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 910 Fig. 9. Recovery involving 10% of noise with s = 9 and c = 85.
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 13 Fig. 13. Recovery of a pulse with (right) and without (left) noise.

  1), and fix s, N ∈ N 2 with s ≪ N . Assume further that they satisfy,

	m ≥ C	2(⌊ec⌋ + 1) + 1 0.4626	2	s(log s) 3 log N,	µ k=0,1,...,N -1 ≥ 2 -2⌊ec⌋ ,	(26)
	and (t 1 , ..., t m ) ∈ [-1, 1] m are m sampling points drawn i.i.d. at random from the Cheby-shev probability measure.

which is what appears on page 384 of[START_REF] Slepian | Some comments on Fourier analysis, uncertainty and modeling[END_REF] or in e.g.[START_REF] Boyd | Prolate spheroidal wave functions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudo-spectral algorithms[END_REF][START_REF] Chen | Spectral methods based on Prolate spheroidal wave functions for hyperbolic PDEs[END_REF][START_REF] Rokhlin | Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit[END_REF][START_REF] Xiao | Prolate spheroidal wave functions, quadrature and interpolation[END_REF].
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