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The growth or shrinkage, normal to {001}, of the interfaces between the γ matrix and
cuboidal γ′ precipitates is examined for a Ni-base superalloy, by considering the force acting
on the interfaces. The force is produced by the precipitate coherency misfit and the stress
produced by plastic deformation in channels of the γ matrix. A simple expression, which
directly addresses the origin of the surface force, is given. The plastic deformation within the
initially active γ matrix channels exerts the force to cause rafting. The subsequent activation
of other types of channels also promotes the rafting in the same direction as the first active
channels, when the the plastic strain of the former channels increases. These issues are also
discussed in terms of analysis based on those dislocations caused by the precipitate misfit and
those produced by the plastic deformation.

Keywords: force on interface: γ-γ’ alloy: channel deformation: rafting.

1. Introduction

It is well known that Ni-base superalloys can exhibit rafting after creep deformation
whereby the γ’ precipitates, which are cuboidal before deformation, change to a
flat shape. Rafting was also reported in specimens plastically deformed at a low
temperature and subsequently annealed at a high temperature [1]. In this case
plastic deformation occurs only in the γ matrix. This suggests that it is the internal
stress produced by the matrix deformation combined to the stress field induced
by precipitate misfit strain that causes rafting. It is also recognised that plastic
deformation occurs only in selected channels in the early stage of deformation [2],
[3]. When a single crystal is uniaxially loaded along [001], three types of matrix
channels exist, namely those parallel to (001), (100) and (010). For example, when
the precipitate misfit of γ’ is negative as in most engineering γ − γ′ alloys and the
loading is tensile, only (001) channels (horizontal channels) are active plastically
in the beginning of plastic deformation [4] [5].

This observation suggests that rafting geometry should be discussed in con-
junction with channel deformation. In fact, Socrate and Parks analyzed creep
deformation by a finite element method and found channel deformation. They also
calculated a force acting the γ/γ′ interface, using an energy-momentum tensor
expression in order to examine the rafting geometry [6]. There are many other
several studies which have treated the case of rafting under uniaxial stress. The
pioneering work of Pineau [7] treated the case of an isolated spherical particle in
the frame of isotropic elasticity. This work was further extended to anisotropic
elasticity and to the case of several particles with good accuracy [8]. Diffusion
phenomean and cross diffusional creep involved in rafting have been described
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previously [9]. In the latter, the calculations involved finite element analysis.

However, in the present paper, the application of an external stress is not con-
sidered. Instead, plastic deformation resulting from the application of an external
stress is introduced in some matrix channels. This is because simple annealing un-
der no external stress after prior plastic deformation also leads to rafting [1]. This
experimental result is the starting point of the present study . Using an analytical
approach based on an inclusion method and based on energy evaluation, we have
confirmed the occurrence of channel deformation [10]. This requires the calculation
of the internal stress developed by the specific channel types deformation. From
this we can evaluate the force acting on γ/γ′ interfaces analytically. Accordingly,
the direction of the rafting geometry can also be inferred in a simple manner. The
present study is intended to show these points.

Instead of the energy momentum tensor, we will use a different expression to
calculate the force on a γ/γ′ interface. Of course the two methods are equivalent,
but the present method is easier to use and can directly address the causes of the
force, as shown later.

2. Analysis

The γ′ precipitates have the precipitate misfit (stress-free strain)

εT
ij = ε0δij . (1)

The present study examines the case of

ε0 < 0, (2)

even though the case of ε0 > 0 can be dealt with in a similar manner, as briefly
discussed later. It should be noted that the former case applies to most engineering
Ni-base superalloys.

2.1. Review of a previous analysis of stress

It is assumed that the γ′ particles are cuboidal, are nearly periodically arranged
and are quasi coherent with the γ matrix on {001}. It has been shown that when a
tensile load is applied to [001], only the matrix channels, parallel to (001), undergo
plastic deformation in the beginning of deformation [10]. This is because the in-
teraction energy for plastic deformation within (001) channels with the precipitate
misfit (2) is negative while that for plastic deformation within (100)/(010) channels
is positive, when plastic strain of elongation occurs along [001].

In Fig.1(a), γ′ particles and (001) and (100) channels are sketched out. It is
important that the width of the channels are far smaller than the size of the γ′

particles, since we are examining a situation where the volume fraction of γ′ can
be as large as 0.7, the value in typical engineering Ni-base superalloys.

When a (001) channel plastically deforms by

εP
33 = εP , εP

11 = εP
22 = −εP /2, (εP > 0) (3)
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Figure 1.: (a) Schematic arrangement of γ’ particles and γ matrix channels. (b)
Arrays of dislocations after plastic deformation in a (001) channel. An array of
surface dislocations (shown by dotted line symbols) can be used to describe the
γ/γ′ misfit, while the plastic strain in a (001) channel can be thought of additional
dislocations (shown by solid lines). These additional dislocations are produced by
εP
11.

the internal stresses in this channel are calculated as

σ∞
11 = σ∞

22 =
(C11 + 2C12)(C11 − C12)

2C11
εP , σ∞

33 = 0, inside a channel (4)

as shown before [10]. Here, the x1, x2 and x3 axes are taken along [100], [010] and
[001], respectively. Eshelby’s inclusion problem is used to calculate these stresses
with the relevant tensors of S3333 = 1 and S3311 = S3322 = C12/C11. (C11 and
C12 are the relevant components of the elastic stiffness of a cubic material.) Here,
a channel is approximated as a thin disk normal to [001]. The γ matrix and γ′

precipitates are taken to have the same elastic constants for simplicity and without
significant error. The investigations perfomed in [8] have shown that elastic misfit
cease to be important in presence of plastic deformation. Since a channel is assumed
flat, the stress corresponding to (4) vanishes outside the channel.

σ∞
ij = 0, outside a channel. (5)

When all the (001) channels are active, the plastic strain (3) also generates an
average stress throughout the whole body, including (001) channels, the γ′ particles
and (100) and (010) matrix channels. This average stress is calculated as

〈σij〉 = −F3σ
∞
ij , (6)

using the mean field method [12],[13]. Here, F3 is the volume fraction of the (001)
channels. When the volume fraction of the γ′ phase is 0.7 as proposed above, F3

is 0.11 [10]. Thus, the stress σ∞
ij due to a channel adjacent to a γ′ particle is

dominant over the average stress 〈σij〉. Moreover, the average stress exerts the
same force equally on all the {001} γ/γ′ interfaces of a γ′ particle. This is partly
due to the isotropic character of the precipitate misfit, (1). As seen later, the force
is determined by the stress and the precipitate misfit. Thus, when the force on
the γ/γ′ interfaces is calculated to assess the direction of rafting, the effect of the
average stress can be safely neglected.
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2.2. Force on γ/γ′ interfaces due to plastic deformation in one type of
matrix channels

The standard formula to calculate a force on an interface is to use Eshelby’s energy-
momentum tensor

f = [σijεij ]/2 − σij [ui,j]. (7)

Although this form is different from that used by Socrate and Parks, the two
expressions are equivalent [14]. Equation (7) is the form used by Su and Voorhees
[15]; however, the expression given in [15] contained a typographical error which
is corrected in the above. This force, per unit area, is normal to the interface
and direct outwards to the outside of a precipitate. Here, σij is the stress, εij the
elastic strain and ui,j = ∂ui/∂xj is the total distortion. The square brackets mean
the difference between the value just outside an interface and that just inside the
interface. For example,

[ui,j ] = ui,j(out) − ui,j(in). (8)

In the present study, instead, we will use the expression

f =
σij(out) + σij(in)

2
εT
ij . (9)

This equation is obtained by considering the virtual movement of an interface in the
forward and backward directions. The forces defined by these virtual movements
are averaged to give the above expression. The reason for the use of (9) is as follows:
(i) Equation (9) gives the causes of the force directly: σij is the action to cause
the force on the boundary of a domain which is characterized by εT

ij . Together,
these two factors indicate why the force exists. (ii)Equation (9) is similar to the
Peach-Koehler force for a dislocation segment. The Peach-Koehler force contains
the stress, the Burgers vector and tangential vector of the segment. (iii) If we are
only concerned about the force due to the channel deformation, it is sufficient to use
the stress of this origin in (9). The equivalency between (7) and (9) is demonstrated
in the Appendix.

Equation (9) is confidently applied with the condition that a γ/γ′ interface is
sharp. The analysis for the stress due to plastic deformation assumes that a de-
formed channel contacts an interface. Force is also evaluated by assuming the ex-
istence of a sharp interface, as seen later. Fig.2 provides support for this condition
for all practical purposes. Fig.2 is a reconstructed high resolution (HREM) image
of a Ni superalloy, containing a γ/γ′ interface. With this condition, the γ′ particles
are quasi coherent with the γ matrix and cuboidal. The γ′ phase can be distin-
guished by the characteristic contrast arising from the chemical difference of the
(200) planes in the L12 unit cell. The disordered γ phase lacks such a contrast vari-
ation. A γ/γ′ interface is clearly seen in Fig.2. The contrast between the two phases
changes sharply across the interface, indicating that the interface is sharp. Using
the algorithm in TrueImage (REI) [16], and several images taken under different
microscope settings, the true positions of the atomic columns can be obtained from
the so called exit wave reconstruction procedure. This makes possible an accurate
measurement of the lattice spacings both perpendicular and parallel to the inter-
face in Fig.2. When the spacings of the lattice planes parallel to the interface was
measured across the interface, it was found that the spacing changed from the
γ′ to the γ phase within two unit cells [17]. The image in Fig.2 and this spacing
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Figure 2.: A high resolution reconstructed electron microscopy image of a Ni-
12at%Al alloy containing a γ/γ′ interface

measurement are believed to be convincing evidence for the sharpness of the γ/γ′

interface.

2.3. Force to initiate rafting due to plastic deformation in a (001) channel

Only the difference in the force between the (001) and (100)/(010) interfaces plays
a role in the rafting, as mentioned before. Thus, the average stress (6) can be
omitted in discussing the onset of the rafting. Only (4) and (5) are required to
calculate the force on a (001) γ/γ′ interface. Using (9), (4) and (5), the force on a
(001) interface of a γ′ particle adjacent to a plastically deformed (001) channel is
calculated as

f(001) =
(C11 + 2C12)(C11 − C12)

2C11
εP ε0. (10)

Since

C11 > 0, C11 + 2C12 > 0, C11 − C12 > 0, (11)

for a thermodynamical reason [18] and

εP ε0 < 0 (12)

under the present condition,

f(001) < 0. (13)

This means that an originally cuboidal γ′ particle tends to becomes thinner along
[001], so that its eventual shape becomes flat parallel to (001). This is the correct
rafting geometry observed [19].
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2.4. Role and effect of (100) or (010) channel deformation after initial
straining in (001) channels

After some straining in the (001) channels, (100)/(010) channels also start to de-
form plastically. This is because the internal stress of (6) with (4) promotes the
lateral contraction of plastic strain in these channels. In other words, the inter-
action energy between (6) and the plastic strain in the (100)/(010) channels, the
elongation of which occurs along [001], is negative.

The quantitative argument for this is as follows: After the strain of εP in the
(001) channels, the elastic energy, per unit volume, is given as

E(001) = ES(001) + EI(001). (14)

Here, ES(001) is the elastic self-energy due solely to the plastic strain in the (001)
channels and EI(001) is the interaction energy between this plastic strain and the
precipitate misfit. Using a standard method, these are calculated as [10]

ES(001) = −(1/2)F3(1−F3)σ
∞
ij εP

ij = F3(1−F3)
(C11 + 2C12)(C11 − C12)

4C11
ε2
P (15)

and

EI(001) = −f(−F3σ
∞
ij )εT

ij = fF3
(C11 + 2C12)(C11 − C12)

C11
ε0εP , (16)

where f is the volume fraction of the γ′ particles.
Suppose that the (100) and (010) channels start to deform plastically after the

above deformation. The plastic strain in the (100) channels is assumed to be

εP ′

33 = ε′P , εP ′

11 = −(1/2 − α)ε′P , εP ′

22 = −(1/2 + α)ε′P , (ε′P > 0) (17)

Here, the parameter α is introduced to account for a large difference between the
dimension along the [100] direction and that along the [010] direction of a (100)
channel. However, this parameter must observe the condition

−1/2 ≤ α ≤ 1/2. (18)

The stress due to (17) in a (100) channel is calculated as[10]

σ∞′

11 = 0, σ∞′

22 =
C11 − C12

C11
{(C11 + C12)(1/2 + α) − C12}ε

′
P ,

σ∞′

33 = −
C11 − C12

C11
{−C12(1/2 + α) + C11 + C12}ε

′
P . (19)

Of course the corresponding stress outside one channel vanishes. The average
stresses due to all the (100) channels are calculated similarly to (6), by replacing
F3 with the volume fraction of the (100) channels, F1(= F3).

The (010) channels also deform plastically with the plastic strain of

εP ′′

33 = ε′P , εP ′′

11 = −(1/2 + α)ε′P , εP ′′

22 = −(1/2 − α)ε′P , (ε′P > 0) (20)
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from symmetry to (17). This strain results in the stress in one (010) channel being

σ∞′′

22 = 0, σ∞′′

11 =
C11 − C12

C11
{(C11 + C12)(1/2 + α) − C12}ε

′
P ,

σ∞′′

33 = −
C11 − C12

C11
{−C12(1/2 + α) + C11 + C12}ε

′
P . (21)

The average stresses as due to the (010) channels are similarly written to the case
of the (100) channels, using the volume fraction of these channels F2(= F3 = F1).

The elastic energy change due to the deformation of the (100) and (010) channels
are

E(100/010) = ES(100/010) + EI(100/010) + EP
I (001/100/010), (22)

where ES(100/010) is the elastic self-energy due solely to the plastic deformation in
the (100)/(010) channels, EI(100/010) is the interaction energy between the plastic
strain in the (100)/(010) channels and the precipitate misfit and EP

I (001/100/010)
is the interaction energy between all the channels. The first term, ES(100/010) is
quadratic with respect to ε′P

ES(100/010) = Bε′2P , (23)

where B is written in terms of F1, F2, C11, C12 and α. Similar to EI(001), (16), the
second and third terms in (22) are written as

EI(100/010) = −f(−F1σ
∞′

ij − F2σ
∞′′

ij )εT
ij

= 2fF1
(C11 + 2C12)(C11 − C12)

C11
(α −

1

2
)ε0ε

′
P (24)

and

EP
I (001/100/010) = −F1(−F3σ

∞
ij εP ′

ij − F3σ
∞
ij εP ′′

ij )

= −F3F1
(C11 + 2C12)(C11 − C12)

C11
εP ε′P . (25)

Since α ≤ 1/2 and ε0 < 0, (24) is positive and thus the (100)/(010) channels do
not plastically deform initially (i.e. when εP is small). However, (25) is negative
and its magnitude exceeds (24) when εP becomes large. That is, the prior activity
of the (001) channels promotes the occurrence of the plastic deformation in the
(100)/(010) channels.

We can determine the plastic strain, εP , above which the (100)/(010) channels
also participate in plastic deformation [11]. Instead, we just evaluate the force due
to the plastic strains in the (100)/(010) channels in the following manner.

Using (9) and (19), the force due to a (100) channel deformation on a (100)
interface is written as

f(100) =
(C11 + 2C12)(C11 − C12)

2C11
(α −

1

2
)ε′P ε0. (26)

The parameter α can be qualitatively estimated below. When ε′P is small,
ES(100/010) can be ignored compared to EI(100/010). EP

I (001/100/010) does

Page 7 of 16

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

8

not depend on α. Thus, the smallest increase in elastic energy, (22), due solely to
the plastic strains in the (100)/(010) channels is attained when

α =
1

2
. (27)

Accordingly, when the plastic strain ε′P in the (100)/(010) channels is small

f(100) = 0, (28)

so that there is no effect of the (100)/(010) channel deformation on the force,
f(100), on a (100) interface. By examining (19), (28) is found to be due to the fact
that the force caused by σ∞′

33 and that caused by σ∞′

22 cancel out. There is a simple
reason for α = 1/2 and the cancelling result in f(100) = 0, as shown later in the
Discussion. We can give the identical result for the force on (010), f(010), using
the stress σ∞′′

ij .
It should be noted, however, that as the deformation progresses in the (100)/(010)

channels, the elastic energy term of ES(100/010) increases. In this case α decreases
so that the sum of ES(100/010) and EI(100/010) is minimized [10]. When this
occurs, f(100), for example, becomes positive. That is, in this stage, the (100)/(010)
channel deformation promotes the shape change of the γ′ particles in the same
direction of rafting as was produced by the original (001) channel deformation. In
other words, it accentuates the observed rafting.

2.5. Cases of ε0 > 0 or compression loading along [001]

As seen above, the interaction energy determines whether (001) or (100)/(001)
channels operate first when uniaxial loading is applied to [001]. The interaction
energy is proportional to ε0 × the plastic strain (elongation or compression). De-
pending on the sign of this product, we can easily determine the first acting chan-
nels. Also, the force on a particular interface is proportional to this factor. In this
way, we can easily determine the rafting geometry without conducting detailed
calculations.

We can also see the effect of the factor α easily. In the very beginning of the
(100)/(010) channel deformation, EI(100/010) is more dominant over ES(100/010).
Whether the (001) or (100)/(010) channels operate first, EP

I (001/100/010) does not
depend on α. EI(100/010) is also proportional to the above factor. The proportional
constant depends on α. Thus, we chose α which makes EI(100/010) smallest in
the range of (18). It is noted that EI(100/010) has the same form as (24) for any
combination of the precipitate misfit and plastic strain. Thus, when ε0ε

′
P > 0, we

choose α = −1/2 to examine the case at the very beginning of the (100)/(010)
channel deformation.

3. Discussion

The result of the present study agrees, in terms of force on a γ/γ′ interface, with
that given by Socrate and Parks in an overall sense [6]. However, some differences
should be recognized between the two studies. While Socrate and Parks predict
the force numerically using finite elements, the present study gives the analytical
expression of a force on an interface. It is believed that this analytical expression is
more easily grasped and exploited. In addition, the present study has also examined
the roles of (100)/(010) channels which becomes active after the prior activity of
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(001) channels. Our study is, in a sense, more realistic since our anaysis is for 3D
deformation, while Socrate and Parks employed 2D analysis.

The FEM calculation employs a mesh producing procedure to describe a plastic
channel. Thus, one might think that a FEM analysis is more detailed than the
present study which assumes uniform plastic deformation in the channel. However,
we have to recognize that an elementary process of plastic deformation in a channel
is a dislocation movement. This movement leaves the trail of the dislocation on the
γ/γ′ interface. Its moving segment is curved. The radius of the curvature determines
the stress to move it. This radius is half the width of the channel width in a
simplified model. Once a stress exceeds a critical value determined by the width,
the plastic deformation can occur throughout the channel. Thus, as long as an
external stress is sufficiently large, we can envisage that a channel can deform
relatively uniformly. Even if this argument is too strong, one must accept that the
plastic strain is uniform along the width of a channel. Moreover, the present study
offers the basic idea, with which the force on a γ/γ′ can be examined under any
combination of tensile or compressive loading and sign of the precipitate misfit
without complex and time consuming recalculation. This is an advantage over a
numerical method.

Figure 3.: (a) Arrays C and D of dislocations (solid lines) are introduced by plastic
deformation of εP ′

33 in a (100) channel following prior plastic deformation in a (001)
channel (shown in Fig.1(b)). (b) The top view along [001] of the (100) channel.
Arrays E and F of solid dislocations are due to εP ′

22 .

The force on a γ/γ′ interface and the selection of plastic channels can be read-
ily viualized when we take a dislocation view. The precipitate misfit induces the
continuously distributed (surface) virtual dislocations on γ′/γ interfaces [21], as
schematically shown by the dotted lines in Fig.1(b). On interface A, there are two
types of these surface dislocations. One is due to εT

11 and the other due to εT
22. Each

type of dislocations results from the recombination at the interface of a/2¡110¿ glid-
ing dislocations. The total Burgers vector of these dislocations, per unit area, are
given as

B1 = (ε0, 0, 0) for dislocations parallel to [010],

B2 = (0, ε0, 0) for dislocations parallel to [100]. (29)

These are of edge type. The dotted lines for A in Fig.1(b) is for B1.
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The plastic deformation (3) in a (001) channel leaves dislocations shown schemat-
ically by the solid lines in Fig.1(b). These dislocations are due to the component of
εP
11. Even though the actual plastic deformation of this multiple slip (3) occurs by

the movement of glide dislocations having many types of the Burgers vectors, the
resultant product of these dislocations on a γ/γ′ interface can be simplified as de-
picted in Fig.1(b). Using the Peach-Koehler expression of a force on a dislocation,
the force on the surface dislocations A can be calculated as

fdisl =
(C11 + 2C12)(C11 − C12)

2C11
ε0εP , (30)

which directs along [001]. This agrees with f(001), (10). Here, (4) and (5) are used
to calculate the principal values of the stresses. The stresses due to (3) jump across
interface A. In such a case, the stresses to be used for the Peach-Koehler expression
are the principal value, as shown by Brown [22] and used to examine thermal stress
relief from a second phase particle [23].

Fig.1(b) also shows why the plastic strain (3) in a (001) channel occurs first
when ε0 < 0. The dislocations generated by this strain cancel out the stress due
to the dislocations representing the precipitate misfit. The Burgers vectors of the
two types of dislocations, solid lines and dotted lines, on a (001) interface have
opposite signs.

It is also noted that the force on the virtual dislocations (dotted lines) on interface
A is not caused by those dislocations (solid lines) on the same interface. This is
because the principal values of the stress of the glide (latter) dislocations vanish
on the interface. There is another way to see this point. Let interface A in Fig.1(b)
move downwards virtually. Since the Burgers vectors of the dotted line and solid
line dislocations have different signs, the solid line dislocations exert an attractive
force on the dotted line dislocations on the displaced γ/γ′ interface. This force
tends to restore the interface into its original position. The same result is obtained
when the interface virtually moves upwards. In brief, the solid line dislocations
exert no net force on the dotted line dislocations on the same interface A. On the
contrary, the solid line dislocations on interface B have the same sign in the Burgers
vector as the dotted line dislocations on interface A. Thus the force between these
two arrays of dislocations is always repulsive. In this way we can understand that
the force for the movement of interface A is caused by the dislocations (solid lines)
on interface B.

As discussed in 2.4, the plastic deformation also occurs, for example, in a (100)
channel after some strain in the (001) channels. The (100) channel strain εP ′

33

leaves dislocations on the (100) interfaces as shown by the solid line dislocations in
Fig.3(a), where the dislocations due to prior plastic deformation in a (001) channel
are also shown. These are the same as those shown in Fig.1(b). The solid disloca-
tions in array C have a Burgers vector of the same sign as the virtual dislocations
due to the precipitate misfit (dotted line). Thus, the virtual dislocations repre-
senting the γ/γ′ misfit repel those due to plastic deformation. This is the basic
reason why (100)/(010) channels are not active in the beginning. To activate these
channels, the internal stress due to the plastic deformation in (001) channels must
increase.

When a (100) channel is viewed from top along [001], we can draw Fig.3(b). The
solid dislocations due to plastic deformation are caused by εP ′

22 . As seen in Fig.3(b),
the stress field of the solid dislocations cancel that due to the dotted dislocations.
This effect is most effective when the magnitude of εP ′

22 is largest, equal to −εP ′

33 .
This is the case of α = 1/2 as analytically found in 2.4. See (17).
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Fig.3(a) also shows that the (100) force due to the solid dislocations in array C
and D is positive, while that due to the solid dislocations in arrays E and F in
Fig.3(b) is negative when α = 1/2, these forces cancel out exactly. This is why
f(100) = 0 in the beginning of the operation of the (100) channels (the case of
α = 1/2).

Lastly, we will discuss what occurs after the inward movement of (001) interfaces,
the movement which leads to rafting. To simplify the discussion, we consider the
case that only the (001) channels operate. When the (001) interfaces move inwards,
the lattice glide dislocations follow this movement and the width (volume fraction)
of the (001) channels increases, as long as εP is below a certain magnitude. An
energy decrease occurs in this process. Suppose that the volume fraction of the
(001) channels increases by δF3. This causes the energy change δES(001) given by

δES(001) =
(C11 + 2C12)(C11 − C12)

4C11
{(1 − 2F3)εP + 4fε0}εP δF3. (31)

Here, (14), (15) and (16) are used. If

(1 − 2F3)εP < −4fε0, (32)

δE(001) is negative for an increase (δF3) in F3. That is, the expansion of the (001)
channel width occurs. The above certain value of εP is

εP = −
4f

1 − 2F3
ε0. (33)

As this process occurs, F3 increases and eventually reaches the maximum value of
1 − f . When f = 0.7, the above strain is −7ε0. In the above, we ignored a change
in the elastic energy attributed solely to the precipitate misfit. When the volume
fraction of the (001) channels becomes maximum (0.3), the γ′ precipitates take a
flat shape parallel to (001). As shown before [10], this shape of the γ′ precipitates
makes the elastic energy due to the precipitate misfit lowest. Thus, the discussion
for a change due to the volume increase of the (001) channels still holds.

The inward movement of the (001) interfaces is due to the diffusion of the con-
stituent atoms , which can generate additional plastic deformation associated with
cross diffusion[9]. The expansion of the plastic channels is due to the movement of
lattice glide dislocations. This movement does not require diffusion. It can occur by
glide motion, as in the case of the formation of the arrays of the solid dislocations
in Figs.1 and 3 due to original plastic deformation.In the present analysis, the con-
tribution of diffusional processes is ignored, as our aim is to show the force to start
rafting. If this contribution is accounted for, numerical calculations is involved. We
avoided this approach.

4. Summary

The start of rafting of γ′ particles, as would occur at elevated temperature after
room temperature plastic straining along [001], is due to internal stress caused by
matrix plastic deformation. First, a simple expression for the surface force acting
on a precipitate/matrix interface due to the precipitate misfit and the stress on
the interface is presented. The type of γ matrix channels which undergo plastic
deformation is determined by the sign of the precipitate misfit, from which the
internal stress can be calculated. Using this stress, the force on a γ/γ′ interface is
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expressed analytically and is found to change the shape of a γ′ particle as described
by rafting. The role of the subsequent activity of other types of channels after the
deformation in the first type of channels is also evaluated. It is shown that the
activity of the secondary channels either has no effect on the interface force for
rafting or promotes the rafting. The surface force is generalised for any combination
of the precipitate misfit and mode of loading to induce plastic deformation. The
selection of active plastic deformation channels and the origin of the interface
force are visualized by a dislocation analysis for the precipitate misfit and plastic
deformation.
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Appendix

Here, the general case that the eigenstrain ε∗ij exists only inside a domain V is
discussed. The equivalency between

f = (1/2)(σij(out)εij(out) − σij(in)εij(in)) − σij(ui,j(out) − ui,j(in)) (34)

and

f =
σij(out) + σij(in)

2
ε∗ij (35)

is shown. Since σij in (34) can be either σij(out) or σij(in), the second term in (34)
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is rewritten as

−σij(ui,j(out) − ui,j(in)) = −(1/2)(σij(out) + σij(in))(ui,j(out) − ui,j(in)). (36)

Noting that σij(ui,j + uj,i)/2 = σijui,j and

(ui,j(in) + uj,i(in))/2 = εij(in) + ε∗ij , (37)

(36) is changed to

−σij(ui,j(out) − ui,j(in)) = −(1/2)(σij(out)εij(out) − σij(in)εij(in))

+(1/2)σij(out)εij(in) − (1/2)σij(in)εij(out)

+(1/2)(σij(in) + σij(out))ε∗ij . (38)

Inserting this into (34), we have

f = (1/2)σij(out)εij(in)− (1/2)σij(in)εij(out) + (1/2)(σij(in)+ σij(out))ε∗ij . (39)

Since

σij(out)εij(in) = σij(in)εij(out), (40)

the first two terms in (39) cancel. Thus, we have

f = (1/2)(σij(in) + σij(out))ε∗ij , (41)

which is identical to (35).
It is noted that (σij(in))+ σij(out)))/2 is the principal value of the stress which,

in general, jumps across the interface of V . In the present analysis, the stress used
to calculate the force on a γ/γ′interface is that due to plastic deformation occurring
only in the gamma matrix. Due to the plastic deformation geometry considered,
this stress is discontinuous across the interface. That is, σij(in) is not equal to
σij(out).Thus, the average of these terms is crucial to evaluate the force on the
interface. It is recalled that for a curved dislocation segment a similar averaged
value of stresses is used [22] when the Peach-Koehler force due to the self stress is
calculated. The self-stress of a curved dislocation is also discontinuous across the
core of the segment.
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(a) Schematic  
  arrangement of γ' particles and  

  γ matrix  channels. (b)  
  Arrays of  dislocations after 

  plastic deformation in a (001) channel.  
  An array of surface dislocations (shown by  

 dotted line symbols) can be used to describe  
 the γ/γ' misfit, while the plastic 

  strain in a (001) channel can be thought 
 of additional dislocations (shown  

  by solid lines).  
  These additional dislocations 

  are produced by εP
11  
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A high resolution reconstructed electron microscopy 
image of a Ni-12at%Al alloy containing a γ/γ' interface  
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(a) Arrays C and D of dislocations  (solid lines)  
    are introduced by plastic deformation of εP'

33 
    in a (100) channel following prior plastic deformation in a 

    (001) channel (shown in Fig.1(b)).  

    (b) The top view along [001] of the (100) channel. Arrays E and F of 
    solid dislocations are due to εP'
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