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Compressed sensing with pre
onditioning forsparse re
overy with subsampled matri
es ofSlepian prolate fun
tionsLaurent Gosse �IAC{CNR \Mauro Pi
one" (sezione di Bari)Via Amendola 122/I - 70126 Bari, ItalyAbstra
tEÆ
ient re
overy of smooth fun
tions whi
h are s-sparse with respe
t to the base ofso{
alled Prolate Spheroidal Wave Fun
tions from a small number of random sam-pling points is 
onsidered. The main ingredient in the design of both the algorithmswe propose here 
onsists in establishing a uniform L1 bound on the measurementensembles whi
h 
onstitute the 
olumns of the sensing matrix. Su
h a bound pro-vides us with the Restri
ted Isometry Property for this re
tangular random matrix,whi
h leads to either the exa
t re
overy property or the \best s-term approxima-tion" of the original signal by means of the `1 minimization program. The �rstalgorithm 
onsiders only a restri
ted number of 
olumns for whi
h the L1 holds asa 
onsequen
e of the fa
t that eigenvalues of the Bergman's restri
tion operator are
lose to 1 whereas the se
ond one allows for a wider system of PSWF by taking ad-vantage of a pre
onditioning te
hnique. Numeri
al examples are spread throughoutthe text to illustrate the results.Key words: Doubly orthogonal sequen
es, Slepian fun
tions, Compressed sensing,restri
ted isometry property, Pre
onditioning, bandlimited extrapolation.1991 MSC: 94a11; 94a12; 94a20; 60b20
1 Introdu
tionCompressed sensing (CS), or Compressive Sampling, is a re
ent �eld of resear
h whi
hhinges on a simple yet fas
inating idea whi
h led to a major rethinking of data a
quisitionproto
ols. It is well known that signals of interest are generally endowed with a spe
i�
stru
ture making them 
on
isely representable (that is, by means of quite a small number� Corresponding AuthorPreprint submitted to Elsevier S
ien
e



of generalized Fourier 
oeÆ
ients) in spe
i�
 orthogonal bases. Hen
e, with the developmentof e.g. new wavelet systems, transmission of these signals has been progressively redu
edto the one of a limited quantity of signi�
ant numbers. However, the a
quisition proto
olsfor these signals were still working in a massive and expensive manner: the totality ofthe amount of digital data was �rst a
quired, and then later en
oded in the appropriateorthogonal basis. It was at this level that �ltering was applied in order to redu
e the numberof 
oeÆ
ients to be a
tually 
onsidered; in general, a big proportion of them was dis
ardedwhi
h resulted in a wasteful pro
essing. CS 
hanged the whole framework by showing that,under the same hypothesis on the original s
ene (the possibility of being expressed by veryfew meaningful 
oeÆ
ients in a 
onvenient basis, whi
h is usually referred to as sparsity),the 
omputational 
ost of the data a
quisition proto
ol 
an be drasti
ally redu
ed. Indeed,instead of a
quiring the totality of the data to be later en
oded, it limits itself to a
quiredire
tly all the important information by measuring the proje
tions of this sparse signal ontoa �xed set of well de�ned but randomly sampled basis ve
tors (whi
h put together 
onstitutethe random sensing matrix). The signal 
an therefore be under-sampled a

ording to the
lassi
al Shannon-Nyquist theory be
ause the quantity of measurements is proportional tothe number of non-zero 
oeÆ
ients, and not to the width of the support of the spe
trum.This 
olle
tion of basis ve
tors, sometimes referred to as a measurement ensemble, wasoriginally taken as a realization of Gaussian white noise or a sequen
e of Bernoulli randomvariables as this 
hoi
e asks for a near-minimal amount of sampling points [5℄. However, inpra
ti
al appli
ations, it is desirable to derive a CS strategy for signals whi
h are sparse instru
tured measurement ensembles, like e.g. the dis
rete Fourier basis, a Multi-Resolutionframework, or very re
ently the Legendre polynomial base [34℄. In [7℄, the 
ase of a sensingmatrix whi
h originates from an orthonormal matrix is studied and suÆ
ient 
onditionsensuring the Restri
ted Isometry Property (RIP) [1℄ whi
h leads to the exa
t re
overy by`1 minimization are given. These 
onditions have been later re�ned in e.g. [10,18,19,33℄.In this paper, we follow this resear
h program and show that another 
lass of matri
es 
anbe used in order to set up a CS algorithm: 
onsidering the so{
alled \Prolate SpheroidalWave fun
tions" (PSWF), one gets for any value of their Slepian parameter 
 > 0 an or-thonormal base of L2(�1; 1) [40,48℄. These fun
tions are restri
tions to a 
ompa
t intervalof bandlimited fun
tions, hen
e entire fun
tions of exponential type when extended to thewhole 
omplex plane [42,41,22,23,29℄. Entire fun
tions, as they 
an be expressed as 
onver-gent series for any value of their argument, may be viewed as \in�nite degree generalization"of polynomials. Moreover, it is a well-known fa
t that PSWF admit an expansion in the2



Legendre polynomial basis, a feature whi
h is useful for their pra
ti
al 
omputation [21℄.In x2, the derivation of PSWF is re
alled, starting from the inversion of Bergman's re-stri
tion operator with Seip's theorem on doubly-orthogonal sequen
es and 
omposition oftwo orthogonal proje
tions in Hilbert spa
e [38,36,31℄. We made this 
hoi
e for 2 reasons:�rst, this emphasizes the very parti
ular properties of this type of orthogonal bases, andse
ond, it shows that the doubly-orthogonal Slepian's fun
tions are by no means a uniqueobje
t [50℄. Besides that, these bases allow to perform extrapolation of signals even if this ill-
onditioned problem has to be stabilized (see for instan
e [13,17℄): hen
e in this perspe
tive,the exa
t re
overy property for sparse signals of CS algorithms may be
ome very valuable asa limited amount of measurements 
an permit to re
onstru
t the signal's very dis
onne
tedspe
trum with supposedly ma
hine's a

ura
y and then allow to extrapolate observationsmade in, say, [�1; 1℄ to a bigger interval (see Remark 6). Usual interpolation properties forPSWF are re
alled in x2.2 together with error estimates for spe
tral approximation [4,11℄;in parti
ular, the re
ent estimates by Wang [46℄ are in
luded.x3 is devoted to proving a L1 bound on a subset of the PSWF base on [�1; 1℄; like Legendrepolynomials, PSWF 
an display sharp \tails" 
lose to the edges of this interval. However,the situation here is better 
ompared to polynomials be
ause there exists a 
olle
tion ofindexes for whi
h both a L1 bound and spe
tral a

ura
y hold as stated in Lemma 1;roughly speaking, it 
orresponds to the PSWF endowed with eigenvalues not too far from 1(this statement 
an be made pre
ise by means of the 
lassi
al Landau-Widom estimate, see[26℄). With this L1 bound at hand, it is possible to follow the 
anvas of [7℄ and estimate the
on
entration measure parameter � whi
h leads to the RIP under te
hni
al assumptions. Wefollowed the approa
h of [33,34℄ whi
h permits to rea
h similar 
on
lusions under slightlymilder restri
tions. On
e the RIP is established, the results by Fou
art [18,19℄ ensure thateither the exa
t re
overy o

urs, either a

urate error estimates hold between the originalsignal and its best k-term approximation [12℄. Numeri
al test-
ases are performed in x3.4and illustrate previous theoreti
al results.In x4, we follow the original idea of Rauhut and Ward [34℄ of in
luding pre
onditioningte
hniques inside a CS framework. Indeed, sin
e the L1 bound of Lemma 1 blow up asmore and more PSWF are added in the sensing matrix, it be
ame desirable to deriveanother methodology to handle more 
omplex problems. It turned out that a simple diagonalpre
onditioner (the same as used in [34℄) allows to 
ontrol the 
on
entration measure of thesensing matrix 
olumns in a more robust way, see Lemma 8. This 
omes from the fa
t3



that Slepian's fun
tions 
an be written as a series of Legendre polynomials for whi
h �neestimates have been proven on the 
oeÆ
ients [48℄. The exa
t re
overy property is shownthe same way as in x3, see Theorem 9, and the Corollary 2 is given 
on
erning the re
overyof fun
tions belonging to the Hilbert spa
es ~Hr
 (�1; 1) studied in [46℄ for whi
h spe
trala

ura
y always holds. Again, numeri
al tests are displayed in x4.4, involving more 
omplexand possibly noisy signals.To the best of the author's knowledge, the idea of performing CS with a sensing matrix builtfrom PSWF seems to be new; 
lassi
al sampling theorems involving PSWF already exist,see e.g. [25,43,44℄ and also [37℄ with referen
es therein. However, no proof of the restri
tedisometry property or the exa
t re
overy of sparse signals appears.2 Bergman's restri
tion operator and Prolate spheroidal wave fun
tions2.1 Composition of orthogonal proje
tions and doubly-orthogonal sequen
esOur starting point is the Bergman-Shapiro problem for the inversion of a trun
ation operatorin a separable Hilbert spa
e with s
alar produ
t < :; : >H. Let us denote H = L2(R), V a
losed linear subspa
e of H with P the orthogonal proje
tion H ! V and T : f 2 V 7! f�Awith �A the 
hara
teristi
 fun
tion of a measurable set A � R. In this framework, a spe
ial
ase of a result of Seip [36℄ 
an be stated:Theorem 1 Assume V is a reprodu
ing kernel Hilbert spa
e (RKHS) and let (fk)k2N bean orthonormal basis of V . Then (fk)k2N is furthermore orthogonal for the indu
ed s
alarprodu
t < :; : >A:=< :; :�A >H if and only if fk are singular fun
tions of PT ; in su
h a
ase, (fk)k2N is said to be a doubly orthogonal sequen
e (DOS).Let us re
all that the general stru
ture of the 
omposition produ
t of 2 orthogonal pro-je
tions in a Hilbert spa
e is studied by Nees in [31℄. Su
h DOS seem to have been �rststudied by Bergman in the 
ontext of analyti
 fun
tions [38℄; they are useful when it 
omesto re
over a fun
tion from its values on a subset of its domain of de�nition [39℄. However,in most 
ases, T P is a 
ompa
t Hilbert-S
hmidt operator (ex
ept if the Lebesgue measurejR n Aj is small enough to ensure that the operator norm k(Id � T )Pk < 1 whi
h allowsfor stable inversion by means of Neumann series, see e.g. [49,16℄) therefore performing in-version leads to a (possibly severely) ill-posed problem [15℄; see however [17℄ for an original4



regularization method and [13℄ for the re
ent approa
h 
alled \geometri
 harmoni
s" [13℄.
A RKHS V � L2(R) with kernel K is a linear subspa
e whi
h 
orresponding orthogonalproje
tion P rewrites as an integral operator:f 2 V , 8t; f(t) = Pf(t) =< f(:);K(:; t) >H= ZRK(s; t)f(s)ds: (1)Hen
e, given a measurable set A � R, one 
an de�ne the so{
alled 
on
entration operatoron A, T P , for the fun
tions of V ; for V a subset of smooth fun
tions and jAj bounded, theAs
oli's theorem ensures that T P is 
ompa
t and there holds:kT Pk2 = kPT k2 = kPT Pk = �0 with PT P 0 = �0 0 and PT f(t) =< f(:);K(:; t) >A :More generally, a suÆ
ient 
ondition for 
ompa
tness is as follows [36℄:ZA ZA jK(s; t)j2ds dt = ZAK(s; s)ds <1:The �rst eigenfun
tion '0 is the fun
tion of V whi
h realizes the maximum of 
on
entrationon the set A; its 
orresponding eigenvalue �0 
an be understood as the 
on
entration ratio:kT Pk = supf2L2(R) kT PfkL2(R)kfkL2(R) = supg2V kT gkL2(R)kgkL2(R) = kT  0kL2(R)k 0kL2(R) =p�0 � 1:This equation is the starting point of the presentation by Slepian in [41℄ in the parti
ular
ase where V is 
hosen to be the Paley-Wiener spa
e of !-bandlimited fun
tions:PW! = �f 2 L2(R) su
h that f̂(�) := ZR f(t) exp(2i�t�)dt is supported in [�!; !℄� :We stress that it is not the unique example to whi
h these ideas 
an be applied: for instan
e,one 
an 
hoose V = Vj , one of the nested linear subspa
es of L2(R) 
onstituting a Multi-Resolution Analysis (MRA). In this 
ase, the reprodu
ing kernel in (1) reads Kj(s; t) =2jPn2Z�(2js � n)�(2jt � n) [28℄ where j 2 Z is the s
ale index and � is the so{
alled\s
aling fun
tion" whose integer shifts generate V0; see e.g. [27,20℄.5



The reprodu
ing kernel for PW! is the standard \sin
" fun
tion,K!(s; t) = sin(2�!(t� s))�(t� s) ;and one is led to seek the singular value de
omposition (SVD) of the 
ompa
t operator,PT f(t) = ZA f(s) sin(2�!(t� s))�(t� s) ds; A = [�T; T ℄; (2)whi
h has been thoroughly studied by Slepian, Landau and Pollak: see e.g. [22,23,29,42℄.In parti
ular, the integral operator (2) 
ommutes with a se
ond order di�erential operator:Daube
hies gives a geometri
 explanation of this \lu
ky a

ident" in [14℄. Su
h a propertyeases 
onsiderably the task of 
omputing numeri
ally the DOS asso
iated to V = PW! :T PT 'k = �k'k; PT P k = �k k; k 2 N:Many e�orts have been dedi
ated to the derivation of eÆ
ient algorithms to 
ompute thepe
uliar PSWF system asso
iated to PW!: see [21,24,25,45,48℄. As PW! 
ontains entirefun
tions of exponential type, 0 < �k < 1 and an easy 
omputation shows that: k = P'kp�k ; T  k =p�k'k:Trying to solve dire
tly the integral equations (2) is a very diÆ
ult task be
ause the non-negative eigenvalues �k display a sharp behaviour depending on 
 = 2�!T , the so{
alledSlepian parameter representing the area in the time-frequen
y plane, whi
h makes themde
ay supergeometri
ally [3℄ (see also [9,23℄) to zero:�k ' 1 for k � 2
� : (3)2.2 Spe
tral approximation with Prolate Spheroidal wave fun
tionsProlate Spheroidal wave fun
tions (PSWF) 
onstitute an orthogonal base of L2(�T; T ):see [48,41,23,22,4℄. Thus they 
an serve as an interpolator on any 
ompa
t interval of Ras an alternative 
hoi
e whi
h 
an enjoy spe
tral a

ura
y instead of 
lassi
al polynomial6



systems like Legendre, see [46℄ for very pre
ise error estimates in this dire
tion. The followingtheorem (taken from [48℄) summarizes the main properties of ('k)k2N as an interpolator:Theorem 2 For any positive real value 
, the eigenfun
tions 'k, k 2 N are purely real and
omplete in L2(�T; T ). The even-numbered eigen fun
tions are even, and the odd-numberedare odd a

ording to the order of de
reasing eigenvalues whi
h are non-zero and simple. Theeigenfun
tions 
onstitute a Chebyshev system on [�T; T ℄, in parti
ular, 'k has exa
tly kzeros in this interval.PSWF satisfy also another eigenvalue problem whi
h reads [24,44,48℄:�k'k(t) = Z T�T 'k(�) exp(i
ts)ds; �k = 
2� j�kj2: (4)This formulation has the drawba
k of involving imaginary eigenvalues �k when k is odd;however, it involves a kernel ~K whi
h depends only on the produ
t st (
ompare with (1)).At this point, it is important in the 
ontext of PSWF to make a 
lear distin
tion between� approximation of bandlimited fun
tions on R, that is, approximation in PW! by meansof  k, k 2 N whi
h are normalized so as to have k kkL2(R) = 1 (whi
h implies thatk'kkL2(�T;T ) = p�k ! 0 when k grows) as studied for instan
e in [40℄,� and approximation in the spa
e L2(�T; T ), as presented in Theorem 2 or in [4,48,46℄,whi
h is made with fun
tions 'k normalized so as k'kkL2(�T;T ) = 1 (whi
h implies thatk kkL2(R) = 1p�k ! +1, espe
ially for very delo
alized fun
tions su
h that k � 2
=�).Theorem 3 Let f 2 Hr(�T; T ) the Sobolev spa
e of fun
tions of L2(�T; T ) having allderivatives up to order r � 0 in L2(�T; T ) have the expansion: f(t) = Pk2N fk'k(t).Then, if the parameter 
 asso
iated to 'k is su
h that %N (
) := 2
�(N+ 12 ) < 1, there holds:jfN j � C nN� 23 rkfkHr(�T;T ) + %N(
)ÆNkfkL2(�T;T )o : (5)The 
onstants C; Æ are independent of f;N , and the Slepian parameter 
.This error estimate appears in [11,4,46℄ in slightly di�erent forms. Following Wang [46℄, were
all the Sturm-Liouville operator asso
iated with the system of PSWF 'k, k 2 N, for a7



�xed value 
 > 0 of the Slepian parameter and u a smooth fun
tion,8t 2 [�1; 1℄; D
u(t) = � ddt �w(t)du(t)dt �+ (
t)2u(t) with w(t) = 1� t2;whi
h is 
learly self-adjoint and positive and for any integer r � 0, the Hilbert spa
e:~Hr
 (�1; 1) = nu 2 L2(�1; 1) su
h that kuk ~Hr
 =q< (D
)ru; u >[�1;1℄ < +1o : (6)Thanks to the \lu
ky a

ident", PSWF also satisfy D
'k = �k'k and it turns out that:kuk2~Hr
 (�1;1) =Xk�0(�k)r ��< u;'k >[�1;1℄��2 ; 
 > 0:Theorem 4 Let f 2 ~Hr
 (�1; 1) with r � 0 as de�ned in (6); it holds that,




f � NXk=0 < f; 'k >[�1;1℄ 'k




L2(�1;1) � N�rkfk ~Hr
 (�1;1): (7)
Hen
e spe
tral a

ura
y holds without restri
tion for fun
tions belonging to the Hilbertspa
es (6). The �rst PSWF  0 has been used as a s
aling fun
tion to 
onstru
t a Multi-resolution analysis (MRA) of L2(R) enjoying spe
i�
 properties; see [44℄. On Fig. 1, wedisplay the �rst 10 PSWF 'k with 
 = 130, T = 1 and 256 grid points in the t variable:
3 Restri
ted Isometry Property (RIP) and sparse `1-re
overyIn the sequel, we shall only be interested in the \single" orthogonal system of PSWF 'k ,k 2 N, 
omplete in L2(�T; T ) and normalized so as to have k'kkL2(�T;T ) = 1. Without lossof generality, the value of T 
an be �xed to T = 1 as suggested in [44℄, Remark 1.8
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Fig. 1. First 10 PSWF (top: even, bottom: odd) with 
 = 130 and T = 1.3.1 Preliminaries on Compressed Sensing (CS)Let us begin by re
alling the `p norm in RN for N 2 N:kxk`p =  NXk=1 jxkjp! 1p ; 0 < p <1; x := (xk)k=1;:::;N :The 2 extreme 
ases p = 0 and p =1 are de�ned as follows:kxk`1 = maxk=1;:::;N jxk j; kxk`0 = #fxk; xk 6= 0g 2 N;with the symbol # denoting the 
ardinal number of a set. Any given ve
tor x in RN is saidto be sparse as soon as kxk`0 is smaller than a 
ertain threshold value, generally denoted bys 2 N. An important quantity is the best s-term approximation [12℄ of a ve
tor x 2 RNin `p whi
h reads: �s(x)`p := infy: kyk`0�s ky � xk`p :A dire
t 
onsequen
e of this de�nition is that �s(x)`p = 0 for all p if x is s-sparse; similarly, xis 
alled 
ompressible if �s(x)`1 de
ays at a fast rate with in
reasing values of s. A
tually,it has been proved rigorously that, for any q < p, there holds �s(x)`p � s 1p� 1q kxk`q . Care9



must be taken be
ause sparse signals don't generate a linear spa
e as the sum of two s-sparseve
tors may only be 2s-sparse. The error estimate (5) implies that fun
tions in Hr(�1; 1)yield 
ompressible ve
tors in 
onvenient PSWF bases for whi
h %N (
) < 1.We need a bit of terminology as we aim at 
omputing eÆ
iently a sparse solution of a linearsystem of the following form: y = �x where y 2 Rm is the information ve
tor, m istherefore the number of samples. The matrix � is usually not square but m�N instead; itis referred to as to the en
oder or the measurement matrix. In the present 
ontext, itis a portion of the matrix A written in Theorem 7.1 in [48℄. The integer N stands for themaximum number of 
omponents whi
h is ne
essary to represent a signal of L2(�1; 1) inthe PSWF base: a

ording to [4,11,46℄, it depends linearly on the Slepian parameter 
:N = 2
� ) %N(
) < 1:In order to re
over the sparse (or at least, 
ompressible) ve
tor x, we need a de
oder �; westress that � is not required to be linear, but is must have the exa
t re
overy propertyfor s-sparse signals (s� N): kxk`0 � s) �(�x) = x:At last, the number of samples m must be smaller than the total number of grid pointsused to represent a signal in the time variable: we 
all M � m this number of grid points.A fundamental stepping stone for establishing the exa
t re
overy property for sparse signalsis the so{
alled restri
ted isometry property (RIP) (see [5,1℄):De�nition 1 For any integer s � N , the restri
ted isometry 
onstant Æs of a (possiblyre
tangular) measurement matrix � is the smallest nonnegative number su
h that it holdsfor every s-sparse ve
tor:(1� Æs)kxk2̀2 � k�xk2̀2 � (1 + Æs)kxk2̀2 :The following theorem is fundamental as it expresses the fa
t that if an en
oder � is endowedwith a restri
ted isometry 
onstant whi
h is small enough, then the 
orresponding de
oding
an be done simply by solving the `1 minimization problem:10



Theorem 5 (see [5,6,18℄) Let Æs stand for the restri
ted isometry 
onstant (an in
reasingfun
tion of s� N) of the m�N measurement matrix �. Assume further that there holds:Æ2s < 23 +q 74 ' 0:4627Then, if x� denotes the solution of the `1 minimization problem,inf kzk`1 su
h that �z = �x; (8)then the following error estimate holds:kx� x�k`2 � C �s(x)`1ps : (9)The 
onstant C depends only on Æ2s and the re
overy is exa
t in 
ase the ve
tor is s-sparse.3.2 Uniform bound for a subset of N �rst PSWF and exa
t re
overy propertyAnother step 
an be made when the en
oder � is a matrix whose 
olumns 
ontains sampledvalues of an orthonormal system of fun
tions, as it is the 
ase for the PSWF 'k normalizedsu
h that k'kkL2(A) = 1: ZA 'i(t)'j(t):d�(t) = Æi;j ; (10)with � is a probability measure on the measurable spa
e A (in most of the 
ases A = [�1; 1℄and � is simply the Lebesgue measure) and Æi;j stands for the Krone
ker symbol.Theorem 6 (see [33,34℄) Assume that the orthonormal system 'k is bounded in L1(A):supk<N supt2A j'k(t)j � KN ; KN � 1: (11)If the m�N measurement matrix � is built from this bounded basis fun
tions, then formlogm � CK2NÆ2 s(log s)2 logN; (12)it holds that, with probability at least 1 �N�
(log s)2 logm, the restri
ted isometry 
onstant11



Æs of 1pm� satis�es Æs � Æ. The 
onstants C; 
 > 0 are universal.Remark 1 The bound (12) whi
h gives only that Æs � Æ. However, in order to apply theresults of [18℄ whi
h ensure the exa
t re
overy property, one needs to have a bound onÆ2s. Hen
e it turns out that (12) rigorously implies that the \`1 minimization de
oder" �re
overs exa
tly s2 -sparse signals. The stronger restri
tion m � C�2s(logN)4 where � isthe 
on
entration measure parameter (as studied in e.g. [7℄) yields dire
tly the exa
tre
overy property with higher probability 1�N�
(logN)3 (whi
h is independent of s).All in all, the pre
eding results suggest that a 
ru
ial ingredient toward establishing theexa
t re
overy property for the en
oder � 2 Rm�N being built out of the PSWF base 'kis a uniform bound like (11). This is the purpose of the following result:Lemma 1 Let 0 < � < 1 and N be the higher integer su
h that �N�1 � �. There hold:(1) supk<N supt2[�T;T ℄ j'k(t)j �q 
T��k'kkL2(�T;T ) := KN (
),(2) let U stand for the orthonormal N �N matrix whose entry at (j; k) 2 [0; N � 1℄2 reads'k(�T + jh), h = 2TN , then �(U) := pN maxj;k jUj;kj � Tq 2
�� where 
 = 2�T!.The bound (1) of Lemma 1 is quite logi
al: it grows together with ! be
ause in
reasing the
ut-o� frequen
y allows for more 
on
entrated fun
tions in [�T; T ℄. In
reasing T means thata larger interval is 
onsidered and with the same 
ut-o� frequen
y, a major 
on
entrationratio 
an also be a
hieved.Proof: From (4) and for all t 2 [�T; T ℄, we get by H�older's inequality:j'k(t)j � 1j�kj  Z T�T j exp(i
t�)j2d�!1=2 k'kkL2(�T;T ) � p2Tj�kj k'kkL2(�T;T ):The idea is now to 
onsider k'kkL2(�T;T ) as a degree of freedom. Based on a result by Landauand Widom [26℄ (re
alled in e.g. [23,48℄), given 0 < � < 1, the number of eigenvalues greaterthat � reads: N = 2
� + log 
�2 log�1� �� �+O(log 
):Thus, sin
e 1j�kj =q 
2��k , we have for 0 � k < N ,j'k(t)j �r 
T��k'kkL2(�T;T );12



and the �rst point is proved. At this point, we use the degree of freedom: havingN dis
retiza-tion points uniformly griding [�T; T ℄, we have k'kk2L2(�T;T ) =PN�1j=0 hj'k(�T+jh)j2+o(h)with h = 2T=N . In order to ensure that U is an orthonormal matrix, a suÆ
ient 
onditionis to ask for k'kk2L2(�T;T ) = h. We 
an now de�ne the parameter � as in [5,7℄ and it 
omesthat: � � pNr 
T��r2TN = Tr 2
��:2Remark 2 � The bound on � 
an be 
ompared with the one where U is the dis
rete Fouriertransform matrix like in x3.4 of [5℄. We insist on the fa
t that a

ording to Theorem 3,the region where �k ' 1 allows for high a

ura
y approximation for smooth fun
tionsbelonging to Hr(�T; T ). For the 
hoi
e T = 1, one gets easily that �2 � 4!=� whi
himplies a �rst bound on the minimum amount of samples for the exa
t re
overy of as-sparse signal in the N-
omponent PSWF base with 
ut-o� frequen
y ! > 0:m � C �4!� � s(logN)4:� A dire
t argument hints that one shouldn't expe
t any uniform bound in the in�nity normto exist for k 2 N. Indeed, a

ording to Proposition 1 in [2℄, the following estimate holds:k'kkH1(�1;1) = k'kkL2(�1;1) + k'0kkL2(�1;1) � 1 + 
p�k ; (13)thanks to Bernstein's inequality for bandlimited fun
tions. It is well-known that in di-mension 1, the H1 norm 
ontrols the L1 one. The authors state ([2℄, page 266) thatthe existen
e of a uniform bound K
 for all k = 0; 1; ::: 
an be proved by observing thatPSWFs approa
h Legendre polynomials for j � 
 (see Theorem 5.2 in [4℄); however, asharp bound on these Legendre polynomials (re
alled in [34℄) yields that their in�nity normgrows like p2k + 1 hen
e this 
annot lead to proving the existen
e of su
h a quantity K
.The growth of the amplitude of Legendre polynomials is fully 
ompatible with the uniformbound on PSWFs proposed in [40℄ (see formula (11)) with identi
al normalization:8k 2 N; supt2[�1;1℄ j'k(t)j � 2pk:� The proof of Lemma 1 uses two main ingredients: the integral equation satis�ed by 'k (andwe know that the 
ase of the Paley-Wiener subspa
e of L2 is not unique) and the estimate13



on the number of eigenvalues greater than a 
ertain threshold. Thus it may hopefully beextended in various dire
tions: for instan
e, the 
ase where A is a �nite union of disjointintervals allows for the same Landau-Widom estimate: see Theorem 3 in [23℄ and [25℄for the 
onstru
tion of 
orresponding PSWF. Moreover, assuming a similar estimate 
anbe established, it may also be applied to the 
ase where the reprodu
ing kernel is Kj(s; t),the one 
orresponding to a j-s
ale-limited subspa
e of L2, see [28,27,20℄.Clearly, Lemma 1 shows a big di�eren
e with the 
ase of Legendre polynomials studied in[34℄ as they don't allow for any useful bound on the quantity � whi
h 
ontrols the minimumamount of samples m allowing for the exa
t re
overy property. This drawba
k 
omes fromthe fa
t that sharp \tails" appear very qui
kly with k in the vi
inity of t = �1; on the
ontrary, these \tails" appear only for PSWF with an index k bigger than 2
=�, and theseare pre
isely the ones that one doesn't need to have high a

ura
y. Hen
e the bigger amountof 
omputational work whi
h is required in order to generate the PSWF basis is somehowpaid ba
k through their ni
e properties.Theorem 7 Let T = 1 and the normalization be k'kkL2(�1;1) = 1 for all k 2 N. Suppose� is the m�N measurement random matrix built from 'k, k = 0; 1; :::; N � 1 and,mlogm � 9:35C �!�� s(log s)2 logN; �k=0;1;:::;N�1 � � 2℄0; 1[; (14)then, with probability at least 1�N�
(log s)2 logm, the `1-minimization program (8) re
oversexa
tly s2 -sparse ve
tors x 2 RN ; otherwise the error estimate (9) holds a

ordingly.We re
all that ! > 0 is the 
ut-o� frequen
y de�ning the Paley-Wiener spa
e PW! whoseorthonormal base reads (with the normalization of Theorem 7) P'k, k 2 N. Moreover, the\good number" of PSWF N depends on 
 and � and we have that 2
� � N < 
; a 
onvenientvalue for � is 12 be
ause in this 
ase, the Landau-Widom estimate gives N = 2
� +O(log(
))and 18:7 repla
es 9:35 in (14).Proof: From point (1) in Lemma 1, it suÆ
es to plug T = 1 and k'kkL2(�1;1) = 1 in orderto derive that KN(
)2 � 
�� = 2!� . Now, inserting this value inside (12) gives that therestri
ted isometry 
onstant of � satis�es Æs � Æ for whi
h we impose Æ = 0:4627 by takingadvantage of Theorem 5. It 
omes therefore that 2=Æ2 < 9:35 and sin
e we have a bound onÆs with high probability, the results of Fou
art [18℄ ensure that we exa
tly re
over s2 -sparseve
tors through `1 minimization. The 
onstants C; 
 are identi
al in Theorems 6 and 7. 214



3.3 Re
overy of fun
tions whi
h are sparse or \nearly sparse"Theorem 7 deals with the exa
t re
overy of a s2 -sparse solution out of a small number ofm random measurements. This extends in a straightforward manner to fun
tions whi
h areeither sparse or 
ompressible in the PSWF base:Corollary 1 Let T = 1, 
 = 2�! be the Slepian parameter, f 2 Hr(�1; 1) su
h that,8t 2 [�1; 1℄; f(t) = N�1Xk=0 fk'k(t); (15)and y = [f(t1); f(t2); :::; f(tm)℄ a ve
tor of m measurement values taken at the random lo-
ations ti drawn independently from the uniform probability measure on [�1; 1℄. If � is them�N measurement matrix whose kth 
olumn 
ontains the values 'k(ti) with k'kkL2(�1;1) =1 and if m meets the requirement (14), then the \best s2 -term approximation" of the 
oeÆ-
ient ve
tor ~f := (fk)k=0;:::;N�1 is re
overable with probability ex
eeding 1�N�
(log s)2 logmby means of the `1 minimization program (8). More pre
isely, if k~fk`0 � s2 , the re
overy isexa
t; otherwise, the following error estimate holds:k~f � ~f�k`2 � C2� s2 (~f)`1p s2 ; ~f� = arg miny=�z kzk`1 : (16)Proof: Having f exa
tly writable as a N -term expansion in the PSWF base 
orrespondingto the Slepian parameter 
 allows to move from a 
ontinuous problem to the dis
rete one
onsisting in re
overing ~f 2 RN from y 2 Rm whi
h 
an be handled by the methods re
alledin x3.1. With the measurement matrix � built as indi
ated, the 
riterion (14) ensures thatÆs � 0:4626 with high probability and this is a suÆ
ient 
ondition allowing to apply Theorem5 with a sparsity level equal to s2 . The error estimate (16) follows. 2Remark 3 Relying on Theorem 3, we know that any fun
tion in Hr(�1; 1) whi
h writesf(t) = Pk�0 fk'k(t) is strongly 
ompressible (see for instan
e Figure 3 in [3℄) be
auseits \best N-term approximation" is spe
trally a

urate as soon as %N (
) < 1 meaning thatN > 2
� � 12 . A strategy for treating fun
tions written as an in�nite PSWF series for whi
hthe parameter 
 is already �xed by means of a 
oeÆ
ient ve
tor ~f 2 RN only 
onsists in:(1) adjusting N in order to satisfy both the spe
tral a

ura
y 
riterion, in su
h a waythat the best N-term approximation be
omes simply the \�rst N terms approximation"15



written in (15), and a reasonable smallness level for the 
orresponding �;(2) re
overing a \best s2 -term approximation" out of the m random measurements with msatisfying (14); both L2 errors between f and its N-term approximation and between~f and ~f� 
an be 
ontrolled by (5) and (16) respe
tively.(3) in 
ase the strong 
riterion % s2 (
) < 1 is met, whi
h means that 
 < �(s+1)4 , then the
oeÆ
ients fk will strongly de
ay for k � s and either the re
overy of ~f through (8)will be exa
t, either the error (16) will be very small.A
tually, point (1) is deli
ate as it asks for �nding a 
ompromise between two antagonistrequirements. We shall study in the next se
tion a pre
onditioning method whi
h lightensthis situation by allowing to handle mu
h smaller values of �.In order to fully exploit the potential of Corollary 1, the best 
hoi
e is probably to sele
tthe fun
tions belonging to the spa
es ~Hr
 (�1; 1) as de�ned in (6) be
ause of the very fast
onvergen
e of �nite sums expressed in Theorem 4. In this 
ase, the approximation (15) isexponentially a

urate and even for moderate values of s, it 
an be 
onsidered as being exa
tin pra
ti
e. The `1 minimization pro
ess re
overs therefore a \best s2 -term approximation"of the 
oeÆ
ient ve
tor in RN out of a 
olle
tion of m samples taken at random; in 
ase Nis too low, a modi�ed pro
edure adapted to noisy measurements should be used [5,8℄.3.4 First set of numeri
al experimentsWe intend now to show examples to demonstrate both the feasibility and the eÆ
ien
yof the numeri
al pro
essing presented in Theorem 7; in parti
ular, we 
arried out the `1minimization program by means of the algorithm 
alled ROMP [30℄ to lower the CPU 
ost.Other numeri
al strategies exist for this minimization task: see also [10℄.3.4.1 Veri�
ation of the exa
t re
overy property for sparse signalsFirst, we set up a numeri
al test on the exa
t re
overy of a strongly under-sampled signaladmitting aM -term approximation in the PSWF base on [�1; 1℄ with 
 = 130 and 256 gridpoints. The 
ode generates at random M = 10 
oeÆ
ients between �1 and 1 together with10 random indexes 
orresponding to integer positions between 0 and 2
=� ' 82 := N . Thenthe signal f(t) is formed by linear 
ombination of the form (15) but with onlyM � N non-zero 
oeÆ
ients. Numeri
ally, it seems that the restri
tion (14) is somehow too restri
tiveand we sele
ted instead a number of samples equal to m = 32M log(N) to obtain the results16
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Fig. 2. Exa
t re
overy of ~f with k~fk`0 = 10.displayed on Fig. 2. The ROMP algorithm had a very qui
k 
onvergen
e and the pointwiseabsolute error is 
lose to ma
hine pre
ision and it is impossible to distinguish between theoriginal and the re
overed signals. The lo
ation of the random m samples is indi
ated onthe top left pi
ture; on the bottom left one, one 
an see the exa
t value of the absolutevalue of the 
oeÆ
ients fk (the small triangles) 
ompared to the re
overed ones (the bluelines) and also to the approximation obtained by a least squares approximation (in lightblue) whi
h is known to not promote sparsity. The red 
urve displays the behavior of theeigenvalues �k; beyond N ' 2
=�, the bounds of Lemma 1 are likely to blow up and theminimum number of samples m to maintain the exa
t re
overy property should grow upqui
kly before be
oming greater than N , whi
h makes the whole approa
h useless.3.4.2 Case of a signal involving too many 
omponents in the PSWF baseCorollary allows to treat 
ases for whi
h the numberm is too small a

ording to the 
omplex-ity of the original signal; in other words, there are too many non-zero 
oeÆ
ientsM 0 = k~fk`0and only a \best s-sparse approximation" 
an be re
overed through `1 minimization fromthe limited number m of samples. For this numeri
al test, we set up a similar frameworkthan in the pre
eding subse
tion, but this time we took 
 = 85 and M 0 = 19 =M +9 with17



still m = 32M log(N). The 
oeÆ
ients are again 
hosen in random lo
ations 
orrespondingto indexes smaller that the transition value 2
=� ' 55 := N . Two sets of numeri
al results
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Fig. 3. Two re
overy experiments for k~fk`0 = 19 but s = 9 only with 
 = 85.18



are displayed on Fig. 3: the left 
olumn shows a result where the re
overy was rather goodwhereas the right one 
orresponds to a less satisfying one. Espe
ially, the pointwise error onthe right 
olumn grows substantially 
lose to the left border and the re
overy of 
oeÆ
ientssu�ers from noti
eable errors. The number of samples used is roughly the same as in thepre
eding test, but it didn't allow for a good 
onvergen
e of the ROMP algorithm, espe
iallyon the se
ond test-
ase.4 Pre
onditioning the \tails" and non-uniformly distributed random samples
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Fig. 4. Delo
alized PSWF with k ' 2
=� and 
 = 85 (top: odd, bottom: even).4.1 Amplitude estimate on PSWF with series of Legendre polynomialsIt is a 
lassi
al fa
t [29,48℄ that any PSWF 'k de�ned on A = [�1; 1℄ admits an expansionbased on normalized Legendre polynomials; we denote �Pj(t) the orthonormal system ofnormalized Legendre polynomials whi
h satisfy:8i; j 2 N2 ; < �Pi; �Pj >A= Z 1�1 �Pi(t) �Pj(t)dt = Æi;j :19



A

ordingly, the Plan
herel equality yields:'k(t) =Xj�0 < 'k; �Pj >A �Pj(t); k'kk2L2(�1;1) =Xj�0 j < 'k; �Pj >A j2:Usually, the 
oeÆ
ients rewrite �kj :=< 'k; �Pj >A and any sequen
e �k belongs to `2(N).From [34,35℄, we get the following pointwise estimates for all t 2 [�1; 1℄, j; k 2 N2 :j �Pj(�1)j �rj + 12 ; (1� t2) 14 j �Pj(t)j � 1p� ; j'k(�1)j �rk + 12 : (17)In order to improve the pointwise estimate of Lemma 1, it sounds appealing to 
ompute:p�(1� t2) 14 j'k(t)j �Xj�0 j < 'k; �Pj >A j =Xj�0 j�kj j:Lemma 8 Let ba
 denote the integer part of a 2 R+ , that is, ba
 = maxfn 2 N; n � ag.For T = 1 and with the normalization k'kkL2(�1;1) = 1, there holds for any k 2 N:8t 2 [�1; 1℄; p�(1� t2) 14 j'k(t)j �Xj�0 j�kj j � 2(be

+ 1) + 122be

�k : (18)
Proof: The basi
 estimate is the one given inside Theorem 3.4 of [48℄: for j � 2(be

+1), onehas �kj < 21�j=�k. Thus, for any PSWF index k 2 N, we 
an split the in�nite summationas follows: Xj�0 j�kj j � 2be

+1Xj=0 j�kj j+ Xj�2be

+2 21�j�k := I + II:The term I is but a �nite summation: for A = [�1; 1℄, Cau
hy-S
hwarz inequality yields,j�kj j = j < 'k; �Pj >A j � k'kkL2(�1;1)k �PjkL2(�1;1) = 1;whi
h gives automati
ally:I = 2be

+1Xj=0 j�kj j � 2be

+1Xj=0 1 = 2(be

+ 1):20



Now, the se
ond term rewrites as a geometri
 series:II = 2�2be

�1�k Xj�0 2�j = 2�2be

�1�k 11� 1=2 :2Remark 4 The algorithms by Rauhut and Ward [34℄ eÆ
iently re
over signals whi
h aresparse in the Legendre polynomial basis. But sin
e PSWF are not sparse in this basis (asspe
ta
ularly shown in Theorem 11 of [35℄), it turns out that a signal whi
h is sparse in thePSWF basis may not be sparse in the Legendre basis and vi
e-versa.The estimate (18) is somewhat reminis
ent of the expression of the H1 norm given in (13).It isn't as ni
e as the uniform bound obtained on Legendre polynomials in [34℄ whi
h isvalid for any value of j 2 N, however, it 
ompares interestingly with the one obtained inLemma 1. Indeed, this former one explodes qui
kly with p�k ' �k as k grows beyond 2
=�and there is nothing in the denominator whi
h may dampen this pro
ess whereas in (18),the �k in the denominator is multiplied by a fa
tor 22be

 whi
h helps in keeping it fromgoing to zero too fast (but it will do eventually as k grows with 
 being �xed). This 
an bestated quantitatively on
e again thanks to the estimate by Landau and Widom:~N = 2
� + log 
�2 log�1� �� �+O(log 
); � = 2�2be

:For applying Lemma 1, the easiest 
hoi
e is to take � = 12 ; for Lemma 8, we get an extranumber of usable indexes k > N , this number being approximately for 
� 1,log�1� 2�2be

2�2be

 � = log(22be

 � 1) ' 2be

 log(2):4.2 Pre
onditioning ~N �rst PSWF gives RIP and exa
t re
overy propertyHere we follow 
ompletely the ideas presented in x5 of [34℄, that is to say we 
onsider theChebyshev probability measure �(dt) = dt�p1�t2 for t 2 (�1; 1) and we observe that sin
ePSWF are orthogonal with respe
t to the standard Lebesgue measure < 'i; 'j >A= Æi;j(the Krone
ker symbol), multiplying by p�(1 � t2) 14 makes then orthogonal with respe
t21



to the Chebyshev measure,Z 1�1 �(1� t2) 12'i(t)'j(t) dt�p1� t2 = Z 1�1 'i(t)'j(t)dt = Æi;j ; (19)and we re
over a parti
ular 
ase of (10). We 
an therefore apply Theorem 6 to dedu
e:Theorem 9 Let T = 1 and the normalization be k'kkL2(�1;1) = 1 for all k 2 N. Suppose	 is the m � N measurement matrix whose 
olumns read p�(1 � t2) 14'k(ti), ti 
hosenindependently a

ording to Chebyshev probability for i = 1; :::;m, k = 0; 1; :::; ~N � 1 andmlogm � C �2(be

+ 1) + 10:4626 �2 s(log s)2 log ~N; �k=0;1;:::; ~N�1 � 2�2be

;then, with probability at least 1� ~N�
(log s)2 logm, the pre
onditioned `1-minimization,inf kzk`1 subje
t to 	z = 	x; (20)re
overs exa
tly s2 -sparse ve
tors x 2 R ~N ; otherwise the error estimate (9) holds a

ordingly.Proof: From the expression of Chebyshev probability, the m�m diagonal pre
onditioningmatrix P built from p�(1� t2i ) 14 with i = 1; :::;m is invertible. Formula (19) implies that,np�(1� t2) 14'k(t)ok2N ;is an orthonormal 
omplete system of L2(�1; 1; d�). Moreover, (18) gives a L1 bound ona subset of this system for all indexes k < ~N su
h that � ~N�1 � 2�2be

. Hen
e we are inposition to apply Theorem 6 with KN given by (18), Æ = 0:4626 and 	 = P�: this yieldswith high probability the restri
ted isometry 
onstant of 	=pm being Æs < 0:4627 and thusallows to 
on
lude the proof by invoking Theorem 5 with a sparsity index s2 . 2It is interesting to 
ompare the 
ontents of Theorems 7 and 9 with both give suÆ
ient
onditions for exa
t re
overy of s2 -sparse ve
tors: the �rst one involves only the N �rstPSWF whi
h are endowed with eigenvalues greater than 12 whi
h, after a random samplinga

ording to the uniform probability on [�1; 1℄, 
onstitute the 
olumns of the measurementmatrix �. The minimum number of samples is a 
onsequen
e of the pointwise bound provedin Lemma 1. The \mira
le" 
omes from the Theorem 3 whi
h states that spe
tral a

ura
y22



holds in parti
ular for this (small) subset of N �rst PSWF hen
e su
h a strategy 
an be
onsidered reliable for re
overing smooth fun
tions belonging to Hr(�1; 1). The se
ond one,instead, takes advantage from both the pre
onditioning te
hnique proposed in [34℄ and the
lassi
al tri
k 
onsisting in rewriting PSWF as a Legendre polynomials expansion. Then,pre
onditioning the Legendre system allows to derive another (possibly larger) bound fora larger subset of ~N > N PSWF and this leads to similar re
overy properties valid for asupposedly wider 
lass of signals. On Fig.5 a 
omparison of the lo
ation of \big values" inside
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0.1929520Fig. 5. Biggest values appearing in the PSWF sensing 256 � 55 matrix (left, usedin x3) and in the pre
onditioned 300 � 55 one (right).the sensing matri
es is shown: on the left, this is the � sensing matrix built in Theorem7 for 256 points griding the interval [�1; 1℄, 
 = 85 and N = 2
=� whi
h 
orresponds to� ' 12 . On the right, this is the 	 pre
onditioned sensing matrix used in Theorem 9 for300 points griding the interval [�1; 1℄. The biggest value in modulus is visualized with thered points: on the left, it is lo
ated on the \tails" of the PSWF whi
h 
orrespond to theeigenvalues in the transition zone, dropping sharply from one to zero whereas on the right,it is on the mean value of the most 
on
entrated eigenfun
tion '0(0) = 1�0 R 1�1 '0(t)dt.As re
alled in [34℄, 
omputing a set of lo
ations ti drawn from Chebyshev probability on[�1; 1℄ is easy: it suÆ
es to get �rst a set of values �i a

ording to the uniform probabilityon [0; �℄, then ti = 
os(�i) meets the requirement.4.3 Pre
onditioning and eÆ
ient re
overy of fun
tions in ~Hr
 (�1; 1)First, we state a variant of a result shown by Fou
art and Lai [19℄ (see also [6,8℄):Theorem 10 Let � and P be matri
es of sizes m�N and m�m, respe
tively, and denote23



	 = P� for jP j 6= 0. Suppose that the restri
ted isometry 
onstant of 	 satis�es:Æ2s < 0:4627:Then, if x 2 RN and y := �x+�, � 2 Rm being a noise ve
tor, with k�k`2 � ", the solutionof the `1 minimization program,minz2RN kzk`1 subje
t to k	z � Pyk`2 � kPk"; (21)satis�es the following error estimates:kx� x�k`1 � C1�s(x)`1 +D1kPk"ps; kx� x�k`2 � C2�s(x)`1ps +D2kPk": (22)
We re
all that sin
e kPk is a subordinated matrix norm, it 
an be de�ned as:kPk := inf�2R+�kPvk`2(Rm) � �kvk`2(Rm) for v 2 Rm	 :And it is very natural to �x the noise level of the pre
onditioned program (21) as kPkk�k`2 .With this result at hand, it is now possible to prove the following 
orollary of Theorem 9:
Corollary 2 Let 
 > 0 be the Slepian parameter, T = 1, the normalization k'kkL2(�1;1) = 1for k 2 N, f 2 ~Hr
 (�1; 1), and �x s;N 2 N2 with s� N . Assume further that they satisfy,mlogm � C �2(be

+ 1) + 10:4626 �2 s(log s)2 logN; �k=0;1;:::;N�1 � 2�2be

; (23)and (t1; :::; tm) 2 [�1; 1℄m are m sampling points drawn at random from the Chebyshevprobability measure. Then, with probability ex
eeding 1�N�
(log s)2 logm, the \best s2 -termapproximation" of the ve
tor ~f := (< f; 'k >[�1;1℄)k=0;:::;N�1 2 RN 
an be re
overed out ofthe set of values y := (f(ti))i=1;:::;m 2 Rm by solving the `1 minimization program:~f� = argmin kzk`1(RN) subje
t to k	z � Pyk`2(Rm) � p� kfk ~Hr
 (�1;1) N�r:24



Pre
isely, the following error estimates hold:k~f � ~f�k`1 � C1� s2 (~f)`1 +D1N�rkfk ~Hr
 (�1;1)r�s2 ;k~f � ~f�k`2 � C2� s2 (~f)`1p s2 +D2p� N�rkfk ~Hr
 (�1;1):The 
onstants C; 
; C1; D1; C2; D2 are universal.Proof: The system 'k, k 2 N is 
omplete in L2(�1; 1) for any 
 > 0 thus f 2 ~Hr
 � L2(�1; 1)admits an expansion of the form: (we dropped the [�1; 1℄ for 
larity)f =Xk�0 < f; 'k > 'k = 0�N�1Xk=0 +Xk�N1A < f; 'k > 'k := N�1Xk=0 < f; 'k > 'k + �:Thanks to the results of [46℄ re
alled in Theorem 4, we get that k�kL2(�1;1) � N�rkfk ~Hr
 .We know from Theorem 6 that the 
ondition (23) is enough to ensure that the restri
tedisometry 
onstant for 	=pm satis�es Æs < 0:4627 with high probability. With probability1, the diagonal pre
onditioning m � m matrix P is invertible and its operator norm iskPk = p�. So, relying on Theorem 10, the `1 minimization program furnishes a \best s2 -term solution" ~f� satisfying the error estimates (22) for " := N�rkfk ~Hr
 kPk. The 
onstantsC; 
 are still the same as in the previous results. 2Remark 5 The approa
h in [34℄ is di�erent: Rauhut and Ward establish the existen
e ofa restri
ted isometry 
onstant for their pre
onditioned matrix 	=pm with high probability,but they solve a non-pre
onditioned `1 program involving a supposedly higher noise level(multiplied by pm). Here, we prove the same type of restri
ted isometry property, and then,for improving numeri
al eÆ
ien
y, the pre
onditioned `1 program involving 	 is treated.4.4 Se
ond set of numeri
al experiments (with pre
onditioning)In this se
tion too, ROMP is still used in order to lower as mu
h as possible the CPU 
ost.4.4.1 Exa
t re
overy property for sparse signals with N < 2
=�First, we verify that the exa
t re
overy property works �ne in pra
ti
e: the same frameworkis set up than in x3.4.1 with 
 = 85, T = 1 and 300 grid points. We generate the same25



type of random signals whi
h are sparse in the PSWF system of 'k, k � 2
=� ' 55. Therandom sampling points are taken a

ording to the Chebyshev probability measure whi
htends to give more importan
e to the areas 
lose to the edges of the 
omputational domain.The presentation of the numeri
al results is identi
al to the one of x3.4.1 ex
ept for the
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Fig. 6. Exa
t re
overy of ~f with k~fk`0 = 9 from 54 samples taken as random.
omparison with the least-squares sele
tion pro
edure as we know that it doesn't deliverthe expe
ted sparse representation. Instead, the pro
essing based on ROMP 
onverges veryqui
kly and the absolute pointwise error is below 10�15, whi
h 
an be 
onsidered as fullysatisfying. The values of the 9 PSWF 
oeÆ
ients is good too; m = 329 log(55) ' 54 sampleshave been used.4.4.2 Taking advantage of pre
onditioning with N > 2
=�We stress that for the present example, the bound on the non-pre
onditioned sensing matrixas 
omputed in Lemma 1 would 
ease to be useful for pra
ti
al 
omputations be
ause ofthe qui
k de
ay of p�k. Nevertheless, we set up the same framework than in the pre
edingsubse
tion, but his time, we allow the index k to grow up to 2
=� + 35 ' 90, whi
h resultsin the value p�90 ' 10�15. The 
ompensating fa
tor 22be

 = 2462 ' 1:19:10139 wouldprobably permit to go mu
h beyond this limit. We built up a random signal su
h that26



~f 2 R90 , k~fk`0 = 9 and m = 329 log(90) ' 61 samples have been taken independentlya

ording to Chebyshev probability. On Fig. 7, we see that the ROMP algorithm 
onverged
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Fig. 7. Exa
t re
overy of ~f with k~fk`0 = 9 from 61 samples taken as random.ni
ely, but more iterations are needed when 
ompared to former test-
ases. Out of 9, 2PSWF were lo
ated beyond the 
riti
al index 2
=� and they have been well re
overed. Theabsolute errors are still of the order of 10�15 thus the original and the re
overed signals areindistinguishable from one another.Remark 6 The PSWF fun
tions inside the range 2
� � k � 
 are usually the most usefulin order to 
arry out an extrapolation pro
ess based on the PSWF, seen this time as a DOSin the sense of Theorem 1 (see [41℄ p.388): let f 2 PW! with ! = 
2� , and suppose only itsrestri
tion T f to A = [�1; 1℄ is available:T f = f�[�1;1℄ =Xk�0�Z 1�1 f(t)'k(t)dt�'k ) f =Xk�0�Z 1�1 f(t)'k(t)dt�  kp�k ;is the most dire
t way to re
over values of su
h a bandlimited fun
tion outside the observa-tions interval. Now, it is in general hopeless to try to re
over 
oeÆ
ients 
orresponding tovery small eigenvalues at indexes k > 
, and even if it were feasible, numeri
al trun
ations27



errors would be highly ampli�ed by the very small divisors p�k. However, if the fun
tionf under 
onsideration is sparse in the base  k, or equivalently, if T f is sparse in 'k, thenhopefully the pre
onditioned `1 minimization pro
ess will be able to re
over its 
oeÆ
ientsexa
tly for 2
=� � k � 
 and its bandlimited extrapolation might give good results.4.4.3 Case of a noisy signal with N < 2
=�We now aim at re
overing a signal whi
h has been slightly 
orrupted by noise. Our noiseterm �(t) is generated by a random number generator working with the uniform probabilityon [�1; 1℄. Hen
e, we still generate a random s-sparse signal with a 
oeÆ
ient ve
tor ~fNbelonging to [�1; 1℄N , but we perturb the resulting observations �~fN with � being m�Nby the ve
tor of noisy terms 0:1� 2 [�0:1; 0:1℄m: these noisy observations are shown bymeans of the red 
urve on Fig. 8 (top, left). It is on this red 
urve that the m samples are
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Fig. 8. Re
overy involving 10% of noise with s = 9 and 
 = 85.taken, and the re
overy algorithm re
overs an approximate signal whi
h is depi
ted in blue.The absolute di�eren
e between the original signal and its re
overed version is displayed onthe top right graphi
 of Fig. 8: 
learly, the ma
hine a

ura
y error level has been lost, butthe general error level around 10�1 mat
hes k�k`1 . The re
overy of 
oeÆ
ients 
an also be
onsidered satisfying. 28



4.4.4 Case of a noisy signal with N > 2
=�This is a very unstable 
ase be
ause the re
overing pro
ess \tries" to express the randomnoise term � by means of a linear 
ombination of the supplementary PSWF we allow itselfto 
onsider inside the fast de
ay area (as shown on Fig.3 of [3℄). Hen
e it produ
es verybig 
oeÆ
ients asso
iated with indexes k whi
h are asso
iated with very small eigenvalues�k, the 
olumns of the sensing matrix remaining bounded nonetheless thanks to the pre-
onditioning. Sin
e these PSWF with high index k > 2
� don't have a big in
uen
e on the
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Fig. 9. Re
overy with 10% of noise, s = 9, 
 = 85 and N = 15 + 2
� .general shape of the signal inside the observations interval [�1; 1℄, the absolute error inthe re
overy is roughly the same 
ompared to the pre
eding test-
ase. However, the situa-tion when looking at the re
overy of the 
oeÆ
ient ve
tor on Fig. 9 shows a mu
h worsepi
ture: in parti
ular, setting up the extrapolation algorithm suggested in Remark 6 is 
om-pletely doomed to failure be
ause the division by p�k will amplify even more the spurious
oeÆ
ients whi
h result from the noise term (whi
h perturbs Pi
ard's 
onditions [15℄).29



5 Con
lusion and outlookWe presented in this paper a general way to apply Compressed Sensing methodology in orderto perform an eÆ
ient re
overy of signals having the pe
uliar feature of admitting a sparserepresentation in the PSWF base. Two distin
t ways to pro
eed have been studied, eitherestablishing a dire
t L1 bound on the sensing matrix (see Lemma 1) whi
h is a te
hniquewhi
h relies only on manipulating the eigenvalue problem satis�ed by the measurementensemble, either taking advantage of the parti
ular expansion of Slepian's fun
tions in theLegendre polynomials in order to take advantage of the pre
onditioning te
hnique proposedin [34℄ and proving an extended L1 bound (see Lemma 8) in this spe
ial 
ase. The advan-tage in pro
eeding this way lies in the possibility to re
over PSWF 
oeÆ
ients in the area
orresponding to small eigenvalues hen
e to try to extrapolate the observed signal outsidethe observations interval (as suggested in Remark 6). Clearly, this program 
annot be setup in 
ase the observations are 
orrupted by a small noise term.This approa
h 
an be generalized to the newly introdu
ed variants of 
lassi
al Slepianfun
tions: for instan
e, the PSWF asso
iated to the fra
tional Fourier transform [32℄ and theones in [47℄ whi
h are \bandlimited in a weighted sense" and therefore generalize Chebyshevpolynomials. This se
ond 
onstru
tion 
ould be the most straightforward one for extendingthe pre
onditioned framework proposed in x4 of the present paper, even at the pri
e ofheavier 
omputations. Finally, the \wavelet prolate fun
tions" studied in [27,20℄ may alsobe 
onvenient, at least for the te
hniques developed in our x3.A
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