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Abstract

Residual stress estimation is an important question for structural in-
tegrity. Since residual stresses are self-balanced stress fields, a classical
way to obtain information on them is to remove a part of the structure,
and observe the structure displacement field arising from the stress redis-
tribution. The hole-drilling method is such an approach. In some cases,
as for the present one concerning a painted panel of cultural heritage, the
hole-drilling method is not suited (a structure with a complex geometry,
few tests allowed) but one can take advantage of structural modifications
if they are monitored (here, a restoration act). We therefore describe in
this article a model updating approach, focusing on the residual stress
estimation and not on the material parameter identification.

This study couples an optical non-invasive shape measurement (dig-
ital image correlation, using a projected speckle pattern on the painted
panel, with luminance compensation) and a numerical approach (3D finite
elements) for the model updating. The 3D stereo-correlation is used to
measure a partial displacement field between three different states of the
structure (at three different times of the restoration act). The numerical
part concerns stress evaluation, once the model and the experiments are
compared using a geometric mapping and a spatial projection of discrete
fields. Using modeling and identification, the simulation is used to obtain
the residual stresses in the panel, before and after the restoration.

This article in its final form was published in International Journal of
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Figure 1: Baptême du Christ, Palais du Roure, Avignon, France (left) and its
cradle (right)

1 Introduction

Conservation of paintings of cultural heritage on wood panels could gain from
using tools of wood science and structural mechanics, to guide decision for
curators and restorers. Indeed, the consequences of a restoration act on the
future integrity of an artwork can be assessed with virtual (numerical) simulation
once a predictive model has been designed. Such numerical simulations in the
same context have recently been used for painted panels, for instance in [10,
8, 16], for musical instruments, [22, 14], for other wooden structures, [3, 7], for
ancient buildings, [17, 20, 28], and even for natural parks [6].

Since each artwork is a particular case, it requires an identification step to
nurture the model. Objects of cultural heritage are often unique and precious
artworks, and few mechanical tests can be conducted to identify the present state
of the structure, that cannot be estimated with the evolution it was subjected
to, due to the lack of past measurements. The present study mainly deals with
a model design, based on finite elements, to couple simulations and experiments
during a particular restoration act. The concerned artwork is ‘Baptême du
Christ’, from an anonymous artist, stored in ‘Palais du Roure’, Avignon, France,
Figure 1-left.

An early restoration act, performed in the 70s but typical of the 19th and
beginning of the 20th century, was a french parquetage (or cradle) on the rear
side of the painted panel. This cradle consists of eight vertical beech beams,
glued on the panel rear side (485 mm × 405 mm × 12 mm), and crossed with
eight horizontal beech beams, Figure 1-right. This kind of restoration aims
to rigidify the wooden support to avoid excessive movements (mainly bending
due to dissymmetry in moisture exchanges on both sides of the panel) that
may endangers the pictural layer. The drawback of such a rigidification is
the increase in internal stresses with humidity variations of the environment,
see [21]. Moreover this panel exhibits two cracks; they will not be taken into
account herein.

The new restoration act dates back to 2007 and has been followed in this
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Figure 2: Former horizontal beams (left), cut to be extracted (central part
missing, used for material identification) and replacement of horizontal beams

study: the replacement of the horizontal beams of the cradle by new ones made
in spruce. The initial horizontal beams were partly glued and partly clamped
due to a permanent long-term deformation of the panel that installed itself af-
ter the initial restoration (mainly due to the mechanosorption effect). For the
former beams to be replaced, they had to be cut, Figure 2. This illustrates the
presence of internal (or residual) stresses. The restoration has been monitored
with image analysis: the shape of a part of the front painted side has been
measured (i) before the removing of the former horizontal beams, (ii) after this
removing and (iii) after mounting the new horizontal beams. These experimen-
tal data has to be used in conjunction with a structural analysis, in order to
estimate the residual stresses in the panel, which is one of the goals of this study.
Section 2 describes the experimental technique, while Section 3 focuses on the
finite element model and its comparison to the measurements. Finally, Section
4 uses these tools for the residual stresses estimation.

2 Shape measurement with 3D stereo-correlation

This non-invasive optical technique allows measuring a 3D shape of a part of
the surface of a structure. For artworks of cultural heritage, this technique is
useful since no contact with the artwork is needed; nevertheless, no continuous
measures can be obtained along time, only several ones at particular instants,
due to the delay needed to install and calibrate the acquisition chain which is
composed (Figure 3) at least of:

• two stereoscopic cameras,
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Figure 3: Principles of the measurement technique (left) and stereo cameras
(right)

• a video beam projector,

• a processing unit (computer) to capture and correlate images from the
cameras.

With two camera images taken from different points of view, the 3D position
of visible and identifiable points (or patches) can be obtained by image correla-
tion. The basic images of the artwork cannot be used due to too much contrast
on the pictural layer, between large surfaces of too small contrast (aplats or flat
tints). Therefore, a more suited pattern (classically a speckle pattern) should be
substituted to the original image of the panel. Since no physical speckle pattern
can be marked on the painting, a virtual speckle pattern image is projected onto
the painted surface, once the initial painting is virtually rubbed out. To do so,
an initial image is taken, is numerically treated to produce a ‘negative’ image
that is back-projected to the panel to compensate the initial picture luminance
(this is the so-called ‘extinction’ of the painting). The virtual speckle pattern is
then added to the projection to appear on the panel, Figure 4. The correlation
of the images taken from this virtual speckle pattern by the two cameras allows
to derive the 3D position of patches of pixels, as in [15]. This leads to approx.
80 000 3D point locations on a large part of the pictural layer (not up to the
border, nevertheless).

Three different measures have been taken:

• one before the restoration act; this artwork state will then be denoted with
Ω(1);

• one with the horizontal beams removed, which panel state denoted with
Ω(2); and

• one with the new horizontal beams mounted, denoted with Ω(3).

Apart from an image distortion correction (with the help of a calibration
before any data capture), the position of the centers of pixel patches (which are
the measured points) are finally converted into physical length in the coordinate
system related to one of the cameras. Since, for each of the measured states, the
panel may be not repositioned at the same location, each measure is assumed
to posses its own coordinate system.
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Figure 4: Left camera, after beam removal: initial image capture (left) and
projected speckle pattern on the luminance-compensated image (right)

3 Finite element model and model updating

3.1 Ideal geometry and wood behavior

For practical reasons, a finite element model has been design on an ideal geom-
etry (i.e. a perfectly flat and rectangular panel), Figure 5. This particular state
of the artwork, though not physically interesting, will be the reference state for
computations, and will be denoted with Ω(0).

More precisely, the notation Ω(j) will denote the state (j) on the structure
composed of the panel and the vertical beams, while the set of horizontal beams
will be denoted with Ω′(j) when needed. These two structures can be seen as two
subdomains, and the interface between them will be denoted with Γ, Figure 5.

Assuming that all the previously mentioned states Ω(j) are not too far from
the reference state Ω(0), the small displacement and small strain assumptions
hold, and all the finite element displacement fields will be defined on this ref-
erence state, as for the material characteristic coefficients. In this study, we
expect the restoration act to be sufficiently short to neglect the relative hu-
midity changes of the environment which the wood is sensitive to. Since only
elasticity is modeled herein, other mechanical behavior such as viscoelasticity
is neglected for sake of simplicity, though its characteristic time may be of the
same order of magnitude that the restoration duration. Nevertheless, this as-
sumption is conservative, since the residual stresses tend to relax in presence of
viscoelasticity.

For the panel, once the sawn on the initial trunk is known, the elastic charac-
teristics are selected as for a standard coniferous wood: spruce from [11], Table 1.
The elastic behavior is orthotropic, and heterogeneous (the local anisotropic
basis changes with the considered point). The position of the tree center is
determined with observation of the growth rings on the RT (radial-tangential)
section: an off-plane of 125 mm is obtained, Figure 6.

The beams are assumed to be homogeneous, sawn along the L (longitudinal)
direction. Displacement fields with respect to the reference state are denoted
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Figure 5: Finite element model of the ideal geometry for the panel and vertical
beams Ω(0) (left two images), interface Γ (center), horizontal beams (right) Ω′(0)
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Figure 6: Determination of local anisotropic basis with growth ring observation

with Ū
(j)

. Since state Ω(2) will play a particular role in the following, the
displacements with respect to Ω(2) are also of interest: they are denoted with

U (j); indeed: U (j) = Ū
(j)

− Ū
(2)

.

3.2 Matching experimental points and finite element nodes

Each measured set of points is related to its own coordinate system, which are
in turn different from the coordinate system used for the ideal geometry Ω(0).
Therefore each measured set (j) has to be matched to the state Ω(0) in order to

define the partial finite element field of measured values Ū
(j)
m . Note that these

measurements are partial information since the displacement is measured only

species spruce beech
H / % 13.1 9.4

ρ / g/cm3 0.31 0.63
ER / MPa 816 2 040
ET / MPa 304 867
EL / MPa 8 020 14 100

GRT / MPa 48 500
GTL / MPa 461 980
GRL / MPa 558 1 850

νRT 0.67 0.73
νLT 0.33 0.46
νLR 0.34 0.36

Table 1: Material elastic parameters after [11] (for standard relative humidity
H and specific density ρ)
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Figure 7: Reference points (left) and measured field projected onto the finite
element mesh (right) for the initial state, with its own reference points

of a part of the boundary, and that only the out-of-plane component of the
displacements are obtained, because the speckle pattern is not bonded onto the
panel, but merely projected on it.

To get these partial finite element fields of measured values, three reference
points are selected in order to be easily located on pixelized images, both on
the states Ω(j) with coordinates X(j) and on a frontal image identified as Ω(0)

with coordinates X(0), Figure 7.
The transformation mapping X(j) to X(0) is expected to be composed of

a translation T (j) and a finite rotation R(j). The translation links the cen-
troids of the set of reference points. The finite rotation may be defined for
instance with a polar decomposition of the mapping; in this case, we con-
sider that the three reference points define a plane into which each point M (j)

has barycentric coordinates λ: M (j) = X(j)λ. With independent points, λ =

A−1X(j)T
M (j) with A = X(j)T

X(j). The transformation is expected to map
M (j) to M (0) = X(0)λ = F (j)M (j) with the gradient of the transformation:

F (j) = X(0)A−1X(j)T
. A polar decomposition of F (j) produces the rotation

Rj . Unfortunately, this rotation may be composed with a planar symmetry,
which is cumbersome to eliminate, see [19, 25]. We therefore preferred a simple

Gram-Schmidt orthogonalization E(j) of the basis generated by X(j) (and E(0)

accordingly). In such a case, the previous approach leads to: F (j) = E(0)E(j)−1

which is exactly the rotation R(j).
Then, the coordinates of all measured points can be transformed to lie in

the coordinate system of Ω(0). Finally, the normal coordinate to the plane of
the panel is interpolated at each possible finite element node of the painted side

to get a field of normal displacement zT Ū
(j)
m , Figure 8, where zT denotes the

normal to the panel.
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Figure 8: Measured fields projected onto the finite element mesh: initial state
(left), after beam removal (middle), and after beam replacement (right). Dis-
placement amplified 8 times.

3.3 Model updating

Once the partial shape of the different states Ω(j) of the structure composed

by the panel and the vertical beams, zT Ū
(j)
m or zT U (j)

m = zT Ū
(j)
m − zT Ū

(2)
m ,

have been obtained, these different states have to be reconstructed from the
ideal geometry: this is the model updating stage. Since the small displacement
assumption holds, the shape updating reduces to find a finite element displace-

ment on the undistorted ideal geometry: Ū
(j)

(M), M ∈ Ω(0). The column
vector of the corresponding nodal displacements is denoted with ū(j). These
degrees of freedom (dof) can be split in several sets. First, the dofs at the in-
terface between the panel (with vertical beams) and the horizontal beams are
denoted with a subscript Γ. The remaining dofs are denoted with a subscript
i; they are themselves split into measured dofs with a subscript c (these dofs
are only the out-of-plane component of the displacement at measured nodes),
and the non-measured dofs with a subscript r. The measured partial shapes at

finite element nodes are stored in column vectors ū
(j)
m or u

(j)
m . Finally, we can

define C(j) as the Boolean mapping matrix on c dofs (measured dofs), such that

ū
(j)
c = C(j)ūj . The superscript (j) is omitted in the following.

For each state Ω, a part of its boundary is the interface with the horizontal
beams Γ; the remaining part, ∂2Ω, is supposed to be traction-free. We will
neglect the body forces due to gravity in the following; indeed, all the measure-
ments are performed on the panel in up-right position, therefore the vertical
compressive stress on a cross-section S is bounded with σ = mg/S; with a mass
of the artwork m ≈ 3 kg, one gets σ ≈ 6 kPa which will be negligible with
respect to the residual stress to be estimated. On the interface Γ, the structure
is submitted to the action of the set of horizontal beams; these may consist
of a displacement UΓ and a force density FΓ defined on this interface. The
techniques that will be used in the following are derived from model identifica-
tion techniques as in [4, 12, 1]. A couple of displacements (U, UΓ) will be said
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kinematically admissible (KA) simply if U = UΓ on Γ. A couple of stress and
interface forces (σ, FΓ) will be said statically admissible (SA) if: div σ = 0 in
Ω, σn = 0 on ∂2Ω, and σn = FΓ on Γ. n is the unitary normal vector to the
boundary, pointing out of Ω.

A mechanical state of the studied structure consists of two couples, (U, UΓ)
KA and (σ, FΓ) SA, satisfying the constitutive relation, here the elastic behav-
ior: σ = Dε(U) in Ω. In other words, the following constitutive relation error
should be null:

∫

Ω

e2(σ, U)dΩ = 0 (1)

with

e2(σ, U) =
1

2
[σ − Dε(U)] : D−1[σ − Dε(U)] (2)

When dealing with model updating, the mechanical state has moreover to
cope with the measured quantities, here: the measured displacement field zT Um

on ∂mΩ. Both the model and the measured cannot be perfect, therefore one
seeks for a compromise between all the constraints to be satisfied. The model
updating proposed approach consists in balancing the verification of the consti-
tutive relation and the measures, by searching the couples (U, UΓ) and (σ, FΓ)
as:

argmin
(U, UΓ) KA
(σ, FΓ) SA

∫

Ω

e2(σ, U)dΩ + α

∫

∂mΩ

e2
m(U)dS (3)

in which the term em is an error with respect to the measures, for instance:

e2
m(U) =

1

2
[zT (U − Um)]ω[zT (U − Um)] (4)

ω is a scalar field of weighting terms, taking its values in [0, 1], to take into ac-
count confidence levels in the experimental values. α is a singe scalar coefficient
(homogeneous to a stiffness) to balance the two terms in the functional, or the
cost function, to be minimized (3). These parameters will be precised in the
following.

Note that this problem is not in a closed form until additional informations
are stated on the interface fields (UΓ, FΓ).

Dealing with finite element numerical approximations is easy for the kine-
matically admissible couples: the displacements (U, UΓ) are replaced by their
finite element approximations counterparts (u,uΓ). For the stress field, an addi-
tional approximation is to assume a special form, deriving from a displacement
field V : σ = Dε(V ), which is in turn classically discretized by finite elements
into v. D(M) is the Hooke operator field on the panel and the vertical beams,
modeling the elastic behavior of the wood material.

The static admissibility is therefore replaced with its finite element approxi-
mation: denoting with fΓ the generalized nodal forces associated to FΓ, (v,fΓ)
will be said statically admissible (SA), if:

Kv =

[

Kii KiΓ

KΓi KΓΓ

] [

vi

vΓ

]

=

[

0

fΓ

]
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or

Kv =





Krr Krc KrΓ

Kcr Kcc KcΓ

KΓr KΓc KΓΓ









vr

vc

vΓ



 =





0

0

fΓ



 (5)

where K is the finite element stiffness matrix, arising from Hooke operator D.
Note that this implies:

v =

[

vi

vΓ

]

= AΓvΓ with AΓ =

[

−K−1
ii KiΓ

1

]

(6)

AT
ΓKAΓ = K⋆

ΓΓ (where a superscript T denotes the transposition) is the
so-called Schur complement of K on Γ dofs, and finally the discretized static
admissibility is merely a relationship between displacements and forces at the
interface: K⋆

ΓΓvΓ = fΓ.
The model updating now consists in finding:

argmin
u

(v,fΓ) SA

f(u,v) (7)

with

f(u,v) =
1

2
(u − v)T K(u − v) +

1

2
α(Cu − um)T ω(Cu − um) (8)

u is a kinematically admissible (KA) field, expected to be close to the mea-
surements um. This is a balance between a smooth field (according to equilib-
rium equations, thanks to the first term), and a field matching measurements
(according to the second term). ω is a diagonal weighting matrix (with entries
ω in [0,1]). We may interpret either the field u or v as a smoothing and a
prolongation of um on the whole structure.

The coefficient α can be estimated by using a collocated prolongation of the
measurement: û = Acum, where Ac is defined similarly as AΓ, but with the
set of measured dofs on Ω replacing Γ:

α =
û

T
Kû

uT
mKum

=
uT

mAT
c KAcum

uT
mKum

=
uT

mK⋆
ccum

uT
mKum

(9)

Eventually, it can be adjusted by iterating the identification procedure a few
times.

The choice of the diagonal weighting ω is part of the modeling. It may
take into account the reliability in the measurements (a value 1 is a maximal
confidence, a value 0 is a minimal one). With no available quality estimator field
of the measurements, we only recall that the correlations are less accurate on
the boundary of the measured area. We therefore choose to decrease the value
of ω, from 1 in almost all the measured area, except on two layers of elements
on the boundary of the measured area, driving it linearly to 0 at the boundary
within these two layers. As both α and ω depend on the set of measured dofs,
they are different for each measured state.

An equivalent formulation of the updating problem (7) is:

argmin
u

K⋆
ΓΓvΓ = fΓ

g(u,vΓ) (10)
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with

g(u,vΓ) =
1

2
(AΓvΓ − u)T K(AΓvΓ − u) +

1

2
α(Cu− um)T ω(Cu− um) (11)

This problem can be interpreted as: control a structure (panel and vertical
beams) with dofs on Γ to make the displacement on the measured set close to
the measured values um. As this will be outlined in the following, this problem
may be ill-posed, and may require regularization.

Each time an updating is produced, the distance to the measures can be
evaluated with:

ηm =

√

(Cu − um)T ω(Cu − um)

uT
mum

(12)

3.4 Relaxed state Ω(2)

This state, after horizontal beam removal, is similar to the relaxed state in
the hole-drilling method used to determine residual stresses. This method has
been used for a long time, and more recently, it has been used in conjunction
with field measurements in [24, 18, 2] and with finite elements for analyzing
the measures, with or without inverse identification, see [29, 26, 23, 13, 5].
Since residual stresses are self-balanced on the considered structure, their energy
is null on any displacement change on the same structure. The hole-drilling
method therefore relies on a geometric modification. Here, the removal of the
horizontal beams may be considered as such a method. Nevertheless, no residual
stresses on the configuration Ω(2) can be reached without a deeper material
removal, which is not allowed. So, we can only access to additional residual
stresses, or equivalently, we may consider residual stresses on state Ω(2) as null:
σ(2) = 0.

The measured maximal average curvature of the painted side is about ρ
(2)
m =

0.187 m−1.
The previous model updating approach is used with fΓ = 0, and so: vΓ = 0

and v = 0. In such a case, the displacement ū(2) mapping Ω(0) to Ω(2) is selected
as u of the previous approach, for which Equation (10) leads to:

K̃
(2)

u = C(2)α(2)ω(2)ū(2)
m with K̃

(2)
= K + C(2)(α(2)ω(2))C(2)T

(13)

Since ū(2) = u is the displacement with respect to Ω(0), note that the measured
displacement with respect to Ω(0) is used in the right-hand-side. As soon as

α(2)ω(2) is non null, K̃
(2)

is obviously symmetric, positive, definite (SPD).

This identification is performed with an error estimation η
(2)
m = 16.7 %.

Figure 9 plots the weighting field ω(2) and the contribution to the error with

respect to the measures [e
(2)
m ]2.

3.5 Initial state Ω(1)

This state, prior to the restoration, corresponds to the (assumed perfect) gluing
between the panel and the beams. Model updating from Ω(0) to Ω(1) requires
the field ū(1). Alternatively, once ū(2) has been settled, the more meaningful
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Figure 9: Weighting function ω(2) (left) and contribution to the error with

respect to the measures [e
(2)
m ]2 (right), after beam removal

displacement field u(1) = ū(1)
− ū(2) can be searched for. Similarly, u

(1)
m =

ū
(1)
m − ū

(2)
m on the measured set of state Ω(1).

The maximal average curvature of the painted side is about ρ
(1)
m = 0.107 m−1,

therefore the effect of the horizontal beams is to reduce the free curvature of
state Ω(2).

Since perfect gluing is assumed, the force fΓ is a priori non null, and is
not known. In the previous updating approach, we therefore consider vΓ as an
unknown. The minimization of the functional g in Equation (10) with respect
to both u and vΓ, after algebraic manipulations using the property AT

ΓK =
[0 K⋆

ΓΓ], leads to: vΓ = uΓ, and:

˜̃
K(1)u = C(1)α(1)ω(1)u(1)

m (14)

with

˜̃
K(1) = K +





0 0 0
0 α(1)ω(1) 0
0 0 −K⋆

ΓΓ





(r,c,Γ)

As soon as α(1)ω(1) is non null, the left-hand-side can be shown to be sym-
metric, positive but semi-definite only, due to the minus sign before the Schur
complement on Γ. Its kernel is the set of control dofs uΓ, whose recovering
u = AΓuΓ is null on the measured set, i.e. C(1)AΓuΓ = 0; therefore, if C(1)AΓ

is not injective, the problem is ill-posed. An interpretation is the following: if
there are too many control dofs on Γ, or too small measured dofs, the control is
not unique. The model should therefore be sufficiently refined on the measured
region. An alternative solution, used here, is to regularize the functional to
be minimized: a regularizing term, avoiding uncontrolled solutions on Γ, but
leaving rigid body motions free (these are filtered with measures) can be added
to the functional. The simpler choice is:

h(u,vΓ) = g(u,vΓ) +
1

2
uT

ΓK⋆
ΓΓuΓ (15)

which leads to the problem, similar to Equation (13):

K̃
(1)

u = C(1)α(1)ω(1)u(1)
m with K̃

(1)
= K + C(1)(α(1)ω(1))C(1)T

(16)
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Figure 10: Weighting function ω(1) (left) and contribution to the error with

respect to the measures [e
(1)
m ]2 (right), for the initial state

and u(1) = AΓuΓ. This identification is performed with an error estimation

η
(1)
m = 16.6 %.

Figure 10 plots the weighting field ω(1) and the contribution to the error

with respect to the measures [e
(1)
m ]2.

3.6 Final state Ω(3)

The measured average maximal curvature is ρ
(3)
m = 0.075 m−1. Therefore,

though the new beams are less stiff that the older ones, their effect is to render
the panel plane. This can be understood by the fact that the relaxed state of
the horizontal former beams was itself permanently bent. Therefore, though
the stiffness of the structure is lower with the new beams, this restoration act
does not automatically reduce short-term residual stresses.

Up to this point, the final state Ω(3), after replacement of horizontal beams,
does not require additional measurements, since the new beams, made with
spruce, are supposed to be known with a perfect initial state without residual
stress. The beam replacement can therefore be simulated. In a first step, the

matching of displacement in the assembly reads: W̄
(3)

= Ū
(3)

at least along the
normal vector n to Γ (for a frictionless contact model) or for all components (for

a perfect gluing), where W̄
(3)

is the displacement field on the new horizontal
beams. The panel and vertical beams strain is measured with reference to Ω(2),

and are therefore ε(U (3)) = ε(Ū
(3)

) − ε(Ū
(2)

). This leads to a classical elastic

problem on Ω(0) with a prestress σ̄(2) = Dε(Ū
(2)

) on the panel and vertical

beams, and ε(Ū
(3)

) as unknown. This problem is semi-definite positive and
the displacement solution is obtained up to an undetermined global rigid body
motion (rbm). With this ideal geometry of the new horizontal beams, and a
perfect gluing condition, the average simulated curvature is 0.011 m−1 and the

error estimation η
(3)
m = 62% (the unknown rbm of the problem for state Ω(3) is

selected in order to minimize η
(3)
m ).

To get a more realistic model, one has to take into account the fact that, in
order to allow the mounting of the new beams, their height had to be reduced
when compared to the old ones. With an estimated height reduction of 1.25 mm,
the simulation of the state Ω(3) is performed with an elastic 2-body problem with
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Figure 11: Weighting function ω(3) (left) and contribution to the error with

respect to the measures [e
(1)
m ]2 with perfect assembly (middle) and a contact

with gap (right), with beam replacement

perfect gluing contact

ne η
(1)
m σ

(1)
V M η

(2)
m σ

(2)
V M η

(3)
m σ

(3)
V M η

(3)
m σ

(3)
V M

7788 16.6 % 12.3 16.7 % 0 62% 2.2 26 % 1.1
35094 8.4 % 18.6 14.4 % 0 82.3% 4.15 28 % 1.7

Table 2: Numerical values obtained with two discretization levels: ne is the
number of finite elements; stress levels are given in MPa

unilateral contact conditions, and the obtained average simulated curvature is

0.064 m−1, with η
(3)
m = 26%.

Figure 11 plots the weighting field ω(3) and the contributions to the error

with respect to the measures [e
(3)
m ]2, depending on the assembly model.

4 Estimation of the residual stresses

With the previous developments, and still assuming small perturbations in all
of the following, the computed residual stresses on the panel are easily obtained:

σ(2) = 0 (17)

σ(1) = Dε(U (1)) = Dε(Ū
(1)

) − σ̄(2) (18)

σ(3) = Dε(U (3)) = Dε(Ū
(3)

) − σ̄(2) (19)

The von Mises component of these residual stresses are depicted in Figure 12.
Table 2 recalls the obtained numerical values, for the present discretization with
ne = 7788 elements, and with a finer discretization of ne = 35094 elements (two
thirds of them are 8-node cubes, the remaining ones are 6-node prisms). The
residual stress estimation is still satisfactory, except for the perfect gluing state
Ω(3) whose model is erroneous.

Though it is not a systematic result, the present restoration acts decreases
the residual stress in the panel: the maximum von Mises stress σV M before
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Figure 12: Numerical results (coarse discretization): residual stresses / MPa
on the panel (displacement amplified 10 times). From left to right: Ω(1); Ω(2);
Ω(3), perfect assembly; Ω(3), contact with gap

restoration is 18.6 MPa, and is 1.7 MPa after restoration (for the assembly with
1.25 mm gap and the finer discretization).

5 Conclusions and outlooks

In this article, we exemplify that a restoration act on a painted panel of cultural
heritage can be considered as a mechanical test, and that with field measure-
ments and modeling, information can be drawn on the structure. Experimental
data and numerical modeling are used together to analyze this test, with a
model updating approach. This allows to estimate the residual stresses in the
structure before and after the restoration.

Though it is the case here, the replacement of old horizontal beams with
less stiff new ones does not necessarily decrease the residual stress, since the old
beams may exhibit permanent curvature. An other solution would have been a
dedicated shape of the replacement parts on an artwork, as in [9, 27]. Indeed
such a shape could be designed for the new beams: for instance, taking only

into account a curvature ρ
(3)
m for sawing them, could decrease again the residual

stresses.
The somehow large discrepancies between the model and the measurements

for the restored panel may arise from different sources:

• the model does not take into account 2 cracks on the panel;

• the mounting of the new beams can have damaged the panel;
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• a too rough estimation of elastic parameters (the identification performed
here concerns the shape updating, or the residual stress identification, and
not the material characteristics);

• the neglected viscoelastic behavior.

The final replacement of the horizontal beams of the cradle are used as a
verification step for the model. An other interesting tool to check the validity
of the model would be a local contribution to the error in order to locate the
areas where the model is incompatible with the measures. This could be the
role of the term e2 = 1

2 (u− v)T K(u− v) in the cost function to be minimized,
if the matching to the measures on the restored artwork is also performed.

Once established, such a model can serve as a predictory tool for assessing
risks on the artwork, useful for restorers and conservators, by allowing virtual
simulation of the influence of several conservation conditions, and possibly sev-
eral restoration acts.
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portement de matériaux solides : utilisation d’essais et de calculs. Tech-

nologies et Formations, 100:36–41, 2002. In french.
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