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Abstract 2 

 3 

Optical coherence tomography (OCT) has undergone substantial changes since its 4 

first use in the 1990s. Although the first generation of OCT systems heralded a new 5 

era in the non-invasive diagnostic options in ophthalmology, they did not reveal much 6 

detail. Later devices offered more information and helped further in the diagnosis and 7 

treatment of a variety of pathologic conditions primarily of the retina. With today’s 8 

spectral-domain type models ophthalmologists are offered a comprehensive tool with 9 

the opportunity for early diagnosis and precise monitoring of patients with retinal and 10 

glaucomatous pathologies. However, as experience with these new devices grows and 11 

demands by clinicians and researchers raise, further improvements need to be 12 

addressed. Future developments in the improvement of the transverse resolution and 13 

extension of the penetration depth are to be expected. New modalities such as 14 

polarization sensitive OCT (PS OCT) or Doppler OCT have been used already in the 15 

recent past and promise additional insights in the properties of physiologic and 16 

pathologic tissue. While PS OCT reveals further detail in alterations of the retinal 17 

pigment epithelium, Doppler OCT gives additional information about blood flow 18 

measurements. With these and further new developments OCT will continue to be an 19 

invaluable instrument in the armamentarium of modern ophthalmology. 20 

21 
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Retinal Optical Coherence Tomography: Past, Present and Future Perspectives 39 

 40 

Introduction 41 

 42 

Optical coherence tomography (OCT), a widely used technology in clinical routine 43 

and ophthalmic research, has been used since the 1990s. The basis for future 44 

developments of OCT in ophthalmology were measurements of the eye length by 45 

laser interferometry.[1-2] The first ophthalmic imaging by OCT was reported by 46 
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Huang and co-workers in 1991.[3] At this time, the application of OCT was 47 

demonstrated in retinal and vascular tissue. Two years later the first in vivo images of 48 

the retina were published.[4-5] Within a few years only substantial progress has been 49 

made with regard to both axial and transverse resolution as well as in the everyday 50 

practical usability. Today, OCT is a well established tool in the diagnosis of retinal 51 

diseases, glaucoma and in the evaluation of anterior-segment conditions. The recent 52 

success of new drugs for the management of retinal diseases such as age-related 53 

macular degeneration (AMD) and diabetic macular oedema (DME) has been boosted 54 

by improvements in OCT technology. 55 

 56 

Optical Coherence Tomography: Past 57 

 58 

The step forward from ultrasonography to a non-invasive, in vivo examination of 59 

cross-sectional images of retinal tissue based on the reflectivity of backscattered light 60 

was greatly welcomed by the ophthalmic community. Low-coherence interferometry 61 

as the general principle of OCT has been described elsewhere in detail.[1-2] The use 62 

of super luminescent diodes (SLD) as affordable and compact light sources facilitated 63 

greatly the dissemination of commercial systems. The coherence of the reflected or 64 

backscattered light is used for measuring the position of backscattering sites. The first 65 

commercially available systems were based on time-domain technology (TD-OCT), 66 

produced by Humphrey Instruments, Inc. and released in 1995 (OCT 1). The latest 67 

instrument based on this type of technology was the Stratus OCT (Carl Zeiss Meditec, 68 

Inc.). 69 

From today’s perspective images from both OCT 1 and OCT 2 systems did not reveal 70 

much detail. However, until the introduction of the Stratus OCT system the 71 



- 5 - 

information given was unprecedented and allowed objective documentation that had 72 

previously not been possible. False-colour coded reflectivities made the internal 73 

limiting membrane (ILM) and retinal pigment epithelium (RPE) recognisable but did 74 

not show much detail. OCT 2 offered some minor hardware and ergonometric 75 

improvements at its release in 2001. Both instruments were able to capture 100 axial 76 

measurements in one second and had an axial resolution of ~ 15 micrometers. 77 

Although pupil dilation was a critical necessity, fundamental new insights in the 78 

disease pathogenesis and specifications, particularly in patients with macular 79 

edema[6-7], macular holes[8-12], and vitreomacular traction syndrome[10, 13] were 80 

gained with these early OCT models. Application in glaucoma has been reported from 81 

the beginning of OCT in ophthalmology[14] but was limited until the widespread use 82 

of the Stratus OCT. 83 

The underlying principle used was the time-domain technique, referring to the 84 

sequential capture of information along the axis of the light beam. By using this 85 

technology, the Stratus OCT with its image acquisition speed of 400 axial scans per 86 

second was able to acquire up to 768 adjacent A-scans with an axial resolution of up 87 

to 10 micrometers. The information was then presented as one virtual cross-sectional 88 

B-scan with false-colour coding according to the relative signal strength of the 89 

backscattered light. Six radial line scans were then interpolated to calculate the retinal 90 

thickness of the scanned area. Similarly, single-line circular optic nerve head scans 91 

could be produced.[14] Due to the relatively low acquisition speed of the TD-OCT 92 

motion and blinking artefacts were often inevitable. 93 

The transition to Fourier-domain (or spectral-domain) technology together with newly 94 

available light sources led to enhancements in acquisition speed, sensitivity and 95 

resolution. [15-19]  96 
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 97 

Optical Coherence Tomography:  Present 98 

 99 

One characteristic of the latest generation OCT technology (i.e. SD-OCT or FD-OCT) 100 

is its higher acquisition speed with up to 40,000 axial scans per second in commercial 101 

systems. Additional optional features such as averaging of multiple scans to reduce 102 

speckle noise[20-21] and real-time tracking to account for eye-movements[22-23] 103 

have further enhanced image quality. These features are already available in a 104 

commercial system (Heidelberg Spectralis) and can be used to average several images 105 

recorded at exactly the same location, or to record exactly the same location on 106 

successive visits, thus improving the reliability of quantitative imaging in follow-up 107 

studies. Although improvements in image resolution had been achieved already with 108 

time-domain systems in experimental settings[24], it was spectral-domain technology 109 

that made such improvements available in commercial instruments. Current 110 

limitations are 2 to 3 micrometers in experimental systems[25-26] and around 5 111 

micrometers in commercial systems. Interpolation between single scans was 112 

dramatically reduced and therefore an important source of bias in the volumetric 113 

measurements eliminated. 114 

 115 

With volumetric datasets available, visualisation and processing of three-dimensional 116 

renderings have been investigated extensively (Figure 1).[27-30] In addition to 117 

standard B-scan imaging, C-scans (en-face images) and arbitrary oriented sectional 118 

images can be derived from the 3D data sets. Segmentation, i.e. identification and 119 

delineation of selected layers such as the ILM, nerve fibre layer (NFL), inner/outer 120 

photoreceptor segment junction and the RPE is another important feature of SD-OCT 121 
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technology.[31-33] Crucial to the development and the precision of automatic 122 

detection of retinal layers by software algorithms is high image quality, i.e. a low 123 

level of noise and a reduction of motion-induced image distortions. Algorithm 124 

failures, a phenomenon well-known in older generation OCT systems[34-35], are 125 

strongly related to poor image quality.  126 

 127 

Retinal changes associated with age-related macular degeneration (AMD) have been 128 

examined extensively with OCT earlier, but with the introduction of pharmacological 129 

therapy and the antipermeability effect of antiangiogenic substances, OCT became the 130 

most important tool in therapeutic follow-up.[36-37] It became possible to monitor 131 

central retinal thickening and to detect intra- and subretinal changes that were not 132 

recognised ophthalmoscopically or by angiography.[38-39] One small study[36] 133 

followed by large multi-centre drug trials (SUSTAIN trial[40], SAILOR trial[41]) 134 

have established the use of OCT for the indication of retreatment with recently 135 

available anti-VEGF drugs, a development that supports the role of OCT for disease 136 

monitoring and indication of treatment in AMD. The appearance of macular cysts or 137 

subretinal fluid in the macula after anti-VEGF therapy was assumed to represent an 138 

early sign of CNV recurrence. For future studies Fung and co-workers suggested an 139 

approach oriented on those qualitative changes on the OCT images as an indicator for 140 

retreatment. The EXCITE trial[42] followed this approach and compared the efficacy 141 

and safety of two different dosing regimens of ranibizumab to evaluate the role of 142 

OCT as a retreatment indicator in neovascular AMD. Positive correlation between 143 

OCT findings and disease activity demonstrated by fluorescein angiography has been 144 

shown in patients with AMD during retreatments of photodynamic therapy.[43-44] 145 

 146 
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However, the role of OCT at the initial diagnostic stage is currently still 147 

complementary to angiography. Although extensive knowledge about the 148 

microstructural retinal changes in certain diseases has been gained it is important to 149 

emphasise that differential diagnostic considerations at the initial stage of diagnosis 150 

cannot be made solely based on OCT. 151 

Retinal thickness was initially introduced as a marker for disease severity. However, 152 

differentiation between intraretinal and subretinal fluid accumulation can reveal more 153 

disease-specific insights in natural course and treatment effects of retinal 154 

subcompartments.[45] Ahlers and co-workers showed different time-courses of 155 

treatment effects after intravitreal ranibizumab according to its anatomical location, 156 

with sub-retinal fluid and pigment-epithelium detachment reduction occurring early 157 

during follow-up, whereas the total retinal volume (ILM to RPE) decrease was noted 158 

over the full observation period of three months. 159 

 160 

Central 1 mm retinal thickness has been regarded as the ideal morphologic correlate to 161 

visual function in the majority of previous studies. Only recently it was shown that 162 

there is not necessarily a strong correlation between both parameters.[46-47] Similar 163 

findings were reported in functional aspects of macular holes, where the condition of 164 

the external limiting membrane as seen on SD-OCT cross-sectional images and three-165 

dimensional renderings was found to be a predictor of the integrity of the junction 166 

zone of the inner and outer segments of the photoreceptors.[48] These findings 167 

certainly have an influence on future characterisation and information about the 168 

postoperative functional gain that can be achieved. 169 

 170 
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The introduction of SD-OCT into clinical ophthalmology represents a major 171 

methodological enhancement that has been welcomed by both researchers and 172 

clinicians. Although first results have just been published in the last two years and 173 

experience is limited, there is certainly a potential for further improvement, e.g. noise 174 

reduction and algorithm performance. Mapping of the ganglion cell complex as 175 

demonstrated by Tan et al. has significantly contributed to glaucoma diagnosis and 176 

monitoring.[49] Though originally developed with older generation OCT systems this 177 

functionality is commercially available with SD-OCT. 178 

Additional layers beyond the currently available segmentations of the ILM and RPE 179 

are already implemented in research software applications and can therefore be 180 

expected to be available soon to the clinician.  181 

 182 

Future perspectives 183 

 184 

A large variety of novel and advanced OCT technologies are presently under 185 

development. We provide a short overview of the most promising of these techniques.  186 

 187 

Improved transverse resolution 188 

Contrary to other optical imaging techniques, axial and transverse resolution are 189 

decoupled in OCT. Axial resolution is determined by the source bandwidth, lateral 190 

resolution by the numerical aperture of the system. Initially, development was focused 191 

on axial resolution, providing ~ 5 µm for commercial SD-OCT systems and 2-3 for 192 

special research instruments [50]. Transverse resolution, however, is still limited to ~ 193 

15 – 20 µm in commercial systems.  194 
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Transverse resolution is determined by the beam spot size on the retina which depends 195 

on the numerical aperture and on aberrations of the ocular refractive media. For 196 

retinal OCT, the numerical aperture is limited by the maximum iris diameter of ~ 7 197 

mm. However, beam sizes of this diameter can normally not be used because of 198 

wavefront aberrations caused by the eye. Commercial retinal OCT instruments 199 

typically use beam diameters of the order of ~ 1 mm, limiting the transverse 200 

resolution to ~ 20 µm. 201 

This limitation can be overcome in two steps. For eyes with low aberrations, the beam 202 

diameter can be expanded to ~ 3-4 mm, yielding a transverse resolution of ~ 5 – 7 µm, 203 

sufficient to image cone photoreceptors at an eccentricity of ~4° or larger[51].  204 

A further increase of the beam diameter degrades transverse resolution because 205 

excessive wavefront aberrations increase the spot size on the retina. This can be 206 

overcome by adaptive optics (AO), which measures wave front distortions by a wave 207 

front sensor and corrects for the distortions by a deformable mirror. First applications 208 

of AO to OCT were reported just a few years ago[52-53], the first successful images 209 

of human cone photoreceptors were demonstrated in 2005[54]. AO-OCT is rapidly 210 

developing and different variants were reported[55-63], finally achieving a nearly 211 

isotropic resolution of 2-3 µm in axial and lateral directions [64-65], allowing to 212 

resolve cone photoreceptors in the human retina as close as ~1° to the fovea. An 213 

overview of AO-OCT can be found in a recent review[66]. 214 

 215 

Extended penetration depth 216 

Commercial retinal OCT scanners presently operate at wavelengths of ~ 800 nm, for 217 

which a good selection of useful light sources is available. While OCT at 800 nm 218 

provides high-quality images of retinal layers down to the RPE, the penetration into 219 
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deeper structures is usually poor because of the strong absorption and scattering by 220 

melanin in the RPE. Two approaches towards imaging of deeper layers like choroid 221 

and inner parts of the sclera have been reported. The first approach is based on 222 

commercially available SD-OCT in the 800 nm regime.[67] By positioning the SD-223 

OCT device close enough to the eye to obtain an inverted representation of the 224 

fundus, the maximum sensitivity of SD-OCT near the zero delay line can be placed 225 

into the deeper layers, providing increased sensitivity for these weak-signal regions. 226 

Furthermore, by exploiting the eye-tracking feature of the Heidelberg Spectralis 227 

system, 100 B-scans are averaged, providing greatly improved signal-to-noise ratio. 228 

The combination of these two measures enabled measurement of choroidal thickness 229 

in healthy and diseased eyes.[68-69]   230 

The second approach exploits the fact that the light attenuation by the RPE is 231 

wavelength dependent, longer wavelengths at ~ 1050 nm that are less absorbed and 232 

scattered are presently explored. A first TD-OCT setup demonstrated increased 233 

penetration into the choroid for 1050 nm, as compared to 800 nm OCT[70].  Faster 234 

and more sensitive SD-OCT instruments were subsequently developed, employing 235 

either a spectrometer based approach[71] or the related swept source (SS) OCT 236 

technology[72-73]. With the latter technique, record imaging speeds of up to 249 kA-237 

scans/s were reported [74]. While increased penetration depth and, with SS-OCT, less 238 

sensitivity decay with depth are the advantages of 1050 nm OCT, the drawback is the 239 

reduced resolution because of the longer center wavelength and smaller usable 240 

bandwidth (because of increased water absorption at 1000 nm and above 1100 nm, a 241 

maximum bandwidth of ~ 60 – 80 nm is usable at the retina, yielding an optimum 242 

axial resolution of ~ 5 µm in retinal tissue). 243 

 244 
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Polarization sensitive OCT 245 

Presently available commercial OCT measures backscattered intensity. While 246 

intensity based OCT can resolve retinal layers very well, it cannot directly 247 

differentiate tissues. However, the light's polarization state can be changed by various 248 

light-tissue interactions and thus be used to generate tissue specific contrast. These 249 

effects are used by polarization sensitive (PS) OCT [75-76]. With PS-OCT, the 250 

sample is typically illuminated either with circularly polarized light or with different 251 

polarization states successively, and the backscattered light is detected in two 252 

orthogonal polarization channels. Initially implemented as TD-OCT [75-77], PS-OCT 253 

techniques were later adapted to SD-OCT [78-80], finally providing ocular imaging 254 

with similar speeds as intensity based SD-OCT [79-81]. Two polarization changing 255 

light-tissue interaction mechanisms are of special interest: birefringence and 256 

depolarization. Birefringence is found in fibrous tissues (from birefringence); 257 

depolarization can be caused by multiple light scattering at large particles or 258 

scattering at non-spherical particles [82]. 259 

Ophthalmic applications of PS-OCT were demonstrated in the anterior segment and in 260 

the retina. Because of spatial restrictions, we restrict this report to retinal applications, 261 

the majority of reported work. Using PS-OCT, the structures of the ocular fundus 262 

could be classified into polarization preserving (e.g. photoreceptor layer), birefringent 263 

(e.g. retinal nerve fiber layer (RNFL), Henle's fiber layer, sclera, scar tissue) [79, 83-264 

87], and polarization scrambling or depolarizing (e.g. retinal pigment epithelium 265 

(RPE), choroidal nevus) [79, 85-88]. The results of these studies indicate two possible 266 

future applications of PS-OCT for diagnostics of ocular diseases: A recent animal 267 

study has shown that a damage of the optic nerve leads to a reduced RNFL 268 

birefringence before RNFL thickness changes are detectable by intensity based OCT 269 
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[89]. Since depth resolved retardation measurements by PS-OCT directly provide 270 

quantitative information on RNFL birefringence [81, 84, 90-91], glaucoma induced 271 

RNFL damage might be detected at an early stage, possibly improving glaucoma 272 

diagnostics. The depolarization caused by the RPE can directly be used to identify and 273 

visualize [86-87, 92], and segment [31]  this layer who's integrity is decisive for 274 

photoreceptor metabolism and therefore for visual function. Therefore, PS-OCT is an 275 

interesting tool for diagnosis and follow-up studies of diseases associated with RPE 276 

alterations like AMD. 277 

Figure 2 shows an example of B-scans obtained by a PS-OCT instrument in a healthy 278 

human fovea. Fig. 2A shows the conventional intensity image where the three 279 

strongly reflecting boundaries of the posterior retina are marked (IS/OS, boundary 280 

between inner and outer photoreceptor segments; ETPR, end tips of photoreceptors; 281 

RPE, retinal pigment epithelium). The retardation image (Fig. 2B) shows the different 282 

polarizing properties of retinal tissue in this region: most tissues preserve the 283 

polarization state, i.e. do not introduce or change retardation (blue colors), only the 284 

RPE scrambles the polarization state, generating random retardation values (the mix 285 

of all color values appears green in this presentation). Fig. 2C shows the degree of 286 

polarization uniformity (DOPU), which is high (orange to red colors) in all layers 287 

except the RPE. This information was used to segment the RPE and to generate an 288 

overlay image showing intensity (gray scale) and the segmented RPE in red (Fig. 2D). 289 

Figure 3 shows an example of a PS-OCT B-scan obtained in the retina of a patient 290 

with AMD. A large atrophy is visible on the left hand side of the image, discernible 291 

by the increased light penetration into deeper layers in the intensity image (Fig. 3A). 292 

Figs. 3B and 3C show the DOPU and the overlay image (segmented RPE in red), 293 

clearly showing the atrophy. 294 
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 295 

Doppler OCT and related methods 296 

Similar to other medical imaging techniques like ultrasound imaging, OCT can also 297 

provide velocity information by exploiting the Doppler effect and related 298 

mechanisms. This technique, called Doppler OCT (DOCT) or optical Doppler 299 

tomography (ODT), was first reported in 1995[93]. Its main application is blood flow 300 

measurement and imaging, and a great variety of different implementations, both in 301 

time[94-95] and spectral domain[96-97], have been reported, providing sensitivities 302 

down to the order of 10 µm/s. A comprehensive overview of all these techniques is 303 

beyond the scope of this review. 304 

DOCT is presently a very active research area, and we would like to highlight some of 305 

the most relevant developments for retinal imaging. An important application of 306 

DOCT could be to use blood velocity as a contrast agent for visualization of the 307 

vasculature in the ocular fundus. In this application, the phase changes caused by 308 

moving blood cells are used to differentiate them from the surrounding stationary 309 

tissue and thereby segment the vessels. This technique was called optical coherence 310 

angiography[98-99] and can be used for 3D display of the vessel structure and, e.g., 311 

used to differentiate retinal from choroidal vessels. Compared to fluorescein 312 

angiography, DOCT has the advantage of not requiring the injection of a contrast 313 

agent, however, has the drawback of being sensitive only to moving blood; vascular 314 

leakage cannot be imaged by this method. 315 

Quantitative measurement of the absolute velocity of the moving blood cells, and 316 

perfusion measurements providing blood volume flow are still challenging. To obtain 317 

absolute velocities, details of the vessel geometry have to be known because DOCT 318 

measures only the velocity component parallel to the probing light beam. Recent 319 
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improvements of retinal DOCT extracted this geometric information from OCT 320 

intensity data[100-101] or developed new probing schemes eliminating orientation 321 

sensitivity by employing two differently oriented beams simultaneously[102]. A first 322 

repeatability study of total retinal blood flow using the former method in 8 healthy 323 

eyes demonstrated a mean coefficient of variation of 10.5 %.[103]  324 

Finally, new advanced interferometric schemes should be mentioned that, by 325 

hardware manipulation of the reference or sample beam phase during measurement, 326 

provide superior separation of intensity and flow data and/or access flow speeds that 327 

are beyond the range of conventional DOCT[104-106]. 328 

 329 

In ophthalmology, OCT technology has clearly introduced a diagnostic revolution. 330 

The unique feature of a non-invasive modality able to image in an in-vivo approach 331 

retinal structures in detail presents OCT as the ideal modality for detection of early 332 

disease in screening and prevention, for differential  diagnosis of various macular 333 

diseases of vascular, degenerative, or inflammatory nature and most importantly to 334 

quantify therapeutic effects and identify recurrence during follow-up. Improved 335 

imaging features such as higher resolution, reliable algorithm for automated 336 

segmentation and selective imaging of relevant layers such as NFL and RPE will 337 

enhance the spectrum of indications and clinical value. The practicality of OCT in 338 

respect to data acquisition e.g. by eye tracking systems and particularly in terms of 339 

archiving of large data volumes and presentation in a user friendly way requires 340 

further improvement to facilitate the establishment in clinical practice. With high-341 

resolution, three-dimensional OCT ophthalmologists have been offered a technology 342 

which allows an unprecedented insight into the pathophysiology of retinal disease. 343 

For the optimal benefit in favour of our patients it is now necessary to identify the 344 
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parameters which are clinically relevant i.e. are associated with visual function to 345 

correlate morphology and function and to share the knowledge with the large 346 

ophthalmological community so that the advantages in diagnosis and treatment 347 

become available to universities and community hospitals as well as practices around 348 

the world. 349 

  350 

351 
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Figure 1. 

Three-dimensional rendering of a full-thickness macular hole. Images gratefully  

provided by Christian Ahlers, MD. 

 

 



 

  
A              B 

  
C             D 

 

Figure 2. 

PS-OCT B-scan images of healthy human fovea in vivo. (A) Intensity (log scale); (B) 
retardation (color bar: 0° - 90°); (C) degree of polarization uniformity DOPU (color bar: 0 – 
1). (D) overlay of intensity image with RPE segmented by DOPU data (red). Image size: 15° 
(horizontal) x 0.75 mm (vertical, optical distance).  (From E. Götzinger et al.31 by 
permission of the Optical Society of America). 
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Figure 3. 

PS-OCT images of retina with AMD. (A) Intensity; (B) DOPU (color bar: see fig 1C); (C) 
intensity overlaid with segmented RPE. Image size: 15° (horizontal) x 1 mm (vertical). 
(From E. Götzinger et al.31 by permission of the Optical Society of America). 
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