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by friction are responsible for various noises such as squealing, squeaking and
henomena have been studied for a long time, it is not well-understood. In this
d numerical study of friction-induced vibrations of a system composed of two

sed. The experimental system exhibits periodic steady state vibrations of differ-
nderstand this experimental vibratory phenomenon, complex eigenvalue and

es are performed. In the linear complex eigenvalue analysis, flutter instability
of two eigenmodes of the system. This linear study provides an accurate value

uency of vibration. To understand what happens physically during friction-
mic transient analysis that takes account of the non-linear aspect of a frictional
is analysis, friction-induced instability is characterized by self-sustained vibra-
separation zones occurring at the surface of the contact. The results stemming

that good correlation between numerical and experimental vibrations can be
quency domains). Moreover, time domain simulations permit understanding

involved in two different vibratory behaviours observed experimentally.
1. Introduction

When two bodies are in contact with friction, friction-induced
vibrations can occur. These vibrations generated by friction are
responsible for different noises and stress concentrations. In the
case of automobile braking, these vibrations can generate groaning
(<100 Hz), squealing (1–20 kHz), humming and moaning (100–
500 Hz) and so forth. A wide panorama of vibration dynamics
caused by friction has been presented by Ibrahim [1,2], Papinniemi
[3], and Kinkaid et al. [4]. Akay [5] has given an overview of friction
acoustics. The literature includes many experimental, analytical
and numerical studies that show that the friction-induced instabil-
ity phenomenon is complex and has yet to be brought under full
control.

Mills [6] showed that friction-induced instabilities can occur
when the friction coefficient decreases with relative velocity. This
theory explains that friction-induced vibrations are explained by
an instability related to a stick–slip phenomenon. Using the
Sprag-Slip model, Spurr [7] highlighted the importance of contact
kinematics by obtaining an instability condition on the contact’s
x: +33 4 78 89 09 80.
eziane).
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angle of incidence with a constant friction coefficient. His model
was composed of a rigid articulated bar in friction contact on a ri-
gid surface. In an analytical and experimental study of a commer-
cial braking system, North [8] showed that friction-induced
vibrations are due to a coalescence of two eigenfrequencies of
the system. Friction-induced instabilities obtained with a constant
friction coefficient correspond to self-excited vibrations of the sys-
tem induced by flutter instability.

Numerical studies relying on the finite element method permits
the treatment of a wide range of systems (geometry of the bodies
in contact, limit conditions and contact modelling). These numeric
studies are mainly based on two types of analysis: complex eigen-
value analysis and dynamic transient analysis. The linear complex
eigenvalue analysis permits detection of the stability limit of the
system, by analysing its eigenvalues and eigenvectors around the
steady sliding state [9–11]. The good agreement with experimental
results [12–14] proves that the friction-induced instability domain
can be detected with a linear hypothesis in the contact zone. How-
ever, the non-linear effects of contact with friction are not negligi-
ble when instability occurs. Thus to study the evolution of the
vibration of the system during instability, the transient dynamic
analysis that takes into account the non-linear aspect of contact
with friction is used. This permits obtaining the values of displace-
ments, velocities and accelerations, as well as the values of the



forces and surfaces of the contact during system vibrations [15–
17]. More often than not, these numerical analyses are performed
separately. Recently, certain numerical works [18–20] have per-
formed both types of analysis and shown that they are
complementary.

The difficulties of the phenomenon of friction-induced vibra-
tions stems from the correlation between numerical and experi-
mental results. Most works presenting comparisons between
numerical and experimental results succeed in correlating unsta-
ble frequencies [12] and sometimes the level of vibration [21],
but as far as the authors know the literature provides no examples
of numerical studies of the vibrations caused by friction that pres-
ent correlations between numerical and experimental vibrations in
the time domain.

The initial aim of this paper is to show that good correlation (in
both time and frequency domains) between numerical and exper-
imental unstable vibrations can be obtained, while the second aim
is to demonstrate that the numerical study can explain some of the
physical phenomena involved in friction-induced vibrations of the
system. Given the complexity of the friction-induced vibration
phenomenon, an experimental system has been built up in order
to control the number of parameters that play a role in friction-in-
duced vibrations. Firstly, the results obtained in the experimental
study of the system are described. Then a numerical study is per-
formed comprising both linear and non-linear analyses followed
by the validation of numerical results and a discussion on the phys-
ical phenomena involved in friction-induced vibrations.
Fig. 1. (a) photographic and (b) schematic representation of the test bench. (1) Beam
displacement transducer, (7) frame, (8) DC motor, and (9) counterweight.
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2. Experimental study

2.1. Experimental rig

The bench used is shown in Fig. 1. It is composed of three parts:

– a fixed part (I) connected to the ground composed of a frame (9)
and a DC-motor (8),

– a part moving in translation (II) composed of the beam P(2) (2)
and its support, that can translate along the x-axis in relation
to the frame (7) via a screw-nut system (4) driven in rotation
by a DC motor (8),

– a part (III) composed of beam P(1) (1), its support (3), the weight
(5) corresponding to the application of a force of 9 N at point A,
and a counterweight (10). The weight of assembly (3) + (1) is
counterbalanced by (10) in order to apply the force only with
the weight (5). This part free from rotation around the z-axis
at point E.

Beam P(1) is clamped at its support at point A and is in contact
with beam P(2) at point C. As part (III) can rotate at point E, beam
P(1) is free at point A along an arc of a circle. Beam P(2) is also
clamped at its support (4) and free at its other extremity. A velocity
V along the x-axis is imposed on the support of beam P(2) by assem-
bly (4) + (8).

In this experimental part, the friction-induced vibrations of two
beams in contact whose dimensions are given in Table 1 are stud-
P(1), (2) beam P(2), (3) beam P(1) support, (4) screw-nut system, (5) weight, (6)



Table 1
Fixed data of the two beams P(1) and P(2).

P(1) (m) P(2) (m)

Dimensions 0.05 0.15
Length 0.01 0.015
Width 0.0015 0.003
Thickness
Material Steel Steel

Fig. 3. FFT of measured velocities of vB(t) for translation velocities V of ( ) –
1 mm/s, ( ) – 2 mm/s and ( ) – 5 mm/s (F = 9 N and h = 5�). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
ied. This test rig has been designed to reduce the number of param-
eters playing a role in friction-induced vibrations. The contact zone
on beam P(1) has been reduced to avoid the edge effects influencing
the dynamics of the system, by designing the contact edge of beam
P(1) as an arc of circle in the z- and y-directions (Fig. 1b). The design
of the mechanism (beam supports) is rather massive to avoid inter-
actions with the dynamics of the two beams. The DC motor (8) can
impose a uniform velocity V from a value of 1 mm/s to 5 mm/s.

2.2. Study of vibrations of the system when beam P(2) is in translation

During a specific test (in sliding steady state (V > 0) with no fric-
tion-induced vibrations), the Coulomb friction coefficient l was
measured at 0.2. In order to control experimental contact condi-
tions, an experimental process (including thorough cleaning of
the surfaces) was defined to obtain reproducible contact condi-
tions. For each test presented this experimental process was ap-
plied and repeated three times to ensure the reproducibility of
the results. The beams were placed in contact and when the system
was in static equilibrium, beam P(2) was set in motion. The mea-
surements of velocity of point B (Fig. 1) in the x-direction
ðvBðtÞ ¼ _uð1Þ1 ðxB; tÞÞ were performed during this latter phase. A laser
Doppler vibrometer was used to measure velocity without contact
so as not to influence the dynamics of the system.

The measured velocity vB(t) for translation velocities V of
�1 mm/s, �2 mm/s, and �5 mm/s is shown in Fig. 2. The system
exhibited periodic steady state vibrations (V = �5 mm/s) and inter-
mittent periodic steady state vibrations (V = �1 mm/s; V = �2 mm/
s). Fig. 3 shows the FFT of the measured vibrations of Fig. 2. For the
three imposed velocities the frequency spectrum is periodic char-
acterized by one main frequency 2700 Hz and its harmonics
5400 Hz and 8100 Hz. Other frequencies appeared (2080 Hz,
6500 Hz) in the spectrum. Note that even if the vibrating phenom-
enon is quite different (periodic steady state and intermittent peri-
odic steady state vibrations) the fundamental frequency
Fig. 2. Experimental velocities of point B in the x-direction (Fig. 1) for translation velocit
Large-time scale visualisation, (b) zoom in time-scale. (For interpretation of the referen
article.)
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corresponds to the same eigenmode of the system. This intermit-
tent periodic steady state vibrations corresponds to a succession
of two different periods of time: one of high level vibrations (dur-
ing Tvib) (whose fundamental frequency is 2700 Hz) and one during
which the vibrations attenuated and tended to vanish (during TSt).
The average of TSt is inversely proportional to the velocity imposed
V (Fig. 2). Above a certain velocity, TSt tends to vanish and the sys-
tem vibrated without intermittence.

To understand these vibrating phenomena and the dynamic
contact behaviour, a numerical study was performed. These studies
are based on two types of analysis: complex eigenvalue analysis
(linear) and dynamic transient analysis (non-linear).

3. Numerical study

3.1. Model of the experimental system

Fig. 4 shows the model of the experimental system presented in
Fig. 1. The two steel beams P(1) and P(2) are in frictional contact. The
contact surfaces are considered as being perfectly flat. The thermal
and physicochemical effects are neglected. The mechanism gov-
erning P(1) and P(2) is modeled as a boundary condition. P(2) is
free-clamped. Point A of P(1) is blocked in translation in the x-direc-
ies V of ( ) – 1 mm/s, ( ) – 2 mm/s and ( ) – 5 mm/s (F = 9 N and h = 5�). (a)
ces to colour in this figure legend, the reader is referred to the web version of this



Fig. 4. Representation of the model system studied. Initially, point C is 80 mm from
the clamp of beam P(2) for the numerical simulations and tests described. D is the
contact node on P(2), defined according to the closest projection of node C to P(2). ):
Concentrated mass. For the reference case: V = �2 mm/s, F = 9 N, and h = 5�. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Operating conditions for the performed tests.

Applied force (F) 9 N
Applied velocity (V) �1; �2; �5 mm/s
Coefficient of friction (l) 0.2 (measured)
Angle h 5�

Table 3
Fixed data of the numerical model of the system studied.

P(1) P(2)

Length 0.05 m 0.15 m
Width 0.01 m 0.015 m
Thickness 0.0015 m 0.003 m
Density (q) 7900 kg/m3 7900 kg/m3

Young’s modulus (E) 185 GPa 185 GPa
Parameter d1 50 s�1 50 s�1

Parameter d2 1 � 10�8 s 1 � 10�8 s
Number of elements 30 90
tion and in rotation in the z-direction. The assembly (3) + (9) + (5)
is modelled by an equivalent concentrated mass whose value was
determined during the study of the dynamics of the system (with
V = 0 mm/s) (see further). A force F was applied at point A in the y-
direction, corresponding to the force applied by the weight (5). A
velocity V in the x-direction was imposed at P(2) at the clamp.

3.2. The governing equations

The deformation of two elastic bodies occupying two domains
(P(L))L=1,2 in the initial configuration is considered. It should be
noted that the superscripts of the form (�)(L), L = 1, 2 denote associ-
ation with either of the two bodies. The system under consider-
ation is described in terms of material frame. The current
Cartesian component of a point are x = (x1, x2) (Fig. 4). The bound-
ary C(L) of each solid is the union of three non-overlapping subre-
gions CðLÞ ¼ CðLÞu [ CðLÞg [ CðLÞc . The displacement field �uðLÞ ¼ ð�uðLÞ1 ; �uðLÞ2 Þ
is imposed on CðLÞu , surface traction �tðLÞ is applied on CðLÞg . The
remainder of C(L), CðLÞc is selected so that all expected nodes of con-
tact with the opposing body are included. The P(L) body is subjected
to body force f.

To observe the impenetrability condition ðCð1Þc \ Cð2Þc ¼ 0Þ, it is
convenient to consider Cð1Þc as the slave surface (restricted to node
C) and Cð2Þc as the target surface. At time t, contact node D 2 Cð2Þc is
identified, according to the closest projection of node C to Cð2Þc :

xDðxC ; tÞ ¼ min
xð2Þ2Cð2Þc

kxC � xð2Þk2:

A local coordinate system (t, n) is defined at each node of the target
contact surface Cð2Þc . By defining n = (n1, n2) as the inward unit vec-
tor normal at node D, the initial gap function g(xC) (or gap at zero
displacement) between Cð1Þc and Cð2Þc is g(xC) = g = (xD � xC)T � n. If
r denotes the Cauchy stress at node C, then rN(xC) = rij(xC)ninj,
1 6 i, j 6 2 and rT(xC) = r(xC) � n � rN(xC)n denotes its normal and
tangential contact stresses.

For linear elasticity, the general Signorini problem with Cou-
lomb friction consists in finding the displacement fields
u(L) = (u1, u2) satisfying the system of equalities and inequalities:

rij ¼ EðLÞijkl

@uk

@xl
¼ EðLÞijklu

ðLÞ
k;l in PðLÞ ð1Þ

rðLÞij ðu
ðLÞÞ;j þ fi ¼ q€uðLÞi in PðLÞ ð2Þ

rijðuðLÞÞnðLÞj ¼ �tðLÞi on CðLÞg ð3Þ

uðLÞi ¼ �uðLÞi on CðLÞu ð4Þ
rNðxCÞ ¼ 0 and rTðxCÞ ¼ 0 if uN < g on Cð1Þc ð5Þ
If uN ¼ g then rNðxCÞ < 0 and if ; in addition ð6Þ
krTðxCÞk < ljrNðxCÞj then _uT ¼ 0 ðStickÞwhile
ifkrTðxCÞk ¼ ljrNðxCÞj then 9f > 0 such that _uT ¼ �frTðxCÞ ðSlipÞ
4

where EðLÞijkl are the components of Hooke’s tensor, q represents the
density, the double dot stands for the second partial derivative rel-
ative to time, uN(xC) = uN = (u(1)(xC) � u(2)(xD))T � n is the rate of
interpenetration of the two bodies [22], _uT ¼ @ðuð1ÞðxC Þ�uð2ÞðxDÞ�uNðxC ÞnÞ

@t

represents the relative tangential velocity through Cc and l is the
Coulomb friction coefficient. Eqs. (1)–(5) respectively designate
the constitutive relation, the linear momentum balance, the Neu-
mann and Dirichlet conditions and non-contact. Eq. (6) asserts that
if contact is made, then no sliding of node C occurs if the magnitude
of ||rT(xC)|| is below a critical value, and when ||rT(xC)|| reaches this
critical level, a tangential slip occurs in a direction opposite to
rT(xC).

For this model the discrete formulation with Lagrange multipli-
ers is used. Spatial discretization is performed with the finite ele-
ments methods. The elements considered are Euler–Bernoulli
beam elements (shearing neglected) in bending and traction–com-
pression (3� of freedom per node). Linear hypotheses of small rota-
tions and small deformations are used. The contact between the
two beams is a node-on-segment contact condition [23].

The finite element solution of the governing continuum
mechanics equations is obtained by using the discretization proce-
dures for the principle of virtual work and by discretizing the con-
tact conditions at node C [24], yielding:

M€Uþ C _Uþ KUþ GTk ¼ F
GU 6 0

(
ð7Þ

where M, C, and K are respectively symmetric and positive definite
matrices of mass, Rayleigh’s proportional damping (C = d1M + d2K)
and stiffness of the system. U; _U; €U are respectively the vectors of
nodal displacements, nodal velocities and nodal accelerations. F is
the vector of nodal external forces.

k ¼ ½kNkT �T contains respectively normal and tangential forces at
contact point C. GT ¼ ½GT

NGT
T � is the global matrix of the displace-

ment conditions ensuring non-penetration and the contact law of
the bodies in contact (see Appendix A). GN and GT have order
1 � Ndof, where Ndof is the number of degrees of freedom.

The characteristics of the modelled system and operating condi-
tions are given in Tables 2 and 3. For the results presented, the con-
tact between the two beams occurs at a point of beam P(2) situated
at 80 mm from the clamp (Fig. 4).

3.3. Dynamics of the system (V = 0 mm/s)

Before beginning the numerical study of friction-induced vibra-
tions, the authors first verified that the dynamics of the system at



rest (V = 0 mm/s) was modelled correctly. Experimental modes and
natural frequencies of the system (with the two beams stuck by
glue at contact) were determined in order to compare them to
those calculated numerically. The experimental natural frequen-
cies were determined by applying white noise to the system and
then the experimental modes were obtained by measuring the
vibratory amplitudes and phases of different points of the system
subjected to sinusoidal excitation at experimental natural frequen-
cies. These modes were then compared to numerical modes ob-
tained by a classical search for the eigenmodes of two beams
stuck at their contact. All the modes in the frequency range inves-
tigated (f < 10 kHz) obtained experimentally were identified. The
concentrated mass in the numerical model was adjusted to ensure
the correspondence between the numerical and experimental first
natural frequencies equal to 16 Hz. The experimental and numeri-
cal frequencies are given in Table 4. The error on the frequencies
does not exceed 4%, thus validating the dynamic modelling of the
experimental system presented in Fig. 1.

3.4. Complex eigenvalue analysis

In this analysis we focussed on the study of flutter instability of
the steady sliding state. The gyroscopic contributions due to trans-
port motion [25] are supposed to have no significant influence.
This assumption is post hoc justified by the good correspondence
between simulation and experiment. For recent work on the topic,
please refer to [26].

3.4.1. Flutter instability of the steady sliding state
The following discussion focuses on the linear stability of the

steady sliding equilibrium.
The first step is the determination of the steady sliding equilib-

rium. For this case of frictional contact problem, at steady sliding
equilibrium ð€U ¼ _U ¼ 0Þ the slave node C of P(1) is in sliding state
(g(xC) = 0). The contact tangential force is known:
kT t ¼ lkNtðkN 6 0Þ. Thus the system (7) becomes:

KUe þ GT
NkN ¼ f � lkNtGT

T

GNUe ¼ 0

(
ð8Þ

where Ue is the vector of nodal displacement of the system at stea-
dy sliding equilibrium.

Once the steady sliding equilibrium is determined, attention is
given to the possible existence of a dynamic solution in the neigh-
bourhood of this equilibrium state. A perturbed dynamic solution
is considered in the neighbourhood of this steady sliding equilib-
rium, such that the contact point remains in sliding state. From
the expressions U ¼ Ue þ bU and kN ¼ ke

N þ k̂, the dynamic problem
may be written:

M €bU þ C _bU þ K €bU þ GT
N k̂N ¼ �l _ut

k _utkGT
T k̂N

GN
bU ¼ 0

8<: ð9Þ
Table 4
Numerical and experimental natural frequencies and relative error.

Numerical
frequencies (Hz)

Experimental
frequencies (Hz)

Relative error on the
frequency value (%)

16 16 0
362 374 3.2
1665 1620 2.8
2060 2080 0.9
2924 2930 0.1
5035 4875 3.3
6624 6600 0.4
8030 7690 4

5

where ^ denotes the perturbed state from the steady sliding equi-
librium. We assumed that the motion of node C remains planar
(2D). In this case, contact with friction does not induce supplemen-
tary terms in damping matrix [26,27] and the contact conditions
kT ¼ l _ut

k _utkGT
TkN give, after linearization k̂T ¼ ltGT

T k̂N . It is then possi-
ble to express k̂T as a function of €bU and bU:

M�lMf 0
0 0

� � €bU
€̂kN

" #
þ

C 0
0 0

� � _bU
_̂kN

" #
þ K�lKf GT

N

GN 0

" # bU
k̂N

" #
¼

0
0

� �
ð10Þ

with Mf and Kf being matrices containing the supplementary terms
due to tangential contact force. The expressions of these supple-
mentary terms are detailed in [19,27].

The equations that govern the smooth dynamic evolution of the
system are:

~M€UTOT þ ~C _UTOT þ ~KUTOT ¼ 0 ð11Þ

where ~M and ~K are non-symmetric matrices and UTOT ¼
bU
k̂N

� �
. The

definiteness of ~M and ~K depends on the value of l and h. Conse-
quences on stability have been discussed in [28].

The linear analysis of the dynamic stability of the system (11)
leads classically to the generalized eigenproblem:

fu2 ~Mþu~Cþ ~Kgw ¼ 0: ð12Þ

The lack of symmetry leads to complex modes and complex
eigenvalues. The complex and conjugate pairs of eigenvalues ui

can be written as ui = �gixi + jxi, where xi is the ith angular fre-
quency of the system. The existence of a non-trivial eigenvector
for several ui with a strictly positive real part (gi < 0) implies the
instability of the steady sliding equilibrium: a divergence instabil-
ity if xi = 0 (non-oscillatory) and a flutter instability if xi – 0
(oscillatory) [19]. The generalized eigenvalue problem (12) is
solved by using the double QZ algorithm [29].

Attention is given here to flutter instability. It can be noted
that a negative gi corresponds to negative equivalent damping
coefficient.

3.4.2. Complex eigenvalue analysis (CEA) of the system
Fig. 5 shows the CEA of the system as a function of the friction

coefficient. In the frequency domain considered (<10 kHz) and for
Fig. 5. Complex eigenvalue analysis of the system studied: evolution of the
frequency of the 10 first modes of the system coupled by friction as a function of
Coulomb coefficient of friction l (F = 9 N, h = 5�). (blue) unstable frequencies. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)



Coulomb friction coefficient l between 0 and 0.5, three mode
coalescences (400 Hz, 2800 Hz, and 7700 Hz) are observed at dif-
ferent critical friction coefficients: l400 Hz

c ¼ 0:16; l2800 Hz
c ¼ 0:12

and l7700 Hz
c ¼ 0:23.

The CEA predicts two eigenvalues with gi < 0 at l = 0.2. The cor-
responding frequencies are 400 Hz and 2800 Hz. This second fre-
quency (2800 Hz) corresponds to the experimental fundamental
frequency of vibration (2700 Hz Fig. 3). This confirms that the ob-
served vibrations of the system come from a flutter instability phe-
nomenon predicted by this linear analysis.

In the case presented here the damping taken into account has a
weak influence and the results with damping are very close to the
results obtained without damping. Studies on effect of damping on
flutter instability are presented in [30,31]. Fig. 6a shows the 5th
and the 6th eigenvalues in the complex plane. For a friction coeffi-
cient l equal to zero both are far from the other (x5 = 2500 Hz and
x6 = 3100 Hz). By increasing friction coefficient l eigenvalues 5
and 6 move parallel to the imaginary axis until the lock-in
(l = 0.12) [32], the limit point of stability, where x5 �x6 �
2800 Hz. As the friction coefficient l still increases, one eigenvalue
crosses the imaginary axis and becomes unstable (g6 < 0) and the
other eigenvalue moves to the increasing but positive apparent
damping coefficient g5 (stable eigenvalue). Fig. 6b represents the
unstable mode at the lock-in point. The deformed shape of this
mode exhibits considerable coupling between tangential and nor-
mal vibrations at the contact, which is known to be an important
parameter of friction-induced instability [20].

This linear analysis provides an approach, which can explain the
experimentally observed vibration phenomena as flutter instability
of the system due to the contact. It corresponds to a phenomenon
of lock-in [20] of two structure assembly modes.

Indeed the experimental results showed complex vibrating
behaviour as a function of imposed velocity V. To study the vibra-
tions and the contact dynamics of the system during unstable
behaviours and to complete linear analysis, a transient dynamic
analysis that takes into account the non-linear aspects (stick, slip,
separation) of contact with friction was performed.

3.5. Dynamic transient analysis: self-excited vibrations and limit-cycle
of the system

3.5.1. Time domain scheme and equations of motion including contact
with friction

The values of displacements, velocities and accelerations at the
different nodes, as well as the values of the forces and contact node
Fig. 6. complex eigenvalue analysis: study of modal coupling between the modes 5 and
friction l. (b) Representation of unstable mode at lock-in.
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status (stick, slip, separation) are calculated through time. The fric-
tional contact node between the two deformable beams is con-
trolled by algorithms that use the Lagrange multiplier method
[24] based on the interaction between the target segments and
slave nodes. For the system under study, a slave node (node located
at point C belonging to P(1)) and target segments (on P(2)) that can
potentially be in contact with the slave node during the calculation
are defined. The elementary target segments are described by two
nodes and approximated by bicubic splines.

The forward Lagrange multiplier method is formulated by equa-
tions of motion (7) at time ðti ¼ iDtÞ with the displacement condi-
tions imposed on the slave node at time ti+1:

M€Ui þ C _Ui þ KUi þ Giþ1T
ki ¼ Fi

Giþ1Uiþ1
6 0

(
ð13Þ

The equations of motion (13) are discretized in time, by using
an explicit Newmark scheme. The vectors €Ui and _Ui are expressed
at each time step using a time scheme of type b2 (b2 e [0.5; 1]):

€Ui ¼ 2
Dt2 ðUiþ1 � Ui � Dt _UiÞ

_Ui ¼ 1
1þ2b2

f _Uiþ1 þ Dt ð1� b2Þ€Ui�1 þ 2b2
Dt ðU

iþ1 �UiÞg

8<: ð14Þ

The displacements *Ui+1 of the nodes situated on the contact
surface (P(1) and P(2)) are first computed with ki equal to 0. For sim-
plicity b2 is fixed to 0.5 and the nodal displacements at time *ti+1

are obtained so that:

�Uiþ1 ¼ Dt2M�1ðFi � KUiÞ þ 2Ui � Ui�1 ð15Þ

A constraint matrix Gi+1 is formulated for the slave node if it has
penetrated through a target segment. Calculations of contact forces
ki and nodal displacement Ui+1 at time ti+1 are then performed:

ki ¼ fDt2Giþ1M�1Giþ1T
g�1Giþ1ð�Uiþ1Þ

Uiþ1 ¼ �Uiþ1 � ðDt2M�1Giþ1T
kiÞ

8<: ð16Þ

Eq. (16) are solved using the Gauss–Seidel method. In the contact
zone, the friction law used is a Coulomb type law with regularisa-
tion of the tangential force with the velocity [33,34]. The parame-
ters of this law were chosen numerically to ensure convergence
through grid size and time step reductions and without any influ-
ence of the physical phenomena. For clarity, the equations are pre-
sented with a classical Coulomb type law expressed in Eq. (6) and
the Prakash–Clifton type law is used in computation (see Appendix
B, [33,34]).
6 (F = 9 N, h = 5�). (a) Evolution of eigenvalues 5 and 6 as a function of coefficient of



3.5.2. Time domain simulations
The parameters of the simulations presented are given in Tables

2, 3 and 5. The mesh and time step parameters were defined in or-
der to obtain convergence through grid size and time step reduc-
tions. At initial time (t = 0 s), the beams in contact are in static
equilibrium. For t > 0 s a negative velocity is applied in the x-direc-
tion at P(2). As the one experimentally measured, the desired con-
stant value V is reached after a linear ramp whose slope has no
influence on the periodic steady state vibrations.
Table 5
Numerical parameters of the time simulations.

Time step (Dt) 2 � 10�8 s
Numerical damping (b2) 0.8
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Fig. 7. (a), (c), and (e) Numerical and experimental velocities of point B in the x-directio
(d), and (f) FFT of numerical and experimental velocities of point B in the x-direction for
F = 9 N and h = 5�.)
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For l 6 0.12, the system is in steady sliding state. To draw a par-
allel with linear analysis, this state is considered as a stable config-
uration. The relative tangential velocity and force values at the
contact tend toward the imposed values. On the contrary
(l > 0.12) the system exhibits important vibrations induced by
flutter instability [15,17,21,35]. In this case the system is in an
unstable configuration and tends to a limit cycle characterized by
normal and rotational oscillations [35].
3.5.3. Simulations of the dynamics of the system in the experimental
configurations

Fig. 7 shows experimental and numerical velocities of point B in
time and in frequency for three values of imposed velocity V
(�1 mm/s, �2 mm/s, and �5 mm/s). As in experimental results
the system exhibits numerically periodic steady state vibrations
numerical

experimental
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n for translation velocities V of, respectively, �1 mm/s, �2 mm/s, and �5 mm/s. (b),
translation velocities V of, respectively, �1 mm/s, �2 mm/s and �5 mm/s. (l = 0.2,



(V = �5 mm/s) and intermittent periodic steady state vibrations
(V = �1 mm/s; V = �2 mm/s). This numerical analysis predicts the
experimental trends observed previously. In spite of certain mini-
mal differences that can be explained essentially by the fact that
certain parameters are not taken into account (the proper dynam-
ics of the experimental mechanism, the variability of the friction
coefficient, surface roughness, etc.), the numerical and experimen-
tal signals in time are close to each other.

Fig. 7 also shows the numerical and experimental FFT of the
velocity of point B in the x-direction (for the imposed velocities
of �5 mm/s, �2 mm/s and �1 mm/s). According to these figures,
both experimentally and numerically the vibrations of the system
are periodic in terms of frequency, with a fundamental frequency
of 2700 Hz (Fig. 7). The difference between the fundamental fre-
quency of experimental and non-linear vibrations (2700 Hz) and
the frequency obtained by stability analysis (2800 Hz) is due to
the contact conditions. In linear analysis the sliding contact is im-
posed (no separation and no stick), whereas experimentally or in
transient analysis the contact point of P(1) can be in stick or in sep-
arated states. From both analyses modal shapes of the system are
the same at this frequency.

The dynamic transient analysis therefore accurately predicts
the frequency of the instability and its amplitude of vibrations. This
latter analysis gives the amplitude of vibrations and the whole fre-
quency content of vibratory response. The frequencies 2070 Hz and
6050 Hz could correspond to the 4th (1800 Hz) and 7th modes
(5500 Hz) of the system (Fig. 5). These modes are predicted stable
by linear analysis and would be excited during instability due to
contact dynamics. These supplementary frequencies could also
be explained by complex combination of unstable frequencies
due to strong contact non-linearity. To have more information on
the origin of these frequencies it would be interesting to project
the nodal displacements on the complex modal basis [36]. This
point is not discussed in this paper.

Transient analysis is not only an accurate predictive model but
also a means of investigating contact dynamics during instability.

3.5.4. Analysis of numerical results
3.5.4.1. Study of periodic steady state vibrations (V = �5 mm/s). For
an imposed friction coefficient l = 0.2, Fig. 8 shows the time evolu-
tion of the normal contact force kN and the apparent friction coef-
ficient during two periods of vibration. The apparent friction
coefficient [37] expressed by:
Fig. 8. Normal contact force and apparent coefficient of friction versus time for two
periods of vibration. The contact slave node is successively in contact states of
contact stick, contact slip, contact separation and contact slip during two periods of
vibration. (Numerical time domain simulation with l = 0.2, V = �5 mm/s, F = 9 N,
and h = 5�).
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lapparent ¼
kT
kN

��� ��� if kN–0

0 if kN ¼ 0

(

gives the contact node status (stick, slip, separation) during a limit
cycle. Indeed, when the system is sliding ðjkT j ¼ ljkNjÞ, both appar-
ent and imposed coefficients of friction are equal [37]. As the sys-
tem is in sticking state ðjkT j < ljkNjÞ the apparent coefficient of
friction is less than the imposed coefficient of friction.

Fig. 9 shows relative velocity in the x-direction versus the dis-
placement in the x-direction of node C during a period of vibration
(period of Fig. 8). Both Figs. 8 and 9 show four successive states of
the slave node: a contact slip phase, a contact stick phase, a contact
slip phase and a separation phase. During the separation phase, the
normal contact force is null, since there is no contact between the
two beams. During the slip phase, the apparent friction coefficient
is equal to the imposed friction coefficient (l = 0.2) and the relative
velocity at the contact can reach 30 mm/s, whereas the imposed
velocity is �5 mm/s. During the stick phase, the apparent friction
coefficient is smaller than the imposed one. When the relative
velocity at the contact is null, it can be seen that the normal con-
tact force can reach 25 N instead of the 9 N imposed at point A.
Therefore, friction-induced vibrations involve more severe contact
conditions.
3.5.4.2. Study of intermittent periodic steady state vibrations (V =
�2 mm/s). Fig. 10 shows the contact force in the y-axis and the
tangential slip velocity along time.

This intermittent phenomenon involves two phases: the system
undergoes a phase of high level vibrations (Tvib) and a phase during
which the vibrations attenuated and vanished (TSt) (Fig. 10b). Dur-
ing Tvib, the system exhibits high-frequency vibrations at a fre-
quency of 2700 Hz and the contact node successively sticks,
slides and separates in comparison to the contact surface of P(2).
These vibrations are due to flutter instability of steady sliding equi-
librium, as in Section 3.5.4.1. The normal contact force and the rel-
ative velocity between the two beams at the contact reach
respectively 50 N (F = 9 N) and 120 mm/s (V = �2 mm/s). The con-
tact conditions are much severer than both the imposed conditions
and the contact conditions obtained in the case presented in Sec-
tion 3.5.4.1.
Fig. 9. Contact tangential relative velocity versus tangential displacement of node C
for a period of vibration. The contact slave node is successively in contact states of
(1) contact stick ( ), (2) contact slip ( ), (3) contact separation ( ), and (4)
contact slip ( ) during one period of vibration. (Numerical time domain
simulation with l = 0.2, V = �5 mm/s, F = 9 N and h = 5�.) (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)



Fig. 10. Contact force in y-axis and relative tangential velocity _uT ¼ @ðuð1Þ ðxC Þ�uð2Þ ðxD Þ�uN ðxC ÞnÞ
@t : (a) large-time scale visualisation, (b) Zoom in time-scale. (Numerical time domain

simulation with l = 0.2, V = �2 mm/s, F = 9 N, and h = 5�.)
Then during TSt is the magnitude of high-frequency vibration
decreases, whereas the slave node sticks to the surface of beam
P(2) (Fig. 10b).

As already observed experimentally the average duration of
these sticking phases (TSt) is inversely proportional to the relative
imposed velocity V between the two beams:

ðTStÞV¼�2 mm=s

ðTStÞV¼�1 mm=s
� �1 mm=s
�2 mm=s

Thus the translation velocity imposed on P(2) therefore deter-
mines the type of vibrations, changing from a intermittent periodic
steady state vibrating phenomenon (|V| < 5 mm/s) to a periodic
steady state vibration phenomenon (|V| P 5 mm/s). Likewise, time
domain simulations (not presented here) with a velocity V of
�2 mm/s and a lower friction coefficient or a lower imposed force
indicate that the system vibrated without intermittence. Reducing
the friction coefficient or imposed force F causes the time TSt that
beam P(1) sticks to beam P(2) to decrease.
T
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Fig. 11. Velocity of point B in the x-direction for h = 15� ( ) and for h = 10� ( ). (V =
figure legend, the reader is referred to the web version of this article.)
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This kind of vibration can be associated to the stick–slip phe-
nomenon [6]. Mills highlights this phenomenon for a friction coef-
ficient that decreases with relative velocity. In our configuration,
the imposed friction coefficient is constant and the vibrations cor-
respond to a limit cycle including stick–slip–separation in the con-
tact zone.

As highlighted here, the imposed velocity influenced the dy-
namic behaviour of the system during friction-induced vibrations.
The variation of the normal contact force produced changes in the
sliding friction force that in turn produces a tangential oscillation.
Depending on the velocity V, this oscillation could lead to stick for
short intervals of time. Moreover, with the increased in magnitude
of the normal oscillations, normal separations may occur.

It has been showed that complex eigenvalue and transient dy-
namic analyses (performed in parallel) could predict the level
and type of vibration frequency with accuracy and they explain
the physical phenomena involving in friction-induced vibrations
such as contact dynamics and the importance of coupling between
tangential and normal vibrations at the contact.
ime [s]

1

2

1

2

�2 mm/s, F = 9 N and l = 0.2.) (For interpretation of the references to colour in this



Table 6
Numerical results of the complex eigenvalue and dynamic transient analyses and
experimental results obtained for different values of angle h. (F = 9 N and l = 0.2). :
flutter instability frequencies for CEA and fundamental frequencies of vibrations
spectrum for experimental an dynamic transient analysis.
3.6. Influence of angle h

The tests were performed with different angles h. Fig. 11 shows
the experimental velocity of node B in the x-direction for angles h
of 10� and 15�. For an angle h of 15�, the velocity tended to a null
constant value and the system was in stable sliding state. For an
angle h of 10�, the system exhibits periodic steady state vibrations
at a frequency of 2700 Hz. The experimental results obtained for
the different angles h tested are compared to the numerical results
in Table 6. For negative angles and those greater than 12�, the sys-
tem is in stable sliding state. This results highlights that the geom-
etry of the system and particularly the contact geometry is an
important parameter for friction-induced instability. Angle h mod-
ifies the coupling between normal and tangential degrees of free-
dom and thus affects the influence of friction on instability. This
confirms the importance of coupling between tangential and nor-
mal vibrations in friction-induced vibrations (Section 3.4.2).

In our system the angle h is the determining parameter of this
coupling. This aspect of friction-induced vibrations has been high-
lighted first by Spurr [7]. For the Sprag-Slip phenomenon, the crit-
ical friction coefficient depends directly on angle h, as in the results
presented here. In our system, the critical friction coefficient also
depends on beam dimensions, the materials used and the position
of the contact point. This dependence of inclination angle has been
deeply investigated by Kang [38] in the case of a friction-induced
coupled oscillator.

4. Conclusions

This article presented a numerical and experimental study of
the friction-induced vibrations of an experimental system. Tran-
sient dynamic and complex eigenvalue analyses with a Lagrange
multiplier for imposing contact constraints were performed. Their
results were first correlated with experimental results with good
precision with respect to frequency content and vibrations in time
and then contributed to additional understanding of the physical
phenomenon involved in friction-induced vibrations.

The system studied displayed friction-induced instability phe-
nomena according to the value of the velocity of beam P(2) and an-
gle h. The friction-induced vibrations come from a phenomenon of
flutter instability. Linear analysis showed that this instability cor-
responds to coalescence between two modes whose modal ampli-
tude of displacement in the contact is significant. Their frequency
corresponds to the experimental frequency of vibration during fric-
tion-induced instability. The non-linear analysis showed that when
the system is unstable, the contact conditions (contact force and
relative velocity of sliding) can be more severe than the imposed
conditions (imposed velocity V and applied force F). This knowl-
edge of contact conditions (forces and contact state) can explain
certain experimental observations of contact surfaces. Non-linear
analysis provides the complete spectrum of vibrations (fundamen-
10
tal frequency, harmonics and other frequencies) which is impor-
tant for estimating the acoustical consequences of the vibrations
that occur under such contact conditions.
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Appendix A. Construction of matrix G

The construction of the matrix G is described in this paragraph.
First a projection of slave node C on the target segments belonging
to P(2) is proceeded to identify the target segment of P(2) likely to be
in contact with slave node C. For the sake of simplicity, a null initial
gap function (g(xC) = 0) is imposed and the target segments are not
approximated by bicubic splines (Fig. A.1.).

G is the constraint matrix coupling the slave node C and the tar-
get nodes J and K. Assuming node C remains in contact during
deformation without sliding on segment [JK] and a e [0, 1], then:

uNðxCÞ � g ¼ uN � g ¼ ðuð1ÞðxCÞ � uð2ÞðxDÞÞT � n� g ¼ 0

uTðxCÞ ¼ uT ¼ ðuð1ÞðxCÞ � uð2ÞðxDÞÞT � t ¼ 0

(

()
uð1ÞðxCÞ � n ¼ ð1� aÞuð2ÞðxJÞ � nþ auð2ÞðxKÞ � n
uð1ÞðxCÞ � t ¼ ð1� aÞuð2ÞðxJÞ � tþ auð2ÞðxKÞ � t

(
ð17Þ

where u(L)(xW) represent the displacement of node, with W belong-

ing to beam P(L).From (17) and GU ¼ GN

GT

� �
U ¼ 0, matrix G

(2 � Ndof) can be easily constructed [22,35,39]. Non-vanishing coef-
ficients of G correspond to the degrees of freedom of nodes C, J, and
K. Modification of GT with sliding is treated in [24].

Appendix B. The simplified Prakash–Cliffton law

The simplified Prakash–Cliffton [33,34] law considers a non-
null response time of the tangential force kT at a sudden change
of normal force jkNj (Fig. B.1).

The contact conditions are given by:

ki
N 6 0: contact if ki

N < 0 and separation if ki
N ¼ 0.

If ki
N < 0 : ki

T j 6 ljki
N

��� ���
� If jki

Tcj < ljki
Nj, then stick _uT ¼ 0 and at ti, ki

T ¼ ki
Tc .(
If jki
TcjP ljki

N j; then
slip : _ki

T ¼ � 1
ŝ ðk

i
T � jlki

NÞ
9c > 0 s:t: _uT ¼ �cki

T t

with j ¼
þ1 ki

Tc 	 0

�1 ki
Tc < 0

(
ð18Þ
where _uT is the tangential relative velocity of the slave nodes linked
to the target surface, n and t are the normal and tangential vectors
respectively that define the contact and l is Coulomb’s friction coef-
ficient. ŝ is the characteristic time which is strictly positive constant
of the simplified Prakash–Clifton law, _ki

T is the time derivative of the
tangential contact force at time ti. The value ki

T is obtained from the
discretization in time of Eq. (18). The tangential force reaches Cou-
lomb’s tangential force jki

T j ¼ ljki
Nj after a sliding time ŝ. ki

Tc corre-
sponds to the value of the tangential contact force calculated
considering that the contact is in stick status. Parameter ŝ has been
selected numerically to ensure convergence through grid size. A low
value of ðŝ ¼ 1� 10�7 sÞ is chosen to remain close to the hypothesis
proposed for the complex eigenvalue analysis (no regularization).



Fig. A.1. (a) Non-contact and (b) contact between P(1) and P(2).

Fig. B.1. Representation of the classical Coulomb law and the simplified Prakash–
Clifton law. The tangential force given by the classical Coulomb law ( , blue)
instantaneously responds a sudden variation of the normal force, contrary to that
given by the simplified Prakash–Clifton law ( , pink). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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