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Compressed sensing with preconditioning for
sparse recovery with subsampled matrices of
Slepian prolate functions

Laurent Gosse *

IAC-CNR “Mauro Picone” (sezione di Bari)
Via Amendola 122/I - 70126 Bari, Italy

Abstract

Efficient recovery of smooth functions which are s-sparse with respect to the base of
so—called Prolate Spheroidal Wave Functions from a small number of random sam-
pling points is considered. The main ingredient in the design of both the algorithms
we propose here consists in establishing a uniform L* bound on the measurement
ensembles which constitute the columns of the sensing matrix. Such a bound pro-
vides us with the Restricted Isometry Property for this rectangular random matrix,
which leads to either the exact recovery property or the “best s-term approxima-
tion” of the original signal by means of the ¢! minimization program. The first
algorithm considers only a restricted number of columns for which the L holds as
a consequence of the fact that eigenvalues of the Bergman’s restriction operator are
close to 1 whereas the second one allows for a wider system of PSWF by taking ad-
vantage of a preconditioning technique. Numerical examples are spread throughout
the text to illustrate the results.

Key words: Doubly orthogonal sequences, Slepian functions, Compressed sensing,
restricted isometry property, Preconditioning, bandlimited extrapolation.
1991 MSC: 94all; 94a12; 94a20; 60b20

1 Introduction

Compressed sensing (CS), or Compressive Sampling, is a recent field of research which
hinges on a simple yet fascinating idea which led to a major rethinking of data acquisition
protocols. It is well known that signals of interest are generally endowed with a specific

structure making them concisely representable (that is, by means of quite a small number
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of generalized Fourier coefficients) in specific orthogonal bases. Hence, with the development
of e.g. new wavelet systems, transmission of these signals has been progressively reduced
to the one of a limited quantity of significant numbers. However, the acquisition protocols
for these signals were still working in a massive and expensive manner: the totality of
the amount of digital data was first acquired, and then later encoded in the appropriate
orthogonal basis. It was at this level that filtering was applied in order to reduce the number
of coeflicients to be actually considered; in general, a big proportion of them was discarded
which resulted in a wasteful processing. CS changed the whole framework by showing that,
under the same hypothesis on the original scene (the possibility of being expressed by very
few meaningful coefficients in a convenient basis, which is usually referred to as sparsity),
the computational cost of the data acquisition protocol can be drastically reduced. Indeed,
instead of acquiring the totality of the data to be later encoded, it limits itself to acquire
directly all the important information by measuring the projections of this sparse signal onto
a fixed set of well defined but randomly sampled basis vectors (which put together constitute
the random sensing matriz). The signal can therefore be under-sampled according to the
classical Shannon-Nyquist theory because the quantity of measurements is proportional to

the number of non-zero coefficients, and not to the width of the support of the spectrum.

This collection of basis vectors, sometimes referred to as a measurement ensemble, was
originally taken as a realization of Gaussian white noise or a sequence of Bernoulli random
variables as this choice asks for a near-minimal amount of sampling points [5]. However, in
practical applications, it is desirable to derive a CS strategy for signals which are sparse in
structured measurement ensembles, like e.g. the discrete Fourier basis, a Multi-Resolution
framework, or very recently the Legendre polynomial base [34]. In [7], the case of a sensing
matrix which originates from an orthonormal matrix is studied and sufficient conditions
ensuring the Restricted Isometry Property (RIP) [1] which leads to the exact recovery by

¢! minimization are given. These conditions have been later refined in e.g. [10,18,19,33].

In this paper, we follow this research program and show that another class of matrices can
be used in order to set up a CS algorithm: considering the so—called “Prolate Spheroidal
Wave functions” (PSWF), one gets for any value of their Slepian parameter ¢ > 0 an or-
thonormal base of L?(—1,1) [40,48]. These functions are restrictions to a compact interval
of bandlimited functions, hence entire functions of exponential type when extended to the
whole complex plane [42,41,22,23,29]. Entire functions, as they can be expressed as conver-
gent series for any value of their argument, may be viewed as “infinite degree generalization”

of polynomials. Moreover, it is a well-known fact that PSWF admit an expansion in the



Legendre polynomial basis, a feature which is useful for their practical computation [21].

In §2, the derivation of PSWF is recalled, starting from the inversion of Bergman’s re-
striction operator with Seip’s theorem on doubly-orthogonal sequences and composition of
two orthogonal projections in Hilbert space [38,36,31]. We made this choice for 2 reasons:
first, this emphasizes the very particular properties of this type of orthogonal bases, and
second, it shows that the doubly-orthogonal Slepian’s functions are by no means a unique
object [50]. Besides that, these bases allow to perform extrapolation of signals even if this ill-
conditioned problem has to be stabilized (see for instance [13,17]): hence in this perspective,
the exact recovery property for sparse signals of CS algorithms may become very valuable as
a limited amount of measurements can permit to reconstruct the signal’s very disconnected
spectrum with supposedly machine’s accuracy and then allow to extrapolate observations
made in, say, [—1, 1] to a bigger interval (see Remark 6). Usual interpolation properties for
PSWF are recalled in §2.2 together with error estimates for spectral approximation [4,11];

in particular, the recent estimates by Wang [46] are included.

§3 is devoted to proving a L>™ bound on a subset of the PSWF base on [—1, 1]; like Legendre
polynomials, PSWF can display sharp “tails” close to the edges of this interval. However,
the situation here is better compared to polynomials because there exists a collection of
indexes for which both a L bound and spectral accuracy hold as stated in Lemma 1;
roughly speaking, it corresponds to the PSWF endowed with eigenvalues not too far from 1
(this statement can be made precise by means of the classical Landau-Widom estimate, see
[26]). With this L> bound at hand, it is possible to follow the canvas of [7] and estimate the
concentration measure parameter 4 which leads to the RIP under technical assumptions. We
followed the approach of [33,34] which permits to reach similar conclusions under slightly
milder restrictions. Once the RIP is established, the results by Foucart [18,19] ensure that
either the exact recovery occurs, either accurate error estimates hold between the original
signal and its best k-term approximation [12]. Numerical test-cases are performed in §3.4

and illustrate previous theoretical results.

In §4, we follow the original idea of Rauhut and Ward [34] of including preconditioning
techniques inside a CS framework. Indeed, since the L* bound of Lemma 1 blow up as
more and more PSWF are added in the sensing matrix, it became desirable to derive
another methodology to handle more complex problems. It turned out that a simple diagonal
preconditioner (the same as used in [34]) allows to control the concentration measure of the

sensing matrix columns in a more robust way, see Lemma 8. This comes from the fact



that Slepian’s functions can be written as a series of Legendre polynomials for which fine
estimates have been proven on the coefficients [48]. The exact recovery property is shown
the same way as in §3, see Theorem 9, and the Corollary 2 is given concerning the recovery
of functions belonging to the Hilbert spaces H’(—1,1) studied in [46] for which spectral
accuracy always holds. Again, numerical tests are displayed in §4.4, involving more complex

and possibly noisy signals.

To the best of the author’s knowledge, the idea of performing CS with a sensing matrix built
from PSWF seems to be new; classical sampling theorems involving PSWF already exist,
see e.g. [25,43,44] and also [37] with references therein. However, no proof of the restricted

isometry property or the exact recovery of sparse signals appears.

2 Bergman’s restriction operator and Prolate spheroidal wave functions

2.1 Composition of orthogonal projections and doubly-orthogonal sequences

Our starting point is the Bergman-Shapiro problem for the inversion of a truncation operator
in a separable Hilbert space with scalar product < .,. >4. Let us denote # = L*(R), V a
closed linear subspace of H with P the orthogonal projection H =V and 7 : f € V = fxa
with x4 the characteristic function of a measurable set A C R. In this framework, a special

case of a result of Seip [36] can be stated:

Theorem 1 Assume V is a reproducing kernel Hilbert space (RKHS) and let (fi)ren be
an orthonormal basis of V. Then (fi)ren is furthermore orthogonal for the induced scalar
product < .,. >4:=< .,.xa >x if and only if fi are singular functions of PT; in such a

case, (fir)ren is said to be a doubly orthogonal sequence (DOS).

Let us recall that the general structure of the composition product of 2 orthogonal pro-
jections in a Hilbert space is studied by Nees in [31]. Such DOS seem to have been first
studied by Bergman in the context of analytic functions [38]; they are useful when it comes
to recover a function from its values on a subset of its domain of definition [39]. However,
in most cases, TP is a compact Hilbert-Schmidt operator (except if the Lebesgue measure
IR \ A| is small enough to ensure that the operator norm ||(Id — T)P|| < 1 which allows
for stable inversion by means of Neumann series, see e.g. [49,16]) therefore performing in-

version leads to a (possibly severely) ill-posed problem [15]; see however [17] for an original



regularization method and [13] for the recent approach called “geometric harmonics” [13].

A RKHS V C L?(R) with kernel K is a linear subspace which corresponding orthogonal

projection P rewrites as an integral operator:

FEV eyt f(t)=PrE) =< F(), K(,1) Sp= /RK(s,t)f(s)ds. (1)

Hence, given a measurable set A C R, one can define the so—called concentration operator
on A, TP, for the functions of V; for V' a subset of smooth functions and |A| bounded, the

Ascoli’s theorem ensures that 7P is compact and there holds:
ITPII> = |PTII> = [PTP|| = Xo with PTPto = Aotbo and PT f(t) =< f(.),K(.,t) >4 .

More generally, a sufficient condition for compactness is as follows [36]:

The first eigenfunction ¢y is the function of V' which realizes the maximum of concentration
on the set A; its corresponding eigenvalue Aq can be understood as the concentration ratio:
TP T T
Il f||L2(R) I 9||L2(R) _ I 1/)0||L2(R) _ \/)\_OS 1.

ITP||= sup ————— =sup =
rerr®)  Ifllzem) gev lgllzem) 1Yol L2 (m)

This equation is the starting point of the presentation by Slepian in [41] in the particular

case where V is chosen to be the Paley-Wiener space of w-bandlimited functions:

PW, = {f € L*(R) such that f(¢) := / f(t) exp(2imt€)dt is supported in [—w,w]} .
R

We stress that it is not the unique example to which these ideas can be applied: for instance,
one can choose V =V}, one of the nested linear subspaces of L?(R) constituting a Multi-
Resolution Analysis (MRA). In this case, the reproducing kernel in (1) reads K;(s,t) =
203 cn#(27s — n)¢(27t — n) [28] where j € Z is the scale index and ¢ is the so—called

“scaling function” whose integer shifts generate Vp; see e.g. [27,20].



The reproducing kernel for PW,, is the standard “sinc” function,

sin(2rw(t — s))

Kw(‘s:t) = 7T(t—8)

and one is led to seek the singular value decomposition (SVD) of the compact operator,

(2
PTF(t) / F(s) S ”t“’_ ) sin@rot=9)) )0 4, 2)
which has been thoroughly studied by Slepian, Landau and Pollak: see e.g. [22,23,29,42].
In particular, the integral operator (2) commutes with a second order differential operator:
Daubechies gives a geometric explanation of this “lucky accident” in [14]. Such a property

eases considerably the task of computing numerically the DOS associated to V = PW,,:
TPT(,Ok = APk, PT P = Apthy, keN

Many efforts have been dedicated to the derivation of efficient algorithms to compute the
peculiar PSWF system associated to PW,,: see [21,24,25,45,48]. As PW,, contains entire

functions of exponential type, 0 < Ax < 1 and an easy computation shows that:

Por
Y = —F—= Tk = V Ak
VA
Trying to solve directly the integral equations (2) is a very difficult task because the non-
negative eigenvalues )\, display a sharp behaviour depending on ¢ = 27wT, the so—called
Slepian parameter representing the area in the time-frequency plane, which makes them

decay supergeometrically [3] (see also [9,23]) to zero:

2
Ao =1 for k< =5, (3)
™

2.2 Spectral approzimation with Prolate Spheroidal wave functions

Prolate Spheroidal wave functions (PSWF) constitute an orthogonal base of L?(—T,T):
see [48,41,23,22 4]. Thus they can serve as an interpolator on any compact interval of R

as an alternative choice which can enjoy spectral accuracy instead of classical polynomial



systems like Legendre, see [46] for very precise error estimates in this direction. The following

theorem (taken from [48]) summarizes the main properties of (¢ )ren as an interpolator:

Theorem 2 For any positive real value ¢, the eigenfunctions ¢y, k € N are purely real and
complete in L2(—T,T). The even-numbered eigen functions are even, and the odd-numbered
are odd according to the order of decreasing eigenvalues which are non-zero and simple. The
eigenfunctions constitute a Chebyshev system on [—T,T], in particular, ¢y, has ezxactly k

zeros in this interval.
PSWF satisfy also another eigenvalue problem which reads [24,44,48]:

T
. c
pen(®) = [ ou(@explicts)ds, = -l 8
-T ™
This formulation has the drawback of involving imaginary eigenvalues u; when k& is odd;
however, it involves a kernel K which depends only on the product st (compare with (1)).

At this point, it is important in the context of PSWF to make a clear distinction between

e approximation of bandlimited functions on R, that is, approximation in PW,, by means
of ¢, k € N which are normalized so as to have |[¢x||z2(r) = 1 (which implies that
llerll2(—m, 1) = vV Ak = 0 when k grows) as studied for instance in [40],

e and approximation in the space L?(—T,T), as presented in Theorem 2 or in [4,48,46],
which is made with functions o3 normalized so as ||¢x||f2(—7,7) = 1 (which implies that

Y]l 2 m) = \/% — +oc, especially for very delocalized functions such that k > 2¢/7).

Theorem 3 Let f € H"(—T,T) the Sobolev space of functions of L?>(—T,T) having all
derivatives up to order r > 0 in L*(—T,T) have the expansion: f(t) = Y ,cn frpr(t).

Then, if the parameter ¢ associated to i is such that on(c) := ﬂ(l\foi-l) < 1, there holds:
associated to P 1
_2,
N < C{N N Sl crmy + on (N | fllaorm | (5)

The constants C, 6 are independent of f, N, and the Slepian parameter c.

This error estimate appears in [11,4,46] in slightly different forms. Following Wang [46], we
recall the Sturm-Liouville operator associated with the system of PSWF ¢, k € N, for a



fixed value ¢ > 0 of the Slepian parameter and u a smooth function,

vt e [-1,1], D.u(t) = —% (w(t) dZit)> + (ct)?u(t) with w(t) =1 — 2,

which is clearly self-adjoint and positive and for any integer r > 0, the Hilbert space:

H'(-1,1) = {u € L2(~1,1) such that |[ul| 7, = \/< (D) u,u >y < +oo}. (6)
Thanks to the “lucky accident”, PSWF also satisfy D.pr = xrpr and it turns out that:

2
||“||?E1;(71’1) = Z(Xk)r ‘< U, Pk >[_171]‘ ; c>0.
k>0

Theorem 4 Let f € H'(—1,1) with r > 0 as defined in (6); it holds that,

N
Hf - Z < fopr >1-11] @ SN 210y (7)

k=0

L2(=1,1)

Hence spectral accuracy holds without restriction for functions belonging to the Hilbert
spaces (6). The first PSWF )y has been used as a scaling function to construct a Multi-
resolution analysis (MRA) of L?(R) enjoying specific properties; see [44]. On Fig. 1, we
display the first 10 PSWF ¢, with ¢ = 130, T'= 1 and 256 grid points in the ¢ variable:

3 Restricted Isometry Property (RIP) and sparse (!-recovery

In the sequel, we shall only be interested in the “single” orthogonal system of PSWF ¢y,
k € N, complete in L?(—T,T) and normalized so as to have |l¢k||2(_7,r) = 1. Without loss

of generality, the value of T' can be fixed to T = 1 as suggested in [44], Remark 1.
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Fig. 1. First 10 PSWF (top: even, bottom: odd) with ¢ = 130 and T' = 1.

3.1 Preliminaries on Compressed Sensing (CS)

Let us begin by recalling the ¢? norm in RN for N € N:

Y=

N
lzllee = (Z |$kp> ; 0<p<oc, z:=(Tk)k=1,...N-
k=1

The 2 extreme cases p = 0 and p = oc are defined as follows:

el = max Jal, ol = #{ae, o # 0} €N,
with the symbol # denoting the cardinal number of a set. Any given vector x in RV is said
to be sparse as soon as ||z||¢o is smaller than a certain threshold value, generally denoted by
s € N. An important quantity is the best s-term approximation [12] of a vector z € RY
in /P which reads:

os(x)er = inf |ly —z||e.
y: [|yllgo<s

A direct consequence of this definition is that o4 (z),» = 0 for all p if = is s-sparse; similarly, =
is called compressible if o5(z),1 decays at a fast rate with increasing values of s. Actually,

it has been proved rigorously that, for any ¢ < p, there holds o4(z)p» < 8%7%||$||4q. Care



must be taken because sparse signals don’t generate a linear space as the sum of two s-sparse
vectors may only be 2s-sparse. The error estimate (5) implies that functions in H"(—1,1)

yield compressible vectors in convenient PSWF bases for which on(c) < 1.

We need a bit of terminology as we aim at computing efficiently a sparse solution of a linear
system of the following form: y = ®z where y € R™ is the information vector, m is
therefore the number of samples. The matrix ® is usually not square but m x N instead; it
is referred to as to the encoder or the measurement matrix. In the present context, it
is a portion of the matrix A written in Theorem 7.1 in [48]. The integer N stands for the
maximum number of components which is necessary to represent a signal of L?(—1,1) in
the PSWF base: according to [4,11,46], it depends linearly on the Slepian parameter c:

2
N:f:>QN(c)<1.

In order to recover the sparse (or at least, compressible) vector z, we need a decoder A; we
stress that A is not required to be linear, but is must have the exact recovery property

for s-sparse signals (s < N):
|zl < s = A(Pz) = z.

At last, the number of samples m must be smaller than the total number of grid points

used to represent a signal in the time variable: we call M > m this number of grid points.

A fundamental stepping stone for establishing the exact recovery property for sparse signals

is the so—called restricted isometry property (RIP) (see [5,1]):

Definition 1 For any integer s < N, the restricted isometry constant ds of a (possibly
rectangular) measurement matriz ® is the smallest nonnegative number such that it holds

for every s-sparse vector:

(1= dy)llzll7> < 1@ff7> < (1+8) |27

The following theorem is fundamental as it expresses the fact that if an encoder ® is endowed
with a restricted isometry constant which is small enough, then the corresponding decoding

can be done simply by solving the ¢! minimization problem:

10



Theorem 5 (see [5,6,18]) Let 05 stand for the restricted isometry constant (an increasing

function of s € N ) of the m x N measurement matriz ®. Assume further that there holds:

~ 0.4627

(523<
344/1

Then, if x* denotes the solution of the {1 minimization problem,

inf ||z]|¢1 such that ®z = Pz,

then the following error estimate holds:
Og (Cﬂ)p . (9)

e =) < 0% 7

The constant C' depends only on d25 and the recovery is exact in case the vector is s-sparse

3.2 Uniform bound for a subset of N first PSWF and exact recovery property

Another step can be made when the encoder ® is a matrix whose columns contains sampled
values of an orthonormal system of functions, as it is the case for the PSWF ¢ normalized
(10)

such that ||og||z2(4) = 1:
[ gm0 =,

with v is a probability measure on the measurable space A (in most of the cases A = [-1,1]

and v is simply the Lebesgue measure) and ¢; ; stands for the Kronecker symbol.

Theorem 6 (see [33,34]) Assume that the orthonormal system oy, is bounded in L>°(A):
(11)

sup sup |pg(t)| < Kn, Ky >1.
k<N tcA

If the m x N measurement matriz ® is built from this bounded basis functions, then for

K2
m C =L s(logs)?log N, (12)

>
logm = = §2

it holds that, with probability at least 1 — N—7(108 5)21°gm, the restricted isometry constant

11



ds of ﬁ@ satisfies 85 < 8. The constants C,vy > 0 are universal.

Remark 1 The bound (12) which gives only that §; < §. However, in order to apply the
results of [18] which ensure the exact recovery property, one needs to have a bound on
82s. Hence it turns out that (12) rigorously implies that the “¢* minimization decoder” A
recovers exactly 5-sparse signals. The stronger restriction m > Cu*s(log N)* where p is
the concentration measure parameter (as studied in e.g. [7]) yields directly the exact

(log N)?

recovery property with higher probability 1 — N7 (which is independent of s).

All in all, the preceding results suggest that a crucial ingredient toward establishing the
exact recovery property for the encoder ® € R™*" being built out of the PSWF base ¢y,

is a uniform bound like (11). This is the purpose of the following result:

Lemma 1 Let 0 < a <1 and N be the higher integer such that Ay_1 > «. There hold:

(1) supyen suprer1,17 lor (B)] < \/ £ llonllrzrr) = Kn(c),
(2) let U stand for the orthonormal N x N matriz whose entry at (j, k) € [0, N — 1] reads

k(=T + jh), h=2L, then p(U) := VN max;;, |U; x| < Ty\/ 2 where ¢ = 2nTw.

The bound (1) of Lemma 1 is quite logical: it grows together with w because increasing the
cut-off frequency allows for more concentrated functions in [-T, T']. Increasing T means that
a larger interval is considered and with the same cut-off frequency, a major concentration

ratio can also be achieved.

Proof: From (4) and for all ¢t € [-T,T], we get by Holder’s inequality:

ekl r2(=7,7)-

1/2
1 r , V2T
pr(t)] < el (/ |eXp(Zth)2d€> lerllr2-rm) < T

-T el

The idea is now to consider ||¢k||r2(—1,1) as a degree of freedom. Based on a result by Landau
and Widom [26] (recalled in e.g. [23,48]), given 0 < a < 1, the number of eigenvalues greater

that a reads:
2 1 1-—
N=24 i;:log (_a) + O(logc).
T T «

Thus, since \ul_k\ =, /ﬁ, we have for 0 < k < N,

cT
|k ()] < 4/ EH‘P’C”LQ(—T,T)a

12



and the first point is proved. At this point, we use the degree of freedom: having N discretiza-
tion points uniformly griding [T, T], we have ||¢x, ||%2(_T ™ = Z;V:_Ol hler(=T+jh)*+o(h)
with h = 2T'/N. In order to ensure that U is an orthonormal matrix, a sufficient condition

is to ask for ||‘Pk||%2(_T,T) = h. We can now define the parameter p as in [5,7] and it comes

T [2T 2
p< VNS5 =1y [ 2
TaV N T

that:

Remark 2 e The bound on pu can be compared with the one where U is the discrete Fourier
transform matriz like in §3.4 of [5]. We insist on the fact that according to Theorem 3,
the region where A\ ~ 1 allows for high accuracy approzimation for smooth functions
belonging to H"(=T,T). For the choice T = 1, one gets easily that u> < 4w/a which
implies a first bound on the minimum amount of samples for the exact recovery of a

s-sparse signal in the N-component PSWF base with cut-off frequency w > 0:
4
m>C (_w) s(log N)*.
o

o A direct argument hints that one shouldn’t expect any uniform bound in the infinity norm
to exist for k € N. Indeed, according to Proposition 1 in [2], the following estimate holds:

c
lorllar =1,y = llerllL2=1,1) + ||80;c||L2(—1,1) <1+ \/—A—k= (13)

thanks to Bernstein’s inequality for bandlimited functions. It is well-known that in di-
mension 1, the H' norm controls the L one. The authors state ([2], page 266) that
the existence of a uniform bound K. for all kK = 0,1, ... can be proved by observing that
PSWFs approach Legendre polynomials for j > ¢ (see Theorem 5.2 in [{]); however, a
sharp bound on these Legendre polynomials (recalled in [34]) yields that their infinity norm
grows like \/2k + 1 hence this cannot lead to proving the existence of such a quantity K.
The growth of the amplitude of Legendre polynomials is fully compatible with the uniform
bound on PSWFs proposed in [40] (see formula (11)) with identical normalization:

Vk €N, sup |ox(t)] < 2VE.

e The proof of Lemma 1 uses two main ingredients: the integral equation satisfied by ¢y, (and

we know that the case of the Paley- Wiener subspace of L? is not unique) and the estimate

13



on the number of eigenvalues greater than a certain threshold. Thus it may hopefully be
extended in various directions: for instance, the case where A is a finite union of disjoint
intervals allows for the same Landau-Widom estimate: see Theorem 3 in [23] and [25]
for the construction of corresponding PSWF. Moreover, assuming a similar estimate can
be established, it may also be applied to the case where the reproducing kernel is K;(s,t),

the one corresponding to a j-scale-limited subspace of L?, see [28,27,20].

Clearly, Lemma 1 shows a big difference with the case of Legendre polynomials studied in
[34] as they don’t allow for any useful bound on the quantity u which controls the minimum
amount of samples m allowing for the exact recovery property. This drawback comes from
the fact that sharp “tails” appear very quickly with £ in the vicinity of ¢ = £1; on the
contrary, these “tails” appear only for PSWF with an index k bigger than 2¢/m, and these
are precisely the ones that one doesn’t need to have high accuracy. Hence the bigger amount
of computational work which is required in order to generate the PSWF basis is somehow

paid back through their nice properties.

Theorem 7 Let T'= 1 and the normalization be ||og||r2(—1,1) = 1 for all k € N. Suppose

® is the m x N measurement random matriz built from oy, k=0,1,.... N — 1 and,

m w
>9. =) s(log s)*log N - > 1 14
logm_9350(a)s(0gs) 0gN,  M—o..n—1 2 a€l0,1] (14)

then, with probability at least 1 — N—7(og 5)? logm the (' -minimization program (8) recovers

exactly 5-sparse vectors x € RN ; otherwise the error estimate (9) holds accordingly.

We recall that w > 0 is the cut-off frequency defining the Paley-Wiener space PW,, whose
orthonormal base reads (with the normalization of Theorem 7) Pyy, k € N. Moreover, the
“good number” of PSWF N depends on ¢ and o and we have that % < N < ¢; a convenient
value for a is § because in this case, the Landau-Widom estimate gives N = 2 + O(log(c))

and 18.7 replaces 9.35 in (14).

Proof: From point (1) in Lemma 1, it suffices to plug 7' =1 and [|¢x||z2(~1,1) = 1 in order
to derive that Kn(c)? < = = 22, Now, inserting this value inside (12) gives that the
restricted isometry constant of ® satisfies 05 < § for which we impose § = 0.4627 by taking
advantage of Theorem 5. It comes therefore that 2/ < 9.35 and since we have a bound on
ds with high probability, the results of Foucart [18] ensure that we exactly recover 3-sparse

vectors through ¢' minimization. The constants C, v are identical in Theorems 6 and 7. O
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3.8  Recovery of functions which are sparse or “nearly sparse”

Theorem 7 deals with the exact recovery of a §-sparse solution out of a small number of
m random measurements. This extends in a straightforward manner to functions which are

either sparse or compressible in the PSWF base:

Corollary 1 Let T =1, ¢ = 27w be the Slepian parameter, f € H"(—1,1) such that,

N—-1
Vi e [_17 1]? f(t) = Z fk@k(t)a (15)
k=0

and y = [f(t1), f(t2), ..., f(tm)] a vector of m measurement values taken at the random lo-
cations t; drawn independently from the uniform probability measure on [—1,1]. If ® is the
mx N measurement matriz whose k' column contains the values o (t;) with ||¢k||r2(—11) =
1 and if m meets the requirement (14), then the “best 5-term approzimation” of the coeffi-

cient vector f:z (fx)k=0,.... N—1 is recoverable with probability exceeding 1 — N—(logs)*logm

by means of the (' minimization program (8). More precisely, if ||f||p < 3, the recovery is

ezxact; otherwise, the following error estimate holds:

-

r R U%(f)ll ok .
f = f*llee < Co—2—, fr= arg min [|2]] g1 (16)

\/g

Proof: Having f exactly writable as a N-term expansion in the PSWF base corresponding
to the Slepian parameter ¢ allows to move from a continuous problem to the discrete one
consisting in recovering f € RY from y € R™ which can be handled by the methods recalled
in §3.1. With the measurement matrix ® built as indicated, the criterion (14) ensures that
0s < 0.4626 with high probability and this is a sufficient condition allowing to apply Theorem

5 with a sparsity level equal to . The error estimate (16) follows. O

Remark 3 Relying on Theorem 3, we know that any function in H"(—1,1) which writes
f(t) = g0 frpr(t) is strongly compressible (see for instance Figure 3 in [3]) because
its “best N-term approzimation” is spectrally accurate as soon as on(c) < 1 meaning that
N > % — % A strategy for treating functions written as an infinite PSWF series for which

the parameter c is already fized by means of a coefficient vector f_‘E RN only consists in:

(1) adjusting N in order to satisfy both the spectral accuracy criterion, in such a way

that the best N -term approximation becomes simply the “first N terms approzimation”
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written in (15), and a reasonable smallness level for the corresponding a;

(2) recovering a “best 3-term approzimation” out of the m random measurements with m
satisfying (14); both L? errors between f and its N-term approzimation and between
F and f* can be controlled by (5) and (16) respectively.

(8) in case the strong criterion o5 (c) < 1 is met, which means that ¢ < @, then the

coefficients fr will strongly decay for k > s and either the recovery of f_‘ through (8)

will be exact, either the error (16) will be very small.

Actually, point (1) is delicate as it asks for finding a compromise between two antagonist
requirements. We shall study in the next section a preconditioning method which lightens

this situation by allowing to handle much smaller values of «.

In order to fully exploit the potential of Corollary 1, the best choice is probably to select
the functions belonging to the spaces H’(—1,1) as defined in (6) because of the very fast
convergence of finite sums expressed in Theorem 4. In this case, the approximation (15) is
exponentially accurate and even for moderate values of s, it can be considered as being exact
in practice. The ¢! minimization process recovers therefore a “best 5-term approximation”
of the coefficient vector in RV out of a collection of m samples taken at random; in case N

is too low, a modified procedure adapted to noisy measurements should be used [5,8].

3.4 First set of numerical experiments

We intend now to show examples to demonstrate both the feasibility and the efficiency
of the numerical processing presented in Theorem 7; in particular, we carried out the £!
minimization program by means of the algorithm called ROMP [30] to lower the CPU cost.

Other numerical strategies exist for this minimization task: see also [10].

3.4.1 Verification of the exact recovery property for sparse signals

First, we set up a numerical test on the exact recovery of a strongly under-sampled signal
admitting a M-term approximation in the PSWF base on [—1, 1] with ¢ = 130 and 256 grid
points. The code generates at random M = 10 coefficients between —1 and 1 together with
10 random indexes corresponding to integer positions between 0 and 2¢/7 ~ 82 := N. Then
the signal f(t) is formed by linear combination of the form (15) but with only M < N non-
zero coefficients. Numerically, it seems that the restriction (14) is somehow too restrictive

and we selected instead a number of samples equal to m = £M log(NN) to obtain the results
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Fig. 2. Exact recovery of f with ||f],0 = 10.

displayed on Fig. 2. The ROMP algorithm had a very quick convergence and the pointwise
absolute error is close to machine precision and it is impossible to distinguish between the
original and the recovered signals. The location of the random m samples is indicated on
the top left picture; on the bottom left one, one can see the exact value of the absolute
value of the coefficients fi (the small triangles) compared to the recovered ones (the blue
lines) and also to the approximation obtained by a least squares approximation (in light
blue) which is known to not promote sparsity. The red curve displays the behavior of the
eigenvalues Ag; beyond N ~ 2¢/m, the bounds of Lemma 1 are likely to blow up and the
minimum number of samples m to maintain the exact recovery property should grow up

quickly before becoming greater than IV, which makes the whole approach useless.

3.4.2  Case of a signal involving too many components in the PSWF base

Corollary allows to treat cases for which the number m is too small according to the complex-
ity of the original signal; in other words, there are too many non-zero coefficients M’ = || ]| 0
and only a “best s-sparse approximation” can be recovered through ¢! minimization from
the limited number m of samples. For this numerical test, we set up a similar framework

than in the preceding subsection, but this time we took ¢ = 85 and M' =19 = M + 9 with
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still m = %M log(N). The coefficients are again chosen in random locations corresponding

to indexes smaller that the transition value 2¢/7 ~ 55 := N. Two sets of numerical results
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Fig. 3. Two recovery experiments for | f]l,o = 19 but s = 9 only with ¢ = 85.
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are displayed on Fig. 3: the left column shows a result where the recovery was rather good
whereas the right one corresponds to a less satisfying one. Especially, the pointwise error on
the right column grows substantially close to the left border and the recovery of coefficients
suffers from noticeable errors. The number of samples used is roughly the same as in the
preceding test, but it didn’t allow for a good convergence of the ROMP algorithm, especially

on the second test-case.

4 Preconditioning the “tails” and non-uniformly distributed random samples

0.6

} ‘\W'L\.IA\\.\./A/\W \ \Q.KA “A'A'-'A W/ A\A Vl \VIA\W’A"

0 50 100 150 200 250 300

50 100 150 200 250 300

Fig. 4. Delocalized PSWF with k ~ 2¢/7 and ¢ = 85 (top: odd, bottom: even).

4.1  Amplitude estimate on PSWEF with series of Legendre polynomials

It is a classical fact [29,48] that any PSWF ¢}, defined on A = [—1, 1] admits an expansion
based on normalized Legendre polynomials; we denote P;(t) the orthonormal system of

normalized Legendre polynomials which satisfy:

Vij N, < PP, >a= / Pi(t)P; (t)dt = 6.
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Accordingly, the Plancherel equality yields:

k()= <o, Py >a Pit),  llerlizcany =D <o, Py >al”.

j=0 j=0

Usually, the coefficients rewrite Bf :=< ¢, P; >4 and any sequence 3* belongs to ¢*(N).
From [34,35], we get the following pointwise estimates for all ¢ € [—1,1], j, k € N?:

PEDIS ity O-PHROIS = e < kg 0D

In order to improve the pointwise estimate of Lemma 1, it sounds appealing to compute:

Vr(l _tQ)%|<pk(t)| < Z| <prPp>al= Z‘Bﬂ

J20 J20

Lemma 8 Let |a| denote the integer part of a € RY, that is, |a] = max{n € N, n < a}.

For T'= 1 and with the normalization ||py||r2(—1,1) = 1, there holds for any k € N:

Ve [-1,1],  Va(l—£)Tep()] < Y18 < 2(lec) + 1) +

J20

g (9

Proof: The basic estimate is the one given inside Theorem 3.4 of [48]: for j > 2(|ec] +1), one
has 631“ < 279/ puy,. Thus, for any PSWF index k € N, we can split the infinite summation

as follows:
2|ec]+1 1—j
AR DY =1 +11I.
J=0 J=0 j>2|ec]+2
The term T is but a finite summation: for A = [-1, 1], Cauchy-Schwarz inequality yields,

185 = | < or, Py >a | < llekllz2-1,nllPillpe—11) = 1,

which gives automatically:

2|ec]+1 2|ec|+1
I= Y Bj1< > 1=2(lec) +1).
7j=0 7j=0
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Now, the second term rewrites as a geometric series:

272[ecJ71 ) 272[ecJ71 1

112722732 .
Ik >0 Uk 1-1/2

Remark 4 The algorithms by Rauhut and Ward [34] efficiently recover signals which are
sparse in the Legendre polynomial basis. But since PSWF are not sparse in this basis (as
spectacularly shown in Theorem 11 of [85]), it turns out that a signal which is sparse in the

PSWF basis may not be sparse in the Legendre basis and vice-versa.

The estimate (18) is somewhat reminiscent of the expression of the H! norm given in (13).
It isn’t as nice as the uniform bound obtained on Legendre polynomials in [34] which is
valid for any value of j € N, however, it compares interestingly with the one obtained in
Lemma 1. Indeed, this former one explodes quickly with /Ay ~ uy as k grows beyond 2¢/m
and there is nothing in the denominator which may dampen this process whereas in (18),
the py in the denominator is multiplied by a factor 22l¢¢) which helps in keeping it from
going to zero too fast (but it will do eventually as k grows with ¢ being fixed). This can be

stated quantitatively once again thanks to the estimate by Landau and Widom:
<2 1 1-
N = —C+£2010g (_a) + O(logc), o = 272leel,
™ T !

For applying Lemma 1, the easiest choice is to take a = %; for Lemma 8, we get an extra

number of usable indexes k > N, this number being approximately for ¢ > 1,

1— 272Lecj e
log (W> = log(2*1°°) — 1) ~ 2|ec] log(2).

4.2 Preconditioning N first PSWF gives RIP and ezact recovery property

Here we follow completely the ideas presented in §5 of [34], that is to say we consider the
Chebyshev probability measure v(dt) = m/% for t € (—1,1) and we observe that since
PSWF are orthogonal with respect to the standard Lebesgue measure < ¢;,p; >a= §; ;
(the Kronecker symbol), multiplying by /7(1 — 2)3 makes then orthogonal with respect
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to the Chebyshev measure,

[ m-reten—2= = [ atema=s, (19)

—1
and we recover a particular case of (10). We can therefore apply Theorem 6 to deduce:
Theorem 9 Let T = 1 and the normalization be ||||r2(—1,1) = 1 for all k € N. Suppose

U is the m X N measurement matriz whose columns read /m(1 — 12)3 i (t;), t; chosen

independently according to Chebyshev probability fori=1,...m, k=0,1,..., N —1 and

m _C<2(Lecj+1)+1

2

then, with probability at least 1 — N—(logs)® logm the preconditioned € -minimization,
inf ||z||n subject to Uz = Tz, (20)

recovers exactly 5-sparse vectors x € RV ; otherwise the error estimate (9) holds accordingly.

Proof: From the expression of Chebyshev probability, the m x m diagonal preconditioning

matrix P built from /7 (1 — t?)% with ¢ = 1,...,m is invertible. Formula (19) implies that,

{vra-®iam}
keEN

is an orthonormal complete system of L?(—1,1;dv). Moreover, (18) gives a L> bound on

a subset of this system for all indexes k < N such that HR_q > 2-2lec] Hence we are in

position to apply Theorem 6 with Ky given by (18), § = 0.4626 and ¥ = P®: this yields

with high probability the restricted isometry constant of ¥/,/m being §; < 0.4627 and thus

allows to conclude the proof by invoking Theorem 5 with a sparsity index 5. O

It is interesting to compare the contents of Theorems 7 and 9 with both give sufficient
conditions for exact recovery of J-sparse vectors: the first one involves only the N first
PSWF which are endowed with eigenvalues greater than % which, after a random sampling
according to the uniform probability on [—1, 1], constitute the columns of the measurement
matrix ®. The minimum number of samples is a consequence of the pointwise bound proved

in Lemma 1. The “miracle” comes from the Theorem 3 which states that spectral accuracy
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holds in particular for this (small) subset of N first PSWF hence such a strategy can be
considered reliable for recovering smooth functions belonging to H"(—1, 1). The second one,
instead, takes advantage from both the preconditioning technique proposed in [34] and the
classical trick consisting in rewriting PSWF as a Legendre polynomials expansion. Then,
preconditioning the Legendre system allows to derive another (possibly larger) bound for
a larger subset of N > N PSWF and this leads to similar recovery properties valid for a

supposedly wider class of signals. On Fig.5 a comparison of the location of “big values” inside

— 0.0756243 //|— 0.0385904

— 0.1512486 /" |— o0.0771808

107 . < 0.2268729

0.3024972
—— 03781215

L e s S FL L S B
50 100 150 200 250 300

0.1157712
01543616
— 01929520

Tt
250 300

Fig. 5. Biggest values appearing in the PSWF sensing 256 x 55 matrix (left, used
in §3) and in the preconditioned 300 x 55 one (right).

the sensing matrices is shown: on the left, this is the ® sensing matrix built in Theorem
7 for 256 points griding the interval [-1,1], ¢ = 85 and N = 2¢/m which corresponds to
o~ % On the right, this is the ¥ preconditioned sensing matrix used in Theorem 9 for
300 points griding the interval [—1,1]. The biggest value in modulus is visualized with the
red points: on the left, it is located on the “tails” of the PSWF which correspond to the
eigenvalues in the transition zone, dropping sharply from one to zero whereas on the right,

it is on the mean value of the most concentrated eigenfunction g(0) = ul—o fil wo(t)dt.

As recalled in [34], computing a set of locations ¢; drawn from Chebyshev probability on
[—1,1] is easy: it suffices to get first a set of values 7; according to the uniform probability

on [0, ], then ¢; = cos(;) meets the requirement.

4.8 Preconditioning and efficient recovery of functions in f[g(—l, 1)

First, we state a variant of a result shown by Foucart and Lai [19] (see also [6,8]):

Theorem 10 Let ® and P be matrices of sizes m X N and m X m, respectively, and denote
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U = P® for |P| # 0. Suppose that the restricted isometry constant of ¥ satisfies:
da2s < 0.4627.

Then, if x € RN and y := ®x+1n, n € R™ being a noise vector, with ||y, < e, the solution

of the ¢! minimization program,
min [|z||p subject to [[Vz — Pyl < ||P[le, (21)
z€R

satisfies the following error estimates:

s(x
o= "lls < Cuo@s + DiIPIeVS,  llo=a"llo < 252 4 DallPlle. (22
We recall that since ||P|| is a subordinated matrix norm, it can be defined as:
[|P| := ai€an+ {HPUH@(RW) < OLHUH[Q(Rm) forv € ]Rm} .

And it is very natural to fix the noise level of the preconditioned program (21) as || P||||n]|¢=-

With this result at hand, it is now possible to prove the following corollary of Theorem 9:

Corollary 2 Letc > 0 be the Slepian parameter, T = 1, the normalization || ||r2(-1,1) = 1
forkeN, fe }NIg’(—l, 1), and fiz s, N € N? with s < N. Assume further that they satisfy,

m 2(lec] +1)+1 2 9 5
> L — | log N _ _y > 97 2lee] 2
Togm = C < 0.4626 s(logs)“log N, Hk=01,...,N—1 > , (23)

and (t1,....,tm) € [—1,1]™ are m sampling points drawn at random from the Chebyshev
probability measure. Then, with probability exceeding 1 — N 7108 5)? logm  the “best S-term
approzrimation” of the vector f:z (< £ >[_171])k:0,___,N,1 € RN can be recovered out of
the set of values y := (f(t;))i=1,...m € R™ by solving the {* minimization program:

f*= arg min || 2|1 (rav) subject to || ¥z — Pyllpp@m) < VT Wl ar—a,y N7
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Precisely, the following error estimates hold:

= ™8

1= Flle < Cros () + DN fllgr 1,1 5

-

Ug(f)él
\/g

The constants C,~y,C1, D1, Cs, Dy are universal.

1f = Flle < O + Do/ N7 fll 1.1y

Proof: The system ¢y, k € N is complete in L2(—1, 1) for any ¢ > 0 thus f € H' C L*(—1,1)

admits an expansion of the form: (we dropped the [—1,1] for clarity)

N-1 N—-1
.f:z<fa‘;0k>‘;0k: Z"'Z <f:<Pk><Pk5:Z<fa‘Pk>‘Pk+77-
k>0 k=0 k>N k=0

Thanks to the results of [46] recalled in Theorem 4, we get that ||nl|z2(—11) < N7"||f[| 7.
We know from Theorem 6 that the condition (23) is enough to ensure that the restricted
isometry constant for ¥/ /m satisfies d; < 0.4627 with high probability. With probability
1, the diagonal preconditioning m x m matrix P is invertible and its operator norm is
|P|| = /7. So, relying on Theorem 10, the ¢! minimization program furnishes a “best %-
term solution” f* satisfying the error estimates (22) for & := N"”||f||H: [|[P||. The constants

C, are still the same as in the previous results. O

Remark 5 The approach in [34] is different: Rauhut and Ward establish the existence of
a restricted isometry constant for their preconditioned matriz U /\/m with high probability,
but they solve a nmon-preconditioned €' program involving a supposedly higher noise level
(multiplied by +/m). Here, we prove the same type of restricted isometry property, and then,

for improving numerical efficiency, the preconditioned €' program involving ¥ is treated.
4.4 Second set of numerical experiments (with preconditioning)
In this section too, ROMP is still used in order to lower as much as possible the CPU cost.

4.4.1 Exact recovery property for sparse signals with N < 2¢/n

First, we verify that the exact recovery property works fine in practice: the same framework

is set up than in §3.4.1 with ¢ = 85, T' = 1 and 300 grid points. We generate the same
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type of random signals which are sparse in the PSWF system of i, k < 2¢/7 ~ 55. The
random sampling points are taken according to the Chebyshev probability measure which
tends to give more importance to the areas close to the edges of the computational domain.

The presentation of the numerical results is identical to the one of §3.4.1 except for the
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Fig. 6. Exact recovery of f with ||f], = 9 from 54 samples taken as random.

comparison with the least-squares selection procedure as we know that it doesn’t deliver
the expected sparse representation. Instead, the processing based on ROMP converges very
quickly and the absolute pointwise error is below 107!%, which can be considered as fully
satisfying. The values of the 9 PSWF coefficients is good too; m = %910g(55) ~ 54 samples

have been used.

4.4.2  Taking advantage of preconditioning with N > 2¢/n

We stress that for the present example, the bound on the non-preconditioned sensing matrix
as computed in Lemma 1 would cease to be useful for practical computations because of
the quick decay of v/A;. Nevertheless, we set up the same framework than in the preceding
subsection, but his time, we allow the index & to grow up to 2¢/m + 35 ~ 90, which results
in the value v/Ago ~ 107 1°. The compensating factor 22l¢¢/ = 2462 ~ 1.19.10'3° would

probably permit to go much beyond this limit. We built up a random signal such that
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fe R |flle =9 and m = 3910g(90) ~ 61 samples have been taken independently
according to Chebyshev probability. On Fig. 7, we see that the ROMP algorithm converged

T T T T T T T I I - T T I LI ey T T
50 100 150 200 250 300 10 50 100 150 200 250 300
Absolute error

10 1 N 10
0 Résidus Cauchy
Résidus ROMP

Fig. 7. Exact recovery of f with ||f], = 9 from 61 samples taken as random.

nicely, but more iterations are needed when compared to former test-cases. Out of 9, 2
PSWF were located beyond the critical index 2¢/7 and they have been well recovered. The
absolute errors are still of the order of 107! thus the original and the recovered signals are

indistinguishable from one another.

Remark 6 The PSWF functions inside the range % < k < ¢ are usually the most useful
in order to carry out an extrapolation process based on the PSWEF, seen this time as a DOS

in the sense of Theorem 1 (see [41] p.388): let f € PW,, with w = =

5=, and suppose only its

restriction T f to A = [=1,1] is available:

T = =% (f 11 fenva) o= 5 =3 ([ 11 fpnttyr) .

k>0 N~ k>0 N~

is the most direct way to recover values of such a bandlimited function outside the observa-
tions interval. Now, it is in general hopeless to try to recover coefficients corresponding to

very small eigenvalues at indezes k > ¢, and even if it were feasible, numerical truncations
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errors would be highly amplified by the very small divisors \/\,. However, if the function
f under consideration is sparse in the base )y, or equivalently, if T f is sparse in ¢y, then
hopefully the preconditioned (' minimization process will be able to recover its coefficients

exactly for 2¢/m < k < ¢ and its bandlimited extrapolation might give good results.

4.4.3 Case of a noisy signal with N < 2¢/w

We now aim at recovering a signal which has been slightly corrupted by noise. Our noise
term 7)(t) is generated by a random number generator working with the uniform probability

n [—1,1]. Hence, we still generate a random s-sparse signal with a coefficient vector f_;v
belonging to [—1,1]", but we perturb the resulting observations & fy with ® being m x N
by the vector of noisy terms 0.1n € [—0.1,0.1]™: these noisy observations are shown by

means of the red curve on Fig. 8 (top, left). It is on this red curve that the m samples are
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Fig. 8. Recovery involving 10% of noise with s = 9 and ¢ = 85.

taken, and the recovery algorithm recovers an approximate signal which is depicted in blue.
The absolute difference between the original signal and its recovered version is displayed on
the top right graphic of Fig. 8: clearly, the machine accuracy error level has been lost, but
the general error level around 10~ matches ||5||s. The recovery of coefficients can also be

considered satisfying.
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4.4.4 Case of a noisy signal with N > 2¢/w

This is a very unstable case because the recovering process “tries” to express the random
noise term 7 by means of a linear combination of the supplementary PSWF we allow itself
to consider inside the fast decay area (as shown on Fig.3 of [3]). Hence it produces very
big coefficients associated with indexes k& which are associated with very small eigenvalues
Ak, the columns of the sensing matrix remaining bounded nonetheless thanks to the pre-

conditioning. Since these PSWF with high index & > % don’t have a big influence on the
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Fig. 9. Recovery with 10% of noise, s =9, c =85 and N = 15 + %

general shape of the signal inside the observations interval [—1,1], the absolute error in
the recovery is roughly the same compared to the preceding test-case. However, the situa-
tion when looking at the recovery of the coefficient vector on Fig. 9 shows a much worse
picture: in particular, setting up the extrapolation algorithm suggested in Remark 6 is com-
pletely doomed to failure because the division by v/ will amplify even more the spurious

coefficients which result from the noise term (which perturbs Picard’s conditions [15]).
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5 Conclusion and outlook

We presented in this paper a general way to apply Compressed Sensing methodology in order
to perform an efficient recovery of signals having the peculiar feature of admitting a sparse
representation in the PSWF base. Two distinct ways to proceed have been studied, either
establishing a direct L* bound on the sensing matrix (see Lemma 1) which is a technique
which relies only on manipulating the eigenvalue problem satisfied by the measurement
ensemble, either taking advantage of the particular expansion of Slepian’s functions in the
Legendre polynomials in order to take advantage of the preconditioning technique proposed
in [34] and proving an extended L bound (see Lemma 8) in this special case. The advan-
tage in proceeding this way lies in the possibility to recover PSWF coefficients in the area
corresponding to small eigenvalues hence to try to extrapolate the observed signal outside
the observations interval (as suggested in Remark 6). Clearly, this program cannot be set

up in case the observations are corrupted by a small noise term.

This approach can be generalized to the newly introduced variants of classical Slepian
functions: for instance, the PSWF associated to the fractional Fourier transform [32] and the
ones in [47] which are “bandlimited in a weighted sense” and therefore generalize Chebyshev
polynomials. This second construction could be the most straightforward one for extending
the preconditioned framework proposed in §4 of the present paper, even at the price of
heavier computations. Finally, the “wavelet prolate functions” studied in [27,20] may also

be convenient, at least for the techniques developed in our §3.

Acknowledgments

The author is grateful to Prof. E.J. Candés and H. Rauhut for advices and discussions.

References

[1] R.G. Baraniuk, M. Davenport, R. DeVore, M. Wakin, A simple proof of the
restricted isometry property for random matrices, Construct. Approx. 28 (2008)
253-263.

[2] G. Beylkin, K. Sandberg, Wave propagation wusing bases for bandlimited
functions, Wave Motion 41 (2005) 263-291.

[3] John P. Boyd, Approzimation of an analytic function on a finite real interval
by a band-limited function and conjectures on properties of prolate spheroidal

30



functions, Appl. Comp. Harm. Anal. 15 (2003) 168-176.

[4] John P. Boyd, Prolate spheroidal wave functions as an alternative to Chebyshev
and Legendre polynomials for spectral element and pseudo-spectral algorithms,
J. Comp. Phys. 199 (2004) 688-716

[5] E.J. Candes, Compressive sampling, Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006.

6] E.J. Candeés, The restricted isometry property and its implications for
compressed sensing C.R. Acad. Sci. Paris, Serie I, 346 589-592.

[7] E.J. Candés and J. Romberg, Sparsity and incoherence in compressive sampling,
Inverse Problems 23 (2007) 969-985.

[8] E.J. Candes, J. Romberg and T. Tao, Stable signal recovery from incomplete
and inaccurate measurements, Comm. Pure Appl. Math. 59 1207-1223.

[9] C.H. Chang, C.W. Ha, Sharp inequalities of singular values of smooth kernels,
Integral Equations and Operator Theory 35 (1999) 20-27.

[10] R. Chartrand, FEzact reconstruction of sparse signals via nonconvez
minimization, IEEE Signal Processing Letters, 14 (2007) 707-710.

[11] Q.Y. Chen, D. Gottlieb, J.S. Hesthaven, Spectral methods based on Prolate
spheroidal wave functions for hyperbolic PDEs, SIAM J. Numer. Anal. 43 (2005)
1912-1933.

[12] A. Cohen, W. Dahmen, R. DeVore, Compressed sensing and best k-term
approzimation, J. Amer. Math. Soc. 22 (2009) 211-231.

[13] R.R. Coifman, S. Lafon, Geometric harmonics: a novel tool for multiscale
out-of-sample extension of empirical functions, Applied and Computational
Harmonic Analysis 21 (2006) 31-52.

[14] I. Daubechies, Time-frequency localization operators: a geometric phase-space
approach, IEEE Trans. Inform. Theory 34 (1988) 605-612.

[15] J.B. Diaz, F.T. Metcalf, On iteration procedures for equations of the first kind,
Ax =y and Picard’s criterion for the existence of a solution, Math. Comp. 24
(1970) 923-935.

[16] D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery, STAM J.
Appl. Math. 49 (1989) 906-931.

[17] K. Drouiche, D. Kateb and C. Noiret, Regularization of the ill-posed problem
of extrapolation with the Malvar-Wilson wavelets, Inverse Problems 17 (2001)
1513-1533.

[18] S. Foucart, A note on guaranteed sparse recovery via £1-minimization, preprint
(2010).

[19] S. Foucart, M. Lai, Sparsest solutions of underdetermined linear systems via
L,-minimization for 0 < g <1, Appl. Comput. Harm. Anal. 26 (2009) 395-407.

31



[20] L. Gosse, A Donoho-Stark criterion for stable signal recovery in discrete wavelet
subspaces, preprint (2010).

[21] John A. Gubner, A Simple Method for Computing Projections onto Subspaces
of Prolate Spheroidal Wave Functions, sumbitted to IEEE Trans. Comm., see
http://eceserv0.ece.wisc.edu/ gubner/pswfProjIpSubmitted2col.pdf

[22] J.A. Hogan, J.D. Lakey, Time-frequency and time-scale methods,
Birkhauser, 2005.

[23] Scott Izu, J.J. Lakey, Time-Frequency Localization and Sampling of Multiband
Signals, Acta applicandae mathematicae 107 (2009) 399-435 [Issue dedicated
to: Applied Harmonic Analysis: Wavelets and Sampling].

[24] A. Karoui, T. Moumni, New efficient methods of computing the prolate
spheroidal wave functions and their corresponding eigenvalues, Appl. Comp.
Harm. Anal. 24 (2008) 269-289.

[25] K. Khare, Bandpass sampling and bandpass analogues of prolate spheroidal wave
functions, Signal Proc. 86 (2006), 1550-1558.

[26] H.J. Landau, H. Widom, Eigenvalue distribution of time and frequency limiting,
J. Math. Anal. 77 (1980) 469-481.

[27] L.-C. Lin, C.-C. Jay Kuo, On theory and regularization of scale-limited
extrapolation, Signal Processing 54 (1996) 225-237.

[28] Y.M. Liu, G. Walter, Irregular sampling in wavelet subspaces, J. Fourier Anal.
Applic. 2 (1995), 181-189.

[29] I.C. Moore, M. Cada, Prolate Spheroidal wave functions, an introduction to
the Slepian series and its properties, Appl. Comput. Harmonic Anal. 16 (2004)
208-230.

[30] D. Needell and R. Vershynin, Uniform Uncertainty Principle and signal recovery
via Regularized Orthogonal Matching Pursuit, Foundations of Computational
Mathematics, 9 pp. 317-334, 2009.

[31] Manuela Nees, Products of orthogonal projections as Carleman operators,
Integral Equations and Operator Theory 35 (1999) 85-92.

[32] S.-C. Pei, J.-J. Ding, Generalized prolate spheroidal wave functions for optical
finite fractional Fourier and linear canonical transforms, J. Opt. Soc. Amer. A
22 (2005) 460-474.

[33] H. Rauhut, Compressive sensing and structured random matrices, in
“Theoretical foundations and numerical methods for sparse recovery” (M.
Fornassier Ed.) 9 (2010) Radon series in computational and applied
mathematics, deGruyter.

[34] H. Rauhut, R. Ward, Sparse Legendre expansions via £'-minimization, Preprint.

[35] Vladimir Rokhlin, Hong Xiao, Approzimate formulae for certain prolate
spheroidal wave functions valid for large values of both order and band-limit,
Appl. Comp. Harm. Anal. 22 (2007) 105-123.

32



[36] Kristian Seip, Reproducing formulas and double orthogonality in Bargmann and
Bergman spaces, SIAM J. Math. Anal. 22 (1991) 856-876.

[37] S. Senay, L.F. Chaparro, L. Durak, Reconstruction of nonuniformly sampled
time-limited signals using prolate spheroidal wave functions, Signal Proc. 89

(2009) 2585-2595.

[38] H. Shapiro, Stefan Bergman’s theory of doubly-orthogonal functions: an
operator-theoretic approach, Proc. R.I.A. 89 Sect. A (1989) 49-77.

[39] H. Shapiro, Reconstructing a function from its values on a subset of its domain—
A Hilbert space approach, J. Approx. Theory 46 (1986) 385-402.

[40] Yoel Shkolniskya, Mark Tygertb, Vladimir Rokhlin, Approzimation of
bandlimited functions, Appl. Comp. Harm. Anal. 21 (2006) 413-420.

[41] D. Slepian, Some comments on Fourier analysis, uncertainty and modeling,

STAM Rev. 25 (1983) 379-393.

[42] Slepian D., Pollak H.O., Prolate spheroidal wave functions, Fourier analysis
and uncertainty. I., Bell System Technical Journal 40 (1961) 43-63.

[43] G.G. Walter, X. Shen, Sampling with Prolate Spheroidal Functions, J. Sampling
Theory Signal Image Proc. 2 (2003) 25-52.

[44] Gilbert G Walter, Xiaoping Shen, Wavelet based on prolate spheroidal wave
functions, J. Fourier Anal. Appl. 10 (2004), 1-26

[45] G. Walter and T. Soleski, A new friendly method of computing prolate spheroidal
wave functions and wavelets, Appl. Comput. Harmon. Anal. 19 (2005)

[46] L.L. Wang, Analysis of spectral approzimations using prolate spheroidal wave
functions, Math. Comp. 79 (2010) 807-827

[47] L.-L. Wang, J. Zhang, A new generalization of the PSWF with applications
to spectral approzimations on quasi-uniform grids, Appl. Comp. Harm. Anal.
(2010), to appear.

[48] H. Xiao, V. Rokhlin, N. Yarvin, Prolate spheroidal wave functions, quadrature
and interpolation, Inverse Problems 17 (2001) 805-838.

[49] D.C. Youla, Generalized image restoration by the method of alternating
orthogonal projections, IEEE Trans. on Circ. & Syst. 25 (1978) 694- 702.

[50] A. Zayed, A generalization of the prolate spheroidal wave functions, Proc. Amer.
Math. Soc. 135 (2007) 2193-2203.

33



