

# Retinal Optical Coherence Tomography: Past, Present and Future Perspectives

Wolfgang Geitzenauer, Cristoph K Hitzenberger, Ursula M Schmidt-Erfurth

# ▶ To cite this version:

Wolfgang Geitzenauer, Cristoph K Hitzenberger, Ursula M Schmidt-Erfurth. Retinal Optical Coherence Tomography: Past, Present and Future Perspectives. British Journal of Ophthalmology, 2010, 95 (2), pp.171. 10.1136/bjo.2010.182170 . hal-00560855

# HAL Id: hal-00560855 https://hal.science/hal-00560855

Submitted on 31 Jan 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## TITLE PAGE

TITLE:

Retinal Optical Coherence Tomography: Past, Present and Future Perspectives

CORRESPONDING AUTHOR: Prof. Ursula M Schmidt-Erfurth, MD Dept. of Ophthalmology Medical University of Vienna Waehringer Guertel 18-20 1090 Vienna Austria E-Mail: <u>ursula.schmidt-erfurth@meduniwien.ac.at</u> Tel: +43-1-40400-7931 Fax: +43-1-40400-7932

CO-AUTHORS: Wolfgang Geitzenauer, MD Dept. of Ophthalmology Medical University of Vienna Vienna, Austria

Prof. Christoph Hitzenberger, PhD Center for Medical Physics and Biomedical Engineering Medical University of Vienna Vienna, Austria

KEYWORDS: Optical Coherence Tomography Imaging Time Domain Spectral Domain

WORD COUNT: 3.574 words

## 2 Abstract

3

4 Optical coherence tomography (OCT) has undergone substantial changes since its 5 first use in the 1990s. Although the first generation of OCT systems heralded a new 6 era in the non-invasive diagnostic options in ophthalmology, they did not reveal much 7 detail. Later devices offered more information and helped further in the diagnosis and 8 treatment of a variety of pathologic conditions primarily of the retina. With today's 9 spectral-domain type models ophthalmologists are offered a comprehensive tool with 10 the opportunity for early diagnosis and precise monitoring of patients with retinal and 11 glaucomatous pathologies. However, as experience with these new devices grows and 12 demands by clinicians and researchers raise, further improvements need to be 13 addressed. Future developments in the improvement of the transverse resolution and 14 extension of the penetration depth are to be expected. New modalities such as 15 polarization sensitive OCT (PS OCT) or Doppler OCT have been used already in the 16 recent past and promise additional insights in the properties of physiologic and 17 pathologic tissue. While PS OCT reveals further detail in alterations of the retinal 18 pigment epithelium, Doppler OCT gives additional information about blood flow 19 measurements. With these and further new developments OCT will continue to be an 20 invaluable instrument in the armamentarium of modern ophthalmology.

## 22 Licence statement:

| 23 | The Corresponding Author has the right to grant on behalf of all authors and does        |
|----|------------------------------------------------------------------------------------------|
| 24 | grant on behalf of all authors, an exclusive licence (or non-exclusive for government    |
| 25 | employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees        |
| 26 | to permit this article (if accepted) to be published in British Journal of Ophthalmology |
| 27 | and any other BMJPGL products to exploit all subsidiary rights, as set out in our        |
| 28 | licence.                                                                                 |
| 29 |                                                                                          |
| 30 | Competing interest:                                                                      |
| 31 | The authors' employer, the Medical University of Vienna, received funding from Carl      |
| 32 | Zeiss Meditec and Heidelberg Engineering for sponsored projects by the Department        |
| 33 | of Ophthalmology.                                                                        |
|    |                                                                                          |

- 34 Wolfgang Geitzenauer: received reimbursements for honoraria for presentations at
- 35 meetings from Carl Zeiss Meditec and Heidelberg Engineering.
- 36 Ursula Schmidt-Erfurth: none to declare.
- 37 Christoph Hitzenberger: none to declare.
- 38
- 39 Retinal Optical Coherence Tomography: Past, Present and Future Perspectives
- 40

#### 41 Introduction

- 42
- 43 Optical coherence tomography (OCT), a widely used technology in clinical routine
- 44 and ophthalmic research, has been used since the 1990s. The basis for future
- 45 developments of OCT in ophthalmology were measurements of the eye length by
- 46 laser interferometry.[1-2] The first ophthalmic imaging by OCT was reported by

| 47 | Huang and co-workers in 1991.[3] At this time, the application of OCT was                 |
|----|-------------------------------------------------------------------------------------------|
| 48 | demonstrated in retinal and vascular tissue. Two years later the first in vivo images of  |
| 49 | the retina were published.[4-5] Within a few years only substantial progress has been     |
| 50 | made with regard to both axial and transverse resolution as well as in the everyday       |
| 51 | practical usability. Today, OCT is a well established tool in the diagnosis of retinal    |
| 52 | diseases, glaucoma and in the evaluation of anterior-segment conditions. The recent       |
| 53 | success of new drugs for the management of retinal diseases such as age-related           |
| 54 | macular degeneration (AMD) and diabetic macular oedema (DME) has been boosted             |
| 55 | by improvements in OCT technology.                                                        |
| 56 |                                                                                           |
| 57 | Optical Coherence Tomography: Past                                                        |
| 58 |                                                                                           |
| 59 | The step forward from ultrasonography to a non-invasive, in vivo examination of           |
| 60 | cross-sectional images of retinal tissue based on the reflectivity of backscattered light |
| 61 | was greatly welcomed by the ophthalmic community. Low-coherence interferometry            |
| 62 | as the general principle of OCT has been described elsewhere in detail.[1-2] The use      |
| 63 | of super luminescent diodes (SLD) as affordable and compact light sources facilitated     |
| 64 | greatly the dissemination of commercial systems. The coherence of the reflected or        |
| 65 | backscattered light is used for measuring the position of backscattering sites. The first |
| 66 | commercially available systems were based on time-domain technology (TD-OCT),             |
| 67 | produced by Humphrey Instruments, Inc. and released in 1995 (OCT 1). The latest           |
| 68 | instrument based on this type of technology was the Stratus OCT (Carl Zeiss Meditec,      |
| 69 | Inc.).                                                                                    |
| 70 | From today's perspective images from both OCT 1 and OCT 2 systems did not reveal          |
| 71 | much detail. However, until the introduction of the Stratus OCT system the                |

- 4 -

| 72 | information given was unprecedented and allowed objective documentation that had           |
|----|--------------------------------------------------------------------------------------------|
| 73 | previously not been possible. False-colour coded reflectivities made the internal          |
| 74 | limiting membrane (ILM) and retinal pigment epithelium (RPE) recognisable but did          |
| 75 | not show much detail. OCT 2 offered some minor hardware and ergonometric                   |
| 76 | improvements at its release in 2001. Both instruments were able to capture 100 axial       |
| 77 | measurements in one second and had an axial resolution of ~ 15 micrometers.                |
| 78 | Although pupil dilation was a critical necessity, fundamental new insights in the          |
| 79 | disease pathogenesis and specifications, particularly in patients with macular             |
| 80 | edema[6-7], macular holes[8-12], and vitreomacular traction syndrome[10, 13] were          |
| 81 | gained with these early OCT models. Application in glaucoma has been reported from         |
| 82 | the beginning of OCT in ophthalmology[14] but was limited until the widespread use         |
| 83 | of the Stratus OCT.                                                                        |
| 84 | The underlying principle used was the time-domain technique, referring to the              |
| 85 | sequential capture of information along the axis of the light beam. By using this          |
| 86 | technology, the Stratus OCT with its image acquisition speed of 400 axial scans per        |
| 87 | second was able to acquire up to 768 adjacent A-scans with an axial resolution of up       |
| 88 | to 10 micrometers. The information was then presented as one virtual cross-sectional       |
| 89 | B-scan with false-colour coding according to the relative signal strength of the           |
| 90 | backscattered light. Six radial line scans were then interpolated to calculate the retinal |
| 91 | thickness of the scanned area. Similarly, single-line circular optic nerve head scans      |
| 92 | could be produced.[14] Due to the relatively low acquisition speed of the TD-OCT           |
| 93 | motion and blinking artefacts were often inevitable.                                       |
| 94 | The transition to Fourier-domain (or spectral-domain) technology together with newly       |
| 95 | available light sources led to enhancements in acquisition speed, sensitivity and          |
| 96 | resolution. [15-19]                                                                        |

- 5 -

97

# 98 Optical Coherence Tomography: Present

99

| 100 | One characteristic of the latest generation OCT technology (i.e. SD-OCT or FD-OCT)     |
|-----|----------------------------------------------------------------------------------------|
| 101 | is its higher acquisition speed with up to 40,000 axial scans per second in commercial |
| 102 | systems. Additional optional features such as averaging of multiple scans to reduce    |
| 103 | speckle noise[20-21] and real-time tracking to account for eye-movements[22-23]        |
| 104 | have further enhanced image quality. These features are already available in a         |
| 105 | commercial system (Heidelberg Spectralis) and can be used to average several images    |
| 106 | recorded at exactly the same location, or to record exactly the same location on       |
| 107 | successive visits, thus improving the reliability of quantitative imaging in follow-up |
| 108 | studies. Although improvements in image resolution had been achieved already with      |
| 109 | time-domain systems in experimental settings[24], it was spectral-domain technology    |
| 110 | that made such improvements available in commercial instruments. Current               |
| 111 | limitations are 2 to 3 micrometers in experimental systems[25-26] and around 5         |
| 112 | micrometers in commercial systems. Interpolation between single scans was              |
| 113 | dramatically reduced and therefore an important source of bias in the volumetric       |
| 114 | measurements eliminated.                                                               |
| 115 |                                                                                        |
| 116 | With volumetric datasets available, visualisation and processing of three-dimensional  |
| 117 | renderings have been investigated extensively (Figure 1).[27-30] In addition to        |
| 118 | standard B-scan imaging, C-scans (en-face images) and arbitrary oriented sectional     |
| 119 | images can be derived from the 3D data sets. Segmentation, i.e. identification and     |
| 120 | delineation of selected layers such as the ILM, nerve fibre layer (NFL), inner/outer   |
| 121 | photoreceptor segment junction and the RPE is another important feature of SD-OCT      |

- 6 -

technology.[31-33] Crucial to the development and the precision of automatic
detection of retinal layers by software algorithms is high image quality, i.e. a low
level of noise and a reduction of motion-induced image distortions. Algorithm
failures, a phenomenon well-known in older generation OCT systems[34-35], are
strongly related to poor image quality.

127

128 Retinal changes associated with age-related macular degeneration (AMD) have been 129 examined extensively with OCT earlier, but with the introduction of pharmacological 130 therapy and the antipermeability effect of antiangiogenic substances, OCT became the 131 most important tool in therapeutic follow-up.[36-37] It became possible to monitor 132 central retinal thickening and to detect intra- and subretinal changes that were not 133 recognised ophthalmoscopically or by angiography.[38-39] One small study[36] 134 followed by large multi-centre drug trials (SUSTAIN trial[40], SAILOR trial[41]) 135 have established the use of OCT for the indication of retreatment with recently 136 available anti-VEGF drugs, a development that supports the role of OCT for disease 137 monitoring and indication of treatment in AMD. The appearance of macular cysts or 138 subretinal fluid in the macula after anti-VEGF therapy was assumed to represent an 139 early sign of CNV recurrence. For future studies Fung and co-workers suggested an 140 approach oriented on those qualitative changes on the OCT images as an indicator for 141 retreatment. The EXCITE trial[42] followed this approach and compared the efficacy 142 and safety of two different dosing regimens of ranibizumab to evaluate the role of 143 OCT as a retreatment indicator in neovascular AMD. Positive correlation between 144 OCT findings and disease activity demonstrated by fluorescein angiography has been 145 shown in patients with AMD during retreatments of photodynamic therapy.[43-44] 146

- 7 -

147 However, the role of OCT at the initial diagnostic stage is currently still 148 complementary to angiography. Although extensive knowledge about the 149 microstructural retinal changes in certain diseases has been gained it is important to 150 emphasise that differential diagnostic considerations at the initial stage of diagnosis 151 cannot be made solely based on OCT. 152 Retinal thickness was initially introduced as a marker for disease severity. However, 153 differentiation between intraretinal and subretinal fluid accumulation can reveal more 154 disease-specific insights in natural course and treatment effects of retinal 155 subcompartments.[45] Ahlers and co-workers showed different time-courses of 156 treatment effects after intravitreal ranibizumab according to its anatomical location, 157 with sub-retinal fluid and pigment-epithelium detachment reduction occurring early 158 during follow-up, whereas the total retinal volume (ILM to RPE) decrease was noted 159 over the full observation period of three months. 160

161 Central 1 mm retinal thickness has been regarded as the ideal morphologic correlate to 162 visual function in the majority of previous studies. Only recently it was shown that 163 there is not necessarily a strong correlation between both parameters.[46-47] Similar 164 findings were reported in functional aspects of macular holes, where the condition of 165 the external limiting membrane as seen on SD-OCT cross-sectional images and three-166 dimensional renderings was found to be a predictor of the integrity of the junction 167 zone of the inner and outer segments of the photoreceptors. [48] These findings 168 certainly have an influence on future characterisation and information about the 169 postoperative functional gain that can be achieved.

170

- 8 -

171 The introduction of SD-OCT into clinical ophthalmology represents a major 172 methodological enhancement that has been welcomed by both researchers and 173 clinicians. Although first results have just been published in the last two years and 174 experience is limited, there is certainly a potential for further improvement, e.g. noise 175 reduction and algorithm performance. Mapping of the ganglion cell complex as 176 demonstrated by Tan et al. has significantly contributed to glaucoma diagnosis and 177 monitoring.[49] Though originally developed with older generation OCT systems this 178 functionality is commercially available with SD-OCT. 179 Additional layers beyond the currently available segmentations of the ILM and RPE 180 are already implemented in research software applications and can therefore be 181 expected to be available soon to the clinician. 182

### 183 **Future perspectives**

184

185 A large variety of novel and advanced OCT technologies are presently under186 development. We provide a short overview of the most promising of these techniques.

187

#### 188 Improved transverse resolution

189 Contrary to other optical imaging techniques, axial and transverse resolution are 190 decoupled in OCT. Axial resolution is determined by the source bandwidth, lateral 191 resolution by the numerical aperture of the system. Initially, development was focused 192 on axial resolution, providing ~ 5  $\mu$ m for commercial SD-OCT systems and 2-3 for 193 special research instruments [50]. Transverse resolution, however, is still limited to ~ 194 15 – 20  $\mu$ m in commercial systems. 195 Transverse resolution is determined by the beam spot size on the retina which depends 196 on the numerical aperture and on aberrations of the ocular refractive media. For 197 retinal OCT, the numerical aperture is limited by the maximum iris diameter of ~ 7 198 mm. However, beam sizes of this diameter can normally not be used because of 199 wavefront aberrations caused by the eye. Commercial retinal OCT instruments 200 typically use beam diameters of the order of ~ 1 mm, limiting the transverse 201 resolution to ~ 20  $\mu$ m.

This limitation can be overcome in two steps. For eyes with low aberrations, the beam diameter can be expanded to ~ 3-4 mm, yielding a transverse resolution of ~ 5 – 7  $\mu$ m, sufficient to image cone photoreceptors at an eccentricity of ~4° or larger[51].

205 A further increase of the beam diameter degrades transverse resolution because 206 excessive wavefront aberrations increase the spot size on the retina. This can be 207 overcome by adaptive optics (AO), which measures wave front distortions by a wave 208 front sensor and corrects for the distortions by a deformable mirror. First applications 209 of AO to OCT were reported just a few years ago[52-53], the first successful images 210 of human cone photoreceptors were demonstrated in 2005[54]. AO-OCT is rapidly 211 developing and different variants were reported[55-63], finally achieving a nearly 212 isotropic resolution of 2-3 µm in axial and lateral directions [64-65], allowing to 213 resolve cone photoreceptors in the human retina as close as  $\sim 1^{\circ}$  to the fovea. An 214 overview of AO-OCT can be found in a recent review[66].

215

216 Extended penetration depth

217 Commercial retinal OCT scanners presently operate at wavelengths of ~ 800 nm, for 218 which a good selection of useful light sources is available. While OCT at 800 nm 219 provides high-quality images of retinal layers down to the RPE, the penetration into 220 deeper structures is usually poor because of the strong absorption and scattering by 221 melanin in the RPE. Two approaches towards imaging of deeper layers like choroid 222 and inner parts of the sclera have been reported. The first approach is based on 223 commercially available SD-OCT in the 800 nm regime.[67] By positioning the SD-224 OCT device close enough to the eye to obtain an inverted representation of the 225 fundus, the maximum sensitivity of SD-OCT near the zero delay line can be placed 226 into the deeper layers, providing increased sensitivity for these weak-signal regions. 227 Furthermore, by exploiting the eye-tracking feature of the Heidelberg Spectralis 228 system, 100 B-scans are averaged, providing greatly improved signal-to-noise ratio. 229 The combination of these two measures enabled measurement of choroidal thickness 230 in healthy and diseased eyes.[68-69]

231 The second approach exploits the fact that the light attenuation by the RPE is 232 wavelength dependent, longer wavelengths at  $\sim 1050$  nm that are less absorbed and 233 scattered are presently explored. A first TD-OCT setup demonstrated increased 234 penetration into the choroid for 1050 nm, as compared to 800 nm OCT[70]. Faster 235 and more sensitive SD-OCT instruments were subsequently developed, employing 236 either a spectrometer based approach[71] or the related swept source (SS) OCT 237 technology[72-73]. With the latter technique, record imaging speeds of up to 249 kA-238 scans/s were reported [74]. While increased penetration depth and, with SS-OCT, less 239 sensitivity decay with depth are the advantages of 1050 nm OCT, the drawback is the 240 reduced resolution because of the longer center wavelength and smaller usable 241 bandwidth (because of increased water absorption at 1000 nm and above 1100 nm, a 242 maximum bandwidth of  $\sim 60 - 80$  nm is usable at the retina, yielding an optimum 243 axial resolution of  $\sim 5 \,\mu m$  in retinal tissue).

#### 245 *Polarization sensitive OCT*

246 Presently available commercial OCT measures backscattered intensity. While 247 intensity based OCT can resolve retinal layers very well, it cannot directly 248 differentiate tissues. However, the light's polarization state can be changed by various 249 light-tissue interactions and thus be used to generate tissue specific contrast. These 250 effects are used by polarization sensitive (PS) OCT [75-76]. With PS-OCT, the 251 sample is typically illuminated either with circularly polarized light or with different 252 polarization states successively, and the backscattered light is detected in two 253 orthogonal polarization channels. Initially implemented as TD-OCT [75-77], PS-OCT 254 techniques were later adapted to SD-OCT [78-80], finally providing ocular imaging 255 with similar speeds as intensity based SD-OCT [79-81]. Two polarization changing 256 light-tissue interaction mechanisms are of special interest: birefringence and 257 depolarization. Birefringence is found in fibrous tissues (from birefringence); 258 depolarization can be caused by multiple light scattering at large particles or 259 scattering at non-spherical particles [82].

260 Ophthalmic applications of PS-OCT were demonstrated in the anterior segment and in 261 the retina. Because of spatial restrictions, we restrict this report to retinal applications, 262 the majority of reported work. Using PS-OCT, the structures of the ocular fundus 263 could be classified into polarization preserving (e.g. photoreceptor layer), birefringent 264 (e.g. retinal nerve fiber layer (RNFL), Henle's fiber layer, sclera, scar tissue) [79, 83-265 87], and polarization scrambling or depolarizing (e.g. retinal pigment epithelium 266 (RPE), choroidal nevus) [79, 85-88]. The results of these studies indicate two possible 267 future applications of PS-OCT for diagnostics of ocular diseases: A recent animal 268 study has shown that a damage of the optic nerve leads to a reduced RNFL 269 birefringence before RNFL thickness changes are detectable by intensity based OCT 270 [89]. Since depth resolved retardation measurements by PS-OCT directly provide 271 quantitative information on RNFL birefringence [81, 84, 90-91], glaucoma induced 272 RNFL damage might be detected at an early stage, possibly improving glaucoma 273 diagnostics. The depolarization caused by the RPE can directly be used to identify and 274 visualize [86-87, 92], and segment [31] this layer who's integrity is decisive for 275 photoreceptor metabolism and therefore for visual function. Therefore, PS-OCT is an 276 interesting tool for diagnosis and follow-up studies of diseases associated with RPE 277 alterations like AMD.

278 Figure 2 shows an example of B-scans obtained by a PS-OCT instrument in a healthy 279 human fovea. Fig. 2A shows the conventional intensity image where the three 280 strongly reflecting boundaries of the posterior retina are marked (IS/OS, boundary 281 between inner and outer photoreceptor segments; ETPR, end tips of photoreceptors; 282 RPE, retinal pigment epithelium). The retardation image (Fig. 2B) shows the different 283 polarizing properties of retinal tissue in this region: most tissues preserve the 284 polarization state, i.e. do not introduce or change retardation (blue colors), only the 285 RPE scrambles the polarization state, generating random retardation values (the mix 286 of all color values appears green in this presentation). Fig. 2C shows the degree of 287 polarization uniformity (DOPU), which is high (orange to red colors) in all layers 288 except the RPE. This information was used to segment the RPE and to generate an 289 overlay image showing intensity (gray scale) and the segmented RPE in red (Fig. 2D). 290 Figure 3 shows an example of a PS-OCT B-scan obtained in the retina of a patient 291 with AMD. A large atrophy is visible on the left hand side of the image, discernible 292 by the increased light penetration into deeper layers in the intensity image (Fig. 3A). 293 Figs. 3B and 3C show the DOPU and the overlay image (segmented RPE in red), 294 clearly showing the atrophy.

295

### 296 Doppler OCT and related methods

297 Similar to other medical imaging techniques like ultrasound imaging, OCT can also 298 provide velocity information by exploiting the Doppler effect and related 299 mechanisms. This technique, called Doppler OCT (DOCT) or optical Doppler 300 tomography (ODT), was first reported in 1995[93]. Its main application is blood flow 301 measurement and imaging, and a great variety of different implementations, both in 302 time[94-95] and spectral domain[96-97], have been reported, providing sensitivities 303 down to the order of 10  $\mu$ m/s. A comprehensive overview of all these techniques is 304 beyond the scope of this review.

305 DOCT is presently a very active research area, and we would like to highlight some of 306 the most relevant developments for retinal imaging. An important application of 307 DOCT could be to use blood velocity as a contrast agent for visualization of the 308 vasculature in the ocular fundus. In this application, the phase changes caused by 309 moving blood cells are used to differentiate them from the surrounding stationary 310 tissue and thereby segment the vessels. This technique was called optical coherence 311 angiography[98-99] and can be used for 3D display of the vessel structure and, e.g., 312 used to differentiate retinal from choroidal vessels. Compared to fluorescein 313 angiography, DOCT has the advantage of not requiring the injection of a contrast 314 agent, however, has the drawback of being sensitive only to moving blood; vascular 315 leakage cannot be imaged by this method.

316 Quantitative measurement of the absolute velocity of the moving blood cells, and 317 perfusion measurements providing blood volume flow are still challenging. To obtain 318 absolute velocities, details of the vessel geometry have to be known because DOCT 319 measures only the velocity component parallel to the probing light beam. Recent improvements of retinal DOCT extracted this geometric information from OCT
intensity data[100-101] or developed new probing schemes eliminating orientation
sensitivity by employing two differently oriented beams simultaneously[102]. A first
repeatability study of total retinal blood flow using the former method in 8 healthy
eyes demonstrated a mean coefficient of variation of 10.5 %.[103]

Finally, new advanced interferometric schemes should be mentioned that, by hardware manipulation of the reference or sample beam phase during measurement, provide superior separation of intensity and flow data and/or access flow speeds that are beyond the range of conventional DOCT[104-106].

329

330 In ophthalmology, OCT technology has clearly introduced a diagnostic revolution.

331 The unique feature of a non-invasive modality able to image in an in-vivo approach 332 retinal structures in detail presents OCT as the ideal modality for detection of early 333 disease in screening and prevention, for differential diagnosis of various macular 334 diseases of vascular, degenerative, or inflammatory nature and most importantly to 335 quantify therapeutic effects and identify recurrence during follow-up. Improved 336 imaging features such as higher resolution, reliable algorithm for automated 337 segmentation and selective imaging of relevant layers such as NFL and RPE will 338 enhance the spectrum of indications and clinical value. The practicality of OCT in 339 respect to data acquisition e.g. by eye tracking systems and particularly in terms of 340 archiving of large data volumes and presentation in a user friendly way requires 341 further improvement to facilitate the establishment in clinical practice. With high-342 resolution, three-dimensional OCT ophthalmologists have been offered a technology 343 which allows an unprecedented insight into the pathophysiology of retinal disease. 344 For the optimal benefit in favour of our patients it is now necessary to identify the

- 15 -

- 345 parameters which are clinically relevant i.e. are associated with visual function to
- 346 correlate morphology and function and to share the knowledge with the large
- 347 ophthalmological community so that the advantages in diagnosis and treatment
- 348 become available to universities and community hospitals as well as practices around
- the world.
- 350
- 351

## 352 References

| 354 | 1.  | Fercher, A.F., K. Mengedoht, and W. Werner, <i>Eye-Length Measurement by</i>                  |
|-----|-----|-----------------------------------------------------------------------------------------------|
| 355 |     | Interferometry with Partially Coherent-Light. Optics Letters, 1988. 13(3): p.                 |
| 356 |     | 186-188.                                                                                      |
| 357 | 2.  | Hitzenberger, C.K., Optical measurement of the axial eye length by laser                      |
| 358 |     | Doppler interferometry. Invest Ophthalmol Vis Sci, 1991. 32(3): p. 616-24.                    |
| 359 | 3.  | Huang, D., et al., <i>Optical coherence tomography</i> . Science, 1991. <b>254</b> (5035): p. |
| 360 |     | 1178-81.                                                                                      |
| 361 | 4.  | Fercher, A.F., et al., <i>In vivo optical coherence tomography</i> . Am J Ophthalmol,         |
| 362 |     | 1993. <b>116</b> (1): p. 113-4.                                                               |
| 363 | 5.  | Swanson, E.A., et al., In-Vivo Retinal Imaging by Optical Coherence                           |
| 364 |     | <i>Tomography</i> . Optics Letters, 1993. <b>18</b> (21): p. 1864-1866.                       |
| 365 | 6.  | Hee, M.R., et al., <i>Quantitative assessment of macular edema with optical</i>               |
| 366 |     | <i>coherence tomography</i> . Arch Ophthalmol, 1995. <b>113</b> (8): p. 1019-29.              |
| 367 | 7.  | Puliafito, C.A., et al., <i>Imaging of macular diseases with optical coherence</i>            |
| 368 |     | tomography. Ophthalmology, 1995, <b>102</b> (2): p. 217-29.                                   |
| 369 | 8.  | Hee, M.R., et al., Ontical coherence tomography of macular holes.                             |
| 370 | 0.  | Ophthalmology 1995 $102(5)$ : p. 748-56                                                       |
| 371 | 9.  | Gaudric, A., et al., Macular hole formation: new data provided by optical                     |
| 372 |     | coherence tomography Arch Ophthalmol 1999 <b>117</b> (6): p 744-51                            |
| 373 | 10  | Chauhan D.S. et al Papillofoveal traction in macular hole formation: the                      |
| 374 | 10. | role of ontical coherence tomography Arch Onhthalmol 2000 <b>118</b> (1): p 32-               |
| 375 |     | 8                                                                                             |
| 376 | 11  | Tanner V et al Ontical coherence tomography of the vitreoretinal interface                    |
| 377 | 11. | in macular hole formation Br I Ophthalmol 2001 <b>85</b> (9): p 1092-7                        |
| 378 | 12  | Use $\mathbf{R}$ at al Macular configuration determined by ontical coherence                  |
| 379 | 12. | tomography after idiopathic macular hole surgery with or without internal                     |
| 380 |     | limiting membrane peeling Br I Onbthalmol 2002 <b>86</b> (11): n 1240-2                       |
| 381 | 13  | Gallemore R P et al Diagnosis of vitreoretinal adhesions in macular                           |
| 382 | 15. | disease with ontical coherence tomography Reting 2000 20(2): p 115-20                         |
| 383 | 14  | Schuman IS et al Quantification of nerve fiber layer thickness in normal                      |
| 38/ | 17. | and algueomatous eves using optical coherence tomography. Arch                                |
| 385 |     | Onbthalmol 1995 <b>113</b> (5): n 586-96                                                      |
| 386 | 15  | Fercher A F et al Measurement of Intraocular Distances by Backscattering                      |
| 387 | 15. | Spectral Interferometry Ontics Communications 1995 117(1-2): p 43-48                          |
| 388 | 16  | Hausler G and M W Lindner "Coherence Radar" and "Spectral Radar"                              |
| 380 | 10. | New Tools for Dermatological Diagnosis Journal of Biomedical Ontics 1998                      |
| 390 |     | 3(1): n 21-31                                                                                 |
| 391 | 17  | Woitkowski M et al In vivo human retinal imaging by Fourier domain                            |
| 307 | 17. | optical coherence tomography Journal of Biomedical Optics 2002 7(3): p                        |
| 303 |     | A57-A63                                                                                       |
| 393 | 18  | Leitgeh R C Hitzenberger and A Fercher Parformance of fourier domain                          |
| 305 | 10. | vs. time domain optical coherence tomography Opt Express 2003 11(8): p                        |
| 396 |     | 880-804                                                                                       |
| 307 | 10  | de Boer IF et al Improved signal-to-poise ratio in spectral domain                            |
| 308 | 19. | compared with time domain optical coherence tomography Opt Latt 2002                          |
| 300 |     | 28(21) p 2067 0                                                                               |
| 377 |     | <b>20</b> (21). p. 2007-9.                                                                    |

| 20. | Sander, B., et al., Enhanced optical coherence tomography imaging by                                                                                                                                                                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | multiple scan averaging. Br J Ophthalmol, 2005. 89(2): p. 207-12.                                                                                                                                                                                    |
| 21. | Sakamoto, A., M. Hangai, and N. Yoshimura, Spectral-domain optical                                                                                                                                                                                   |
|     | coherence tomography with multiple B-scan averaging for enhanced imaging                                                                                                                                                                             |
|     | of retinal diseases. Ophthalmology, 2008. <b>115</b> (6): p. 1071-1078 e7.                                                                                                                                                                           |
| 22. | Ferguson, R.D., et al., Tracking optical coherence tomography. Opt. Lett.,                                                                                                                                                                           |
|     | 2004. <b>29</b> (18): p. 2139-2141.                                                                                                                                                                                                                  |
| 23. | Hammer, D.X., et al., Active retinal tracker for clinical optical coherence                                                                                                                                                                          |
|     | tomography systems. Journal of Biomedical Optics, 2005. 10(2): p. 024038-                                                                                                                                                                            |
|     | 11.                                                                                                                                                                                                                                                  |
| 24. | Drexler, W., et al., In vivo ultrahigh-resolution optical coherence tomography.                                                                                                                                                                      |
|     | Opt Lett, 1999. <b>24</b> (17): p. 1221-3.                                                                                                                                                                                                           |
| 25. | Fujimoto, J.G., Optical coherence tomography for ultrahigh resolution in vivo                                                                                                                                                                        |
|     | <i>imaging</i> . Nat Biotech. 2003. <b>21</b> (11): p. 1361-1367.                                                                                                                                                                                    |
| 26. | Ko, T.H., et al., Comparison of ultrahigh- and standard-resolution optical                                                                                                                                                                           |
|     | coherence tomography for imaging macular hole pathology and repair.                                                                                                                                                                                  |
|     | Ophthalmology, 2004, <b>111</b> (11): p. 2033-43.                                                                                                                                                                                                    |
| 27. | Iwasaki, T., et al., Three-dimensional optical coherence tomography of                                                                                                                                                                               |
| _/. | proliferative diabetic retinopathy. Br J Ophthalmol. 2008. <b>92</b> (5): p. 713.                                                                                                                                                                    |
| 28. | Woitkowski, M., et al., Three-dimensional retinal imaging with high-speed                                                                                                                                                                            |
| -0. | ultrahigh-resolution optical coherence tomography. Ophthalmology, 2005.                                                                                                                                                                              |
|     | <b>112</b> (10): n 1734-46                                                                                                                                                                                                                           |
| 29. | Schmidt-Erfurth, U., et al., Three-dimensional ultrahigh-resolution optical                                                                                                                                                                          |
| _/. | coherence tomography of macular diseases Invest Ophthalmol Vis Sci 2005                                                                                                                                                                              |
|     | <b>46</b> (9): p. 3393-402.                                                                                                                                                                                                                          |
| 30. | Hitzenberger, C., et al., Three-dimensional imaging of the human retina by                                                                                                                                                                           |
|     | high-speed optical coherence tomography. Opt. Express. 2003. 11(21): p.                                                                                                                                                                              |
|     | 2753-2761.                                                                                                                                                                                                                                           |
| 31. | Götzinger, E., et al., Retinal pigment epithelium segmentation bypolarization                                                                                                                                                                        |
|     | sensitive optical coherencetomography. Opt. Express. 2008. 16(21): p. 16410-                                                                                                                                                                         |
|     | 16422.                                                                                                                                                                                                                                               |
| 32. | Ahlers, C., et al., Automatic segmentation in three-dimensional analysis of                                                                                                                                                                          |
|     | fibrovascular pigmentepithelial detachment using high-definition optical                                                                                                                                                                             |
|     | <i>coherence tomography.</i> Br J Ophthalmol. 2008. <b>92</b> (2): p. 197-203.                                                                                                                                                                       |
| 33. | Chan, A., et al., <i>Ouantification of photoreceptor laver thickness in normal</i>                                                                                                                                                                   |
|     | eves using optical coherence tomography. Retina, 2006. <b>26</b> (6): p. 655-60.                                                                                                                                                                     |
| 34. | Kagemann, L., et al., Sources of longitudinal variability in optical coherence                                                                                                                                                                       |
|     | tomography nerve-fibre layer measurements. Br J Ophthalmol. 2008. <b>92</b> (6): p.                                                                                                                                                                  |
|     | 806-9.                                                                                                                                                                                                                                               |
| 35. | Sadda, S.R., et al., Errors in retinal thickness measurements obtained by                                                                                                                                                                            |
|     | optical coherence tomography. Ophthalmology, 2006. <b>113</b> (2): p. 285-93.                                                                                                                                                                        |
| 36. | Fung, A.E., et al., An optical coherence tomography-guided, variable dosing                                                                                                                                                                          |
|     | regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related                                                                                                                                                                         |
|     | macular degeneration. Am J Ophthalmol. 2007. <b>143</b> (4): p. 566-83.                                                                                                                                                                              |
| 37. | Emerson, G.G., et al., Optical coherence tomography findings during                                                                                                                                                                                  |
|     | pegaptanib therapy for neovascular age-related macular degeneration.                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                      |
|     | Retina, 2007. <b>27</b> (6): p. 724-9.                                                                                                                                                                                                               |
| 38. | Retina, 2007. <b>27</b> (6): p. 724-9.<br>Ozdemir, H., S.A. Karacorlu, and M. Karacorlu. <i>Early optical coherence</i>                                                                                                                              |
| 38. | Retina, 2007. <b>27</b> (6): p. 724-9.<br>Ozdemir, H., S.A. Karacorlu, and M. Karacorlu, <i>Early optical coherence</i><br><i>tomography changes after photodynamic therapy in patients with age-related</i>                                         |
|     | <ol> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>31.</li> <li>32.</li> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> </ol> |

| 450         | 39. | Coscas, F., et al., Optical coherence tomography identification of occult                              |
|-------------|-----|--------------------------------------------------------------------------------------------------------|
| 451         |     | choroidal neovascularization in age-related macular degeneration. Am J                                 |
| 452         |     | Ophthalmol, 2007. 144(4): p. 592-9.                                                                    |
| 453         | 40. | Meyer, C.H., et al., Ranibizumab in Patients with Subfoveal Choroidal                                  |
| 454         |     | Neovascularization Secondary to Age-Related Macular Degeneration. Interim                              |
| 455         |     | Results from the SUSTAIN trial. Invest Ophthalmol Vis Sci, 2008. 49: p. E-                             |
| 456         |     | Abstract 273.                                                                                          |
| 457         | 41. | Dalton, M. (2008) Lucentis at one year. Eyeworld.                                                      |
| 458         | 42. | Bolz, M. and U. Schmidt-Erfurth, Ranibizumab EXCITE study: Exploring the                               |
| 459         |     | Value of Optical Coherence Tomography for the Management of Ranibizumab                                |
| 460         |     | Therapy in Age-Related Macular Degeneration., in 8th EURETINA Congress.                                |
| 461         |     | 2008: Vienna, Austria.                                                                                 |
| 462         | 43. | Salinas-Alaman, A., et al., Using optical coherence tomography to monitor                              |
| 463         |     | photodynamic therapy in age related macular degeneration. Am J                                         |
| 464         |     | Ophthalmol, 2005, <b>140</b> (1); p. 23-8.                                                             |
| 465         | 44. | Krebs, L. et al., Optical coherence tomography guided retreatment of                                   |
| 466         |     | photodynamic therapy. Br J Ophthalmol. 2005. <b>89</b> (9): p. 1184-7.                                 |
| 467         | 45. | Ahlers, C., et al., <i>Time Course of Morphologic Effects on Different Retinal</i>                     |
| 468         |     | Compartments after Ranihizumah Therapy in Age-related Macular                                          |
| 469         |     | Degeneration Ophthalmology 2008 <b>115</b> (8): p. e39-e46                                             |
| 470         | 46. | Vujosevic, S., et al., Diabetic macular edema: correlation between                                     |
| 471         |     | microperimetry and optical coherence tomography findings Invest                                        |
| 472         |     | Ophthalmol Vis Sci 2006 <b>47</b> (7): p 3044-51                                                       |
| 473         | 47  | Moutray T et al Relationships between clinical measures of visual function                             |
| 474         | 17. | fluorescein angiographic and optical coherence tomography features in                                  |
| 475         |     | patients with subforeal choroidal neovascularisation Br I Ophthalmol 2008                              |
| 476         |     | 92(3): p 361-4                                                                                         |
| 477         | 48  | Hangai M et al Three-dimensional imaging of macular holes with high-                                   |
| 478         | 10. | speed optical coherence tomography Ophthalmology 2007 <b>114</b> (4): p 763-                           |
| 479         |     | 73                                                                                                     |
| 480         | 49  | Tan $\Omega$ et al Manning of macular substructures with ontical coherence                             |
| 481         | 12. | tomography for glaucoma diagnosis Onhthalmology 2008 115(6): p 949-56                                  |
| 482         | 50  | Drexler W et al <i>Illtrahigh-resolution onthalmic ontical coherence</i>                               |
| 483         | 50. | tomography Nature Medicine 2001 7(4): p 502-507                                                        |
| 484         | 51  | Pircher M et al Retinal cone mosaic imaged with transverse scanning                                    |
| 485         | 51. | ontical coherence tomography Ontics Letters 2006 <b>31</b> (12): n 1821-1823                           |
| 486         | 52  | Miller DT et al Coherence gating and adaptive optics in the eve in                                     |
| 487         | 52. | Conference on Coherence Domain Ontical Methods and Ontical Coherence                                   |
| 188         |     | Tomography in Biomedical VII 2003 San Jose Ca                                                          |
| 400         | 53  | Hermann B et al Adaptive-optics ultrahigh-resolution optical coherence                                 |
| 490         | 55. | tomography Ontics Letters 2004 <b>29</b> (18): p 2142-2144                                             |
| 490<br>/101 | 54  | Thang V et al Adaptive ontics parallel spectral domain optical coherence                               |
| 401<br>102  | 54. | tomography for imaging the living rating. Optics Express 2005 13(12): p                                |
| 492         |     | A792-A811                                                                                              |
| 495         | 55  | 772-4011.<br>Zawadzki P I at al Adaptive optics optical coherence tomography for high                  |
| 494         | 55. | zawadzki, K.J., et al., Aduptive-optics optical concretence tomography for high-                       |
| 495<br>106  |     | <b>13</b> (21) p. 8532 8546                                                                            |
| 470<br>107  | 56  | IJ(21). P. 0332-0340.<br>Formandez F. L. et al. Three dimensional adaptive antice ultrahigh resolution |
| 471<br>108  | 50. | normandoz, E.J., et al., Intee-almensional adaptive optics ultranign-resolution                        |
| 470         |     | Vision Desearch 2005 <b>45</b> (28): p. 2422-2444                                                      |
| サブブ         |     | v 151011 NESEALUI, 2003. <b>43</b> (20). p. 3432-3444.                                                 |

| 500        | 57. | Zhang, Y., et al., <i>High-speed volumetric imaging of cone photoreceptors with</i>           |
|------------|-----|-----------------------------------------------------------------------------------------------|
| 501        |     | adaptive optics spectral-domain optical coherence tomography. Optics                          |
| 502        |     | Express, 2006. 14(10): p. 4380-4394.                                                          |
| 503        | 58. | Merino, D., et al., Adaptive optics enhanced simultaneous en-face optical                     |
| 504        |     | coherence tomography and scanning laser ophthalmoscopy. Optics Express,                       |
| 505        |     | 2006. <b>14</b> (8): p. 3345-3353.                                                            |
| 506        | 59. | Bigelow, C.E., et al., Compact multimodal adaptive-optics spectral-domain                     |
| 507        |     | optical coherence tomography instrument for retinal imaging. Journal of the                   |
| 508        |     | Optical Society of America a-Optics Image Science and Vision, 2007. 24(5):                    |
| 509        |     | p. 1327-1336.                                                                                 |
| 510        | 60. | Zawadzki, R.J., et al., Adaptive optics-optical coherence tomography:                         |
| 511        |     | optimizing visualization of microscopic retinal structures in three dimensions.               |
| 512        |     | Journal of the Optical Society of America a-Optics Image Science and Vision.                  |
| 513        |     | 2007. <b>24</b> (5): p. 1373-1383.                                                            |
| 514        | 61. | Pircher, M., et al., Simultaneous imaging of human cone mosaic with adaptive                  |
| 515        |     | optics enhanced scanning laser ophthalmoscopy and high-speed transversal                      |
| 516        |     | scanning optical coherence tomography. Optics Letters, 2008, <b>33</b> (1): p. 22-24.         |
| 517        | 62  | Hammer DX et al <i>Foveal fine structure in retinopathy of prematurity: An</i>                |
| 518        | 02. | adaptive optics Fourier domain optical coherence tomography study                             |
| 519        |     | Investigative Ophthalmology & Visual Science, 2008, <b>49</b> (5): p. 2061-2070               |
| 520        | 63  | Choi S S et al Changes in cellular structures revealed by ultra-high                          |
| 521        | 02. | resolution retinal imaging in optic neuropathies Investigative Onthalmology                   |
| 522        |     | & Visual Science 2008 <b>49</b> (5): n 2103-2119                                              |
| 522        | 64  | Zawadzki R I et al Ultrahigh-resolution ontical coherence tomography                          |
| 523        | 04. | with monochromatic and chromatic aberration correction Optics Express                         |
| 525        |     | 2008 <b>16</b> (11): n 8126-8143                                                              |
| 525<br>526 | 65  | Fernandez F I et al Illtrahigh resolution optical coherence tomography and                    |
| 520<br>527 | 05. | pancorrection for cellular imaging of the living human reting Optics Express                  |
| 528        |     | 2008 <b>16</b> (15): n 11083-11094                                                            |
| 520        | 66  | Pircher M and R Zawadzki Combining adaptive optics with optical                               |
| 530        | 00. | coherence tomography: unveiling the cellular structure of the human reting in                 |
| 531        |     | vivo Expert Rev Ophthalmol 2007 2(6): n 1019-1035                                             |
| 532        | 67  | Spaide R F H Koizumi and M C Pozzoni Enhanced denth imaging                                   |
| 532        | 07. | spectral-domain ontical coherence tomography Am I Onbthalmol 2008                             |
| 534        |     | <b>146</b> ( <i>A</i> ): p. 496-500                                                           |
| 535        | 68  | Margolis R and R F Spaide A pilot study of enhanced depth imaging optical                     |
| 536        | 00. | coherence tomography of the choroid in normal avec. Am I Ophthalmol 2000                      |
| 530<br>537 |     | 147(5): p. 811.5                                                                              |
| 529        | 60  | Improved the second death imaging antical scherence tomography of                             |
| 520        | 09. | the abaraid in control scroug charioratinonathy <b>B</b> ating 2000 <b>20</b> (10): p         |
| 540        |     | 1460 72                                                                                       |
| 540<br>541 | 70  | 1409-75.<br>Devezer P et al Enhanced vigualization of chonoidal vegeele veine                 |
| 541<br>542 | 70. | Povazay, B., et al., Ennancea visualization of choroidal vessels using                        |
| 542<br>542 |     | uitranign resolution opninalitic OCT at 1050 nm. Optics Express, 2005. 11(17), $= 1080, 1086$ |
| 545        | 71  | <b>11</b> (17): p. 1980-1980.                                                                 |
| 544        | /1. | Povazay, B., et al., <i>Three-almensional optical coherence tomography at 1050</i>            |
| 343<br>546 |     | nm versus 600 nm in retinal pathologies: enhanced performance and                             |
| 340<br>547 |     | <i>cnoroiaal penetration in cataract patients.</i> Journal of Biomedical Optics,              |
| 54/        | 70  | 2007. 12(4): p. 041211.                                                                       |
| 548<br>546 | 12. | Lee, E.C., et al., In vivo optical frequency domain imaging of human retina                   |
| 549        |     | and choroid. Opt. Express, 2006. 14(10): p. 4403-4411.                                        |

| 550 | 73. | Yasuno, Y., et al., In vivo high-contrast imaging of deep posterior eye by 1-um           |
|-----|-----|-------------------------------------------------------------------------------------------|
| 551 |     | swept source optical coherence tomography and scattering optical coherence                |
| 552 |     | angiography. Opt. Express, 2007. 15(10): p. 6121-6139.                                    |
| 553 | 74. | Srinivasan, V.J., et al., Ultrahigh-Speed Optical Coherence Tomography for                |
| 554 |     | Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head.                 |
| 555 |     | Investigative Ophthalmology & Visual Science, 2008. <b>49</b> (11): p. 5103-5110.         |
| 556 | 75. | Hee, M.R., et al., Polarization-sensitive low-coherence reflectometer for                 |
| 557 |     | birefringence characterization and ranging. Journal of the Optical Society of             |
| 558 |     | America B-Optical Physics, 1992. 9(6): p. 903-908.                                        |
| 559 | 76. | deBoer, J.F., et al., Two-dimensional birefringence imaging in biological                 |
| 560 |     | tissue by polarization-sensitive optical coherence tomography. Optics Letters,            |
| 561 |     | 1997. <b>22</b> (12): p. 934-936.                                                         |
| 562 | 77. | Hitzenberger, C.K., et al., Measurement and imaging of birefringence and                  |
| 563 |     | optic axis orientation by phase resolved polarization sensitive optical                   |
| 564 |     | coherence tomography. Optics Express, 2001. 9(13): p. 780-790.                            |
| 565 | 78. | Yasuno, Y., et al., Birefringence imaging of human skin by polarization-                  |
| 566 |     | sensitive spectral interferometric optical coherence tomography. Optics                   |
| 567 |     | Letters, 2002. 27(20): p. 1803-1805.                                                      |
| 568 | 79. | Götzinger, E., M. Pircher, and C.K. Hitzenberger, <i>High speed spectral domain</i>       |
| 569 |     | polarization sensitive optical coherence tomography of the human retina.                  |
| 570 |     | Optics Express, 2005. <b>13</b> (25): p. 10217-10229.                                     |
| 571 | 80. | Cense, B., et al., Polarization-sensitive spectral-domain optical coherence               |
| 572 |     | tomography using a single line scan camera. Optics Express, 2007. 15(5): p.               |
| 573 |     | 2421-2431.                                                                                |
| 574 | 81. | Yamanari, M., et al., Phase retardation measurement of retinal nerve fiber                |
| 575 |     | layer by polarization-sensitive spectral-domain optical coherence tomography              |
| 576 |     | and scanning laser polarimetry. J Biomed Opt, 2008. 13(1): p. 014013.                     |
| 577 | 82. | Schmitt, J.M. and S.H. Xiang, Cross-polarized backscatter in optical                      |
| 578 |     | coherence tomography of biological tissue. Optics Letters, 1998. 23(13): p.               |
| 579 |     | 1060-1062.                                                                                |
| 580 | 83. | Cense, B., et al., In vivo depth-resolved birefringence measurements of the               |
| 581 |     | human retinal nerve fiber layer by polarization-sensitive optical coherence               |
| 582 |     | <i>tomography</i> . Optics Letters, 2002. <b>27</b> (18): p. 1610-1612.                   |
| 583 | 84. | Cense, B., et al., Thickness and birefringence of healthy retinal nerve fiber             |
| 584 |     | layer tissue measured with polarization-sensitive optical coherence                       |
| 585 |     | <i>tomography</i> . Investigative Ophthalmology & Visual Science, 2004. <b>45</b> (8): p. |
| 586 |     | 2606-2612.                                                                                |
| 587 | 85. | Pircher, M., et al., Imaging of polarization properties of human retina in vivo           |
| 588 |     | with phase resolved transversal PS-OCT. Optics Express, 2004. 12(24): p.                  |
| 589 | 0.1 | 5940-5951.                                                                                |
| 590 | 86. | Pircher, M., et al., Human macula investigated in vivo with polarization-                 |
| 591 |     | sensitive optical coherence tomography. Investigative Ophthalmology &                     |
| 592 | _   | Visual Science, 2006. <b>47</b> (12): p. 5487-5494.                                       |
| 593 | 87. | Michels, S., et al., Value of polarisation-sensitive optical coherence                    |
| 594 |     | tomography in diseases affecting the retinal pigment epithelium. British                  |
| 595 | ~ ~ | Journal of Ophthalmology, 2008. <b>92</b> (2): p. 204-209.                                |
| 596 | 88. | Gotzinger, E., et al., Three-dimensional polarization sensitive OCT imaging               |
| 597 |     | and interactive display of the human retina. Opt Express, 2009. 17(5): p.                 |
| 598 |     | 4151-65.                                                                                  |

| 599 | 89.  | Fortune, B., G.A. Cull, and C.F. Burgoyne, <i>Relative Course of Retinal Nerve</i> |
|-----|------|------------------------------------------------------------------------------------|
| 600 |      | Fiber Layer Birefringence and Thickness and Retinal Function Changes after         |
| 601 |      | Optic Nerve Transection. Investigative Ophthalmology & Visual Science,             |
| 602 |      | 2008. <b>49</b> (10): p. 4444-4452.                                                |
| 603 | 90.  | Götzinger, E., et al., Retinal nerve fiber layer birefringence evaluated with      |
| 604 |      | polarization sensitive spectral domain OCT and scanning laser polarimetry: A       |
| 605 |      | <i>comparison.</i> Journal of Biophotonics, 2008. <b>1</b> (2): p. 129-139.        |
| 606 | 91.  | Mujat, M., et al., Autocalibration of spectral-domain optical coherence            |
| 607 |      | tomography spectrometers for in vivo quantitative retinal nerve fiber laver        |
| 608 |      | <i>birefringence determination.</i> J Biomed Opt. 2007. <b>12</b> (4): p. 041205.  |
| 609 | 92.  | Miura, M., et al., Imaging polarimetry in age-related macular degeneration.        |
| 610 |      | Investigative Ophthalmology & Visual Science, 2008, <b>49</b> (6): p. 2661-2667.   |
| 611 | 93   | Wang X I T E Milner and I S Nelson <i>Characterization of fluid-flow</i>           |
| 612 | 201  | velocity by ontical Doppler tomography Optics Letters 1995 <b>20</b> (11): n       |
| 613 |      | 1337-1339                                                                          |
| 614 | 94   | Yazdanfar S A M Rollins and I A Izatt Imaging and velocimetry of the               |
| 615 | 74.  | human ratingl circulation with color Doppler optical coherence tomography          |
| 616 |      | Ont Lett 2000 25(10): p 1448 1450                                                  |
| 617 | 05   | Chan 7 at al Noninvasive imaging of in vive blood flow velocity using              |
| 618 | 95.  | ontical Donnlar tomography Ont Lett 1997 <b>22</b> (14): p 1110 1121               |
| 610 | 06   | Laitgab P A at al Peal time assessment of rating blood flow with ultrafast         |
| 620 | 90.  | acquisition by color Doppler Fourier domain optical coherence tomography           |
| 620 |      | Option Expresses 2002 <b>11</b> (22): p. 2116-2121                                 |
| 622 | 07   | White D.D. et al. In vivo dynamic human particul blood flow imposing using         |
| 622 | 97.  | while, B.K., et al., In vivo aynamic numan retinal blood flow imaging using        |
| 023 |      | Exercise 2002 11(25): r. 2400 2407                                                 |
| 624 | 00   | Express, 2005. 11(25): p. 3490-3497.                                               |
| 025 | 98.  | Makita, S., et al., Optical concrence angiography. Optics Express, 2006.           |
| 626 | 00   | 14(17): p. 7821-7840.                                                              |
| 627 | 99.  | Hong, Y., et al., Inree-almensional visualization of chorolaal vessels by using    |
| 628 |      | standard and ultra-high resolution scattering optical coherence angiography.       |
| 629 | 100  | Optics Express, 2007. <b>15</b> (12): p. 7538-7550.                                |
| 630 | 100. | Wang, Y.M., et al., In vivo total retinal blood flow measurement by Fourier        |
| 631 |      | domain Doppler optical coherence tomography. Journal of Biomedical Optics,         |
| 632 |      | 2007. <b>12</b> (4): p. 041215.                                                    |
| 633 | 101. | Wehbe, H., et al., Automatic retinal blood flow calculation using spectral         |
| 634 |      | domain optical coherence tomography. Optics Express, 2007. 15(23): p.              |
| 635 |      | 15193-15206.                                                                       |
| 636 | 102. | Werkmeister, R.M., et al., <i>Bidirectional Doppler Fourier-domain optical</i>     |
| 637 |      | coherence tomography for measurement of absolute flow velocities in human          |
| 638 |      | retinal vessels. Optics Letters, 2008. 33(24): p. 2967-2969.                       |
| 639 | 103. | Wang, Y., et al., Measurement of total blood flow in the normal human retina       |
| 640 |      | using Doppler Fourier-domain optical coherence tomography. Br J                    |
| 641 |      | Ophthalmol, 2009. <b>93</b> (5): p. 634-7.                                         |
| 642 | 104. | Bachmann, A.H., et al., Resonant Doppler flow imaging and optical                  |
| 643 |      | vivisection of retinal blood vessels. Optics Express, 2007. 15(2): p. 408-422.     |
| 644 | 105. | Wang, R.K., et al., Three dimensional optical angiography. Optics Express,         |
| 645 |      | 2007. <b>15</b> (7): p. 4083-4097.                                                 |
| 646 | 106. | Michaely, R., et al., Vectorial reconstruction of retinal blood flow in three      |
| 647 |      | dimensions measured with high resolution resonant Doppler Fourier domain           |
|     |      |                                                                                    |

- *optical coherence tomography*. Journal of Biomedical Optics, 2007. **12**(4): p. 041213.



# Figure 1.

Three-dimensional rendering of a full-thickness macular hole. Images gratefully provided by Christian Ahlers, MD.



## Figure 2.

PS-OCT B-scan images of healthy human fovea in vivo. (A) Intensity (log scale); (B) retardation (color bar:  $0^{\circ} - 90^{\circ}$ ); (C) degree of polarization uniformity DOPU (color bar: 0 - 1). (D) overlay of intensity image with RPE segmented by DOPU data (red). Image size:  $15^{\circ}$  (horizontal) x 0.75 mm (vertical, optical distance). (From E. Götzinger et al.<sup>31</sup> by permission of the Optical Society of America).



# Figure 3.

PS-OCT images of retina with AMD. (A) Intensity; (B) DOPU (color bar: see fig 1C); (C) intensity overlaid with segmented RPE. Image size:  $15^{\circ}$  (horizontal) x 1 mm (vertical). (From E. Götzinger et al.<sup>31</sup> by permission of the Optical Society of America).