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Abstract

In this paper we address a real world optimisation problem, the Rail
Track Inspection Scheduling Problem (RTISP). This problem consists
of scheduling network inspection tasks. The objective is to minimise
total deadhead distance. A mixed integer formulation of the problem is
presented. A column generation based algorithm is proposed to solve this
rich arc routing problem. Its performance is analysed by benchmarking a
real world dataset from the French national railway company (SNCF). The
efficiency of the algorithm is compared to an enhanced greedy algorithm.
Its ability to schedule one year of inspection tasks on a sparse graph with
thousand nodes, arcs and edges is assessed.

arc routing, column generation, heuristic, railtrack mainte-

nance

1 Introduction

One of the major problems that railway companies have faced since the very
beginning are failures in tracks. Defects in rails, as the basic part of a track may
result in serious accidents. Réseau Ferré Français (RFF), the French railway
infrastructure manager, have delegated some railway maintenances to the Société
Nationale des Chemins de Fers (SNCF), a French railway company. SNCF is
committed to ensure the safety of the railway network. One of these maintenances
is to prevent tracks failures. In order to quickly inspects the French network,
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(a) Map of primary tracks (b) Graph model of railtracks around Bordeaux

Figure 1: French railway network model

SNCF is using ultrasonic defectoscopy to detect and survey imperfections in
rails. Inspection frequencies increase with speed and cumulated train weight.

Inspection frequencies range from six months to twenty years. Two third of
the total inspections (35 000 km) are performed on tracks which should be visited
once or twice a year. These tracks are called primary tracks. All the remaining
inspections (secondary tracks) are performed by local logistic departments. A
map representing these tracks is presented in figure 1a. A schematic zoom around
Bordeaux is shown in figure 1b. Ultrasonic inspections are performed with three
specialised rolling stock units, thereafter called vehicles. Their maximum speed
and working capacity are different. The detection of defects inside the track is
performed by reverberation analysis of the ultrasonic waves passing through the
rails. These vehicles can move during at most six hours per day. This limitation
is due to maximum shift duration and maximum daily inspection distance. This
distance is limited by the water tank capacity needed to keep sensors and rails
coupled during measure. These tanks can only be refilled at special stations.
Over the 200 stations on the primary tracks, 90 are equipped with water supply.
For organisational purposes, vehicle’s moves are geographically constrained and
their maintenances should be performed periodically.

The problem SNCF is dealing with is to visit a given set of tracks taking into
account some operational constraints. Tracks outages can alter vehicle’s speed
or prevent them from circulating during certain days. Vehicle’s speed depends
whether it is inspecting or deadheading: during deadhead trips speed can be
more than three times faster than when inspecting. Vehicle’s daily inspection
capacity is limited by the total amount of water which can be brought on board.
Water tank refill is time consuming and needs rarely available operators at the
station. Hence, it is not desired to do more than one refill per shift. The main
cost indicator is a common logistic performance ratio based on the quantity
of tracks inspected per year divided by the total traveled distance in a year.
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The total quantity of primary tracks to be inspected every year is constant,
so minimising this performance ratio reduces to the minimisation of the total
deadhead distance.

This problem can be modeled as an arc routing problem related to the ones
describing road deicing, waste collection or network weeding as described in the
survey from [17–20]. It involves complicating constraints, namely shift limited
duration, water supply, track outages and heterogeneous fleets. Another difficulty
is the network size which makes it a real challenge to solve.

2 Literature review

2.1 Industrial arc routing problems

In [13], the authors notified that industrial vehicle routing problems are rich:
models are generalisations of lots of academic ones, and input data dimension
can be huge.

Road related problems have supplied researchers with a lot of arc routing
problems. A review of problems arising during winter road maintenances has
been published in the articles [17–21]. They also present industrial applications.
Waste collection or postal deliveries are also an active field from arc routing
problems. In [15], a description of a waste collection problem is presented. A
nation wide postal delivery problem has been modeled as an industrial arc
routing problem in [14].

2.2 Arc routing problems

In this section, some arc routing problems and their applications are presented.
For a more complete catalog of them, a good introduction might be the books
[6] and [4] and the survey articles [7, 8].

One problem the RTISP is related with is the capacitated arc routing problem
(CARP), described in [12]. It consists in visiting a set of arcs with a single vehicle.
Each visited arc reduces by a given amount the remaining working capacity
of the vehicle. In the RTISP, tasks and deadheads circulation can be modeled
with arcs. The working capacity of vehicles is constrained by the vehicle’s water
tank capacity and the duration of a shift. The capacitated arc routing problem
with time windows (CARP-TW) extends the CARP by constraining the possible
visits of arcs to belong to a set of periods. Paper [9] contains a description of a
column generation procedure. In [22], a procedure to solve this problem with a
greedy randomised adaptive search procedure (GRASP) associated with path
relinking is described. Another extension is the capacitated arc routing problem
with refill points (CARP-RP) presented in [2], also called the capacitated arc
routing problem with intermediate facilities (CARP-IF) in [11]. It extends the
CARP by adding refill facilities to certain nodes.

We have not been aware of published work about methods for solving a
problem having all these features. However, this problem, which can be called
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multi-capacitated arc routing problem with time windows, refill points and
heterogeneous fleet (H-MCARP-RP-TW), is suitable for the description of the
RTISP and also of use for others transportation problems.

3 Assumptions and models

3.1 Hypothesis

Vehicle moves are modeled with arcs and edges. They represent either inspection
tasks and deadhead traversals of track portions or complex moves like unit switch
back or station traversal. Arcs are suitable for the description of unidirectional
railway tracks whereas edges are for bidirectional railway tracks. Nodes describe
stations, communication between railway tracks, or locations in the network
where the vehicles can change their circulation mode. Only primary tracks are
directly modeled.

For the schedule to be easily adapted during operations, multiple shifts per
day are not taken into account. Each shift consists of a trip between two refill
stations with a total distance to inspect smaller than the capacity of the water
tank and a total trip duration smaller than the duration of a work shift. Given
all the feasible shift pattern paths, the RTISP becomes the problem of selecting
and scheduling them in order to satisfy all inspections at the lowest cost.

3.2 Graph and vehicle representation

A multigraph G = (V,A) containing arcs and edges (A) and nodes (V ) models the
railway network. Arcs and edges can represent tasks (Ā), deadhead traversal (Ã)
or wait (Â). Nodes can represent rest and refill stations (V̄ ), or communications
between railtracks and measure interruption possibility (Ṽ ). The corresponding
arcs describe the set (A). All these sets are indexed by k when they are related
to the subnetwork which can be inspected by vehicle k ∈ K. The parameter la is
the length in kilometers of arc a. The parameter dak is the traversal duration of
arc a for vehicle k. The parameter wk is the working capacity, in kilometers, of
the vehicle k. Loop arcs (Â) represent dead shifts and have a traversal duration
of one shift.

3.3 Calendar

The calendar H is assumed to not contains any non working day. It is composed
of integer values representing number of “shift seconds” since the first period of
the planning horizon. The need for a small timeslot comes from the wide range
of task duration and the relatively high speed of vehicles. t is a timeslot in H , s
the duration of a shift and p the first period of the calendar. The subset D ⊆ H
contains the first ”shift seconds” of each shift. The subset H̄a,k ⊆ H contains
the set of periods during which vehicle k can not traverse arc a.
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3.4 Mathematical model

The binary integer program presented in this section is used to better clarify the
mathematical representation of the RTISP. The modelM contains an exponential
number of variables, each one representing a feasible shift pattern.

Objective function Minimise total deadhead: the cost of an arc is the length
of the arc if this arc is a deadhead one. No cost is imputed for other arcs.

ca =

{

la, if a ∈ Ã,

0, else.
(1)

Shift flow model - (M) Given the complete set of feasible trips between two
refill stations, vehicles circulation can be modeled as a flow on a multicommodity
network, each arc representing feasible daily trips.

The set Q contains all shift patterns. The subset Qk contains all shift patterns
valid for vehicle k. Each shift pattern q is associated to a path between two
nodes having refill facilities. Let Pq denote the sequence containing the visited
arcs in their visiting order.

Let Hq denote the set of periods during which the shift q can start. Let s be
the duration of a shift. Let ztq equal one if shift pattern q is performed during
calendar day t. Let Aaq be a parameter which equal one if arc a is inspected
during shift pattern q. Let Saq and Eaq be parameters which equals one if arc a
is respectively the first and the last of the shift pattern q.

Let δ+(v) and δ−(v) denote the set of outgoing arcs and the set of ingoing
arcs of node v.

The cost of a shift pattern is defined as follows:

cq =
∑

a∈Pq

ca, ∀k ∈ K, q ∈ Qk. (2)

The mixed integer program is as follows:

minimise
∑

q∈Q

∑

t∈D

cqz
t
q (3)

subject to
∑

t∈D

∑

q∈Q

Aaqz
t
q ≥ 1, ∀a ∈ Ā (4)

∑

q∈Qk

a∈A
∑

a∈δ+(v)

Saqz
t+s
q −

a∈A
∑

a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , k ∈ K, t ∈ D (5)

∑

q∈Qk

ztq ≤ 1, ∀k ∈ K, t ∈ D (6)

ztq = 0, ∀t /∈ Hq (7)

ztq ∈ {0, 1}, ∀t ∈ D, q ∈ Q (8)
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The objective function (3) ensures that from all feasible solutions the one
with minimum total deadhead will be selected. Constraints (4) ensure that the
set of selected shift permits to perform all inspection tasks. Constraints (5)
ensure for each vehicle that two consecutive shifts end and start at the same
node. Constraints (6) enforce for each vehicle the assignment of at most one
shift per calendar day. Constraints (7) ensure that shift are scheduled during
valid periods. Constraints (8) ensure that solutions are integer.

4 Optimal algorithm

4.1 Reformulation

The mathematical program presented above contains an exponential number
of columns. The equivalent mathematical program presented below is used to
highlight the decision corresponding to the selection of the shift patterns to be
scheduled in ordre to perform every inspection tasks in time. This reformulation
uses the variable yq which takes the value 1 if the shift pattern q is to be included
in the schedule.

minimise
∑

q∈Q

cqyq (9)

subject to
∑

q∈Q

Aaqyq ≥ 1, ∀a ∈ Ā (10)

yq −
∑

t∈D

ztq = 0, ∀q ∈ Q (11)

∑

q∈Qk

a∈A
∑

a∈δ+(v)

Saqz
t+s
q −

a∈A
∑

a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , k ∈ K, t ∈ D(5) (12)

∑

q∈Qk

ztq ≤ 1, ∀k ∈ K, t ∈ D(6) (13)

ztq = 0, ∀t /∈ Hq(7) (14)

yq ∈ {0, 1}, ∀q ∈ Q (15)

yq, z
t
q ∈ {0, 1}, ∀t ∈ D, q ∈ Q(8) (16)

4.2 Combinatorial Benders decomposition

The way operators are actually scheduling the inspection tasks seems to show
that inspection tasks are correlated in time and space. Furthermore, the analysis
of the input data shows that a great number of tasks which are near in space have
overlapping time windows. This fact is used to efficiently solves the problem by
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applying a Benders decomposition algorithm. This algorithm first consider the
problem of selecting a subset of shit pattern which covers every tasks and which
can be hopefully scheduled to create a feasible trip. At each iteration, a master
problem is solved to determine this set of shift. Given this potential solution a
set of subproblem are solved to determine if the candidate solution is feasiuble for
the whole problem. If it is, this solution is optimalm, otherwise a combinatorial
cut is generated and added to the master problem. The simplest implementation
uses the following mathematical programs, respectively as master problem and
subproblem.

The Benders master problem, which is a set covering problem whith some
additional constraints, can be written has follows:

(MASTER) (17)

minimise
∑

q∈Q

cqyq(3) (18)

subject to
∑

q∈Q

Aaqyq ≥ 1, ∀a ∈ Ā(4) (19)

∑

q|ȳq=1

(1− yq) +
∑

q|ȳq=0

yq ≥ 1, ∀ȳq ∈ I (20)

yq ∈ {0, 1}, ∀q ∈ Q (21)

Let ȳq be the current solution found by solving the master problem. The
subproblems, which correspond for each vehicle to deciding if the partial solution
can be scheduled as a tour, can be written has follows:

(SUBk) (22)

minimise0 (23)
∑

t∈D

ztq = ȳq, ∀q ∈ Qk (24)

∑

q∈Qk

a∈A
∑

a∈δ+(v)

Saqz
t+s
q −

a∈A
∑

a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , t ∈ D(5) (25)

∑

q∈Qk

ztq ≤ 1, ∀t ∈ D(6) (26)

ztq = 0, ∀t /∈ Hq, q ∈ Qk(7) (27)

ztq ∈ {0, 1}, ∀q ∈ Qk, q ∈ Qk (28)

(29)

This decomposition has two main drawbacks. In the master problem, the
infomration about how the tasks can be sequenced is missing. This can force the
algorithm to generate a lot of combinatoiral Benders cut solely for satisying the
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flow constraint. Secondly, the subproblems are special instances of the travelling
salesman problem. Because this problem is known to be NP-hard to solve, they
might be difficult to solve.

For these two reaons we proposed to incorporate in the master problem an
aggegrated version of the conservation flow constraint defined in the time-space
graphe. Secondly, we proposed not to solve every subproblems to optimality, but
to try to solve relaxations instead. The idea is that since these relaxations are
fastest, they can be used to detect quickly a set of interesting infeasibility cuts.

This enhanced master problem is presented above:

(MASTER′) (30)

minimise
∑

q∈Q

cqyq(3) (31)

subject to
∑

q∈Q

Aaqyq ≥ 1, ∀a ∈ Ā(4) (32)

∑

q∈Qk

a∈A
∑

a∈δ+(v)

Saqyq −

a∈A
∑

a∈δ−(v)

Eaqyq = 0, ∀v ∈ V̄ (33)

∑

q|ȳq=1

(1− yq) +
∑

q|ȳq=0

yq ≥ 1, ∀ȳq ∈ I (34)

yq ∈ {0, 1}, ∀q ∈ Q(21) (35)

In the first relxation subproblem the time constraints are removed. The
problem to solve becomes a travelling salesman problem without time windows.
In the second relaxation subproblem, the space constraint is removed resulting
in a simple assignement problem. A solution which is infeasible for one of these
relaxation is surely infeasible for the original subproblem. Furthermore, the cut
obtained from theses reformulations are stronger than the one generated after
solving the original problem.

These two formulations are respectively has follows:

(SUBk(assign)) (36)

minimise0 (37)
∑

t∈D

ztq = ȳq, ∀q ∈ Qk(44) (38)

∑

q∈Qk

ztq ≤ 1, ∀t ∈ D(6) (39)

ztq = 0, ∀t /∈ Hq, q ∈ Qk(7) (40)

ztq ∈ {0, 1}, ∀q ∈ Qk, q ∈ Qk (41)

8



(SUBk(flow)) (42)

minimise0 (43)
∑

t∈D

ztq = ȳq, ∀q ∈ Qk (44)

∑

q∈Qk

a∈A
∑

a∈δ+(v)

Saqz
t+s
q −

a∈A
∑

a∈δ−(v)

Eaqz
t
q = 0, ∀v ∈ V̄ , t ∈ D(5) (45)

ztq ∈ {0, 1}, ∀q ∈ Qk, q ∈ Qk (46)

Is should be noticed that the subproblem corresponding to an assignement
problem is a linear program. This ensure that the obtained cut can be generated
using the dual information like in the original Benders decomposition scheme.

5 Heuristical cut and column generation

The great number of columns in the mathematical problem does not permit us
to generate them a priori. Furthermore, the use of an exact column generation
scheme is not possible due to the presence of combinatorial Benders cuts which
have no special structure. In order to speed up the resolution we designed an
heuristic based on column and cut generation.

First of all, the algorithm determines a continuous solution to the Benders
master problem by solving its linear relaxation with a simplex method. This
solution is then used to warm start an heuristic inspired by a greedy algorithm
proposed by [5]. It is this solution which is checked against feasibility in the
different subproblems. If it is infeasible, a combinatorial benders cut is added to
the master problem. Otherwise the current solution is returned as the best.

6 Column generation based heuristic - AlgoCol-

Gen

6.1 Overall view

The proposed algorithm is based on a mathematical decomposition which is
heuristically solved in three steps. The first one is used to aggregate simple tasks
into work shifts with the use of a column generation algorithm applied to the
model RM. It generates a continuous solution to the problem. In the second
step, a rounding greedy heuristic is used to get an integer solution. This new
integer candidate solution is tested against calendar day assignment to check if it
is feasible according to task cover constraints (6). If it is not, a local pseudo cut
is generated. If it is, the new candidate solution is used to generate a constraint
program for the third stage. This last stage is used to check the feasibility of
the set of work shifts. If this test fails, a local pseudo cut which can be added to
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Figure 2: Scheme of the decomposition algorithm

RM is generated. Otherwise, a solution with minimum total deadhead traversal
distance is approximated. The general scheme of this algorithm is given in the
figure 2.

6.2 Stage 1 - Column generation

The master problem is a set covering problem (SCP) with additional constraints.
The subproblems are to find elementary shortest paths between two refill stations
with resource constraints.

Master problem - (RM) The master problem of the column generation is
the mathematical model RM. It is a linear program solved by the simplex
algorithm.

Subproblems - (SP) Shift patterns are generated by solving elementary
shortest path problems with two resource constraints (water, shift duration).
The implemented procedure is a label setting algorithm inspired by the algorithm
presented in [10].

The dual variable λa is associated to each constraint (??). The dual variable
µak̄ is associated to each constraint (??). The parameter k̄ is the index of the
vehicle for which a shortest path is to be computed and t̄ is the first period of a
shift.
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SP (λ, µ, k̄, t̄) =

minimise
∑

a∈A

t≤t̄+s
∑

t=t̄

(caλa + µt
ak̄
)xt

ak̄
(47)

subject to

∑

a∈Ã

t̄+s
∑

t=t̄

lakx
t
ak̄
≤ wk̄, (48)

∑

a∈δ−(v)

x
t−dak̄

ak̄
−

∑

a∈δ+(v)

xt
ak̄

= 0, t ∈ H, t̄ ≤ t ≤ t̄+ s (49)

xt
ak = 0 a ∈ A, t ∈ H̄a,k (50)

xt
ak ∈ {0, 1}, a ∈ A, t ∈ H (51)

Constraints (48) enforce length of shortest paths to not exceed vehicle’s water
capacity. Constraints (49) ensure flow conservation. Constraints (50) ensure
that no arc are traversed during outages. Finally, constraints (51) ensure that
vehicle can only move on the graph.

It should be noticed that it would be intractable to compute, at each column
generation iteration, K · D constrained shortest paths. Our implementation
enables finding valid shortest paths for multiple calendar days. It can be
parameterised to generate from K to K ·D subproblems. At the first extreme,
the feasible solution space of each of the K subproblems is large. Solving one of
them is very time consuming. In the other extreme, the feasible solution space
of each of the K ·D subproblems is narrow and solving one of them is fast.

6.3 Stage 2 - Early feasibility test

The column generation model becomes quickly degenerated with a lot of columns
and few constraints. Getting an integer solution from RM with a general
purpose branch-and-bound-and-cut is not a realistic choice because the solution
space is far too wide. In order to quickly get an integer feasible solution, a
rounding heuristic, named AlgoGreedyCover , inspired by the greedy algorithm
proposed by Chvàtal [5] is applied to the set covering problem. This heuristic
selects columns to be rounded up by computing a ratio of the column cost
and the number of times it appears in the rows. It ensures the satisfaction
of cover constraints (4). The selected shifts are tested against calendar day
assignment with a max flow problem. The optimal flow gives an upper bound
on the maximum number of shifts which can be scheduled. If it is lower than
the number of shifts, a local pseudo cut is generated and added to the master
problem, see Section ??. Otherwise, a new candidate solution has been found.
It is saved and will be tested against feasibility for modelM in the third stage.
It should be noticed that the rounding heuristic and the max flow algorithm are
both polynomial algorithms [1].

11



Rounding heuristic - AlgoGreedyCover The rounding heuristic consists in
computing, for each fractional variable, the ratio between the objective function
coefficient and the number of times it appears in the rows. The value of the
variable with lowest ratio is rounded up and removed from the list of selectable
columns (Q̄). The related cover constraints are marked as satisfied. Each variable
which is selectable and for which every cover constraints are marked as satisfied
is removed from Q̄ and its value set to zero. The ratio of each column is updated
and the algorithm iterates until all cover constraints are satisfied or no variable
is selectable.

Calendar day assignment - (Mcal) The problem of flow maximisation in
a graph is used for modeling possible assignment of shifts to calendar days. This
problem has been proved to be polynomially solvable, [1].

Let Bqt be a parameter which equals one if shift q can be assigned to calendar
day t. Let Q̄k be the set of selected shift patterns of vehicle k. Let yqt be a
binary variable which equals one if shift pattern q is assigned to calendar day t.

The assignment problem is defined as follows: Mcal(k) =

maximise
∑

t∈D

∑

q∈Q̄k

Bqtyqt (52)

subject to
∑

t∈D

Bqtyqt ≤ 1 ∀q ∈ Q̄k (53)

∑

q∈Q̄k

Bqtyqt ≤ 1 ∀t ∈ D (54)

yqt ∈ {0, 1} ∀t ∈ D, q ∈ Q̄k (55)

The objective function (52) ensures that among all feasible solutions, the
one maximising the number of assigned shifts is to be chosen. Constraints
(53) ensures that a shift pattern can be assigned to at most one calendar day.
Constraints (54) ensures that a calendar day can not be assigned to more than
one shift.

6.4 Stage 3 - Complete feasibility test

The above-described rounding heuristic does not take into account tasks se-
quencing constraints. Solutions found during stage 2 can still violate the flow
conservation constraints between shifts (5). To overcome this situation, an
extension of a Traveling Salesman Problem with Time Windows [3] is used to
construct a feasible solution from the task groups selection of these solutions.
This problem models at a macroscopic level the RTISP with a period duration
of one shift. A list algorithm is presented to solve it. Each node of the TSP
graph represents a shift pattern. For each node, a list of time windows, during
which vehicles can go through, are defined. Arcs between nodes represents end
of day deadhead moves. Their cost is the total distance between the end of the
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shift and the start of the next shift. The duration needed to traverse each arc
depends on the shift pattern duration and the vehicle deadhead speed.

This problem is solved with a heuristic named AlgoSchedList , based on a
constraint propagation and list scheduling. It relies on depth first search without
backtracking. Indeed, due to computational difficulty, we replace backtracking
by a guided multi start framework. At the end of each search, each decision taken
during the search (branch selection) is priced. These prices are used to update a
transition cost matrix. Once matrix cost is fully updated, the search is restarted.
The pricing mechanism is inspired by the Vickrey-Clarke-Groves mechanism,
a well known externality measure described in [16]. At first, these prices are
initialised with travel distance between tasks. They are further estimated after
each AlgoSchedList run.

7 Enhanced greedy heuristic - AlgoGreedy

In order to evaluate our column generation heuristic, we additionally designed a
greedy algorithm to solve the complete RTISP based on the dynamic program-
ming method described in 6. Starting from a node, a period and a vehicle, a
shortest path satisfying resource constraints is computed. The shortest path is
appended to the schedule of the current vehicle. We let the vehicle go forward
until the end of the schedule horizon is reached. Then, we continue with the
next vehicle. If no task is reachable from the current node, then a deadhead
move is performed to find the nearest node which enables performing a task.

In order for the tasks to be selected during shortest path computation,
different weight update rules have been tested. The one used in this paper uses
information about task time windows and tasks duration.

Let wk
a denote the cost of performing task i on vehicle k. This cost is defined

as follows:

wk
a = −M + ca2.0−

esa
lsa

),

with esa and lsa the earliest and latest start of task a. M should have a
value such that the algorithm will always prefer performing a task rather than
deadheading.

8 Computational tests

8.1 Real dataset

The test dataset contains mainly two distinct parts which are static data and
dynamic data. Static data contains the network representation of the railway
network and the vehicles outages which are likely to rarely change during the life
cycle of the decision tool. Dynamic data contains the tasks time windows and
tracks outages which can be updated at most every months. For the purpose of
this article we present a dataset based on information acquired for 2009.
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The infrastructure graph has 1000 arcs, 500 edges and 760 nodes. A total of
500 tasks must be performed per year. The generated graph has 1600 arcs, 500
edges and 770 nodes of which 90 are refill stations. Task time windows have a
fixed size of 28 days and duration ranging from few minutes to six hours. The
duration of a shift is fixed to seven hours. The horizon used for shortest paths
computation is one month, which yields 12 subproblems per vehicle.

8.2 Computational tests

Based on the real dataset we derived three scenarios. In the first one, named
no outage, we removed all track outages. In the second one, small outages, we
divided by 10 the duration of each outage. The last one, named full outages, is
the real dataset provided by the company. For each algorithm and each scenario,
we show the task completion rate (r) and the performance ratio (p).

The performance ratio (p) is calculated to reflect the rate between the total
inspected distance (di) and the total deadhead (dd) moves :

p =
di

di + dd
.

The task completion rate (r) is used for getting information about the
hardness of the instance. The real dataset is actually in constant evolution and is
known not to be feasible. In fact, the information about whether outages can be
traversed or not is not yet available. To cope with this situation, a slack variable
with a prohibitive cost is added to each covering constraints of the model.

In the table in figure 3, it can be seen that the column generation heuristic
outperforms the greedy algorithm in terms of task coverage and solution quality.
In the table in figure 4, it can be seen that the performance of the column
generation algorithm seems to be better when time windows are tight.

No outages small outages full outages
r p r p r p

AlgoGreedy 100% 18.82% 27% 9.77% 23% 9.06%
AlgoColGen 100% 30.50% 37% 25.54% 31% 22%

Figure 3: Task coverage and solution quality

No outages small outages full outages
t t t

AlgoGreedy 47 767 539
AlgoColGen 3434 180 61

Figure 4: Computation time (in seconds)
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9 Conclusion

In this paper, a railway maintenance routing problem and a mixed integer
formulation is presented. An original column generation heuristic is proposed
to solve it. Cut generators based on model relaxation resolution are proposed
and implemented. A comparison between this heuristic and an enhanced greedy
algorithm is presented. The numerical tests show that the column generation
heuristic performs better than the greedy heuristic. Furthermore, it highlights
the difficulty for the greedy algorithm to tackle dataset with highly constrained
time windows. The difficulty to perform all tasks is due to the presented dataset.
It is an extreme situation in which it is forbidden to traverse during every outages
and the minimum outage duration is one day.

This work on train units for ultrasonic inspection can be extended to other
maintenance train units which also have a limited capacity. An extensive study
of the pseudo local cut impact is also of interest.
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A TSPTW - (Mtsp)

Let Q̄ be the set of selected task groups found during stage 2. Let ckqq′ be the
shortest path distance between the last visited node of shift q and the first visited
node of shift q′. Let dkqq′ be the shortest path duration between the end of q and

the begin of q′. Let dkq be the duration of the shift pattern q if performed by
vehicle k. Let H Pq be the set of periods during which the shift pattern q can
be started. Let Kq be the set of vehicles allowed to perform shift pattern q. Let
sq (eq) be a variable containing the start (end) time of shift pattern q. Let vq
be the vehicle performing shift pattern q. Let pq be a variable which contains
the position of shift pattern q in the sequence of vehicle vq. The artificial shift E
models the end of the schedule.

Vehicle maintenances rendezvous are modeled by tasks with fixed start time
and only one assignable vehicle.
Mtsp =

minimise zMtsp =
∑

q∈Q̄

∑

q′∈Q̄

xk
qq′c

k
qq′ (56)

subject to:
∑

k∈K

ykq = 1 ∀q ∈ Q̄ (57)

∑

q′∈Q̄

xk
qq′ − ykq = 0 ∀k ∈ K, q ∈ Q̄k (58)

∑

q′∈Q̄

xk
q′q −

∑

q′∈Q̄

xk
qq′ = 0 ∀k ∈ K, q ∈ Q̄ (59)

sq +
∑

q′∈Q̄

xk
qq′(d

k
q + dkqq′)− eq = 0 ∀k ∈ K, (qq′) ∈ Q̄2 (60)

eq − sq′ −M(1− xk
qq′) ≤ 0 ∀k ∈ K, (qq′) ∈ Q̄2 (61)

sq +M(1− ykq ) ≥ D or eq −M(1− ykq ) ≤ S ∀k ∈ K, q ∈ Q̄, [S,D] ∈ H̄k(62)

ykq ∈ {0, 1} ∀k ∈ K, q ∈ Q̄ (63)

xk
q,q′ ∈ {0, 1} ∀k ∈ K, (q, q′) ∈ Q̄2 (64)

sq ∈ Hq, eq ≥ 0 ∀q ∈ Q̄ (65)

The objective function (56) ensures that among all feasible solutions the one
which minimizes total deadhead distance is selected. Constraints (57) ensure
that all shift are performed. Constraints (58) ensure that each shift is assigned
a vehicle. Flow conservation constraints (59) ensure task sequence continuity
for each vehicle. Constraints (60) ensure that shift pattern end time is equal to
shift pattern start time plus shift pattern duration and transition duration to
next shift pattern. Constraints (61) ensure that on a given vehicle no task can
start before the end of the previous one. Constraints (62) ensure that task can
not start during vehicle outages.
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B The list scheduling algorithm: AlgoSchedList

Algorithm 1: The list algorithm : AlgoSchedList

Input: sq
Output: z̄,S
begin
L ← Q̄ ; /* Set of unscheduled tasks */

C ← {(k, 0, 0,∆)|k ∈ K} ; /* Set of latest vehicle task */

while L 6= ∅ do
(k̄, s̄, ē, q̄) = argmin(k,s,e,q)∈C (e) ; /* Select a ’last task’ */

C ← C − (k̄, s̄, ē, q̄) ; /* Remove candidate */

(¯̄s, ¯̄c, ¯̄q) = (∞,∞, ∅) ; /* Reset for loop */

for q ∈ L do

if ē+ dk̄q̄q < max(sq) then

t = max(ē+ dk̄q̄q,min(sq)) ; /* Task earliest start

time */

if t ≤ ¯̄s and ck̄q̄q < ¯̄c then

(¯̄s, ¯̄c, ¯̄q) = (t, ck̄q̄q, q) ; /* Set current best */

if ¯̄q = ∅ then
if C = ∅ then

Stop: infeasible

else
L ← L− ¯̄q ; /* Remove from unscheduled */

S ← S + (k̄, ¯̄s, ¯̄s+ dk̄¯̄q , ¯̄q) ; /* Add to schedule */

C ← C + (k̄, ¯̄s, ¯̄s+ dk̄¯̄q , ¯̄q) ; /* Add new candidate */

end

C The ratio heuristic: AlgoGreedyCover
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