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Parameter estimation for a-fractional bridges

Khalifa Es—Sebaiyﬁ and Ivan Nourdinﬂﬂ

Université de Bourgogne and Université Nancy 1

Abstract: Let o, T > 0. We study the asymptotic properties of a least squares estimator for the pa-
rameter « of a fractional bridge defined as dX; = —« TX_’f s dt +dBy, 0 <t <T, where B is a fractional
Brownian motion of Hurst index H > % Depending on the value of «, we prove that we have strong
consistency or not as t — T'. In this case, we obtain the rate of this convergence as well. Also, we

compare our results to the (known) case where B is replaced by a standard Brownian motion W.

It is great pleasure for us to dedicate this paper to our friend David Nualart, in celebration of his
60th birthday and with all our admiration
1 Introduction

Let W be a standard Brownian motion and a be a non-negative real parameter. In recent years,
the study of various problems related to the (so-called) a-Wiener bridge, that is, to the solution X to

Xy
Tt

Xo=0; dX;=—« dt +dWy, 0<t<T, (1)
has attracted interest. For a motivation and further references, we refer the reader to Barczy and Pap
[E, , as well as Mansuy [ﬂ] Because (ﬂ) is linear, it is immediate to solve it explicitely; one then gets
the following formula:

X, = (T —t)° /Ot(Ts)“dWS, te0,T),

the integral with respect to W being a Wiener integral.

An example of interesting problem related to X is the statistical estimation of a when one observes
the whole trajectory of X. A natural candidate is the maximum likelihood estimator (MLE), which
can be easily computed for this model, due to specific form of (El) one gets

([ ) /([ ). e o

In (B), the integral with respect to X must of course be understood in the It sense. On the other
hand, at this stage it is worth noting that d; coincides with a least squares estimator (LSE) as well,
that is, a; (formally) minimizes
¢
ar |
0

Also, it is worth bearing in mind an alternative formula for &;, which is more easily amenable to
analysis and is immediately shown thanks to ([l]):

a-a = (OTXudw)/(/O(TXﬁdu) (3)
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When dealing with (E) by means of a semimartingale approach, it is not very difficult to check that
Qy is indeed a strongly consistent estimator of a. The next step generally consists in studying the
second-order approximation. Let us describe what is known about this problem: ast — T,

oif0<oz<%then

(T — )% (0 — @) =5 T3 (1 — 2) x C(1), (4)
with C(1) the standard Cauchy distribution, see [§, Theorem 2.8J;
o ifa= % then
log(T — ] (a — ) = o et 5)
Jo Wads
see [H, Theorem 2.5];
o ifa> % then
[Tog(T — 6)] (o — @) 2% N(0,2a — 1), (6)

see [E, Theorem 2.11].
Thus, we have the full picture for the asymptotic behavior of the MLE/LSE associated to a-Wiener
bridges.

In the present paper, our goal is to investigate what happens when, in (ﬂ), the standard Brownian
motion W is replaced by a fractional Brownian motion B. More precisely, suppose from now on that
X = {Xt}iepo,r) is the solution to

XQZO; dXt:—

0<t<T, (7)

where B is a fractional Brownian motion with known parameter H, whereas a > 0 is considered as
an unknown parameter. Although X could have been defined for all H in (0, 1), for technical reasons
and in order to keep the length of our paper within bounds we restrict ourself to the case H € ( ,1)
in the sequel.

In order to estimate the unknown parameter o when the whole trajectory of X is observed, we
continue to consider the estimator @; given by (B). (It is no more the MLE, but is still a LSE.) Nev-
ertheless, there is a major difference with respect to the standard Brownian motion case. Indeed, the
process X being no more a semimartingale, in () one can no longer utilize the It6 integral to integrate
with respect to it. However, because X hasf] y-Hélder continuous paths on [0, ] for all v € (3,H) and
all t € [0,7), one can choose instead the Young integral (see Section E for the main properties of
this integral, notably its chain rule (1) and how it is related to the Skorohod integral).

Let us now describe the results we prove in the present paper. First, in Propositionﬂl we show
that the (strong) consistency of a; as ¢ — T actually holds if and only if o < % Then, depending on
the value of a € (0, %], we derive the asymptotic behavior of the error @; — a.. It turns out that, once
adequately normalized this error converges either in law or almost surely, to a limit that we are able to
compute explicitely. More specifically, we show in Theorem E the following convergences (below and
everywhere else, C(1) stands for the standard Cauchy distribution and 3(a, b) fo 221 — z)b " ldx
for the Beta function): as t — T,

e if 0 <a<1— H then

(T — )" (0 — &) 2% o-H(1 2a)\/ (ﬁ = ﬁﬂ_(i)ﬁ?f_f;f_j) xC(l);  (8)

§More precisely, we assume in all this paper that we work with a y-Hoélder continuous version of X on [0, t],
which is easily shown to exist by the Kolmogorov-Centsov theorem.



o if « =1 — H then

(T —t)—2H _\ law 1-2H s |21 - H,2H —1) _
m(a*at)ﬂT (2H — 1) \/ B(H,2H —1) x C(1); (9)

oifl—H<a<%then

e w) 2 - [t [T/ </T T >> o

° ifa:%then

a.s

|log(T — t)| (o — @) = (11)

N~

When comparing the convergences (§) to ([L]) with those arising in the standard Brownian motion
case, that is (E) to (E), we observe a new and interesting phenomenom when the parameter o ranges
from 1 — H to 3 (of course, this case is immaterial in the standard Brownian motion case).

We hope our proofs of (E) to () to be elementary. Indeed, except maybe the link ) between
Young and Skorohod integrals, they only involve soft arguments, often based on the mere derivation
of suitable equivalent for some integrals. In particular, unlike the classical approach (as used, e.g., in
[E]) we stress that, here, we never used any tools coming from the semimartingale realm.

Before to conclude this introduction, we would like to mention the recent paper [ﬂ] by Hu and Nu-
alart, which has been a valuable source of inspiration for us. More specifically, the authors of [ﬂ] study
the estimation of the parameter o > 0 arising in the fractional Ornstein-Uhlenbeck model, defined as
dX; = —aXdt + dBy, t > 0, where B is a fractional Brownian motion of (known) index H € (3, 2).
They show the strong consistency of a least squares estimator a; as t — oo (with, however, a major
difference with respect to ours: they are forced to use Skorohod integral rather than Young integral
to define ay, otherwise a; 4 « as t — oo; unfortunately, this leads to an impossible-to-simulate
estimator, and this is why they also propose an alternative estimator for «.) They then derive the
associated rate of convergence as well, by exhibiting a central limit theorem. It should be stressed
that the calculations of [E] are of completely different nature than ours because, to achieve their goal,
the authors of [[] make use of the fourth moment theorem of Nualart and Peccati [ff

The rest of our paper is organized as follows. In Section 2 we introduce the needed material for
our study, whereas Section 3 contains the precise statements and proofs of our results.

2 Basic notions for fractional Brownian motion

In this section, we briefly recall some basic facts concerning stochastic calculus with respect to a
fractional Brownian motion; we refer to [f for further details. Let B = {Bi}+ejo, 1) be a fractional
Brownian motion with Hurst parameter H € (0, 1), defined on some probability space (2, F, P). (Here,
and everywhere else, we do assume that F is the sigma-field generated by B.) This means that B is
a centered Gaussian process with the covariance function E[BsB;] = Ry (s,t), where

1
Rp(s,t) = 3 (#H + s — |t — 52 . (12)

If H =1, then B is a Brownian motion. From (), one can easily see that E[|B: — By|?] = |t —s|*",
so B has y—Holder continuous paths for any v € (0, H) thanks to the Kolmogorov-Centsov theorem.



2.1 Space of deterministic integrands

We denote by £ the set of step R—valued functions on [0,T]. Let H be the Hilbert space defined as
the closure of £ with respect to the scalar product

(Ljo,005 Ljo,5] )5 = Rur(t,9).

We denote by | - [# the associate norm. The mapping 1y +— B; can be extended to an isometry
between H and the Gaussian space associated with B. We denote this isometry by

wHM@ZAw@M% (13)

When H € (3,1), it follows from [[[(] that the elements of H may not be functions but distributions
of negative order. It will be more convenient to work with a subspace of H which contains only
functions. Such a space is the set |H| of all measurable functions ¢ on [0, T] such that

|olfyy = H(2H — 1) / / u)||e@)||u — v 2 dudv < co.

If o, € |H| then

E[B(¢)B(vy)] = H(2H — 1)/O /O o(u)(v)|u — v* 2 dudv. (14)

We know that (||, (-,-)5) is a Banach space, but that (||, (,)#) is not complete (see, e.g., [L0]).
However, we have the dense inclusions L2([0,T]) ¢ L# ([0,T]) C |H| C H.

2.2 Malliavin derivative and Skorohod integral

Let S be the set of all smooth cylindrical random variables, that is, which can be expressed as
F = f(B(¢1),...,B(¢n)) wheren > 1, f : R" — R is a C*°-function such that f and all its derivatives
have at most polynomial growth, and qﬁz € H. The Malliavin derivative of F' with respect to B is the
element of L?(Q, H) defined by

DF—Z%l B(6n)i(s), 5 € [0,T].

In particular DsB; = 1(g,4(s). As usual, D12 denotes the closure of the set of smooth random variables

with respect to the norm
IFI2, = EF?]+ E[|DFJ,].

The Malliavin derivative D verifies the chain rule: if ¢ : R™ — R is C,} and if (F})i=1,....n is a sequence
of elements of D2, then ¢(F1,..., F,) € D2 and we have for any s € [0, 7],

"9
Dip(Fr,... Fu) = aj (Fi,...,F,)D,F;.

The Skorohod integral § is the adjoint of the derivative operator D. If a random variable u € L?(Q, H)
belongs to the domain of the Skorohod integral (noted domd), that is, if it verifies

|E(DF,u)#| < ¢, \/E[F?] forany F € S,
then d(u) is defined by the duality relationship

E[Fé(u)]=E [(DF, u>H] ,

4



for every F' € D2, In the sequel, when ¢t € [0,7] and u € domé, we shall sometimes write fot U0 By
instead of d(uljoy). If h € H, notice moreover that fOT hsdBs = §(h) = B(h).

For every q > 1, let H, be the gth Wiener chaos of B, that is, the closed linear subspace of L*(Q2)
generated by the random variables {H, (B (h)),h € H,||hllx = 1}, where H, is the gth Hermite
polynomial. The mapping I,(h®?) = H, (B (h)) provides a linear isometry between the symmetric
tensor product H®? (equipped with the modified norm || - ||yed = \/L?H - |l@q) and H,. Specifically,

for all f,g € H®? and ¢ > 1, one has

E[1,(/)14(9)] = ¢'(f, 9)pea (15)

On the other hand, it is well-known that any random variable Z belonging to L?(2) admits the
following chaotic expansion:

Z=B[Z]+)_ 1,(f,) (16)

where the series converges in L?(£2) and the kernels f,, belonging to H®?, are uniquely determined by
Z.

2.3 Young integral

For any « € [0, 1], we denote by €7([0,T]) the set of y-Hélder continuous functions, that is, the set
of functions f : [0, 7] — R such that
[f(t) = f(5)]

flyi = sup ——— < oo
7l ogs<t<T  (t—8)7

(Notice the calligraphic difference between a space € of Holder continuous functions, and a space C
of continuously differentiable functions!). We also set |f|eo = sup,e(o. 71 [f(f)], and we equip €7 ([0, T])
with the norm

Iflly = 1fly =+ [ floe-
Let f € €7([0,T]), and consider the operator Ty : C1([0,T]) — C°([0,T]) defined as

Ty (9)(t) = / W (w)du, t€[0,T].

It can be shown (see, e.g., [[]]) that, for any 8 € (1—+, 1), there exists a constant C., g v > 0 depending
only on v, 8 and T such that, for any g € €°([0, 7)),

We deduce that, for any v € (0,1), any f € €7(]0,7]) and any 8 € (1 — v,1), the linear operator
Ty : CH([0,T]) c €°([0,T]) — €P([0,T]), defined as Tf(g) = [, f(u)g'(u)du, is continuous with
respect to the norm || - ||3. By density, it extends (in an unique way) to an operator defined on €. As
consequence, if f € €7([0,T)), if g € €°(]0,T]) and if v + 8 > 1, then the (so-called) Young integral
Jo f(u)dg(u) is (well) defined as being T’ (g).

The Young integral obeys the following chain rule. Let ¢ : R? — R be a C! function, and let
f,9 € €7([0,T)) with vy > §. Then [; §%(f(u), g(u))df (u) and [§ §2(f(u),g(u))dg(u) are well-defined
as Young integrals. Moreover, for all t € [0, T,

<Gyl fllyllglls.

/0 ) (w)du

B

F0¢
o Of

o710 9(0) = (70900 + [ 207w, g) () + [ g—jqwg(u»dg(u). (17)



2.4 Link between Young and Skorohod integrals

Assume H > 3, and let u = (ut)e[o,7) be a process with paths in € ([0, T) for some fixed v > 1—H.

Then, according to the previous section, the integral fOT usdBjg exists pathwise in the Young sense.
Suppose moreover that u; belongs to D2 for all ¢ € [0, 7], and that u satisfies

T T
P (/ / | Dug|[t — s>~ 2dsdt < oo) =1.
o Jo

Then u € domd, and we have (see [ll]), for all t € [0,T7:

t t t et
/ usdBs = / us 0B, + H(2H — 1)/ / Dgug|z — s|*"2dsdx. (18)
0 0 o Jo
In particular, notice that

T T
0 0

when ¢ is non-random.

3 Statement and proofs of our main results

In all this section, we fix a fractional Brownian motion B of Hurst index H € (%, 1), as well as
a parameter o > 0. Let us consider the solution X to (ﬂ) It is readily checked that we have the
following explicit expression for X;:

X, = (T — ) /t(T— §)°dB,, te0,T), (20)

where the integral can be understood either in the Young sense, or in the Skorohod sense, see indeed

(D

For convenience, and because it will play an important role in our forthcoming computations, let
us introduce the following two processes related to X: for ¢ € [0, T,

& = | (- 9 an, (21)
N = /Ot dBy (T —u)*~! /u dBs(T —s)™* = /Ot(T —u)*1¢,dB,. (22)

0

In particular, we observe that

t

Xu

Xt = (T — t)agt and / T udBu =Mt for t € [0, T) (23)
0 —

When « is between 0 and H (resp. 1 — H and H), in Lemma ] (resp. Lemma []) we shall actually
show that the process ¢ (resp. 7)) is well-defined on the whole interval [0,7] (notice that it could
have had a problem at ¢ = T'), and that it admits a continuous modification. This is why we may
assume in the sequel, without loss of generality, that £ (resp. 1) is continuous when 0 < o < H (resp.
1-H<a<H).
Recall the definition (fJ) of @;. By using () and then (R3), as well as the definitions (1)) and (£3),

we arrive to the following formula:
t _
fO XU(T - u) 1dBu _ Nt

7 =t :
Jo X2(T — u)~2ds Jo (T — u)?2=2€2du

-~

o — O =

6



Thus, to prove the convergences () to ([L]) of the introduction (that is, our main result!), we are
now left to study the (joint) asymptotic behaviors of n; and fOt(T —u)?*72€2du as t — T. That of

fot (T —u)?*~2¢2du will be relatively simple to handle (see Lemma ) because it looks like a convergence
a la Cesaro when a < % In contrast, that of 7; is more difficult to obtain, and will rely on the relative
position of a with respect to 1 — H. It is actually the combination of Lemmas E, E, E, ﬂ, E that will
allow to derive it for the full range of values of a.

We are now in position to prove our two main results, that we restate here for convenience.

_. prob.
Theorem 1 We have a; —3 a/\% ast — T. When a < H we have almost sure convergence as well.

As a corollary, we have that @, is a strong consistent estimator of « if and only if o < % The next
result gives the associated rate of convergence in this case.

Theorem 2 Let G ~ N(0,1) be independent of B, let C(1) stand for the standard Cauchy distribution,
and let 3(a,b) = fol 29711 — 2)*~Ydz denote the classical Beta function.

1. Assume o € (0,1 — H). Then, ast — T,

BR2-a-2H2H-1) G
1-H -« €T

law o (H—-a)B(2—2H —«,2H — 1)
T 2O‘)\/ 0—H-ap0—az2m -1 W

(T—0)"T(a—a) =% (1- 2a)\/H(2H ~1)

2. Assumea=1—H. Then, ast — T,

(Tﬁt)liﬂq ~ law, 3 G
——(a—aQ — (2H-1)2/2HB(1—H,2H —1) x —
et () (2 — 1)} VR A i
law 1—2H 3 26(1—H,2H—1)
= T 2H —1)2 1).
(2 — 1) \/ s x e
3. Assume o € (lfH, %) Then, ast — T,
(T — 1y —ay) 25 QLZ20)0r
(ér)?

4. Assume o = % Then, ast — T,

a.s

[log(T —t)| (v — ) —>

N =

The rest of this section is devoted to the proofs of Theorems [l and E Before to be in position to
do so, we need to state and prove some auxiliary lemmas. In what follows we use the same symbol ¢
for all constants whose precise value is not important for our consideration.

Lemma 3 Let o, 8 € (0,1) be such that o+ § < 2H. Then, for all T > 0,

T T T T
/ ds (Tfs)*ﬁ/ dT(T—T)7a|s—r|2H72 :/ dssiﬁ/ dTT7a|S—T|2H72 < 0.
0 0 0 0



Proof. By homogeneity, we first notice that

T T 1 1
/ ds s_B/ drr=%s —r|?H72 = TQH_O‘_ﬂ/ ds s_B/ drr=%s —r[?H=2
0 0 0 0

so that it is not a loss of generality to assume in the proof that T = 1. If a +1 < 2H then

1 3
IN /s =1 — |2 =2dr < esT2HHITY 50 that

1 1 1 1/s 1
/ ds sfﬁ/ drr=2|s —r|?H=2 = / ds sQH*o‘fﬁ*l/ drr=®]1 — 2172 c/ s Pds < oc.
0 0 0 0 0

If « +1=2H, then fol/s 17201 — p|2H=24r L (1 + |log s|), so that

1 1 1 1
/ ds s_'@/ drr=|s —r[?H=2 :/ ds s_B/ dr =2 |s — p2H=2
0 0 0 0
1 1/s 1
= / ds siﬁ/ dr 17271 —pPH2 < c/ sfﬁ(l + |log s|)ds < oo.
0 0 0

Finally, if « +1 > 2H, then

1 1 1 1/s
/ dSS_B/ drr=®ls — P72 = / ds s?H—o=h~1 / drr=®|1 —r[?"=2
0 0 0 0

1 o]
/ 2H—a=PF-1gg « / P = P2 dr < 0.
0 0

/N

Lemma 4 Assume o € (0, H). Recall the definition @) of &. Then &p = limy_,7 & exists in L2.
Moreover, for all € € (0, H — ), the process {t}iejo,r) admits a modification with (H — o — ¢)-Hélder
continuous paths, still denoted & in the sequel. In particular, & — &7 almost surely ast — T

Proof. Because a < H, by Lemma [| we have that fol dss™¢ fOT duu?|s — u|?=2 < oo. For all
s <t < T, we thus have, using () to get the first equality,

Ble-¢?] - HeH-1) /: du(T — ) /: (T — o) — a2

T—s T—s
= H(2H - 1)/ duuf‘l/ dvo™ v — uf*"72
T—t Tt

t—s t—s
= H(2H—1)/ du(u—l—T—t)*O‘/ dv(v+T — )" — uf*72
Otfs t—s ’
< H(2H - 1)/ duufa/ dvv= v — ul?H 2
0 0
1 1
= HQ2H-1)(t- s)2H_2a/ du u_o‘/ dvv™ v —u|?72 = ¢(t — 5)* 22,
0 0

By the Cauchy criterion, we deduce that & := lim,_,7 & exists in L2. Moreover, because the process &
is centered and Gaussian, the Kolmogorov-Centsov theorem applies as well, thus leading to the desired
conclusion. [ ]

Lemma 5 Assume a € (1 — H, H). Recall the definition (@) of ne. Then nr = limy_,pn; exists in
L%. Moreover, there exists v > 0 such that {nt}rejo,m) admits a modification with v-Hélder continuous
paths, still denoted n in the sequel. In particular, n. — nr almost surely ast — T.



Proof. As a first step, let us fix 51,82 € (1 — H, H) and show that there exists ¢ = (81,82, H) > 0

and ¢ = ¢(B1, B2, H) > 0 such that, for all 0 < s <t < T,
/ (T — u) ™ (T — v) P2 |u — v 2 dudv < e(t — s)°.
[0,t] x [s,t]

Indeed, we have

[0,]x[s t] T—t T—t

(24)

T T—s
ﬂl(va)7ﬂ2|ufv|2H72dudv:/ duufﬁl/ dvv P2 |u — v|?H 2

t—s t t—s
= / du(u+T —1t)~ ﬂl/ dv(v+Tft)7ﬁ2|ufv|2H72</ duuiﬂl/ dvv=P2 |y — 2
0 0 0 0

1 1 ¢
(t_S)QH—Bl—,@Z/duu—ﬂl/dvv—ﬂ2|u_v|2H—2+/ duu—ﬁl—ﬂ2+2H—1/
0 0 t—s 0

t—s t—s t t—s
/ duu=P / dv =Py — v|?H2 4 / duu=" / dv v P2 (u —v)?H-
0 t—s 0

(t—s)/u

2

dvoP2(1 —v)2H=2

T
< et —8)2HP=P2 o o(t — )1 P2 / duu=PT2H=2 " (see Lemma [ for the first integral and
t—s

use 1 — v < 1 for the second one)

1 if 1 < 2H — 1

c(t — s)*T=P1=P2 Lot — s)17P2 x {14 |log(t — s)| if 3y =2H —1
(t —s)2H-1-5A if 81 >2H — 1
< c(t—s)° forsomee € (0,1A(2H — 1) — Ba),

hence (R4) is shown.
Now, let ¢ < T'. Using ([1§), we can write

nt/Otfu(Tu)o‘_lcSBquH(QH1)/()tdu(Tu)a_1/Oudv(Tv)_a(uv

We deduce, after setting
1
ot (u,v) = §(T —uV)* N T —uAv)"* L g2 (u,v),

that

e = I(o) + H(2H — 1)/0 du(T —u)>* /Ou dv(T — v)™%(u — v)?H~

Hence, because of ([L5),

)2H—2

2

Bl —n)°| = 2lei— poldos + HX2H —1)° (/t du(T —u)*! /Ou do(T — v) ™ (u U)QH—2)
s 25)
We have, by observing that ¢; — ¢4 € |H|9?,
lpr — @s 132
= H?(2H -1) /[0 . (o1 (u,0) — @ (u,0)] [@1(, ) — @5 (2, )] [u — 22772 |Jo — y[* ~*dudvdzdy
= l1-12(2H —1)? / (T —uvo)* YT —2Vvy)* NT —unv) (T -z Ay)~®
4 ([0,1]2\[0,5]2)2

x|u — |27 72| jv — y|PH 2 dudvdxdy.



Taking into account the form of the domain in the previous integral as well as the fact that ¢y — @, is
symmetric, we easily show that ||y — ¢4 |3,e. is upper bounded (up to constant, and without seeking
to be sharp) by a sum of integrals of the type

/[ Xl T]2(T — u)*ﬁl(T — )P (T - z) P (T — y)7ﬁ4|u — 2PH2 |y — y[2H2dudvdzdy,
0,t] x[s,t] x |0,

with 31, B2, 83, 84 € {a,1 — a}. Hence, combining Lemma E with (@), we deduce that there exists
e > 0 small enough and ¢ > 0 such that, for all s,¢ € [0, 7],

ot = @allFen < clt = s|°. (26)

On the other hand, we can write, for all s <t < T,

/St du(T — u)*? /Ou do(T — v)~ (u — v)2H 2

T—s T
/ duu®! / dvv™ (v — u)?H 2
T—t u

t—s t
= / du(u+Tft)”‘71/ dv(v+T —t)"%(v — u)*172
0 u
t—s T
< / duuo‘_l/ dvv= (v — u)?H 2
0 u
1 ==
= (t—s)?1 / duu®t / dvo™®(v —u)?7 2
0 u

1 T
t—9)u
= (t— S)QH_l/ duuQH_Q/ dvo™ (v —1)*172, (27)
0 1

Let us consider three cases. Assume first that a > 2H — 1: in this case,

T
=s)u °
/ v % — 1) 24y < / v — 1) 2dy < oo;
1 1

leading, thanks to (R7), to

/t du(T — u)*? /O“ dv(T —v) ™% (u — v)?772 L et — 5)* 71,
The second case is when av = 2H — 1: we then have
/1m v (v —1)*"2dv < e(1+ |log(t — s)| + |logul)
so that, by (@),
/t du(T —u)*? /Ou dv(T —v)™*(u—v)*"72 < et — s)*" (14 |log(t — )]).
Finally, the third case is when o« < 2H — 1: in this case,

T
(=DM
/ ’Uia(’U _ 1)2H72d’0 < C(t _ S>a72H+1ua72H+1;
1

so that, by (@),
/ du(T —u)>* /0 dv(T — v) ™% (u —v)?772 L et — 5)~.
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To summarize, we have shown that there exists ¢ > 0 such that, for all s,¢ € [0, 7],

t U
[ aum =t [T an(r = o) 0P < 1+ gl DI ozl = 5|V (28)
s 0

By inserting (R) and (B) into (), we finally get that there exists ¢ > 0 small enough and ¢ > 0
such that, for all s,¢ € [0,T],

E {(nt — 775)2} < clt — s)°.

By the Cauchy criterion, we deduce that 7 := lim;_7 7, exists in L2. Moreover, because 1, — 1, —
E[n:] + Elns] belongs to the second Wiener chaos of B (where all the LP norms are equivalent), the
Kolmogorov-Centsov theorem applies as well, thus leading to the desired conclusion. [ |

Lemma 6 Recall the definition (@) of ne. For any t € [0,T), we have
t t t s
= / (T — uw)* 'dB, x / (T — s)"“dB, f/ 6B, (T — s)—a/ 6B, (T —u)*™!
0 0 0 0

—H(2H — 1) /O ds (T — s)~° /O du (T — u)* (s — u)?1 2.

Proof. Fix t € [0,T). Applying the change of variable formula (@) to the right-hand side of the first
equality in @) leads to

t t t s
e :/ (T —u)*'dB, x/ (T — 5)"“dB; 7/ dB; (T—s)’”‘/ dB, (T — u)**.
0 0 0

0

On the other hand, by ([[§) we have that
t s
/ dB, (T — s)—a/ dB, (T —u)*™!
0

0
t S t S
= / 6B, (T — s)*a/ 6B, (T —u)* ' + H(2H — 1)/ ds(T — s)*a/ du(T —u)* (s —u)?H =2,
0 0 0 0
The desired conclusion follows. ]

Lemma 7 Let $(a,b) = fol 29711 — 2)*~Ydx denote the classical Beta function, let Z be any o{B}-
measurable random variable satisfying P(Z < oo) = 1, and let G ~ N(0,1) be independent of B.

1. Assume a € (0,1 — H). Then, ast — T,

(Z, (T —t)t-H-« /Ot(T — u)a_ldBu) Low, <Z, \/H(QH — 1)/3(2 — ‘f‘:giiH ) G)

(29)
2. Assumea=1—H. Then, ast — T,

u)_HdBu> Tawgy (Z, V2H(2H - 1)3(1 — H,2H — 1) G) . (30)

1 t
(Z’ V| log(T —t)] /0 -

Proof. By a standard approximation procedure, we first notice that it is not a loss of generality to
assume that Z belongs to L*(Q) (using e.g. that Z 1{z7/<n} —> Z as n — co).
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1. Set N = \/H(2Hf 1)%% G. For any d > 1 and any s1,...,84 € [0,T), we shall

prove that
! 1
(le, .oy By, (T — t)l’H’a/ (T — u)o‘ldBu) % (Bsy,...,Bs,,N) ast—T.  (31)
0

Suppose for a moment that @) is shown, and let us proceed with the proof of (E) By the very con-
struction of H and by reasoning by approximation, we deduce that, for any ! > 1 and any hy,...,h; € H
with unit norms,

(B(hl),...,B(hl),(Tt)lHa /t(Tu)aldBu> law, (B(h1),...,B(l),N) ast—T.
0

This implies that, for any [ > 1, any hy,...,h; € H with unit norms and any integers q1,...,q = 0,

t

(qu (B(h1)),...,Hy (B(W)),(T —t)'~H-2 / (T — u)a_ldBu)

2% (Hg, (B(h)), ..., Hy (B(l)),N) ast—T,

with H, the gth Hermite polynomial. Using now the very definition of the Wiener chaoses and by
reasoning by approximation once again, we deduce that, for any [ > 1, any integers q1,...,q = 0 and
any fl € Hqua" 'afl € Hqua

(Iql (fl); . ,Iql (fl); (T — t)l_H_a /0 (T — u)a—ldBu) 1a_w> (Ilh (fl), ceey qu (fl), N) ast—T.

Thus, for any random variable F' € L?(Q) with a finite chaotic decomposition, we have
i 1
(F, (T — t)l—H—a/ (T — u)o‘_ldBu) =5 (F,N) ast—T. (32)
0

To conclude, let us consider the chaotic decompoition ([Ld) of Z. By applying (BJ) to F = E[Z] +
> g=114(fy) and then letting n — oo, we finally deduce that (£9) holds true.

Now, let us proceed with the proof of (B1)). Because the left-hand side of (B1) is a Gaussian vector,
to get (@) it is sufficient to check the convergence of the covariance matrices. Let us first compute

the limiting variance of (T — t)! =~ fg(T —u)*"1dB, ast — T. By ([4), for any t € [0,T) we have

<(T — )i /Ot(T - u)o‘_ldBu)

t t
= HQ2H-1)(T- t)2_2H_2a/ ds(T — s)** / du(T —u)*"Ys —u|*172
0 0

2
E

T T
= HQ2H - 1)(T - t)QiQH*QO‘/ dss*! / duu® s — ul?H2
T—t T—t

T T
T T
= H(2H—1)/ dsso‘_l/ duu®ts —u|*H 2
1 1

— H(2H—1)/ dsso‘_l/ duu® s —u|?7? ast — T,
1 1

12



with

o0 o0 o0
/ ds s*~ / duu® s —u|?72 = / ds SQO‘HH*B/ duu® 1 — 2
1 1 1/s

o] 00 o] 1
—_ / 2a+2H Bds/ uafl(u o 1)2H72du 4 / ds S2()¢Jr2H73 / du uafl(l o u)2H72
1 1 1 1/s

2 —a—2H,2H -1 1 o0
— 6( (0% ) ) +/ du ua—l(l _ u)2H—2/ dS 82a+2H—3
0 Ju

2(1 — H — «)
B(2—a—2H,2H —1)
- 1-H-a '
Thus,
lim E <(Tt)1_H_O‘/t(Tu)O‘_1dB )2 :wﬂ(z—a—w 2H — 1)
t—T o “ 1-H-« ’ '

On the other hand, by ([I4) we have, for any v < ¢t < T,
¢
E {Bu x (T — t)lfﬂfa/ (T — u)o‘ldBu}
0
t v
= H(2H —1)(T —t)!7H~ a/ du (T — u)afl/ ds |u — s|*1 =2
0 0

¢

= H(Tft)l_H_o‘/ (T —u)* (! +sign(v — u) x v —u|* " )du
0

— 0 ast—T,

because fOT(T —u)* (w1 4 sign(v — u) x |v — u|*" ") du < co. Convergence (B]) is then shown,
and (R9) in turn.

2. By ([4), for any ¢ € [0V (T'— 1), T) we have

(m/ yhan )

= / /du(T—u)_H|s—u|2H_2
og *t| 0

|1
H(2H — 1 r
HEH-1) dssfH/ duu s — |12
|log(T = )| Jr— T—t

2H(2H —1) [T )
= ¥/ dssiH/ dun™ (s —u)?H=2

|log(T" — )]
_ 2H(2H -1) /T ds/ duu (1~ u)?H2
|log(T — t)|
_ T
_ 2H(2H 1)/ duu—H(l_u)QH—2/ ﬁ
|log(T = t)| Jz_t T-t §
1
_ _ log(Tu)
= 2H(2H -1 duw H(1—u)*72 (14— ).
@A) [, du ) " Tlog(T— )

T

Because fol [log(Tu)|u= (1 —u)*~2du < oo, we get that

2
)y~ HdB ) —2H(2H - 1)3(1-H,2H —1) ast—T.

(m/
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On the other hand, fix v € [0,T). For all t € [0V (T — 1),T), using ([4) we can write

\/|log —t)] /

o t v

H(2H 1) (T*’u,)iH/ dS|U7S|2H72
0

:m

— 0 ast—>T,

y"HdB,

Y +sign(v — u) x o — w7 du

because fOT(T—u) “H(w Tt 4sign(v —u) x v —u[* 1) du < co. Thus, we have shown that, for any
d>1and any s1,...,84 € [0,T),

<B§1, Bsd,(T—t)lHa/t(T— u)*~ 1dB> Lo, <le,...,Bsd,\/2H(2H—1)6(1—H,2H—1)G)
0

(33)
as t — T. Finally, the same reasoning as in point 1 above allows to go from (B3) to (B0), hence
|

concluding the proof of the lemma.

— H|. Then, ast — T,

</Ot 6By (T —u)™® /05an (Tv)”‘l)j < 0.

—u Vo) (T —uAv)* g 2(u,v). We have ¢ € [H|9? and fot dB,

Lemma 8 Assume o € (0,1

limsup F¥
t—T

Proof. Set ¢y(u,v) = (T
a=1 _

)70‘ fou 5Bv (T ) = IQ(th) so that

t u 2
(/ 6B, (T—U)’a/ 0B, (Tv)‘”) ] =2 limsup || ¢y |30
0 0 t—T

/ b (u, v) e (z,y)|u — $|2H72|v — y|2H72dudvdzdy
[0,7]*
a—1

limsup F¥
t—T

= 2H?*(2H —1)? limsup

t—T
1
= §H2(2H— 1)2/ T—uVo) (T —uAv)* T —xVy) T —zAvy)

0,77
z*172 )y — y P2 dudvdady

X|u —
7,0)0471

T T
2H2(2H71)2/ du(Tfu)*a/ dz(fo)7a|ufz|2H72/ dv (T
0 0 0
< [T =y - P
0

T T T T
2H2(2H71)2/ duu_o‘/ dzx_o‘|u—z|2H_2/ dvvo‘_l/ dyy® v —y*1 2
0 0 u T
T/v
— _ |2H72.

T T T
= 2H2(2H—1)2/ duufo‘/ dwx7a|u—x|2H72/ dvUQH”D‘*g/ dyy* 1
0 0 u z/v

1—H and H <1, we have o < 2 — 2H, so that

T/v oo
/ ya—1|1 _ y|2H_2dy < / ya—1|1 _ y|2H_2dy < 00.
z/v 0

Because o <
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Moreover, because 2H + 2a — 3 < —1 due to our assumption on «, we have

T 2H+2a—2 f 1—-H
2H+20-3 _ u ra<
lld“” \C{ 1+ |logu| ifa=1-H

Consequently, if « =1 — H, then

T T T T/v
/ du u—a/ dx x—a|u o 1,|2H—2 / dv 02H+2a—3 / dy ya—1|1 o y|2H—2
0 u z/v

T T
< c/ duuf 1+|1ogu|)/ do o=y — 222
0 0
T T/uw
= / duu*?=3( 1+|10gu|)/ drzf =11 — g|2H~2
0 0
1 if H<3
T
< c/o wu 3 (14 [logul) x ¢ 1+ |logu| if H=2
u?—3H ifH>%
< o9,

and the proof is concluded in this case. Assume now that o < 1 — H. Then

T T T T/v
/ du u—a / d.CC :L,—oz|u o SC|2H_2 / d’U v2H+2a—3 / dy ya—1|1 o y|2H—2
0 0 u z/v
T T T T/u
< c/ duu2H+o‘_2/ dear u—z*172 = c/ duu4H_3/ drax™ 1 —z?H 2,
0 0 0 0

Let us distinguish three different cases. First, if a < 2H — 1 then

T T/u T
/ du u4H73/ deaz*|1 — 2?72 < c/ w2 gy < oo,
0 0 0

Second, if @« = 2H — 1 then

T T/u T T/u
/ du u4H73/ dra=|1 —z*172 = / du u4H73/ do x' 721 |1 — g2 -2
0 0 0 0

T
c/ ut73(1 + |logu)du < oc.
0

N

Third, if « > 2H — 1 then

T T/uw T 00
/ duu4H73/ drz=1 —z|*172 < / u4H73du/ 71 — 22 2dr < cc.
0 0 0 0

2
Thus, in all the possible cases we see that limsup,_,, F [(fot 6By (T —u)™™ [, 6B, (T — v)"_l) } is

finite, and the proof of the lemma is done. [ |

Lemma 9 Assume o € (0, H), and recall the definition (21) of &. Then, ast — T

1 20¢/§ 204 2d$ g%

1. if0<a<%, then

1—2&
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2. ifoe:%, then
1 bog
£ d
TogT— 0] Jo T

/52 2(1 st /52 2a 2dS<OO

Proof. 1. Using the (% — %)—Hélderianity of ¢ (Lemma E), we can write

a.s. .92
= &r;

3. if L <a< H, then

)2 )22 f%
« o— d
‘ / &l *T1-2a
T2a—1
< @-p [le gl tass @ - g
0 1 -2«
t H 30 T20—1
< delel 7 [T sy (- g
0 1 -2«
< _nE-% (i 2eplaie T _ )12 Tt
< el ((T=0)277 + (T = 1) )+ (T =) &
— 0 almost surely as t — T'.
2. Using the (£ — 1)-Holderianity of { (Lemma l), we can write
1 K 52 e
|log( =) Jo T—s g
/ ’52 log(T) &2
|1og —t) |10g(T—t)| r
C|€|oo / E_i 1Og( )
< —8)2 Tids 4 — L ¢2
[log(T — 1) [log(T — 1) ™"
cl€lo H_1 H_1 log(T)
— == (T2 "a4+(T—1t)2 + €
Toe o+ gyt

— 0 almost surely ast — T.

3. By Lemma E, the process ¢ is continuous on [0, T'], hence integrable. Moreover, s +— (T — s)2*~2 is
integrable at s =T because o > % The convergence in point 3 is then clear, with a finite limit.

We are now ready to prove Theorems | I and E

Proof of Theorem E Fix a > 0. Thanks to the change of variable formula (E), we can write, for any
te0,T):

1 1—2a [* t
STt = 2 [ wia [ (@ - v,
2 2 0 0
1—2a (!
- @ / (T — u)?* 22 du + 1y,
2 0
so that )
1
o — O = ft +a—-. (34)
2(T 7t 12« f 52 T — u)2a*2du 2
When « € (0, 3), we have (T — ¢)!=2* fo E(T —u)?*2du *¥ 1§2T2a (resp. &2 *3 ¢2) ast — T by

Lemma | (resp. Lemma [); hence, as desired one gets that o — a; >3 0 as t — T.
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When « = 3, the identity (B4) becomes

O[*at = 51:2 )
2 fot &(T — u)—ldu’

(35)

a.s

as t — T, we have fot E(T —u)~tdu = |log(T — t)|&% (resp. &F
). Hence, here again we have o — @; 3 0 as t — T

Suppose now that o € (1, H). As ¢t — T, we have fot E(T — u)?*2du =3 fOT E(T — u)**2du
(vesp. €2 *3 ¢2) by Lemma [] (resp. Lemma [f). Hence (B4) yields this time that o — & *3 o — £ as
t — T, that is a; =% %
Assume finally that o > H. By (E), we have

a

“Y &2) by Lemma [ (resp. Lemma

t t
E[(T -t = (Tt / du(T — u)== / (T — v)=*[v — u2H2
0 0
T T
= (T —t)2! / duu™® / dvv=|v — ul?H 2
Tt Tt
T T
T—t T—t
= (T —t)*"! duu_a/ dvv™ v — "2
1

VA
~
\
<
i
—

1 ifa<l1

N
2
~
|
-
e
T
\H
U
<
<
[\
Q
G
T
X

1+ logul ifa=1

ul=@ fa>1
|[log(T —¢)] ifa=H
< oT—t)*H 1 x
1 ifa>H
— Qast—T.

Hence, having a look at (B4) and because fot E(T — u)?*2du *¥ fOT E(T — u)**2du € (0,00] as

~ prob. .~ prob.
t — T, we deduce that o — o P o — % ast — T, that is oy P %
The proof of Theorem [[ is done. ]

Proof of Theorem @ 1. Assume that « belongs to (0,1 — H). We have, by using Lemmaﬂ to go from
the first to the second line,

(T _ t)l—H—oznt
(T —t)1=20 [T €2(T — s5)20=2ds
(T —t)'=H=o [T —u)*~1dB, [, (T — s)~“dB,
(T —t)1=20 [T €2(T — s5)20=2ds
(T — ) 1= [TGB(T — s)= [i 6B, (T — u)*~!
(T — t)1=2a [1€2(T — 5)20=2ds
(T — ) = H=e [Tds (T —s)7 [ du (T —u)* (s —u)2H 2
(T — t)1=2a [} €2(T — s5)22=2ds

(T —t)* " (a—a;) =

—H(2H —1)
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_ 1 —2a _ nN\1-H—-«a ! _ oa—1
= & (T —t) /0 (T —u)* "dBy
(T —s)dB, &2
&r (1 — 20)(T — t)' =2 [ €2(T — s)20=2ds

(T — ) == [T§B(T — s)= [i 6B, (T — u)*~!
(T — t)1=20 [ €2(T — 5)20-2(s
(T —t)l-H-« fot ds (T — )= [ du (T — u)*~!(s — u)* =2
(T — t)1=2 [} €2(T — 5)2a=2ds
= atxbtxct—dt—et, (36)

—H(2H —1)

with clear definitions for a; to e;. Lemma, ﬂ yields

- 2-a—-2H2H-1) G
at1—>(1—2a)\/H(2H—1)5( (1171{704 )Xé_:r ast — T,

where G ~ N (0, 1) is independent of B, whereas Lemma@ (resp. Lemma E) implies that b, 3 1 (resp.
¢t 23 1) as t — T. On the other hand, by combining Lemma ] with Lemma J (resp. Lemma [), we

deduce that d; Prod ) (resp. e prop: 0) as t — T. By plugging all these convergences together we get
that, ast — T,

B2-a-2H2H-1) G
1-H—« le

(T —6)* " (@ —a) ¥ (1- 2a)\/H(2H —~1)

Because it is well-known that the ratio of two independent N (0, 1)-random variables is C(1)-distributed,
to conclude it remains to compute the variance o2 of &7 ~ N(0,02). By ([L4), we have:

T T
El¢}] = H(2H — 1)/0 du(T — u)—a/o do(T —v)™%|v — u? 72
T T
= H(2H - 1)/ duufa/ dvv= v — ul?H 2
0 0
T u
= 2H(2H — 1)/ duu_a/ dvo%(u —v)?H 2
0 0

T 1
= 2H(2H - 1)/ u2H*2°‘71du/ v —v)?H 2y
0 0

_ HQEH-1) oy 0 3
= g T?H=208(1 — o, 2H — 1), (37)

and the proof of the first part of Theorem E is done.

2. Assume that &« = 1 — H. The proof follows the same lines as in point 1 above. The counterpart
of decomposition (Bf) is here:

(T —t)'—2H 2H — 1 ¢

-~ _(a—ay) = ———— [ (T —s)"HdB,
T Y iy I A
(T —wdB, &2
&r (2H — 1)(T — t)2H-1 [ €2(T — 5)=2Hds
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fot §By(T — s)7=1 [* 5B, (T —u)~
VIog(T = )[(T — £)2H=1 [7€2(T — 5)=2Hds
fot ds (T — s)H~1 fos du (T —u)~H (s — u)2H—2
[Tog(T — H)[(T — t)2H-1 [} €X(T — 5)~2Hds

= Etxbtxa—dt—a.

—H(2H —1)

Lemma, [] yields

~ law 3 G
@ S (2H — 1) \/2HB(1 — H,2H — 1) x e st
T
where G ~ N(0,1) is independent of B, whereas Lemma@ (resp. Lemma E) implies that 5,5 31 (resp.
¢ 3 1) as t — T. On the other hand, by combining Lemma E with Lemma E (resp. Lemma E), we
deduce that Jt prop- (resp. & prop- 0) as t — T. By plugging all these convergences together we get
that, ast — T,

w ~ law B % — — E
|log(T—t)|(O“ 04)%(2H 1) \/2Hﬂ(1 H,2H l)ng'

Moreover, by (B7) we have that &7 ~ N(0, HT*"=25(H,2H — 1)). Thus,

3 G raw 1on e 2p8(1-H,2H - 1)
(2H —1) \/2Hﬁ(1—H,2H—1)><—T_T (2H 1)\/ S 2H 1) x C(1),

and the convergence in point 2 is shown.

3. Assume that o belongs to (1 — H, 3). Using the decomposition

_p\2a—1( o~ Nt
(T t) (Oé O[t) (T _ t)l_Qa fot €5(T _ u)2a—2du,

we immediately see that the the second part of TheoremE is an obvious consequence of Lemmas ﬂ and E

4. Assume that o = % Recall the identity (@) in this case:

&

o — at = 7 .

2 [, (T —u)~tdu
Ast — T, we have £ ¥ €2 by Lemma [, whereas fot E2(T — u)~tdu < |log(T — t)|¢2 by Lemma .
Therefore, we deduce as announced that |log(T — t)|(ov — @) *3 L ast — 7. [ |
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