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Compressed sensing with preonditioning forsparse reovery with subsampled matries ofSlepian prolate funtionsLaurent Gosse �IAC{CNR \Mauro Pione" (sezione di Bari)Via Amendola 122/I - 70126 Bari, ItalyAbstratEÆient reovery of smooth funtions whih are s-sparse with respet to the base ofso{alled Prolate Spheroidal Wave Funtions from a small number of random sam-pling points is onsidered. The main ingredient in the design of both the algorithmswe propose here onsists in establishing a uniform L1 bound on the measurementensembles whih onstitute the olumns of the sensing matrix. Suh a bound pro-vides us with the Restrited Isometry Property for this retangular random matrix,whih leads to either the exat reovery property or the \best s-term approxima-tion" of the original signal by means of the `1 minimization program. The �rstalgorithm onsiders only a restrited number of olumns for whih the L1 holds asa onsequene of the fat that eigenvalues of the Bergman's restrition operator arelose to 1 whereas the seond one allows for a wider system of PSWF by taking ad-vantage of a preonditioning tehnique. Numerial examples are spread throughoutthe text to illustrate the results.Key words: Doubly orthogonal sequenes, Slepian funtions, Compressed sensing,restrited isometry property, Preonditioning, bandlimited extrapolation.1991 MSC: 94a11; 94a12; 94a20; 60b20
1 IntrodutionCompressed sensing (CS), or Compressive Sampling, is a reent �eld of researh whihhinges on a simple yet fasinating idea whih led to a major rethinking of data aquisitionprotools. It is well known that signals of interest are generally endowed with a spei�struture making them onisely representable (that is, by means of quite a small number� Corresponding AuthorPreprint submitted to Elsevier Siene



of generalized Fourier oeÆients) in spei� orthogonal bases. Hene, with the developmentof e.g. new wavelet systems, transmission of these signals has been progressively reduedto the one of a limited quantity of signi�ant numbers. However, the aquisition protoolsfor these signals were still working in a massive and expensive manner: the totality ofthe amount of digital data was �rst aquired, and then later enoded in the appropriateorthogonal basis. It was at this level that �ltering was applied in order to redue the numberof oeÆients to be atually onsidered; in general, a big proportion of them was disardedwhih resulted in a wasteful proessing. CS hanged the whole framework by showing that,under the same hypothesis on the original sene (the possibility of being expressed by veryfew meaningful oeÆients in a onvenient basis, whih is usually referred to as sparsity),the omputational ost of the data aquisition protool an be drastially redued. Indeed,instead of aquiring the totality of the data to be later enoded, it limits itself to aquirediretly all the important information by measuring the projetions of this sparse signal ontoa �xed set of well de�ned but randomly sampled basis vetors (whih put together onstitutethe random sensing matrix). The signal an therefore be under-sampled aording to thelassial Shannon-Nyquist theory beause the quantity of measurements is proportional tothe number of non-zero oeÆients, and not to the width of the support of the spetrum.This olletion of basis vetors, sometimes referred to as a measurement ensemble, wasoriginally taken as a realization of Gaussian white noise or a sequene of Bernoulli randomvariables as this hoie asks for a near-minimal amount of sampling points [5℄. However, inpratial appliations, it is desirable to derive a CS strategy for signals whih are sparse instrutured measurement ensembles, like e.g. the disrete Fourier basis, a Multi-Resolutionframework, or very reently the Legendre polynomial base [34℄. In [7℄, the ase of a sensingmatrix whih originates from an orthonormal matrix is studied and suÆient onditionsensuring the Restrited Isometry Property (RIP) [1℄ whih leads to the exat reovery by`1 minimization are given. These onditions have been later re�ned in e.g. [10,18,19,33℄.In this paper, we follow this researh program and show that another lass of matries anbe used in order to set up a CS algorithm: onsidering the so{alled \Prolate SpheroidalWave funtions" (PSWF), one gets for any value of their Slepian parameter  > 0 an or-thonormal base of L2(�1; 1) [40,48℄. These funtions are restritions to a ompat intervalof bandlimited funtions, hene entire funtions of exponential type when extended to thewhole omplex plane [42,41,22,23,29℄. Entire funtions, as they an be expressed as onver-gent series for any value of their argument, may be viewed as \in�nite degree generalization"of polynomials. Moreover, it is a well-known fat that PSWF admit an expansion in the2



Legendre polynomial basis, a feature whih is useful for their pratial omputation [21℄.In x2, the derivation of PSWF is realled, starting from the inversion of Bergman's re-strition operator with Seip's theorem on doubly-orthogonal sequenes and omposition oftwo orthogonal projetions in Hilbert spae [38,36,31℄. We made this hoie for 2 reasons:�rst, this emphasizes the very partiular properties of this type of orthogonal bases, andseond, it shows that the doubly-orthogonal Slepian's funtions are by no means a uniqueobjet [50℄. Besides that, these bases allow to perform extrapolation of signals even if this ill-onditioned problem has to be stabilized (see for instane [13,17℄): hene in this perspetive,the exat reovery property for sparse signals of CS algorithms may beome very valuable asa limited amount of measurements an permit to reonstrut the signal's very disonnetedspetrum with supposedly mahine's auray and then allow to extrapolate observationsmade in, say, [�1; 1℄ to a bigger interval (see Remark 6). Usual interpolation properties forPSWF are realled in x2.2 together with error estimates for spetral approximation [4,11℄;in partiular, the reent estimates by Wang [46℄ are inluded.x3 is devoted to proving a L1 bound on a subset of the PSWF base on [�1; 1℄; like Legendrepolynomials, PSWF an display sharp \tails" lose to the edges of this interval. However,the situation here is better ompared to polynomials beause there exists a olletion ofindexes for whih both a L1 bound and spetral auray hold as stated in Lemma 1;roughly speaking, it orresponds to the PSWF endowed with eigenvalues not too far from 1(this statement an be made preise by means of the lassial Landau-Widom estimate, see[26℄). With this L1 bound at hand, it is possible to follow the anvas of [7℄ and estimate theonentration measure parameter � whih leads to the RIP under tehnial assumptions. Wefollowed the approah of [33,34℄ whih permits to reah similar onlusions under slightlymilder restritions. One the RIP is established, the results by Fouart [18,19℄ ensure thateither the exat reovery ours, either aurate error estimates hold between the originalsignal and its best k-term approximation [12℄. Numerial test-ases are performed in x3.4and illustrate previous theoretial results.In x4, we follow the original idea of Rauhut and Ward [34℄ of inluding preonditioningtehniques inside a CS framework. Indeed, sine the L1 bound of Lemma 1 blow up asmore and more PSWF are added in the sensing matrix, it beame desirable to deriveanother methodology to handle more omplex problems. It turned out that a simple diagonalpreonditioner (the same as used in [34℄) allows to ontrol the onentration measure of thesensing matrix olumns in a more robust way, see Lemma 8. This omes from the fat3



that Slepian's funtions an be written as a series of Legendre polynomials for whih �neestimates have been proven on the oeÆients [48℄. The exat reovery property is shownthe same way as in x3, see Theorem 9, and the Corollary 2 is given onerning the reoveryof funtions belonging to the Hilbert spaes ~Hr (�1; 1) studied in [46℄ for whih spetralauray always holds. Again, numerial tests are displayed in x4.4, involving more omplexand possibly noisy signals.To the best of the author's knowledge, the idea of performing CS with a sensing matrix builtfrom PSWF seems to be new; lassial sampling theorems involving PSWF already exist,see e.g. [25,43,44℄ and also [37℄ with referenes therein. However, no proof of the restritedisometry property or the exat reovery of sparse signals appears.2 Bergman's restrition operator and Prolate spheroidal wave funtions2.1 Composition of orthogonal projetions and doubly-orthogonal sequenesOur starting point is the Bergman-Shapiro problem for the inversion of a trunation operatorin a separable Hilbert spae with salar produt < :; : >H. Let us denote H = L2(R), V alosed linear subspae of H with P the orthogonal projetion H ! V and T : f 2 V 7! f�Awith �A the harateristi funtion of a measurable set A � R. In this framework, a speialase of a result of Seip [36℄ an be stated:Theorem 1 Assume V is a reproduing kernel Hilbert spae (RKHS) and let (fk)k2N bean orthonormal basis of V . Then (fk)k2N is furthermore orthogonal for the indued salarprodut < :; : >A:=< :; :�A >H if and only if fk are singular funtions of PT ; in suh aase, (fk)k2N is said to be a doubly orthogonal sequene (DOS).Let us reall that the general struture of the omposition produt of 2 orthogonal pro-jetions in a Hilbert spae is studied by Nees in [31℄. Suh DOS seem to have been �rststudied by Bergman in the ontext of analyti funtions [38℄; they are useful when it omesto reover a funtion from its values on a subset of its domain of de�nition [39℄. However,in most ases, T P is a ompat Hilbert-Shmidt operator (exept if the Lebesgue measurejR n Aj is small enough to ensure that the operator norm k(Id � T )Pk < 1 whih allowsfor stable inversion by means of Neumann series, see e.g. [49,16℄) therefore performing in-version leads to a (possibly severely) ill-posed problem [15℄; see however [17℄ for an original4



regularization method and [13℄ for the reent approah alled \geometri harmonis" [13℄.
A RKHS V � L2(R) with kernel K is a linear subspae whih orresponding orthogonalprojetion P rewrites as an integral operator:f 2 V , 8t; f(t) = Pf(t) =< f(:);K(:; t) >H= ZRK(s; t)f(s)ds: (1)Hene, given a measurable set A � R, one an de�ne the so{alled onentration operatoron A, T P , for the funtions of V ; for V a subset of smooth funtions and jAj bounded, theAsoli's theorem ensures that T P is ompat and there holds:kT Pk2 = kPT k2 = kPT Pk = �0 with PT P 0 = �0 0 and PT f(t) =< f(:);K(:; t) >A :More generally, a suÆient ondition for ompatness is as follows [36℄:ZA ZA jK(s; t)j2ds dt = ZAK(s; s)ds <1:The �rst eigenfuntion '0 is the funtion of V whih realizes the maximum of onentrationon the set A; its orresponding eigenvalue �0 an be understood as the onentration ratio:kT Pk = supf2L2(R) kT PfkL2(R)kfkL2(R) = supg2V kT gkL2(R)kgkL2(R) = kT  0kL2(R)k 0kL2(R) =p�0 � 1:This equation is the starting point of the presentation by Slepian in [41℄ in the partiularase where V is hosen to be the Paley-Wiener spae of !-bandlimited funtions:PW! = �f 2 L2(R) suh that f̂(�) := ZR f(t) exp(2i�t�)dt is supported in [�!; !℄� :We stress that it is not the unique example to whih these ideas an be applied: for instane,one an hoose V = Vj , one of the nested linear subspaes of L2(R) onstituting a Multi-Resolution Analysis (MRA). In this ase, the reproduing kernel in (1) reads Kj(s; t) =2jPn2Z�(2js � n)�(2jt � n) [28℄ where j 2 Z is the sale index and � is the so{alled\saling funtion" whose integer shifts generate V0; see e.g. [27,20℄.5



The reproduing kernel for PW! is the standard \sin" funtion,K!(s; t) = sin(2�!(t� s))�(t� s) ;and one is led to seek the singular value deomposition (SVD) of the ompat operator,PT f(t) = ZA f(s) sin(2�!(t� s))�(t� s) ds; A = [�T; T ℄; (2)whih has been thoroughly studied by Slepian, Landau and Pollak: see e.g. [22,23,29,42℄.In partiular, the integral operator (2) ommutes with a seond order di�erential operator:Daubehies gives a geometri explanation of this \luky aident" in [14℄. Suh a propertyeases onsiderably the task of omputing numerially the DOS assoiated to V = PW! :T PT 'k = �k'k; PT P k = �k k; k 2 N:Many e�orts have been dediated to the derivation of eÆient algorithms to ompute thepeuliar PSWF system assoiated to PW!: see [21,24,25,45,48℄. As PW! ontains entirefuntions of exponential type, 0 < �k < 1 and an easy omputation shows that: k = P'kp�k ; T  k =p�k'k:Trying to solve diretly the integral equations (2) is a very diÆult task beause the non-negative eigenvalues �k display a sharp behaviour depending on  = 2�!T , the so{alledSlepian parameter representing the area in the time-frequeny plane, whih makes themdeay supergeometrially [3℄ (see also [9,23℄) to zero:�k ' 1 for k � 2� : (3)2.2 Spetral approximation with Prolate Spheroidal wave funtionsProlate Spheroidal wave funtions (PSWF) onstitute an orthogonal base of L2(�T; T ):see [48,41,23,22,4℄. Thus they an serve as an interpolator on any ompat interval of Ras an alternative hoie whih an enjoy spetral auray instead of lassial polynomial6



systems like Legendre, see [46℄ for very preise error estimates in this diretion. The followingtheorem (taken from [48℄) summarizes the main properties of ('k)k2N as an interpolator:Theorem 2 For any positive real value , the eigenfuntions 'k, k 2 N are purely real andomplete in L2(�T; T ). The even-numbered eigen funtions are even, and the odd-numberedare odd aording to the order of dereasing eigenvalues whih are non-zero and simple. Theeigenfuntions onstitute a Chebyshev system on [�T; T ℄, in partiular, 'k has exatly kzeros in this interval.PSWF satisfy also another eigenvalue problem whih reads [24,44,48℄:�k'k(t) = Z T�T 'k(�) exp(its)ds; �k = 2� j�kj2: (4)This formulation has the drawbak of involving imaginary eigenvalues �k when k is odd;however, it involves a kernel ~K whih depends only on the produt st (ompare with (1)).At this point, it is important in the ontext of PSWF to make a lear distintion between� approximation of bandlimited funtions on R, that is, approximation in PW! by meansof  k, k 2 N whih are normalized so as to have k kkL2(R) = 1 (whih implies thatk'kkL2(�T;T ) = p�k ! 0 when k grows) as studied for instane in [40℄,� and approximation in the spae L2(�T; T ), as presented in Theorem 2 or in [4,48,46℄,whih is made with funtions 'k normalized so as k'kkL2(�T;T ) = 1 (whih implies thatk kkL2(R) = 1p�k ! +1, espeially for very deloalized funtions suh that k � 2=�).Theorem 3 Let f 2 Hr(�T; T ) the Sobolev spae of funtions of L2(�T; T ) having allderivatives up to order r � 0 in L2(�T; T ) have the expansion: f(t) = Pk2N fk'k(t).Then, if the parameter  assoiated to 'k is suh that %N () := 2�(N+ 12 ) < 1, there holds:jfN j � C nN� 23 rkfkHr(�T;T ) + %N()ÆNkfkL2(�T;T )o : (5)The onstants C; Æ are independent of f;N , and the Slepian parameter .This error estimate appears in [11,4,46℄ in slightly di�erent forms. Following Wang [46℄, wereall the Sturm-Liouville operator assoiated with the system of PSWF 'k, k 2 N, for a7



�xed value  > 0 of the Slepian parameter and u a smooth funtion,8t 2 [�1; 1℄; Du(t) = � ddt �w(t)du(t)dt �+ (t)2u(t) with w(t) = 1� t2;whih is learly self-adjoint and positive and for any integer r � 0, the Hilbert spae:~Hr (�1; 1) = nu 2 L2(�1; 1) suh that kuk ~Hr =q< (D)ru; u >[�1;1℄ < +1o : (6)Thanks to the \luky aident", PSWF also satisfy D'k = �k'k and it turns out that:kuk2~Hr (�1;1) =Xk�0(�k)r ��< u;'k >[�1;1℄��2 ;  > 0:Theorem 4 Let f 2 ~Hr (�1; 1) with r � 0 as de�ned in (6); it holds that,f � NXk=0 < f; 'k >[�1;1℄ 'kL2(�1;1) � N�rkfk ~Hr (�1;1): (7)
Hene spetral auray holds without restrition for funtions belonging to the Hilbertspaes (6). The �rst PSWF  0 has been used as a saling funtion to onstrut a Multi-resolution analysis (MRA) of L2(R) enjoying spei� properties; see [44℄. On Fig. 1, wedisplay the �rst 10 PSWF 'k with  = 130, T = 1 and 256 grid points in the t variable:
3 Restrited Isometry Property (RIP) and sparse `1-reoveryIn the sequel, we shall only be interested in the \single" orthogonal system of PSWF 'k ,k 2 N, omplete in L2(�T; T ) and normalized so as to have k'kkL2(�T;T ) = 1. Without lossof generality, the value of T an be �xed to T = 1 as suggested in [44℄, Remark 1.8
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Fig. 1. First 10 PSWF (top: even, bottom: odd) with  = 130 and T = 1.3.1 Preliminaries on Compressed Sensing (CS)Let us begin by realling the `p norm in RN for N 2 N:kxk`p =  NXk=1 jxkjp! 1p ; 0 < p <1; x := (xk)k=1;:::;N :The 2 extreme ases p = 0 and p =1 are de�ned as follows:kxk`1 = maxk=1;:::;N jxk j; kxk`0 = #fxk; xk 6= 0g 2 N;with the symbol # denoting the ardinal number of a set. Any given vetor x in RN is saidto be sparse as soon as kxk`0 is smaller than a ertain threshold value, generally denoted bys 2 N. An important quantity is the best s-term approximation [12℄ of a vetor x 2 RNin `p whih reads: �s(x)`p := infy: kyk`0�s ky � xk`p :A diret onsequene of this de�nition is that �s(x)`p = 0 for all p if x is s-sparse; similarly, xis alled ompressible if �s(x)`1 deays at a fast rate with inreasing values of s. Atually,it has been proved rigorously that, for any q < p, there holds �s(x)`p � s 1p� 1q kxk`q . Care9



must be taken beause sparse signals don't generate a linear spae as the sum of two s-sparsevetors may only be 2s-sparse. The error estimate (5) implies that funtions in Hr(�1; 1)yield ompressible vetors in onvenient PSWF bases for whih %N () < 1.We need a bit of terminology as we aim at omputing eÆiently a sparse solution of a linearsystem of the following form: y = �x where y 2 Rm is the information vetor, m istherefore the number of samples. The matrix � is usually not square but m�N instead; itis referred to as to the enoder or the measurement matrix. In the present ontext, itis a portion of the matrix A written in Theorem 7.1 in [48℄. The integer N stands for themaximum number of omponents whih is neessary to represent a signal of L2(�1; 1) inthe PSWF base: aording to [4,11,46℄, it depends linearly on the Slepian parameter :N = 2� ) %N() < 1:In order to reover the sparse (or at least, ompressible) vetor x, we need a deoder �; westress that � is not required to be linear, but is must have the exat reovery propertyfor s-sparse signals (s� N): kxk`0 � s) �(�x) = x:At last, the number of samples m must be smaller than the total number of grid pointsused to represent a signal in the time variable: we all M � m this number of grid points.A fundamental stepping stone for establishing the exat reovery property for sparse signalsis the so{alled restrited isometry property (RIP) (see [5,1℄):De�nition 1 For any integer s � N , the restrited isometry onstant Æs of a (possiblyretangular) measurement matrix � is the smallest nonnegative number suh that it holdsfor every s-sparse vetor:(1� Æs)kxk2̀2 � k�xk2̀2 � (1 + Æs)kxk2̀2 :The following theorem is fundamental as it expresses the fat that if an enoder � is endowedwith a restrited isometry onstant whih is small enough, then the orresponding deodingan be done simply by solving the `1 minimization problem:10



Theorem 5 (see [5,6,18℄) Let Æs stand for the restrited isometry onstant (an inreasingfuntion of s� N) of the m�N measurement matrix �. Assume further that there holds:Æ2s < 23 +q 74 ' 0:4627Then, if x� denotes the solution of the `1 minimization problem,inf kzk`1 suh that �z = �x; (8)then the following error estimate holds:kx� x�k`2 � C �s(x)`1ps : (9)The onstant C depends only on Æ2s and the reovery is exat in ase the vetor is s-sparse.3.2 Uniform bound for a subset of N �rst PSWF and exat reovery propertyAnother step an be made when the enoder � is a matrix whose olumns ontains sampledvalues of an orthonormal system of funtions, as it is the ase for the PSWF 'k normalizedsuh that k'kkL2(A) = 1: ZA 'i(t)'j(t):d�(t) = Æi;j ; (10)with � is a probability measure on the measurable spae A (in most of the ases A = [�1; 1℄and � is simply the Lebesgue measure) and Æi;j stands for the Kroneker symbol.Theorem 6 (see [33,34℄) Assume that the orthonormal system 'k is bounded in L1(A):supk<N supt2A j'k(t)j � KN ; KN � 1: (11)If the m�N measurement matrix � is built from this bounded basis funtions, then formlogm � CK2NÆ2 s(log s)2 logN; (12)it holds that, with probability at least 1 �N�(log s)2 logm, the restrited isometry onstant11



Æs of 1pm� satis�es Æs � Æ. The onstants C;  > 0 are universal.Remark 1 The bound (12) whih gives only that Æs � Æ. However, in order to apply theresults of [18℄ whih ensure the exat reovery property, one needs to have a bound onÆ2s. Hene it turns out that (12) rigorously implies that the \`1 minimization deoder" �reovers exatly s2 -sparse signals. The stronger restrition m � C�2s(logN)4 where � isthe onentration measure parameter (as studied in e.g. [7℄) yields diretly the exatreovery property with higher probability 1�N�(logN)3 (whih is independent of s).All in all, the preeding results suggest that a ruial ingredient toward establishing theexat reovery property for the enoder � 2 Rm�N being built out of the PSWF base 'kis a uniform bound like (11). This is the purpose of the following result:Lemma 1 Let 0 < � < 1 and N be the higher integer suh that �N�1 � �. There hold:(1) supk<N supt2[�T;T ℄ j'k(t)j �q T��k'kkL2(�T;T ) := KN (),(2) let U stand for the orthonormal N �N matrix whose entry at (j; k) 2 [0; N � 1℄2 reads'k(�T + jh), h = 2TN , then �(U) := pN maxj;k jUj;kj � Tq 2�� where  = 2�T!.The bound (1) of Lemma 1 is quite logial: it grows together with ! beause inreasing theut-o� frequeny allows for more onentrated funtions in [�T; T ℄. Inreasing T means thata larger interval is onsidered and with the same ut-o� frequeny, a major onentrationratio an also be ahieved.Proof: From (4) and for all t 2 [�T; T ℄, we get by H�older's inequality:j'k(t)j � 1j�kj  Z T�T j exp(it�)j2d�!1=2 k'kkL2(�T;T ) � p2Tj�kj k'kkL2(�T;T ):The idea is now to onsider k'kkL2(�T;T ) as a degree of freedom. Based on a result by Landauand Widom [26℄ (realled in e.g. [23,48℄), given 0 < � < 1, the number of eigenvalues greaterthat � reads: N = 2� + log �2 log�1� �� �+O(log ):Thus, sine 1j�kj =q 2��k , we have for 0 � k < N ,j'k(t)j �r T��k'kkL2(�T;T );12



and the �rst point is proved. At this point, we use the degree of freedom: havingN disretiza-tion points uniformly griding [�T; T ℄, we have k'kk2L2(�T;T ) =PN�1j=0 hj'k(�T+jh)j2+o(h)with h = 2T=N . In order to ensure that U is an orthonormal matrix, a suÆient onditionis to ask for k'kk2L2(�T;T ) = h. We an now de�ne the parameter � as in [5,7℄ and it omesthat: � � pNr T��r2TN = Tr 2��:2Remark 2 � The bound on � an be ompared with the one where U is the disrete Fouriertransform matrix like in x3.4 of [5℄. We insist on the fat that aording to Theorem 3,the region where �k ' 1 allows for high auray approximation for smooth funtionsbelonging to Hr(�T; T ). For the hoie T = 1, one gets easily that �2 � 4!=� whihimplies a �rst bound on the minimum amount of samples for the exat reovery of as-sparse signal in the N-omponent PSWF base with ut-o� frequeny ! > 0:m � C �4!� � s(logN)4:� A diret argument hints that one shouldn't expet any uniform bound in the in�nity normto exist for k 2 N. Indeed, aording to Proposition 1 in [2℄, the following estimate holds:k'kkH1(�1;1) = k'kkL2(�1;1) + k'0kkL2(�1;1) � 1 + p�k ; (13)thanks to Bernstein's inequality for bandlimited funtions. It is well-known that in di-mension 1, the H1 norm ontrols the L1 one. The authors state ([2℄, page 266) thatthe existene of a uniform bound K for all k = 0; 1; ::: an be proved by observing thatPSWFs approah Legendre polynomials for j �  (see Theorem 5.2 in [4℄); however, asharp bound on these Legendre polynomials (realled in [34℄) yields that their in�nity normgrows like p2k + 1 hene this annot lead to proving the existene of suh a quantity K.The growth of the amplitude of Legendre polynomials is fully ompatible with the uniformbound on PSWFs proposed in [40℄ (see formula (11)) with idential normalization:8k 2 N; supt2[�1;1℄ j'k(t)j � 2pk:� The proof of Lemma 1 uses two main ingredients: the integral equation satis�ed by 'k (andwe know that the ase of the Paley-Wiener subspae of L2 is not unique) and the estimate13



on the number of eigenvalues greater than a ertain threshold. Thus it may hopefully beextended in various diretions: for instane, the ase where A is a �nite union of disjointintervals allows for the same Landau-Widom estimate: see Theorem 3 in [23℄ and [25℄for the onstrution of orresponding PSWF. Moreover, assuming a similar estimate anbe established, it may also be applied to the ase where the reproduing kernel is Kj(s; t),the one orresponding to a j-sale-limited subspae of L2, see [28,27,20℄.Clearly, Lemma 1 shows a big di�erene with the ase of Legendre polynomials studied in[34℄ as they don't allow for any useful bound on the quantity � whih ontrols the minimumamount of samples m allowing for the exat reovery property. This drawbak omes fromthe fat that sharp \tails" appear very quikly with k in the viinity of t = �1; on theontrary, these \tails" appear only for PSWF with an index k bigger than 2=�, and theseare preisely the ones that one doesn't need to have high auray. Hene the bigger amountof omputational work whih is required in order to generate the PSWF basis is somehowpaid bak through their nie properties.Theorem 7 Let T = 1 and the normalization be k'kkL2(�1;1) = 1 for all k 2 N. Suppose� is the m�N measurement random matrix built from 'k, k = 0; 1; :::; N � 1 and,mlogm � 9:35C �!�� s(log s)2 logN; �k=0;1;:::;N�1 � � 2℄0; 1[; (14)then, with probability at least 1�N�(log s)2 logm, the `1-minimization program (8) reoversexatly s2 -sparse vetors x 2 RN ; otherwise the error estimate (9) holds aordingly.We reall that ! > 0 is the ut-o� frequeny de�ning the Paley-Wiener spae PW! whoseorthonormal base reads (with the normalization of Theorem 7) P'k, k 2 N. Moreover, the\good number" of PSWF N depends on  and � and we have that 2� � N < ; a onvenientvalue for � is 12 beause in this ase, the Landau-Widom estimate gives N = 2� +O(log())and 18:7 replaes 9:35 in (14).Proof: From point (1) in Lemma 1, it suÆes to plug T = 1 and k'kkL2(�1;1) = 1 in orderto derive that KN()2 � �� = 2!� . Now, inserting this value inside (12) gives that therestrited isometry onstant of � satis�es Æs � Æ for whih we impose Æ = 0:4627 by takingadvantage of Theorem 5. It omes therefore that 2=Æ2 < 9:35 and sine we have a bound onÆs with high probability, the results of Fouart [18℄ ensure that we exatly reover s2 -sparsevetors through `1 minimization. The onstants C;  are idential in Theorems 6 and 7. 214



3.3 Reovery of funtions whih are sparse or \nearly sparse"Theorem 7 deals with the exat reovery of a s2 -sparse solution out of a small number ofm random measurements. This extends in a straightforward manner to funtions whih areeither sparse or ompressible in the PSWF base:Corollary 1 Let T = 1,  = 2�! be the Slepian parameter, f 2 Hr(�1; 1) suh that,8t 2 [�1; 1℄; f(t) = N�1Xk=0 fk'k(t); (15)and y = [f(t1); f(t2); :::; f(tm)℄ a vetor of m measurement values taken at the random lo-ations ti drawn independently from the uniform probability measure on [�1; 1℄. If � is them�N measurement matrix whose kth olumn ontains the values 'k(ti) with k'kkL2(�1;1) =1 and if m meets the requirement (14), then the \best s2 -term approximation" of the oeÆ-ient vetor ~f := (fk)k=0;:::;N�1 is reoverable with probability exeeding 1�N�(log s)2 logmby means of the `1 minimization program (8). More preisely, if k~fk`0 � s2 , the reovery isexat; otherwise, the following error estimate holds:k~f � ~f�k`2 � C2� s2 (~f)`1p s2 ; ~f� = arg miny=�z kzk`1 : (16)Proof: Having f exatly writable as a N -term expansion in the PSWF base orrespondingto the Slepian parameter  allows to move from a ontinuous problem to the disrete oneonsisting in reovering ~f 2 RN from y 2 Rm whih an be handled by the methods realledin x3.1. With the measurement matrix � built as indiated, the riterion (14) ensures thatÆs � 0:4626 with high probability and this is a suÆient ondition allowing to apply Theorem5 with a sparsity level equal to s2 . The error estimate (16) follows. 2Remark 3 Relying on Theorem 3, we know that any funtion in Hr(�1; 1) whih writesf(t) = Pk�0 fk'k(t) is strongly ompressible (see for instane Figure 3 in [3℄) beauseits \best N-term approximation" is spetrally aurate as soon as %N () < 1 meaning thatN > 2� � 12 . A strategy for treating funtions written as an in�nite PSWF series for whihthe parameter  is already �xed by means of a oeÆient vetor ~f 2 RN only onsists in:(1) adjusting N in order to satisfy both the spetral auray riterion, in suh a waythat the best N-term approximation beomes simply the \�rst N terms approximation"15



written in (15), and a reasonable smallness level for the orresponding �;(2) reovering a \best s2 -term approximation" out of the m random measurements with msatisfying (14); both L2 errors between f and its N-term approximation and between~f and ~f� an be ontrolled by (5) and (16) respetively.(3) in ase the strong riterion % s2 () < 1 is met, whih means that  < �(s+1)4 , then theoeÆients fk will strongly deay for k � s and either the reovery of ~f through (8)will be exat, either the error (16) will be very small.Atually, point (1) is deliate as it asks for �nding a ompromise between two antagonistrequirements. We shall study in the next setion a preonditioning method whih lightensthis situation by allowing to handle muh smaller values of �.In order to fully exploit the potential of Corollary 1, the best hoie is probably to seletthe funtions belonging to the spaes ~Hr (�1; 1) as de�ned in (6) beause of the very fastonvergene of �nite sums expressed in Theorem 4. In this ase, the approximation (15) isexponentially aurate and even for moderate values of s, it an be onsidered as being exatin pratie. The `1 minimization proess reovers therefore a \best s2 -term approximation"of the oeÆient vetor in RN out of a olletion of m samples taken at random; in ase Nis too low, a modi�ed proedure adapted to noisy measurements should be used [5,8℄.3.4 First set of numerial experimentsWe intend now to show examples to demonstrate both the feasibility and the eÆienyof the numerial proessing presented in Theorem 7; in partiular, we arried out the `1minimization program by means of the algorithm alled ROMP [30℄ to lower the CPU ost.Other numerial strategies exist for this minimization task: see also [10℄.3.4.1 Veri�ation of the exat reovery property for sparse signalsFirst, we set up a numerial test on the exat reovery of a strongly under-sampled signaladmitting aM -term approximation in the PSWF base on [�1; 1℄ with  = 130 and 256 gridpoints. The ode generates at random M = 10 oeÆients between �1 and 1 together with10 random indexes orresponding to integer positions between 0 and 2=� ' 82 := N . Thenthe signal f(t) is formed by linear ombination of the form (15) but with onlyM � N non-zero oeÆients. Numerially, it seems that the restrition (14) is somehow too restritiveand we seleted instead a number of samples equal to m = 32M log(N) to obtain the results16
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Fig. 2. Exat reovery of ~f with k~fk`0 = 10.displayed on Fig. 2. The ROMP algorithm had a very quik onvergene and the pointwiseabsolute error is lose to mahine preision and it is impossible to distinguish between theoriginal and the reovered signals. The loation of the random m samples is indiated onthe top left piture; on the bottom left one, one an see the exat value of the absolutevalue of the oeÆients fk (the small triangles) ompared to the reovered ones (the bluelines) and also to the approximation obtained by a least squares approximation (in lightblue) whih is known to not promote sparsity. The red urve displays the behavior of theeigenvalues �k; beyond N ' 2=�, the bounds of Lemma 1 are likely to blow up and theminimum number of samples m to maintain the exat reovery property should grow upquikly before beoming greater than N , whih makes the whole approah useless.3.4.2 Case of a signal involving too many omponents in the PSWF baseCorollary allows to treat ases for whih the numberm is too small aording to the omplex-ity of the original signal; in other words, there are too many non-zero oeÆientsM 0 = k~fk`0and only a \best s-sparse approximation" an be reovered through `1 minimization fromthe limited number m of samples. For this numerial test, we set up a similar frameworkthan in the preeding subsetion, but this time we took  = 85 and M 0 = 19 =M +9 with17



still m = 32M log(N). The oeÆients are again hosen in random loations orrespondingto indexes smaller that the transition value 2=� ' 55 := N . Two sets of numerial results
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Fig. 3. Two reovery experiments for k~fk`0 = 19 but s = 9 only with  = 85.18



are displayed on Fig. 3: the left olumn shows a result where the reovery was rather goodwhereas the right one orresponds to a less satisfying one. Espeially, the pointwise error onthe right olumn grows substantially lose to the left border and the reovery of oeÆientssu�ers from notieable errors. The number of samples used is roughly the same as in thepreeding test, but it didn't allow for a good onvergene of the ROMP algorithm, espeiallyon the seond test-ase.4 Preonditioning the \tails" and non-uniformly distributed random samples
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Fig. 4. Deloalized PSWF with k ' 2=� and  = 85 (top: odd, bottom: even).4.1 Amplitude estimate on PSWF with series of Legendre polynomialsIt is a lassial fat [29,48℄ that any PSWF 'k de�ned on A = [�1; 1℄ admits an expansionbased on normalized Legendre polynomials; we denote �Pj(t) the orthonormal system ofnormalized Legendre polynomials whih satisfy:8i; j 2 N2 ; < �Pi; �Pj >A= Z 1�1 �Pi(t) �Pj(t)dt = Æi;j :19



Aordingly, the Planherel equality yields:'k(t) =Xj�0 < 'k; �Pj >A �Pj(t); k'kk2L2(�1;1) =Xj�0 j < 'k; �Pj >A j2:Usually, the oeÆients rewrite �kj :=< 'k; �Pj >A and any sequene �k belongs to `2(N).From [34,35℄, we get the following pointwise estimates for all t 2 [�1; 1℄, j; k 2 N2 :j �Pj(�1)j �rj + 12 ; (1� t2) 14 j �Pj(t)j � 1p� ; j'k(�1)j �rk + 12 : (17)In order to improve the pointwise estimate of Lemma 1, it sounds appealing to ompute:p�(1� t2) 14 j'k(t)j �Xj�0 j < 'k; �Pj >A j =Xj�0 j�kj j:Lemma 8 Let ba denote the integer part of a 2 R+ , that is, ba = maxfn 2 N; n � ag.For T = 1 and with the normalization k'kkL2(�1;1) = 1, there holds for any k 2 N:8t 2 [�1; 1℄; p�(1� t2) 14 j'k(t)j �Xj�0 j�kj j � 2(be+ 1) + 122be�k : (18)
Proof: The basi estimate is the one given inside Theorem 3.4 of [48℄: for j � 2(be+1), onehas �kj < 21�j=�k. Thus, for any PSWF index k 2 N, we an split the in�nite summationas follows: Xj�0 j�kj j � 2be+1Xj=0 j�kj j+ Xj�2be+2 21�j�k := I + II:The term I is but a �nite summation: for A = [�1; 1℄, Cauhy-Shwarz inequality yields,j�kj j = j < 'k; �Pj >A j � k'kkL2(�1;1)k �PjkL2(�1;1) = 1;whih gives automatially:I = 2be+1Xj=0 j�kj j � 2be+1Xj=0 1 = 2(be+ 1):20



Now, the seond term rewrites as a geometri series:II = 2�2be�1�k Xj�0 2�j = 2�2be�1�k 11� 1=2 :2Remark 4 The algorithms by Rauhut and Ward [34℄ eÆiently reover signals whih aresparse in the Legendre polynomial basis. But sine PSWF are not sparse in this basis (asspetaularly shown in Theorem 11 of [35℄), it turns out that a signal whih is sparse in thePSWF basis may not be sparse in the Legendre basis and vie-versa.The estimate (18) is somewhat reminisent of the expression of the H1 norm given in (13).It isn't as nie as the uniform bound obtained on Legendre polynomials in [34℄ whih isvalid for any value of j 2 N, however, it ompares interestingly with the one obtained inLemma 1. Indeed, this former one explodes quikly with p�k ' �k as k grows beyond 2=�and there is nothing in the denominator whih may dampen this proess whereas in (18),the �k in the denominator is multiplied by a fator 22be whih helps in keeping it fromgoing to zero too fast (but it will do eventually as k grows with  being �xed). This an bestated quantitatively one again thanks to the estimate by Landau and Widom:~N = 2� + log �2 log�1� �� �+O(log ); � = 2�2be:For applying Lemma 1, the easiest hoie is to take � = 12 ; for Lemma 8, we get an extranumber of usable indexes k > N , this number being approximately for � 1,log�1� 2�2be2�2be � = log(22be � 1) ' 2be log(2):4.2 Preonditioning ~N �rst PSWF gives RIP and exat reovery propertyHere we follow ompletely the ideas presented in x5 of [34℄, that is to say we onsider theChebyshev probability measure �(dt) = dt�p1�t2 for t 2 (�1; 1) and we observe that sinePSWF are orthogonal with respet to the standard Lebesgue measure < 'i; 'j >A= Æi;j(the Kroneker symbol), multiplying by p�(1 � t2) 14 makes then orthogonal with respet21



to the Chebyshev measure,Z 1�1 �(1� t2) 12'i(t)'j(t) dt�p1� t2 = Z 1�1 'i(t)'j(t)dt = Æi;j ; (19)and we reover a partiular ase of (10). We an therefore apply Theorem 6 to dedue:Theorem 9 Let T = 1 and the normalization be k'kkL2(�1;1) = 1 for all k 2 N. Suppose	 is the m � N measurement matrix whose olumns read p�(1 � t2) 14'k(ti), ti hosenindependently aording to Chebyshev probability for i = 1; :::;m, k = 0; 1; :::; ~N � 1 andmlogm � C �2(be+ 1) + 10:4626 �2 s(log s)2 log ~N; �k=0;1;:::; ~N�1 � 2�2be;then, with probability at least 1� ~N�(log s)2 logm, the preonditioned `1-minimization,inf kzk`1 subjet to 	z = 	x; (20)reovers exatly s2 -sparse vetors x 2 R ~N ; otherwise the error estimate (9) holds aordingly.Proof: From the expression of Chebyshev probability, the m�m diagonal preonditioningmatrix P built from p�(1� t2i ) 14 with i = 1; :::;m is invertible. Formula (19) implies that,np�(1� t2) 14'k(t)ok2N ;is an orthonormal omplete system of L2(�1; 1; d�). Moreover, (18) gives a L1 bound ona subset of this system for all indexes k < ~N suh that � ~N�1 � 2�2be. Hene we are inposition to apply Theorem 6 with KN given by (18), Æ = 0:4626 and 	 = P�: this yieldswith high probability the restrited isometry onstant of 	=pm being Æs < 0:4627 and thusallows to onlude the proof by invoking Theorem 5 with a sparsity index s2 . 2It is interesting to ompare the ontents of Theorems 7 and 9 with both give suÆientonditions for exat reovery of s2 -sparse vetors: the �rst one involves only the N �rstPSWF whih are endowed with eigenvalues greater than 12 whih, after a random samplingaording to the uniform probability on [�1; 1℄, onstitute the olumns of the measurementmatrix �. The minimum number of samples is a onsequene of the pointwise bound provedin Lemma 1. The \mirale" omes from the Theorem 3 whih states that spetral auray22



holds in partiular for this (small) subset of N �rst PSWF hene suh a strategy an beonsidered reliable for reovering smooth funtions belonging to Hr(�1; 1). The seond one,instead, takes advantage from both the preonditioning tehnique proposed in [34℄ and thelassial trik onsisting in rewriting PSWF as a Legendre polynomials expansion. Then,preonditioning the Legendre system allows to derive another (possibly larger) bound fora larger subset of ~N > N PSWF and this leads to similar reovery properties valid for asupposedly wider lass of signals. On Fig.5 a omparison of the loation of \big values" inside
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	 = P� for jP j 6= 0. Suppose that the restrited isometry onstant of 	 satis�es:Æ2s < 0:4627:Then, if x 2 RN and y := �x+�, � 2 Rm being a noise vetor, with k�k`2 � ", the solutionof the `1 minimization program,minz2RN kzk`1 subjet to k	z � Pyk`2 � kPk"; (21)satis�es the following error estimates:kx� x�k`1 � C1�s(x)`1 +D1kPk"ps; kx� x�k`2 � C2�s(x)`1ps +D2kPk": (22)
We reall that sine kPk is a subordinated matrix norm, it an be de�ned as:kPk := inf�2R+�kPvk`2(Rm) � �kvk`2(Rm) for v 2 Rm	 :And it is very natural to �x the noise level of the preonditioned program (21) as kPkk�k`2 .With this result at hand, it is now possible to prove the following orollary of Theorem 9:
Corollary 2 Let  > 0 be the Slepian parameter, T = 1, the normalization k'kkL2(�1;1) = 1for k 2 N, f 2 ~Hr (�1; 1), and �x s;N 2 N2 with s� N . Assume further that they satisfy,mlogm � C �2(be+ 1) + 10:4626 �2 s(log s)2 logN; �k=0;1;:::;N�1 � 2�2be; (23)and (t1; :::; tm) 2 [�1; 1℄m are m sampling points drawn at random from the Chebyshevprobability measure. Then, with probability exeeding 1�N�(log s)2 logm, the \best s2 -termapproximation" of the vetor ~f := (< f; 'k >[�1;1℄)k=0;:::;N�1 2 RN an be reovered out ofthe set of values y := (f(ti))i=1;:::;m 2 Rm by solving the `1 minimization program:~f� = argmin kzk`1(RN) subjet to k	z � Pyk`2(Rm) � p� kfk ~Hr (�1;1) N�r:24



Preisely, the following error estimates hold:k~f � ~f�k`1 � C1� s2 (~f)`1 +D1N�rkfk ~Hr (�1;1)r�s2 ;k~f � ~f�k`2 � C2� s2 (~f)`1p s2 +D2p� N�rkfk ~Hr (�1;1):The onstants C; ; C1; D1; C2; D2 are universal.Proof: The system 'k, k 2 N is omplete in L2(�1; 1) for any  > 0 thus f 2 ~Hr � L2(�1; 1)admits an expansion of the form: (we dropped the [�1; 1℄ for larity)f =Xk�0 < f; 'k > 'k = 0�N�1Xk=0 +Xk�N1A < f; 'k > 'k := N�1Xk=0 < f; 'k > 'k + �:Thanks to the results of [46℄ realled in Theorem 4, we get that k�kL2(�1;1) � N�rkfk ~Hr .We know from Theorem 6 that the ondition (23) is enough to ensure that the restritedisometry onstant for 	=pm satis�es Æs < 0:4627 with high probability. With probability1, the diagonal preonditioning m � m matrix P is invertible and its operator norm iskPk = p�. So, relying on Theorem 10, the `1 minimization program furnishes a \best s2 -term solution" ~f� satisfying the error estimates (22) for " := N�rkfk ~Hr kPk. The onstantsC;  are still the same as in the previous results. 2Remark 5 The approah in [34℄ is di�erent: Rauhut and Ward establish the existene ofa restrited isometry onstant for their preonditioned matrix 	=pm with high probability,but they solve a non-preonditioned `1 program involving a supposedly higher noise level(multiplied by pm). Here, we prove the same type of restrited isometry property, and then,for improving numerial eÆieny, the preonditioned `1 program involving 	 is treated.4.4 Seond set of numerial experiments (with preonditioning)In this setion too, ROMP is still used in order to lower as muh as possible the CPU ost.4.4.1 Exat reovery property for sparse signals with N < 2=�First, we verify that the exat reovery property works �ne in pratie: the same frameworkis set up than in x3.4.1 with  = 85, T = 1 and 300 grid points. We generate the same25



type of random signals whih are sparse in the PSWF system of 'k, k � 2=� ' 55. Therandom sampling points are taken aording to the Chebyshev probability measure whihtends to give more importane to the areas lose to the edges of the omputational domain.The presentation of the numerial results is idential to the one of x3.4.1 exept for the
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Fig. 6. Exat reovery of ~f with k~fk`0 = 9 from 54 samples taken as random.omparison with the least-squares seletion proedure as we know that it doesn't deliverthe expeted sparse representation. Instead, the proessing based on ROMP onverges veryquikly and the absolute pointwise error is below 10�15, whih an be onsidered as fullysatisfying. The values of the 9 PSWF oeÆients is good too; m = 329 log(55) ' 54 sampleshave been used.4.4.2 Taking advantage of preonditioning with N > 2=�We stress that for the present example, the bound on the non-preonditioned sensing matrixas omputed in Lemma 1 would ease to be useful for pratial omputations beause ofthe quik deay of p�k. Nevertheless, we set up the same framework than in the preedingsubsetion, but his time, we allow the index k to grow up to 2=� + 35 ' 90, whih resultsin the value p�90 ' 10�15. The ompensating fator 22be = 2462 ' 1:19:10139 wouldprobably permit to go muh beyond this limit. We built up a random signal suh that26



~f 2 R90 , k~fk`0 = 9 and m = 329 log(90) ' 61 samples have been taken independentlyaording to Chebyshev probability. On Fig. 7, we see that the ROMP algorithm onverged
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Fig. 7. Exat reovery of ~f with k~fk`0 = 9 from 61 samples taken as random.niely, but more iterations are needed when ompared to former test-ases. Out of 9, 2PSWF were loated beyond the ritial index 2=� and they have been well reovered. Theabsolute errors are still of the order of 10�15 thus the original and the reovered signals areindistinguishable from one another.Remark 6 The PSWF funtions inside the range 2� � k �  are usually the most usefulin order to arry out an extrapolation proess based on the PSWF, seen this time as a DOSin the sense of Theorem 1 (see [41℄ p.388): let f 2 PW! with ! = 2� , and suppose only itsrestrition T f to A = [�1; 1℄ is available:T f = f�[�1;1℄ =Xk�0�Z 1�1 f(t)'k(t)dt�'k ) f =Xk�0�Z 1�1 f(t)'k(t)dt�  kp�k ;is the most diret way to reover values of suh a bandlimited funtion outside the observa-tions interval. Now, it is in general hopeless to try to reover oeÆients orresponding tovery small eigenvalues at indexes k > , and even if it were feasible, numerial trunations27



errors would be highly ampli�ed by the very small divisors p�k. However, if the funtionf under onsideration is sparse in the base  k, or equivalently, if T f is sparse in 'k, thenhopefully the preonditioned `1 minimization proess will be able to reover its oeÆientsexatly for 2=� � k �  and its bandlimited extrapolation might give good results.4.4.3 Case of a noisy signal with N < 2=�We now aim at reovering a signal whih has been slightly orrupted by noise. Our noiseterm �(t) is generated by a random number generator working with the uniform probabilityon [�1; 1℄. Hene, we still generate a random s-sparse signal with a oeÆient vetor ~fNbelonging to [�1; 1℄N , but we perturb the resulting observations �~fN with � being m�Nby the vetor of noisy terms 0:1� 2 [�0:1; 0:1℄m: these noisy observations are shown bymeans of the red urve on Fig. 8 (top, left). It is on this red urve that the m samples are
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Fig. 8. Reovery involving 10% of noise with s = 9 and  = 85.taken, and the reovery algorithm reovers an approximate signal whih is depited in blue.The absolute di�erene between the original signal and its reovered version is displayed onthe top right graphi of Fig. 8: learly, the mahine auray error level has been lost, butthe general error level around 10�1 mathes k�k`1 . The reovery of oeÆients an also beonsidered satisfying. 28



4.4.4 Case of a noisy signal with N > 2=�This is a very unstable ase beause the reovering proess \tries" to express the randomnoise term � by means of a linear ombination of the supplementary PSWF we allow itselfto onsider inside the fast deay area (as shown on Fig.3 of [3℄). Hene it produes verybig oeÆients assoiated with indexes k whih are assoiated with very small eigenvalues�k, the olumns of the sensing matrix remaining bounded nonetheless thanks to the pre-onditioning. Sine these PSWF with high index k > 2� don't have a big inuene on the
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Fig. 9. Reovery with 10% of noise, s = 9,  = 85 and N = 15 + 2� .general shape of the signal inside the observations interval [�1; 1℄, the absolute error inthe reovery is roughly the same ompared to the preeding test-ase. However, the situa-tion when looking at the reovery of the oeÆient vetor on Fig. 9 shows a muh worsepiture: in partiular, setting up the extrapolation algorithm suggested in Remark 6 is om-pletely doomed to failure beause the division by p�k will amplify even more the spuriousoeÆients whih result from the noise term (whih perturbs Piard's onditions [15℄).29



5 Conlusion and outlookWe presented in this paper a general way to apply Compressed Sensing methodology in orderto perform an eÆient reovery of signals having the peuliar feature of admitting a sparserepresentation in the PSWF base. Two distint ways to proeed have been studied, eitherestablishing a diret L1 bound on the sensing matrix (see Lemma 1) whih is a tehniquewhih relies only on manipulating the eigenvalue problem satis�ed by the measurementensemble, either taking advantage of the partiular expansion of Slepian's funtions in theLegendre polynomials in order to take advantage of the preonditioning tehnique proposedin [34℄ and proving an extended L1 bound (see Lemma 8) in this speial ase. The advan-tage in proeeding this way lies in the possibility to reover PSWF oeÆients in the areaorresponding to small eigenvalues hene to try to extrapolate the observed signal outsidethe observations interval (as suggested in Remark 6). Clearly, this program annot be setup in ase the observations are orrupted by a small noise term.This approah an be generalized to the newly introdued variants of lassial Slepianfuntions: for instane, the PSWF assoiated to the frational Fourier transform [32℄ and theones in [47℄ whih are \bandlimited in a weighted sense" and therefore generalize Chebyshevpolynomials. This seond onstrution ould be the most straightforward one for extendingthe preonditioned framework proposed in x4 of the present paper, even at the prie ofheavier omputations. Finally, the \wavelet prolate funtions" studied in [27,20℄ may alsobe onvenient, at least for the tehniques developed in our x3.AknowledgmentsThe author is grateful to Prof. E.J. Cand�es and H. Rauhut for advies and disussions.Referenes[1℄ R.G. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of therestrited isometry property for random matries, Construt. Approx. 28 (2008)253{263.[2℄ G. Beylkin, K. Sandberg, Wave propagation using bases for bandlimitedfuntions, Wave Motion 41 (2005) 263{291.[3℄ John P. Boyd, Approximation of an analyti funtion on a �nite real intervalby a band-limited funtion and onjetures on properties of prolate spheroidal30
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