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How does the first water shell fold proteins so fast ?

Olivier Collet
Institut Jean Lamour, Département 1, CNRS, Nancy-Université, UPV-Metz,
Boulevard des Aiguillettes BP 239, F-54506 Vandoeuvre-lés-Nancy
(Dated: January 28, 2011)

First shells of hydration and bulk solvent plays a crucial role in the folding of proteins. Here, the
role of water in the dynamics of proteins has been investigated using a theoretical protein-solvent
model and a statistical physics approach. We formulate a hydration model where the hydrogen
bonds between water molecules pertaining to the first shell of the protein conformation may be either
mainly formed or broken. At thermal equilibrium, hydrogen bonds are formed at low temperature
and are broken at high temperature. To explore the solvent effect, we follow the folding of a
large sampling of protein chains, using a master-equation evolution. The dynamics shows a clear
mechanism. Above the glass-transition temperature, a large ratio of chains fold very rapidly into
the native structure irrespective of the temperature, following pathways of high transition rates
through structures surrounded by the solvent with broken hydrogen bonds. Although these states
have an infinitesimal probability, they act as strong dynamical attractors and fast folding proceeds
along these routes rather than pathways with small transition rates between configurations of much
higher equilibrium probabilities. At a given low temperature, a broad jump in the folding times
is observed. Below this glass temperature, the pathways where hydrogen bonds are mainly formed
become those of highest rates although with conformational changes of huge relaxation times. The

present results reveal that folding obeys a double-funnel mechanism.

PACS numbers: 87.14.et

To this date, the three-stranded 3 sheet is the faster
folder finding its native structure in the amazingly short
time of 140 nano-seconds [1]. The protein folding prob-
lem is still considered as one of the major unsolved prob-
lems of science [2] and the answer to the Levinthal ques-
tion [3] "how a protein can fold so fast ?” remains a
"grand challenge” [4].

Protein folding is the process whereby a protein folds
into its native structure. The slowest folding proteins
may require a few minutes due among other factors to
proline isomerization [5]. They fold passing through
many intermediate states. On the other hand, many
small single-domain proteins fold very rapidly over time
scales of a few microseconds [6, 7]. For many of these
proteins, the folding process is a single exponential func-
tion of time [5, 6] and is modeled by a two-state mass
action model and an Arrhenius diagram on which the
free energy of some ensembles of chain conformations is
plotted as a function of reaction coordinate, usually not
known. This diagram exhibits a transition state between
the unfolded and the native states [8].

Moreover, some ultra fast folders exhibit more com-
plex kinetics with non-Arrhenius behavior [10] (i.e. non-
linear dependence of the logarithm of the folding rate on
the inverse of the temperature). Some results show that
the activation energy is positive at room temperature,
decreases as the temperature increases and may become
negative at high temperature [11]. It has been suggested
that this could arise from the temperature dependence of
the hydrophobic effect [12, 13].

An alternative to this transition-state view is the con-
cept of folding funnel [14]. This energy-landscape pic-
ture is based on the idea of minimal frustration [15],
which states that the evolutionary mechanism has re-

tained those protein sequences that have a funnel-like
energy landscape. In that concept, the height of the fun-
nel represents the conformational energy and its width
represents the entropy of the subset of chain conforma-
tions of a given energy [16-20]. The top of the funnel is
populated by the huge number of denaturated configu-
rations with a large energy and entropy and the bottom
with the unique native structure of very low energy and
quasi-nil entropy. Each protein chains folds from the top
of the funnel towards the bottom.

The transition-state theory and the folding-funnel pic-
ture are two different approaches. The first one describes
well the two-state kinetics, but does not explain why fold-
ing is so fast. The second one explains well why folding is
so fast, and the thermodynamic free energy barrier, that
gives rise to two-state kinetics and makes transition-state
theory applicable to the folding process, is essentially of
entropic nature.

Lattice models of proteins are among the favorite tools
for the theoretical study of folding. The microscopic rep-
resentation of the proteins is simplified to allow large
sampling of the configurational space. Proteins are mod-
eled as self-avoiding-walk chains of beads, which are lo-
cated on a two or three-dimensional square or cubic lat-
tice. For small-length chains, a full enumeration of the
conformations allows the exact calculation of the parti-
tion function, and, thus of statistical averages [21-24].
The Hamiltonian of a given conformation of the chain
results from the interaction of the first neighbors of the
beads on the lattice, but not in the sequence. The more
popular model of couplings between monomers are known
as the Go[22], the HP [21, 25-27] and the random-energy
model(REM) [28-33]. In the G& model, the interaction
between the beads of a given compact structure, cho-



sen as the native conformation, is set to -1 and all the
other couplings to 0. In the HP model, the sequence
of the protein is given in terms of a series of hydropho-
bic (H) or polar (P) residues and the coupling between
two hydrophobic beads is set to -1 and that involving at
least one polar monomers to 0. In the REM, a matrix of
couplings between all pairs of residues is constructed by
drawing random numbers from a Gaussian distribution.

Despite the numerous results obtained with such mod-
els, they fail to reproduce a fundamental feature of a
protein : its cold denaturation. This mechanism is as-
sociated to the loss of stability of the native structure
upon cooling down the system [34-36]. For half a cen-
tury, it has been well known that water plays a crucial
role in the mechanism of folding [37-39] and an under-
standing of cold denaturation requires a finer model of
the solvent than the temperature-independent attractive
parameters used in Go, HP or REM. Some recent refine-
ments of the models, including temperature dependence
of the hydrophobic effect, have allowed to model the cold
transition [24, 40-42] to be described.

As the physics of protein folding proceeds in water and
the interactions of the protein chemical groups are solvent
mediated, the representation of the solvent is of great im-
portance [43]. The hydrophobic effect is an active field of
research by itself [44—48]. It represents the tendency of
water to exclude nonpolar solutes. It results from a dis-
ruption of the network of hydrogen bonds between water
molecules caused by the transfer of an nonpolar solute
into water. The energy variation of this process is fa-
vorable at room temperature, whereas the entropy cost
leads to a large positive free energy of transfer. In ad-
dition, the physics of the solvent-mediated interactions
of the protein may be captured by studying the interac-
tion of two nonpolar solutes immersed in water [43]. This
prototypical interaction can be handled by averaging e.g.
the degrees of freedom of the solvent in the free-energy
function of two methane solutes in explicit water [49, 50].
The profile of the free energy as a function of the distance
between the two methane solutes shows a deep minimum
for the contact distance between the two molecules and
another one, less pronounced when they are separated by
a distance slightly smaller than one solvent molecule di-
ameter. A maximum, higher than the free energy of the
two isolated solutes arises between these two configura-
tions. This maximum is known as the desolvation bar-
rier. As the temperature increases, the contact between
the nonpolar solutes becomes more favorable as the des-
olvation barrier is reduced. This barrier tends to favor a
high thermodynamic cooperativity of the model in con-
trast with a model without desolvation barrier [51, 52]. It
has also been shown that the physics behind this barrier
is responsible for the large diversity in the folding rates,
similar to what is observed experimentally [53]

Moreover, recent experimental work has shown that
structural fluctuations of the solvent may control struc-
tural fluctuations of the protein [54-58]. It has also been
observed that motion of hydration water drives protein

dynamics [59]. This could be respounsible for the protein-
solvent dynamical transition connected with the liquid
glass transition of hydration water [60]. These results
show the importance of the degrees of freedom of the hy-
dration first shell for the dynamics of the proteins. A
theoretical model of the hydrophobic effect introduced
by Muller [61] and extended by Lee and Graziano [62] al-
lows to separate the contribution of the hydrogen bonds
of the first shell and that of the bulk water. The basic
idea stems from the result that the hydration of nonpolar
solutes presents a large entropy cost and a small favorable
energy. The hydrogen bond breakage in the bulk is con-
sidered as a two-state equilibrium between the formed
and the broken hydrogen bonds. The equilibrium con-
stant between the two states is related to the fraction of
formed hydrogen bonds and to the difference in enthalpy
and the ratio of degeneracy resulting from the breaking
of one hydrogen bond. A similar description is used for
to the water molecules of the first shell. It considers that
the thermodynamics of a broken hydrogen bond in the
first shell is the same than that in the bulk and gives a
picture of the hydrophobic effect based on the enthalpy
gain and entropy cost arising from the creation of a bond
in both situations. A little bit later, Lee and Graziano
[62] pointed out that the energy associated to a broken
hydrogen bond is not the same for a water molecule of
the first shell and for one of the bulk. The presence of an
nonpolar solute induces the breakage of a hydrogen bond
of the first shell, leading to a more unfavorable energy
than the same event in the bulk. The two-state model of
the hydrophobic effect has been applied [63] to the two-
dimensional Mercedes-Benz model of water [64, 65]. As a
result, they give a spectrum where the non-degenerated
ground state is for the formed hydrogen bond in the first
shell and the highly degenerated states for the broken
hydrogen bond in the first shell corresponds to the larger
value of the spectrum. The energies and the degenera-
cies of the formed or broken bonds in the bulk are found
between the two previously described.

In this paper, this picture has been reduced further by
gathering together the two close energy levels associated
to the broken and formed hydrogen bonds of bulk water
[40] and has been applied to a lattice model of protein to
study the effect of the first shell on the protein dynamics.
Aside from the hydrophobic model itself, how the solvent
is simulated has a significant impact on the energy land-
scape of the protein. Explicit solvent models are very
computationally expensive [66]. Implicit solvent models
have been developed to take into account the solvent as
a mean field effect [67-73]. Yet, results obtained from
explicit simulations do not always agree with those from
implicit models [74, 75]. Up until now, the strategy to
follow the kinetics of the proteins consisted in averaging
the degrees of freedom of the solvent by calculating the
free energy of solvation of each protein structure and the
transition rates between two protein conformations. The
system evolves along effective routes made of conforma-
tions surrounded by an averaged solvent.



Here, as the solvent model allows it, we have calculated
the rate between two protein-solvent microscopic configu-
rations and grouped together some equivalent transitions.
The physical pathways are microscopic routes in the pro-
tein and the solvent configurational space, not ”mean”
routes in the conformational space of the protein sur-
rounded by an effective solvent.

The dynamics of a large set of chains in the solvent
is calculated using a master equation evolution. In the
spirit of the concept of folding funnel [14, 16, 17, 19], a
picture of the folding in terms of two surfaces, depend-
ing on the state of the hydrogen bonds of the first shell
solvent, drawn in an entropy-energy plot, is given. The
mechanisms responsible for the fast folding and the glass
transition are detailed in the body of the paper. In the
first part, the protein and the solvent models are de-
scribed. In the second part, the equations of the evolu-
tion are established. In the third part, the mechanism,
which occurs during the fast overcoming of kinetic barri-
ers is explained, then the mechanism responsible for the
glass transition is revealed.

I. MODEL.

The microscopic Hamiltonian of the chain in conforma-
tion m, surrounded by a first shell of solvent molecules in
configuration 8 and bulk solvent molecules in structure
« is denoted :

sy = -+ A+

The first term results from the intrachain interactions,
the second one from the contribution of the molecules of
the first shell solvent in interaction with the protein and
the last one from that of the bulk water.

A. Protein Model

The proteins are represented as self-avoiding walk
strings of N monomer beads located on a two-
dimensional lattice [21, 23, 33] (here N = 12). This
length of the chain is short enough to allow analytical
calculations for the dynamics and long enough to give
interesting results. The compactness of a structure m is
the number of intrachain contacts of the chain confor-
mation m : Cpy = 3,505 Ag;n) where Al™ = 1 if the
monomers i and j are first neighbors on the lattice and 0
otherwise. The accessible surface area of the conforma-
tion m to the solvent is defined as the number of links
between the chain beads and the empty sites of the lat-
tice : A,, = 2N + 2 — 2C,,,. The intrachain Hamiltonian
of the peptide structure m is :

h _ (m)
Hh= X B Al
12j+3
To model the heterogeneity of the sequence of amino-
acids of the chain, the couplings B;; between monomers

i and j are drawn at random from a Gaussian distribution
centered on —2 with standard deviation equal to 1 [29].
Such a way of designing the sequences leads to create a
configurational space with small energy gaps between the
structures of bottom of the energy spectrum. A particu-
lar compact (native) structure does not emerge as a sta-
ble conformation of the sequence with a large energy gap
with other compact conformations. To increase the sta-
bility of the native conformation of the sequence[76, 77],
we select a compact conformation for the native structure
of the sequence and we rank the couplings such that the
minimum ones are associated with the native contacts.

B. Solvent Model

For each chain conformation, the empty nodes of the
lattice models the solvent effect[24, 40]. We do not at-
tempt to introduce a fine description of the structural
properties of solvent around proteins itself, but we de-
scribe a realistic solvent effect on the weights of the chain
conformations.

The bulk water contribution is simply modelled by an
extensive negative free energy term which guides chains
towards compact structures. The microscopic structures
of the first shell solvent around any given chain conforma-
tion are separated into two groups depending on whether
most of the hydrogen bonds are formed or not. Hence,
each protein conformation has two possible values for its
energy depending on the structure of the first shell: one
for a ground state (GS) associated to a rather organized
first shell and another one for an excited state (ES) with
mainly broken hydrogen bonds.

For each chain conformation m, the first shell interac-
tion is extensive with respect to A,,. The links between
a solvent node and the chain beads account for the first
shell contribution. The non-degenerated ground state
denoted by 8 = 0 models the first shell water molecules
with formed hydrogen bonds around the protein. It is
taken as the energy reference which equals 0. The excited
states, corresponding to 8 > 1, are for the gﬁl’" first shell
structures with broken hydrogen bonds. Their energy is
A, €sn. The Hamiltonian of the first shell solvent for the
chain structure m is written :

. c(0)=0

H?};EH — Amfshg(ﬁ) with { O_Eﬂ)) =1if1<8< g;‘}llm

When one intrachain contact is formed, two monomers-
solvent bonds are broken. Then, after removing the con-
stant term, the pure solvent contribution is a simple func-
tion of 2C),[24, 42]. The factor of 2 guarantees that the
solvent volume does not depend on the chain structure.
For each chain structure m, the gif’"—fold degenerated
Hamiltonian of the pure solvent is independent of the
bulk micro-state :

bulk 2Cm
How S = 2Cmepk for 1 < o < gy



hydrogen bonds
broken

<"| high energy
high degeneracy

energy

hydrogen bonds
formed

low energy
non-degeneratec

FIG. 1: The solvent around a chain conformation chosen at
random. The unique solvent configuration where the hydro-
gen bonds between water molecules and between water and
the chain are formed (shown in the left picture) is the non-
degenerated ground state (GS) of the first shell and the other
structures (one is shown in the right picture), where the hy-
drogen bonds are mostly broken, are grouped together in the
highly degenerated excited state (ES). Only, the highly orga-
nized and highly disordered solvent configuration are taken
into account. All the other cases are not considered in this
two-state picture which only takes into account the lowest
energy and largest entropy macro-states which are the most
important contribution for the statistical physics approach.

The results given in the paper hold while the parame-
ters are ranked as follow : 0 < epk < €5, and gpx < Gsh-
In the spirit of the results obtained by Silverstein et
al[63], the values of the solvent parameters are ranked
as follow epx = 0.2, ey, = 0.6, gk = 2 and gsn = 3.
The reported results in this paper are quite robust with
regards to change the parameters holding the above rank-
ing equation. However, for some technical reasons (dis-
cussed below) if gy or/and gg, are chosen too large, the
computational times of the calculation becomes too pro-
hibitive.

The energy and the degeneracy of the ground and ex-
cited macro-state of each peptide conformation are :

mac _ qgch 20 A ]
Mo Z:[ﬂ +2cmm5bk +oAmesh } witho=0or 1
9mo = Ysh ~ Yvk

C. Results for the chain in interaction with the
solvent

The thermal equilibrium probability of each macro-
state is given by : PS4 = g exp(—H22°/T)/Z(T) and
that of a chain structure is P! = Z;:O Pl . Here the
Boltzmann constant is set to 1 and the partition function

is:
2Cm

gox " I 4 mic
¥ S (-]

m a=1 =0
chh /Hbulk
i (2
— T

{1 + 94" exp (— A”;:Sh)] (1)

The native conformation is the structure of largest value
of P54 determined by a full enumeration of the conforma-
tional space of the chain at low temperature. For the set
of couplings B;; and solvent parameters used here, the
native conformation is a compact structure of intrachain
energy -9.895. The folding transition temperature is de-
fined as, the melting temperature 7,,, of the experimen-
tal literature[78, 79] at which the equilibrium probability
of the native structure equals that of all the other de-
natured conformations One specific chain structure (the
native conformation) has a larger equilibrium probabil-
ity to occur than all the other conformations for 7' < T,
or in others words Pol, (T,,) = 0.5 (here T}, = 0.90).
Fig
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FIG. 2: Equilibrium probabilities of occurrence of the native
structure (black solid line) as functions of the temperature
(given in arbitrary units) with the contribution of the ground
state (red long dashed line) and of the excited state (green
dashed line). At a temperature Tp, the probability that the
hydrogen bonds are broken becomes significant and at T,
the probability to observe hydrogen bonds around the native
conformation is the same as that to observe water with broken
hydrogen bonds. The probability of occurrence of the native
structure equals 1 /2 at Th,.

rence of this native structure (Nat) surrounded by water
with formed hydrogen bonds reaches one at low temper-
ature. Other solvent configurations around Nat become
relevant for T > Ty (here Ty = 0.45). Last, the prob-
ability of occurence of the native structure with of the
first shell solvent in ES equals that in GS at a specific
temperature denoted T* (here T = 0.54).

We note in passing, as the solvent parameter of the GS
of the first shell is lower than that of the bulk, it could be



possible to observe cold denaturation of the chains, if the
GS of the extended chains would be the state of lowest
energy among the whole configurational space [24, 42].
Here, however, the parameterization chosen avoids this
possibility in order to study only the folding mechanism.

Figure 3 shows the conformational distribution as func-
tion of the number of native intrachain contacts calcu-
lated as follow :

Fr(@) = ~T1n 3" 6(Q — Qu) S gmo exp(~HIE/T)

where §(0 = 1 and 0 otherwise and @, is the number
of native contact of the chain structure m. Under dena-
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FIG. 3: Free energy profile for the lattice model at the three
temperatures indicated. P(Q) is the probability of occurrence
over @@ at thermal equilibrium.

tured conditions (T > T,,,), the free energy profile show
a barrier between the native and non-native conditions.
The sets of conformation with one or two intrachain con-
tacts, surrounded by solvent in ES (see fig. 4) have the
largest probability of occurrence. At the melting temper-
ature, the same barrier still separates the equiprobable
native and non-native populations. Under strong native
condition (low temperature), the shape of the free energy
profile is similar to that observe for a downhill folding.
Indeed, as the temperature decreases, the more prob-
able non-native population shifts from the sets with few
native contacts to that with the maximal native contacts

D. Results for the solvent at equilibrium

At thermal equilibrium with a bath at temperature T,
the probability of occurrence of the conformation m with
the solvent in micro-state (o) tend towards : p;l 5 =

exp (= iy /T) /2(T).
The mean energy of the first shell solvent around chain

conformation m is :

Zaﬁ pf;laﬁﬂfs,g“

Amashgi’" exp(—Amesn/T)

Ue(T) = -

Zaﬁ pfr?aﬁ 1+ gﬁlm exp(_Amgsh/T)

and the heat capacity is :

cshell( 7y — dogt An’ed 9o exp(—Amean /T)
mn dr T2[1+ gi’" exp(—Amesn/T))?

These curves as function of the temperature only depends
on the chain exposure to the solvent, i.e. on the compact-
ness (fig.4). They exhibit a maximum at the same tem-

230 —. A=14(C =6)
i ... A =18(C =4)
200 -~ AF22(C=2)
£ 150
T
%, 100
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FIG. 4: The heat capacity of the solvent around the chain
structures depends on the compactness of the conformation.
At low temperature, the chain are surrounded by rigid cages
of water molecules. The higher the compactness, the higher
is the temperature of occurrence of the chain with broken
hydrogen bonds of the solvent.

perature: T = 0.54. It is the temperature of equiproba-
bility of occurrence of the two phases: broken and formed
hydrogen bonds of the first shell around the peptide. For
Ty < T < T*, the solvent configurations with a water
cage around the peptides is preferred to the broken hy-
drogen bonds. For T' < Tjp, it is the only relevant state.
Above T, the solvent occurs in the excited macro-state.
This is in good agreement with the result obtained for
the thermodynamics of the chains presented above.

II. TIME EVOLUTION.

To explore all the possible routes from the non-native
structures to the native conformation, the probabilities
of each micro-state, composed of one protein structure
in interaction with one solvent configuration, evolve us-
ing a continuous time Markov process applied to a large
sampling of peptides.

Master equation approach to protein folding has al-
ready be used in lattice model with an effective solvent
[80]. Tt is shown in appendix A, that a master equation of
the macro-states may be deduced from the master equa-
tion of the micro-states. In a finite time approach, the
probabilities of the macro-states evolve following the Eu-
ler algorithm[81] :

Prac(t+6t) = PRac(t) + 6t Y > Vingmror Poisi (t)



where
v,
Ymo’,m/a/ = 9mo r;an (1 + exp((Hfrrg?fc - 7-[71?12’1;’)/1_‘)71

for m # m' or o # ¢’ and

Yma,ma = - E Ym’a’,ma

m'o’ #mo

As explained in appendix A, Vn(l%, = 1 if structures m
and m’ are connected by a one monomer move (either
a corner flip or a tail move) or if m = m’. The charac-

teristic time associated to a chain move (70'¢, = 7, if
:
m # m') and to a solvent move (7¢, = 74 if m = m/)

are set to 7. = 1 and 75 = 0.001 < 7.
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FIG. 5: Logarithm of the waiting time ¢, to observe the native
structure with a probability equal to p plotted as a function
of the inverse of the temperature for p = 0.02 to p = 0.20 by
steps of 0.02.

A sufficient condition to conserve the norm of the prob-
ability vector (i.e. > Pmac(t) = 1) is satisfied by fixing
0t = 1/ maxmo{Yimeo,mo }- As the values of g,,,0 and then
those of Y5 m/ o may be huge, the value of dt is tiny.
Then, the evolution of the probability vector is very slow.

The simulations of folding start with the initial con-
dition : P22¢(0) = 1/2Ncont Where Neons = 15019 is
the number of chain structures. The probability of oc-
currence of conformation m after time ¢ is P, (t) =

i (t) +Phac(t). The waiting time to observe the na-
tive structure with a probability p is noted ¢,. The main
results of the calculation are summarized in fig.5 and
6. They exhibit some findings on the out of equilibrium
folding of a large sampling of chains at different temper-
atures.

Figure 5 shows a non-Arrhenius behavior of the model.
Because of the tiny value of §t, the early events of the
folding are shown, here. The remaining part of this plot
will be deduced from the results given below. It will
be shown that even if the curves may be well fitted by a

Vogel-Fulcher-Tamman function (¢,(1") o« exp(—E, /(T —
Tb))), which is the signature of an a-relaxation with a
dynamical temperature To = To(p), the remaining part
of the curves exhibits a more complex shape which can
not be capture by effective solvent models.
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FIG. 6: Evolution of the probabilities of occurrence of native
structure (back solid line), the contribution of excited state
(green dashed line) and of the ground state (red long dashed
line) as functions of the time at different temperatures. For
temperature of 0.10 and 0.20, some chains topologically close
to the native structure reach it very fast because no activation
barrier occurs in their pathway. Then, the probability of the
ES decreases monotonically to zero and that of the native
structure reach a plateau and the kinetics is frozen. As the
number of chain structures of the basin do not depend on
the temperature, the plots have very similar shapes and the
values of the probabilities are very close to each other showing
that a local phenomenon is taking place. For temperature
of 0.30 and 0.40, the ES of the native conformation (which
have a null equilibrium probability) acts as an attractor, in
the early events, and reach very rapidly a maximum of its
probability of occurrence, much larger than its equilibrium
probability. A fast transition takes place towards the GS of
the native structure. Then, a slower dynamic regime guides
the other chains towards the native structure. Now, the values
of the probabilities depend on the temperatures showing that
a global mechanism dominates.

Figure 6 shows that, even if its equilibrium probability
is infinitesimal, the excited state of the solvent acts as a
strong dynamical attractor above a particular tempera-
ture to be discussed later. Below this temperature the
kinetics is the same whatever the temperature.

III. RELAXATION TIMES OF THE MOVES.

Only two connected macro-states (mo) and (m'c’) are
considered for a while. The equations 6 and 7 show that
the rate of the transition (m'c’) — (mo) depends on
the degeneracy of the macro-state (mo) and not of that



of (m'c’). In other words, the increase of the prob-
ability of (mo) and the decrease of that of (m'o’) is
due to the degeneracy of (mo) and to the difference of
energy between the states with (m’c’). After thermal
equilibration, the probability of (mo) would go towards
Pi) = P /(P + Pyt ) The solution of the system
of equations 6, for only two states is :

Prig (t) = PR + [P (0) = PR exp(—t/Trmoumar)]
with a very small relaxation time :

?ma,m’a’ = (Ymo',m’a’ + Yma,m’a”)_l < Trr;jﬁm’ (2)
which now depends on the energies and degeneracies of
the macro-states. While numerous chains initially in
state (mo) move into state (m’c’), some of them may
go back to (mo). As a consequence, the relaxation times
depend on forward and backward rates of a move. As
an aside, if the move from (mo) to (m'c’) were allowed
and not the backward transition, then the relaxation time
would simplify to 1/ Yo mio-

As the degeneracy of the excited state is always larger
than that of the ground state, the value of the rates be-
tween two excited states of the chain is larger than that
between two ground states (if the energy difference is of
the same order) As a consequence, the relaxation times
of the former transitions are always very small at not too
low temperature. They are supposed to simulate peptide
evolving in a fluid solvent. In contrast, the relaxation
times of the latter transitions are larger. This models
chains evolving in a viscous medium. Thus, the dynamics
of the chains surrounded by water with broken hydrogen
bonds is faster than that of low degenerated structures
in interaction with solvent with formed hydrogen bonds.

In addition, the more extended the structure, the
larger the degeneracy of the excited states and the
smaller is the relaxation time. This is because a more
extended chain has a larger exposure to the solvent and
thus a lot of hydrogen bonds are broken in the first shell
and as a consequence the dynamics is faster.

Last the connexion between the excited and ground
states of the same chain conformation (m = m’) have a
small relaxation time because 75 < 7.. The difference
between that case and the fluid connexion depends on
the ratio 7./7s.

IV. FAST FOLDING MECHANISM

To understand the mechanism underlying the fast fold-
ing, a possible pathway leading to the native structure,
shown in fig.7, is considered as a first approach of the
problem. This pathway consists in five chain structures
connected by one monomer moves. In contrast with the
whole conformational space where there exist a great
number of routes from a given conformation to the na-
tive structure, in this section we first consider a sim-
plified trajectory where there is a unique pathway (via

Tp, TS, Tp, TS, Nat
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FIG. 7: Top: A possible pathway with five chain structures
connected by one monomer moves ending in Nat taken as an
example to capture the role play by the solvent in the fold-
ing kinetics. The energy of the GS is given above of each
conformation. A single route from Tp; to Nat is considered,
to simplify the study of this first approach, and the reaction
coordinate is simply a function (not given) of the number of
conformational changes necessary to reach Nat. Bottom: the
waiting times to observe a ratio p of proteins in Nat, starting
from an equiprobability of all the states, show a glass transi-
tion at temperatures depending on p (shown in the inset).

TS, Tpz and TS3) from Tp; to Nat. Structures Tpy
and Tpo have five intrachain contacts and thus, smaller
energy than TS; and TSy which have three intrachain
contacts. Then, the GS of the structures Tp; and Tps
should act as kinetics traps and that of TS; and TSs
as transition states towards the native conformation. At
t = 0, the initial probability of each macro-state is set to
P(t =0) = 0.1. An Euler algorithm is applied to simu-
late the evolution of the probabilities of the ten macro-
states of this subsystem composed by the ES and the GS
of this five chain structures. The waiting time ¢, to ob-
serve the native structure with a probability equal to p
is plotted for p = 0.30 to p = 0.65 by steps of 0.05 as
function of the temperature. At ¢ = 0, the probability of
occurrence of Nat is already 0.20 and for p < 0.30, the
waiting time is tiny since a many chains in the TS, states
fold instantaneously in Nat. For T' < 0.20, the waiting
time to reach a ratio p = 0.30 becomes constant, but that
to observe a larger ratio become huge.

For p > 0.30, the waiting times increase continuously
as the temperature is decreased until a temperature, de-
pending on p and denoted by T,(p), where a broad dy-
namical transition occurs. The kinetics is fluid above T},
and glassy below.

Figure 8 shows the very early events of the folding



of this small system. The ES of Nat relax into the GS
via a, very fast, solvent transition. At a temperature
independent time, ty, the probability of the ES of Nat
becomes very small.
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FIG. 8: . Evolution of the probabilities of the native structure
(black solid lines) and the ES (green dashed lines) and the GS
(red long dashed lines) contributions as functions of the time
for different temperatures.

At low temperature (T = 0.10 or T' = 0.20), half of
the chains in conformation TS, fold in Nat and the other
half goes to Tpy between the time ¢ty and a tempera-
ture dependent time, t* after which the probability of
occurrence of the native structure becomes constant for
a while. Then, a long plateau with p =~ 0.3 occurs where
the dynamics is glassy.

At higher temperature, the probability of occurrence
of Nat at ty becomes higher and the length of the plateau
smaller. Many chains in the Tp;, TS; or Tpy jump to
Nat. At T = 0.40, the probability of the ES becomes
very high (= 0.3) at a time denoted by ¢j; in the early
events and the probability of Nat equals 0.8 very fast.
Between tj; and t*, the solvent of the chains in ES relax
in GS. Here, the ES of Nat acts as a strong dynamical
attractor.

The instantaneous flux from (m’c’) to (mo), given
by km’a’—>ma’ - ma,m’U’P’m’U’ (t) - Ym’a’,mapma(t) can
also be calculated. Figure 9 shows that, at T = 0.10, the
kinetics is only guided by the difference of energy of the
micro-states.

The solvated chains have a very large probability to
move towards a micro-state of lower energy. Between the
initial time and %y, the ES of Nat relax very fast to the
GS of Nat. During this period, the ES of all structures
relax to the GS. Between the times ty and t*, TS; and
TS, relax to Tpy, Tpe and Nat. The probabilities of GS
of Tp1, Tpo and Nat increase until all other state have
a infinitesimal probability and the probability of the Nat
increases to one half of that of TSy. Then, all the fluxes
become tiny and the dynamics is frozen.

At T = 0.40, the equilibrium probabilities of the ES
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FIG. 9: The direction and magnitudes of the flux of the con-
nexion of the pathway shown in fig.7 at to and 7" = 0.10. The
larger the flux, the wider is the line. Connections with tiny
flux are not drawn.
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FIG. 10: Same than fig.9 at T = 0.40. Flux in the GS pathway
is the same for both simulations.

are infinitesimal. Then, we could also expect a kinetic
which would only pass through the ground states, as for
T = 0.10. Instead of this, the sampling of chains finds
another strategy to overcome the barrier very fast. At
time tg, the probability of the GS of Nat is already of
0.6. The flux between the pairs of states, drawn in fig.10,
show that the chains in GS of Tp; do not fold via the
GS of the other structures of the pathway. First, they
reach the ES of Tp; and then they pass through the ES
of the other structures and lastly they relax to the GS of
Nat. This is a consequence of the larger transition rates
between the ES than between the GS. In addition, the
probabilities of the ES remain very small.

The chains follow a pathway with large transition rates
between improbable states for which the in going flux
equals the out going keeping their probabilities small.

At time tg, the probability of Nat is around 0.7. The
probabilities of the ES are quasi-null. The flux via the
ES pathway is the same as via the GS pathway. The



kinetics become very slow and then a plateau occurs in
the curves of the probability of Nat as a function of the
time shown previously.

V. HOW WATER LUBRICATES OR FREEZES
THE FOLDING. A PHYSICAL PICTURE.

Curves of figs. 6 and 8 are not exactly the same but
are similar. The basic mechanisms found for the direct
fold in the case of the five-chain conformations pathway
may be extended to the whole configurational space of
the protein. Put together, the results of this paper allow
us to give the picture of the folding given in fig.11. To
draw one of the envelop in the energy-entropy plot, the
entropy, noted S, (F) for o = 0, associated to a given mi-
croscopic energy, is calculated from the number of chain
and solvent configurations, with formed hydrogen bonds.
The same calculation, of the entropy noted S, (FE) for
o = 1, is done for the solvent without hydrogen bonds.
The two functions S,(E) are related to the total num-
ber of protein-solvent configurations whose total energy
matches the energy values E:

So(E)=I[> > 6(c —a(B)) 6(E—Hpmy)]

moa,p

where 6¢)(2) = 1 if —¢/2 < 2 < £/2 and 0 otherwise.
They may be written as functions of the degeneracy of
the macro-states:

So(B) = [ guo 6 (B — H)

Moreover a parameter 6, allows one to distinguish
between the structures of the bottom of the configura-
tional valleys, which may be kinetics traps in the folding.
One defines 6,,, = 1 for the macro-states, only connected
to macro-states of higher energies and 0 otherwise. Al-
though the native conformation satisfies to this defini-
tion, it can not be considered as a trap and the value of
Onat is set to 0. Considering the five structures of fig. 7,
9 and 10 as an example, one has ftp, = O1p, = 1 and
O1s, = O1s, = Onat = 0. Thus, the envelop of the trap
region in the energy-entropy plot is a subset of the GS
barrel, given by :

Stp(E) = ln[z Ormgm;0 5(8)(E —Hmio)l

where g0 and H% are for the degeneracy and energy

of the GS of the structure m.

Figure 11 shows the three surfaces drawn on the same
plot. The GS-barrel (respectively ES-funnel) is associ-
ated to the GS (respectively ES) of the chain structures.
A part of the surface of the GS-barrel is populated with
the trap conformations We have already shown, in this
paper, that the connections between two chain structures
in the ES-funnel have small relaxation times and that in

2 T T T " T
T=0.10 entfo —
py ﬂ |
2 J
10~ 5 i
> :/_) --» Relaxation
E Q in the GS barre
by qt) — Trapping
or | 8 in the GS barre
[%2)
(O]
10510 10 20
2 T T "
T=0.40 entfopy
o 10+ --= Excitation
g in the ES funne
< —= Folding
o- in the ES funne
--» Relaxatior
in the GS of Na
]

)

20

FIG. 11: Top: At T = 0.10, the chains in any energy level
of the ES-funnel relax very fast in the GS-barrel. Then, they
move down slowly in the barrel, they reach the trap zone and
the dynamics is frozen. Only a tiny fraction of the chains,
synthesized in chain structures very close to Nat, reach it in a
reasonable time. Bottom: The picture of the folding at higher
temperature but below T, where the ES of the chains still
has an infinitesimal equilibrium probability, depicts a different
mechanism. At 7" = 0.40, the chains in the GS-barrel move to
the ES-funnel. Then, most of them fold very fast towards the
bottom of the ES-funnel (in the ES of the native structure)
and they relax in the bottom of the GS barrel (in the GS of the
native structure). They get round the trap zone by passing in
the ES-funnel where the transition rates are very high. A few
chains relax in the GS-barrel during their descent in the ES-
funnel and then they have slow dynamics. The temperature
where the folding mechanism switches from one scenario to
the other one is the glass temperature of the system.

the GS-barrel long relaxation times. This results from
the following mechanism. A single protein and its solvent
is in a given configuration, at a given time, which belongs
to a corresponding macro-state, and not in all the con-
figurations of a the macro-state. As a consequence, the
transition rates between one protein-solvent configura-
tion of the macro-state (mo) and those of a macro-state
(m'c’) depends on the energy difference between these
states and also on the degeneracy of (m/c’) but not on
the degeneracy of (mo).

In particular, the connexion from a given configuration



of the GS to those of the ES of the same chain confor-
mation involves a huge number of routes which increase
the energy On the opposite, a few connexions allow the
backward transition which decreases the energy.

At "wvery low” temperature, the proteins and solvent fol-
low pathways which minimize the microscopic energy.
Then, they very slowly evolve, along the few routes of the
GS barrel and fall rapidly in some trap conformations.

At 7not too low” temperature, proteins and solvent fol-
low pathways where the number of routes is mazximized.
Then, they quickly evolve along the vast possibilities of
routes of the ES funnel without traps and reach very fast
the native structure.

As it has previously been shown, the temperature of
glass transition which separates the two mechanisms is
not clearly defined because it depends on the ratio of
folding proteins

In addition, we mention that, the calculation of the
partition function is independent on the informations
concerning the network of connexions. As a consequence,
the glass temperature is not related to the temperatures
(To, T* and T,,) defined above. This explains why the
excited states of the first shell lubricate the folding un-
der conditions where only the ground states have non-nil
equilibrium probabilities and why the folding is frozen at
lower temperature.

VI. CONCLUSION.

We have shown that a model of protein-solvent which
takes into account the difference of degeneracies of the
bulk solvent and the first shell solvent with mainly
formed or mainly broken hydrogen bonds permits an un-
derstanding of the mechanism which may lead to quasi-
instantaneous folding of a sufficiently significant ratio of
the proteins in solution. Figure 11, shows that two dis-
tinct folding mechanisms exist. In the first one, the fold-
ing times are very large and in the second one very short.
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Appendix A.

The probability of occurrence of the conformation m
and the solvent in micro-state («, 5) at time ¢ is denoted

by pg’liofﬁ (t). The master equation of the system is written

10

dpgl’blacﬁ mic

dt Z Xmaﬁ;m’a’ﬁ’ Pmrarpr (3)
m/a/B/

where X,agmarpr = X(m'a/8 — map) is the tran-

sition rate from configuration (m’a’g’) to (mag). The

diagonal terms which take into account of the transition
from (map) to the other configurations, are :

Xmaﬁ;maﬁ = - Z

(m'a’B")#(maB)

Xm’a/ﬁ’;maﬁ

The detailed balance conditions,

Xmaﬂ;m’a’ﬂ’pi?/a'ﬁ' = Xm’a’ﬂ’;maﬂpfsaﬁ (4)
allow to write the rate of transition as :
V(O), ) ,
Ximapimarg = o= ar(Mpag Hvarg)  (5)
Tm,m’
where V(O) = V(O) = 1 if the two structures are
mm’ 'm T

connected by a corner flip and tail moves[82] (see
fig.12)whatever the solvent configurations and 0 other-
wise. The acceptance function is ar(z;2") = [1+exp((z—

«')/T)]~ and 72 | is a symmetric function : 70¢, = 7,
if m#m and 7 T’;"fn,—Ts if m=m'.

The probability of occurrence of the macro-state (mo)

at time ¢ denoted
ZP%B

where 6(0) = 1 and 6(n) = 0 if n # 0 and the following
relations :

ZP%&B' = Z ZP?@%E'B'(S(UI —o(8)

oz’,@’ o' O/B/

_ mac
= E Pos
o’

Prio () (0 —a(B))

= 9mo

S 6(0 — o(8)
apB

will be used below.
Now, we rewrite the master equation 3 as :

mic

d
S it — () =
aff
> - old)x

mic
mafBm’a’ B’ pm’a/ﬁ/
aB m'a’ B’

yields :

Z sy =2 dlo—alBNd > -

m af o' o'B!
o)
/ / ! mi
6(0 - U(ﬁ ))7_1:1”17: aT( moccﬁ;Hm ‘ol B’ ) pm a’ﬁ’
m,m’



FIG. 12: Two types of moves, with different characteristic
times, are considered in the dynamics: the protein monomer
move (dashed arrows) or the solvent configuration transi-
tion (other arrows). For this last event, the connection be-
tween solvent configurations of the same macroscopic level
do not affect the kinetics. The solvent transition is sup-
posed to have smaller relaxation time than the monomer
move. The relaxation times of the connection are defined
as follows: we solve eqs.3 and 5 for an isolated connexion

between two states (mo) and (mc’) leading to: phmss(t) =

Phress + [Pmas(0) = plcls] exp(—t/Tiic, ). mic., is chosen as
7. if the connexion is between two different protein structures
and is chosen as 75 if only water moves (7s < 7¢). The set of
one monomer moves considered here, is the corner flip (shown
in this figure) and the tail move (not shown).
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The evolution equation is rewritten :

d mac
T = S Yoo Pl (O
with
oy
Yma’,m’a’ = 9mo 17171117: (H?’Lic7ﬂmdc ) (7)

In addition, we mention that this result also satis-
fies the following balance equation:
Ym’o”,malps?g

eq
Yma’,m’a" Pm’a"
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