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Modeling and kinetic Monte Carlo simulations of the metallographic etching process of second phase particles

Introduction

The macroscopic physical properties of two-and multiphase materials are governed by two groups of parameters: (a) intrinsic properties of the constituent phases, e.g. crystal structure, electronic band structure, some dislocation parameters, saturation magnetization and (b) geometric parameters: size, shape, and spatial arrangement of the particles of the secondary phases. The latter dependence (b) is most striking in the two following examples [START_REF] Nembach | Particle strengthening of metals and alloys[END_REF]:

(i)
As the average size of nano-scale coherent ductile particles in particle strengthened materials increases during ageing while the total volume fraction of the particles stays constant, the yield strength first increases with ageing time, then passes through a maximum, and finally decreases. This sequence of states is referred to as the under-, peak-, and over-aged ones, respectively.

(ii)

The coercive force of ferromagnetic materials shows a similar dependence on the size of nano-scale coherent non-magnetic particles; there is, however, no over-aged state.

It is standard practice in metallography to derive the quoted geometric parameters of second phase particles from microscopic studies of the surface of the material. Generally some etching procedure is necessary to obtain satisfactory contrast. This holds with few exceptions for optical as well as for atomic force microscopy ( AFM ) [START_REF] Wosik | [END_REF][3][4]; also in scanning electron microscopy ( SEM ) [3,4] etching is helpful. Three of the few cases for which no etching is needed, are: optical interference microscopy [START_REF] Telle | Materials science and technology[END_REF], some rare cases of AFM [START_REF] Wosik | [END_REF], and magnetic force microscopy of ferromagnetic materials [3]. Chemical and electrolytic etching procedures take advantage of the fact that different phases are dissolved at different rates. Thermal etching works similarly [START_REF] Telle | Materials science and technology[END_REF]; ion beam etching, however, is more complex because knock-on processes and high-energy-density-zones have to be taken into consideration [START_REF] Eckstein | Computer simulation of ion-solid interaction[END_REF][START_REF] Urbassek | [END_REF]. The surface relief created by etching can subsequently be imaged with satisfactory contrast. For the sake of clarity, up to the end of this section it is assumed that the particles dissolve faster than the matrix. But since the ratio of the dissolution rates of the particles and of the matrix is finite, also the matrix is attacked to some degree. Hence the pits marking the original positions of the etched away parts of the particles will be too large. This is called over-etching, it may cause serious errors in the quantitative characterization of small particles.

In the progress of quantitative AFM and SEM characterizations of nano-scale plate-shaped coherent precipitates of the disordered γ-phase in an L1 2 -long range ordered γ'-matrix, the need arose to relate the size of the etch-pits left behind by the etched away parts of the γ-precipitates to their actual dimensions [3]. The overall chemical composition of the material was Ni 69 Co 9 Al 18 Ti 4 . The main difference in the chemical compositions of the two phases is that the γ-plates are richer in cobalt than the γ'-matrix. The arrangement of the two phases in Ni 69 Co 9 Al 18 Ti 4 is inverse to that in γ'-strengthened nickel-base superalloys, in which the disordered γ-phase forms the matrix and particles of the L1 2 -long range ordered γ'-phase precipitate [START_REF] Nembach | Particle strengthening of metals and alloys[END_REF][START_REF] Wosik | [END_REF]4,[START_REF] Ross | Superalloys II[END_REF]. The habit planes of the γ-plates in Ni 69 Co 9 Al 18 Ti 4 are of the type {001}. Preferential etching of the γ-plates occurred as a side effect of the standard preparation procedure of thin foils for transmission electron microscopy ( TEM ):

twin-jet electrolytic polishing [3]. Without any further preparation specific to the applied microscope, the same foils were studied by AFM, SEM, and TEM.

Fig. 1 shows AFM-, SEM-, and TEM-images of such thin foils. The γ-pits left behind by the etched away parts of the plate-shaped γ-precipitates are clearly visible. The nominal indices of the macroscopic surface of the thin foil and hence of the image plane are (001). There are two families of edge-on γ-plates; the indices of their habit planes are (100) and (010). The in-plane γ-plates lie along (001). These micrographs will be discussed in detail in Section 3. In Figs. 1a andb quantitative information on AFM-imaged profiles of γ-pits is given. It is emphasized that measured AFM-profiles are determined by the actual shape of the γ-pits and by the geometry and inclination of the tip of the AFM [3]. The question was what were the actual size and shape of the γ-plates? To solve this problem their size was also determined by TEM of thin foils and computer simulations of the etching process were undertaken. The TEM study and the simulations proved that the actual size and shape of the γ-precipitates can be accurately derived from AFM-images of the γ-pits.

This former work was the starting point for a more general investigation of the etching processes of two-phase materials: presently three-dimensional kinetic Monte Carlo simulations [START_REF] Young | Proc. Phys. Soc[END_REF][START_REF] Chatterjee | [END_REF][11] were performed. Both cases were treated: (i) the atomic binding energies in the particle are smaller than those in the matrix, i.e. the particles dissolve faster than the matrix -as in Ni 69 Co 9 Al 18 Ti 4 -and (ii) the opposite case, i.e. the matrix dissolves faster than the particles. The difference in dissolution rates was varied widely. Three different particle shapes were considered. The procedures and the results obtained are reported below. In Section 3.1 these results are compared with those of actually etching γ-precipitates in Ni 69 Co 9 Al 18 Ti 4 .

Modeling and simulations

The modeled crystal structure, geometries, and etching procedures were as follows.

Throughout this communication the etchant will be supposed to be liquid, i.e. chemical and electrolytic etching are simulated. Simulations of thermal etching are quite similar.

Crystal structures and geometries

The specimen consists of two phases. Both, the particle as well as the matrix, are supposed to have the f. c. c. crystal structure, the same lattice constant a 0 , and to be fully coherent. Since in the present model the number of neighboring atoms governs the dissolution rates of the atoms ( Section 2.2 ) and this number depends on the crystal structure, the latter has to be fixed. The simulation procedures described below can easily be adapted to any other crystal structure.

The three most common particle shapes are treated: spheres, plates, and cubes with rounded edges and corners. Incidentally, the γ'-precipitates in advanced commercial γ'-strengthened nickel-base superalloys are examples of such rounded cubes with edge lengths around 500nm [START_REF] Ross | Superalloys II[END_REF].

The coordinates of the points on the matrix-particle phase boundary are given by Eq. ( 1); the center of the particle is at the origin of the coordinate system:

1       + + =             n n k x y z α α β . ( 1 
)
This equation describes a superellipsoid [3,[START_REF] Weisstein | Superellipsoid[END_REF][START_REF] Sobchenko | [END_REF]. The parameters α, β, n, and k determine its shape.

Eq. ( 1) is a unified convenient description of the geometry of all common convex particle shapes: spheres, cubes, plates, fibers. The z-axis has fourfold rotational symmetry and the three planes characterized by x ≡ 0, y ≡ 0, and z ≡ 0 are mirror planes. There are two obvious generalizations of , respectively, with n 1 ≠ n 2 and / or α 1 ≠ α 2 . Moreover, the mirror symmetry of the plane z ≡ 0 can be broken by assigning β and / or k different values in the two half-spaces z>0 and z<0 [START_REF] Sobchenko | [END_REF].

In the present simulations the following values are inserted for α, β, n, and k; they yield the most common shapes of second phase particles: sphere: α=β=69.5a 0 , n=k=2 , plate: α=69.5a 0 , β=9.5a 0 , n=k=3 , cube with rounded edges and corners: α=β=69.5a 0 , n=k=10 .

Evidently the maximum extensions of all three particles are the same along the [100]-and the [010]directions. Three-dimensional sketches are shown in Fig. 2. The exponents n=k=3 chosen for the plate are those found for the average plate-shaped γ-precipitate in Ni 69 Co 9 Al 18 Ti 4 [3] and the aspect ratio

7 3 / . = α β
is close to that of the average γ-precipitate. However, the individual lengths α and β quoted above for the modeled plate amount to only about one eighth of those of the average γ-plate.

It is emphasized that the γ-plates in Ni 69 Co 9 Al 18 Ti 4 had neither the shape of flat cylinders, nor of flat cuboids, nor of flat standard ellipsoids, but that they could be very well described as superellipsoids with n=k=3 [3]. In the case of plate-shaped particles, etching along one of the two longer axes must be distinguished from etching along the short axis, i.e. the plates may be orientated either normal or parallel to the original {001}-surface of the specimen. Correspondingly two different orientations of the plate-shaped etch-pits must be distinguished: edge-on and in-plane orientation ( Fig. 1 ). The volume V of the superellipsoid is given by

V = q V (n,k) β α π 2 (2)
with q V (2,2)=4/3=1.333 ( sphere ), q V (3,3)=1.813 ( plate ), and q V (10,10)=2.443 ( rounded cube ) [3,[START_REF] Sobchenko | [END_REF]. The habit plane of the plate and the sides of the rounded cube have the indices {001}. (001)-solid-etchant interface is created and etching is along the +z-direction. Only for the simulation of etching along the longer half-axis of the plate [ edge-on orientation ], this interface has the indices (010) and etching is along the +y-direction. It is tempting to make use of the symmetry of the system and to simulate only one quarter of it. But since this is not fully compatible with the random nature of the dissolution process ( Section 3.1.2 ), it was presently not done. The centre of all particles has the coordinates (0,0,0). With the only exception of the in-plane plate, the matrix-cube is centered at (0, 0, 174.5a 0 -α ). In the case of the in-plane plate the centre of the matrix-cube is at (0, 0, 173a 0 -β ). Evidently, at the start of the simulations the sphere, the edge-on plate, and the rounded cube are covered by just one atomic layer of matrix; in the case of the in-plane plate there are four such layers.

Modeling and simulations

The activation energy for transferring an atom from the surface of the particle or from the surface of the matrix to the etchant is E p and E m , respectively. These energies are assumed to be proportional to the number ν of first nearest neighbor atoms in the solid phases; hence E p and E m are low for atoms at edges and corners:

E p = ν e p (3a) 
and [15,16] by inserting the respective shell radii r j . The quoted authors have shown that lattice properties calculated on the basis of their pair potential functions agree well with experimental data.

E m = ν e m (3b
Since only the N atoms at the surface of the solid can be dissolved, only they are considered.

At the start of the kinetic Monte Carlo simulation the solid-etchant interface is a perfect (001)-plane [ (010)-plane for the edge-on plate ] with N ≈ 0.25× 10 6 atoms. As stated above, etching is along the +z-direction [ along the +y-direction for the edge-on plate ]. The simulation of the dissolution of one atom will be referred to as one step; each step involves three sub-steps:

(i) With the aid of Eqs. (3) the relative, non-normalized thermodynamic probability p i of the dissolution of atom No. i is calculated. This is done for all N interface atoms. Eqs. (4a) and (4b) hold for particle and matrix atoms, respectively:

p , i i = e E p - -- - (4a) and m 
, i i = e E p - -- - , (4b) 
1 ≤ i ≤ N. The pre-exponential factors of both phases are assumed to be the same; hence these factors are disregarded.

(ii)

The ratio µ

s , 1 ≤ µ ≤ N, is calculated µ = s j j =1 =1 ∑ ∑ µ j j p p Ν . ( 5 
)
s 0 is zero and s N equals unity. This will be demonstrated in the figures presented in the following section.

Results of the kinetic Monte Carlo simulations

A choice of simulation results is presented in Figs. 345678. Throughout the following the term "front of etching" refers to the most advanced point of the solid-etchant interface. If e p is smaller than e m , the particle dissolves faster than the matrix and vice versa. In the latter case, e p >e m , during intermediate stages of etching the particle protects the matrix lying directly under it from the attack by the etchant ( Figs. 3,5,6h ), but finally the particle becomes completely detached from the matrix.

In Figs. are considered as reliable. This is emphasized for results Nos. A2) and A3). Results Nos. A1), A5), B1), B2.1), B2.2), and B2.4) are direct consequences of Eqs. (3), according to which the activation energy for the dissolution of an atom is proportional to the number ν of its first nearest neighbors: ν of atoms at edges and corners is relatively low and high in the most densely packed {111}-planes.

Results:

A) General

A1) The roughness of the solid-etchant interface is low: plus / minus 1-2 atomic diameters ( see B2.1) below ). This can be inferred from Fig. 6 and from the animations [START_REF]Animations of kinematic Monte Carlo simulations of etching processes[END_REF]. Moreover it is indicated by the small wiggles of the curves representing the interface in Figs. A2) Over-etching is quite frequently observed: if the particle dissolves faster than the matrix, the resulting etch-pit is too large and in the opposite case the remainder of the particle, which sticks out of the matrix, is too small. In intermediate stages of etching the solid-etchant interface stays the closer to the original matrix-particle phase boundary the larger the term p m e e is ( see also B2.3) below ). If the ratio e m /e p is smaller than 1/1.3 or larger than 1.3 and etching does not continue too long, over-etching is almost negligible ( Figs. 345) for all particle shapes and orientations presently considered. If after etching the largest extension of the original particle is not close to the surface of the specimen, the size of the particle may be underestimated ( Figs. 3 and4 ). A3) Even if e p and e m differ by as little as 5%, etching reveals a spherical particle ( Figs. 7c,d ).

Though no simulations have been performed to establish analogous limits for the other particle shapes, it is expected that similar limits apply also for them. A4) Due to the non-linearity of Eqs. (4) the etched profiles do not only depend on the ratio e m /e p but also on the individual values of e p and e m . This dependence is strongest if both bond energies are rather low ( Fig. 8 ). A5) Far away from the particle, respectively from the etch-pit, the matrix is planar -except for steps of atomic height -and follows (001)-planes [ (010)-planes for the edge-on plate ]; this proves that the matrix-cube is sufficiently large.

B)

The particle dissolves faster than the matrix: e p <e m B1) At the very beginning of etching several small shallow pits appear. Later they coalesce and a single deep pit is formed at the original site of the particle ( e.g. Figs. 5a andb, animation [START_REF]Animations of kinematic Monte Carlo simulations of etching processes[END_REF], and Section 3.1.2 ). This primarily concerns the rounded cube and the in-plane plate, which have an almost flat, respectively a rather flat top interface with the etchant.

B2) After an appreciable amount of the particle has dissolved, several different types of particle-etchant interfaces can be distinguished:

B2.1) Much of the interface is along terraces of the most densely packed {111}-planes. This can be seen best in Figs. 3 and6 and in the animations [START_REF]Animations of kinematic Monte Carlo simulations of etching processes[END_REF]. In Figs. energies e m and e p are high, i.e. the temperature is low ( Fig. 8 ). The reason for this energy dependence is the non-linearity of Eqs. (4).

B2.

2) The central area of the bottom solid-etchant interface of a partially dissolved cubic particle is along (001)-planes ( e.g. Figs. 3e, f and 6c ).

B2.3) When the solid-etchant interface reaches the particle-matrix phase boundary, etching slows down drastically because from then on it is governed by e m , which is higher than e p . Hence this interface stays close to the original phase boundary, see e.g. the upper part of the spherical particle in Fig. 3a and the sides of the rounded cube in Fig. 3e.

B2.4) After the entire spherical particle and an appreciable amount of the matrix below the original position of the particle have been dissolved, much of the surface of the etch-pit is formed by {111}-and {001}-planes ( Fig. 3 ). A pit remains discernable for very long etching times.

C)

The matrix dissolves faster than the particle: e p >e m C1) The most conspicuous effect has already been mentioned: at intermediate stages of etching the particle protects the matrix lying directly under it from the attack by the etchant, but later the particle completely loses contact to the matrix ( Figs. 3, 5, 6h ). As to be expected it is the in-plane plate which becomes detached from the matrix at the lowest total number of dissolved atoms. After a particle has become free, during further etching all traces of it in the surface of the matrix disappear very soon.

C2) Etching exposes different families of crystallographic planes of the spherical particle. This is easily noticeable for e m =1.92 and e p =2.21 in Fig. 3d. If the difference between e p and e m is larger, e.g. e m =1.70 and e p =2.21 in Fig. 3c, the sphere becomes completely free before it changes its shape markedly. The analogous effects for the rounded cube are less pronounced because planes close to {001} persist for long times of etching ( Figs. 3g,h ).

C3

) For e p >e m , the front of etching proceeds much more slowly than for e p <e m ( see B) above ) because most of the top area of the matrix is rather flat and much more atoms must be dissolved before the same maximum depth is reached ( Figs. 345).

Secondary effects

There are several processes which may affect etching beyond that which has been considered so far. Seven of them are listed here and the two first ones will be analyzed in the subsequent sections: (i) After a particle which dissolves faster than the matrix, has been etched very deeply it becomes difficult to provide fresh etchant at the bottom of the pit and to remove the dissolved atoms from it.

The ensuing effects will be analyzed in Section 2.4.1.

(ii) The possible effects of second and third nearest neighbor bonds have already been referred to and will be discussed in Section 2.4.2.

(iii) The number ν of first nearest neighbor atoms depends on the crystallographic orientation of the solid-etchant interface, e.g. ν equals eight for the perfect {001}-and nine for the perfect {111}-interface ( Table 1 ). Hence the etching process may vary with the orientation of the original interface.

(iv) The binding energies e p and e m may vary with ν . This can be modeled by adding higher order terms of ν on the right hand sides of Eqs. ( 3).

(v) In Section 2.2 it has already been mentioned that in the case of very small particles and very thin plates it will be appropriate to allow for the fact that bonds which cut through the particle-matrix phase boundary have energies which differ from e p and e m .

(vi) If a particle which dissolves faster than the matrix, is surrounded by a strain field, over-etching is likely to occur. This can be simulated by lowering e m in the region of the strain field.

(vii) In general the matrix as well as the particle will consist out of more than one type of atoms. This can be allowed for when the crystal is built up in the computer. In such cases e p and e m depend on the types of neighboring atoms. This point is of importance for long range ordered phases; for them the present normalized energies e p and e m may be considered as averages.

Effects of a lack of fresh etchant in the etch-pit

If the etch-pit left behind by the etched away parts of a particle which dissolves faster than the matrix, is narrow and deep it becomes difficult to provide fresh etchant at the bottom of the pit and to remove the dissolved atoms from it. The relevant processes are governed by a host of parameters: e.g. shape and size of the pit, convection and diffusion of the etching agent and of the dissolved atoms, viscosity of the etchant, its adhesion to the solid. As mentioned, the ensuing effects become serious if the pit is deep and narrow or has a bottle neck at its top. Such a neck is formed e.g. if the particle has the shape of a sphere and the binding energy e p is appreciably smaller than e m ( Figs. 3a and6a ). Instead of attempting to take all relevant processes into consideration just the two basic features of the hindrances to the etching process are allowed for in the present kinetic Monte Carlo simulations for a spherical particle: the narrower the upper part of the pit is and the deeper it is, the more significant are these hindrances. The mathematical formulation for etching along the z-direction is as follows. The coordinates of all atoms are integer multiples of ½a 0 , where a 0 is the lattice constant. To calculate the non-normalized probability p 1 ( Eqs. ( 4) ) of dissolving the atom ( particle or matrix atom ) having the coordinates (x 1 , y 1 , z 1 ), the right hand sides of Eqs. ( 4) are multiplied by the function 1 ( ) z Φ , which is related to the probability that the etchant agent penetrates to the depth z 1 :

1

( ) z Φ = exp } { 2 1 m -( -) / λ z z A for 1 m ( -) z z >a 0 (6) and 1 ( 
)

z Φ = 1.0 for 1 m ( -) z z ≤ a 0 ,
where λ is a numerical coefficient, z m the average z-level of the matrix far away from the pit where the matrix is planar, and A is an average over the area of all cross-sections of the pit with z m <z<z 1 :

= = - ∑ z a j z a S A z z a 1 0 m 0 2 / * j 2 / 1 m 0 2( ) / . ( 7 
)
To allow for a bottle neck of the pit, not the actual cross-section at the level z= ja 0 /2 is inserted into the sum, but * in Eq. ( 6), for λ >0 the (001)-bottom of the etch-pit is flat and wide. This effect is enhanced by small areas A.

(2) At a given position of the front of etching in the particle, i.e. at given value of δ in Figs. 3a and9, the number of dissolved atoms increases drastically with λ . (3) The larger λ is, the more matrix atoms next to the original particle-matrix phase boundary dissolve before the front of etching reaches the bottom of the particle. As to be expected this enhances over-etching. 

Effects of interactions

E p = e p ( ν + * p1 / ν ρ + ** p2 / ν ρ ) (8c) 
and

E m = e m ( ν + * m1 / ν ρ + ** m2 / ν ρ ) . ( 8d 
)
For the sake of argument the ratios p1 ν tend to increase with ν : an atom located at an edge or corner has relatively few first nearest neighbors as well as relatively few more distant ones.

Interactions with more distant neighbors affect {111}-and {001}-planes to different degrees.

Let ( , )

E µ hkl be the activation energy for the dissolution of an atom in a perfect {hkl}-plane and µ

is the number of coordination shells allowed for. The ratios ( 

ρ ρ

Some results of the simulations for a spherical particle with e p =1.92 and e m =2.21 are presented in Fig. 10. There both cases are shown: allowing (i) for first and second and (ii) for first, second, and third nearest neighbor bonds. These simulations are very time consuming. The most important result is that unless the particle has been completely dissolved, the width of the top of the etch-pit is nearly independent of the number µ , i.e. over-etching is independent of µ . Again {111}and {001}-planes are exposed. The interactions with more distant neighbor atoms flatten the (001)-bottom of the etch-pit in the particle; this effect is similar to that of a lack of fresh etchant at the bottom of the etch-pit ( Fig. 9, Section 2.4.1 ). The width of the (001)-bottom does not increase monotonically with µ : the bottom is widest for = 2 µ

. This is tentatively interpreted to be due to the above stated variation of the ratios of the {111}-and {001}-activation energies with µ : as µ is raised, they approach each other, but not monotonically. Low ratios , 111 , 001 ( ) / ( ) E µ E µ favor the exposure ( not the dissolution rate! ) of {001}-planes and thus widen the (001)-bottom of the etch-pit. As long as the particle has not completely dissolved, the numbers 2 ω and 3 ω of dissolved atoms ( Fig. 10 ) are smaller than 1

ω . There are two mechanisms which contribute to this effect: (i) the amplification of differences in dissolution rates for µ >1 mentioned above in connection with Eqs. ( 8) and (ii) the variation of the ratio ( , 111) / ( , 001) E E µ µ with µ , due to which the dissolution rate of atoms in the (001)-matrix-surface is less favored for µ >1 than for µ =1. Hence relative fewer atoms of this (001)-matrix-surface are dissolved for µ >1. Since its area is large, this effect outweighs that of widening the etch-pit. The three types of microscopes yield complementary information; quantitative data on the depth profile of the γ-pits are most easily obtained by AFM. If the slope of the surface relief of the specimen changes abruptly, the geometry and the inclination of the tip of the AFM must be taken into consideration [3] ( Section 1 ). It turned out to be very difficult to unambiguously determine the real shape of the plate-like γ-precipitates in Ni 69 Co 9 Al 18 Ti 4 by using the experimental data of only one of the three applied microscopic methods [3]. If, however, the data obtained by one microscope are complemented by computer simulations of the etching process, the reliable characterization of the γ-precipitates is possible. In Sections 3.1.2 and 3.2 the actual shapes of the γ-precipitates and of the γ-pits will be derived from the micrographs and subsequently these shapes will be discussed with reference to the respective relieves obtained in the simulations. The original surface of the specimen is parallel to (001).

In-plane γ-plates

The AFM-, SEM-, and TEM-images of in-plane γ-pits in Ni 69 Co 9 Al 18 Ti 4 shown in Fig. 1 deviate somewhat from perfect four-fold rotational symmetry. There are two groups of entirely different effects which may give rise to asymmetries: (i) the two longer axes of the γ-plates themselves may differ in length and (ii) etching may produce asymmetric γ-pits even if the γ-plates are perfectly symmetric. These two groups are discussed in the following.

Asymmetry of the γ-plates

The growth rate of each γ-plate in Ni 69 Co 9 Al 18 Ti 4 is governed by the surrounding concentration gradients of the precipitating elements. These gradients are affected by neighboring γ-plates, the nucleation of which occurs at random. Hence the growth rate of in-plane γ-plates may be different along the [100]-and along the [010]-direction. The average difference in length of the two longer half-axes of the in-plane γ-plates was experimentally found to be 1 0 % ± [3]. Since the aspect ratio β α / ( =longer axis / shorter axis ) of the majority of the γ-plates in Ni 69 Co 9 Al 18 Ti 4 exceeds 7.0 [3], even minor deviations of the actual orientation of the surface of the macroscopic specimen from the exact nominal (001) one have strong effects on the appearance of in-plane γ-pits. The γ-pit marked B in Fig. 1a is an example. For a cuboidal pit with the aspect ratio β α / =7.0, a deviation as small as 8.1° from the nominal orientation leads to a depth error = α ∆t tg8.1°= β . The inclination of the bottom of the γ-pit marked B in Fig. 1a amounts to about 3.3°; this angle was calculated from the depth profile shown in the upper right of Fig. 1a. It is for such a misorientation that the right corner of B is missing. Due to an inclination of the γ-pit relative to the macroscopic surface of the specimen, in the SEM the yields of secondary electrons from opposite -ascending and descending -slopes of the in-plane γ-pit are different. Hence the two slopes appear at different brightness in the micrographs: the upper rims of the γ-pits in Figs. 1c andd are much brighter than the lower ones. There are at least three reasons for deviations of the orientation of the macroscopic surface from (001): (i) errors in cutting the slice from which the thin TEM-foil is prepared, (ii) small angle boundaries in the foil, and (iii) after its electro-polish, its surface is slightly concave. Since the γ-plate is slightly convex ( Fig. 2 ), in a perfectly well orientated specimen the first contact of the etchant with the in-plane γ-plate is most likely to occur at its apex. Hence the dissolution of the γ-plate proceeds from its center towards its corners.

Asymmetric etching

The contrast of secondary electron images primarily depends on the orientation of the surface of the specimen relative to the incident electron beam. Therefore the ascents and descends of in-plane γ-pits yield strong contrast in the SEM. The AFM shows the topography of the specimen, i.e. the contrast is governed by differences in height. In the TEM, however, two entirely different mechanisms strongly contribute to the contrast: strain contrast and thickness contrast [3]. Since the average atomic numbers of both phases in Ni 69 Co 9 Al 18 Ti 4 are nearly the same, there is hardly any atomic number contrast. Strain contrast renders the not yet dissolved parts of partially dissolved in-plane γ-plates visible. Even if an in-plane γ-plate is completely embedded in the γ'-matrix and has no contact with either surface of the foil, the γ-plate may produce strain contrast. At γ-pits the local thickness of the TEM-foil is reduced and thickness contrast is generated.

The white arrows in the SEM-images presented in Figs. 1c andd point at missing corners of the in-plane γ-pits; there their outline is parallel to <011>-instead of to <001>-directions. The reason for these missing corners is that the in-plane γ-precipitates have been dissolved only partially; actually in the apparently missing corners some γ-pockets are still left. Due to their strain contrast they are visible in the TEM. In the AFM and SEM, however, such corners remain invisible. The top of the pockets may still be covered by γ'-matrix. Facing the bottom of the γ-pits the γ-pockets are delimited by {111}-planes, which may be interrupted by some (001)-terraces [3]. In the TEM these inclined {111}-surfaces yield thickness contour lines along <011>-directions. This is demonstrated in the bright field TEM images shown in Figs. 1e andf. By printing them with inverted contrast, the appearance of the γ-plates becomes similar to that in the other micrographs. The bright thickness contour lines of γ-pit C in Fig. 1e and of that in Fig. 1f are in line with the dotted white lines. The dark square with <011>-boundaries in Fig. 1f is the image of the bottom of the γ-pit; there is thickness contrast. The bottom of C in Fig. 1e is rather asymmetric. The wider bright contrast surrounding the dark bottoms is due to (i) thickness contours and (ii) strain contrast ( short white arrows ) produced by not yet dissolved γ-pockets. This latter contrast has outer <001>-boundaries. This discussion of the micrographs is summarized as follows: the dissolution of in-plane γ-plates starts near their centers and proceeds towards their corners, which are dissolved last. This is evident in Figs. 1a, c-f. It is for this reason that in AFM-and SEM-images many corners of in-plane γ-pits are missing. Only the TEM reveals these γ-corners because the not yet dissolved γ-pockets produce strain contrast.

The described experimental findings are now discussed with reference to the results of the simulations of the etching process. In Figs. 11a-i Etching reaches the bottom of the plate first directly below its center ( Fig. 11d ). The reasons for this are: (i) because of the slight upward curvature of the plate ( Fig. 2 ) the matrix-layer covering it is thinnest above the center and the etchant contacts the plate there first and (ii) because e p is smaller than e m further dissolution progresses fastest in this region. The random nature of the dissolution process gives rise to asymmetries of the pit, especially at the beginning of the etching process.

Though later these asymmetries become weaker they still tend to reduce the local number of nearest neighbor bonds and thus to raise the dissolution rate locally. This explains the bizarre shapes of the simulated in-plane pits at intermediate stages of etching ( Figs. 11b-e ). Still later ( Figs. 11f-h ) the interface between the etchant and the remainders of the plate is of the type {111}. The intersections of these {111}-planes with the bottom of the pit are not perfectly straight because (i) the bottom is slightly concave ( Fig. 2 ) and (ii) the {111}-planes are terraced. These results of the simulations agree very well with the experimental results communicated above. The actual TEM-images presented in Figs. 11j-l 1a-e and the depth profile in Fig. 1b show that not only the γ-plates are attacked by the electrolyte but that next to them also the γ'-matrix dissolves to some extent. Hence the rims at the top of the edge-on γ-pits are blunted; evidently there is over-etching. In Ref. [3] it was concluded that there the slope of the γ'-matrix is parallel to {011}-planes, but after very strong dissolution it is parallel to {111}-planes. Moreover, after prolonged etching zigzag shapes of the rims of the edge-on γ-pits were found in the experiments.

This was interpreted to have been brought about by a combination of two different families of {111}-planes [3]. Blunting renders the experimental determination of the shorter axis β less accurate than that of the longer axis α . This case of over-etching demonstrates that one has to carefully evaluate the etching process.

The simulations for the edge-on γ-plate have shown that blunting becomes the more serious the smaller the difference (e m -e p ) of normalized binding energies is ( Figs. 4e, f, Section 2.3 ). In addition there may be effects of a lack of fresh etchant at the bottom of the γ-pit ( Section 2.4.1 ). A close inspection of Fig. 4f revealed that a narrow strip of the shoulders is parallel to (011)-, respectively to ( 011 )-planes. As long as the particle has not dissolved completely, inside of the pit the solid-etchant interface follows {111}-planes or is close to the original phase boundary ( Fig. 6e ). As described in 

Conclusions

Kinetic Monte Carlo simulations of the metallographic etching processes of second phase particles have been performed for their most common shapes: spheres, rounded cubes, and plates.

The activation energies for the dissolution of the particles and of the matrix are assumed to be governed by the number and strength of bonds between neighboring atoms. Interactions with up to three shells of neighbors are considered. This model proved to be highly successful. Some of the results are listed here:

1) Provided the nearest neighbor atomic bond energies of the two phases differ by more than about 30%, over-etching is almost negligible for all particle shapes presently studied. Even if these energies differ by only 5% the particles can be revealed by etching. Though this latter 5%-limit has been proven only for the spherical particle, similar limits are likely to hold for the other particle shapes.

2) As to be expected etching exposes densely packed planes. The roughness of the etched specimen surface is very low: plus / minus 1-2 atomic diameters.

3) The results of the simulations obtained for plate-like particles agree very well with experimental AFM, SEM, and TEM results. Simulations are of great help in interpreting AFM-, SEM-, and TEM-images of the plate-like precipitates of the γ-phase in Ni 69 Co 9 Al 18 Ti 4 .

4) The simulation procedures can easily be extended to allow for various secondary effects, e.g.

(i) those caused by a lack of fresh etchant at the bottom of a deep and narrow etch-pit or (ii) those due to bonds with second and third nearest neighbor atoms. These two secondary effects do not alter the results of the simulations seriously. Eq. ( 6) is indicated. The front of etching (=most advanced point of the solid-etchant interface) is at z ≈ 0 δa . ω is the respective approximate number ( in units of 10 6 ) of steps performed. 

  . The fourfold rotational symmetry of the z-axis can be reduced to a twofold one by replacing the two first terms in Eq. (1) by ( )

( 8 which

 8 iii) A uniform random number w, 0 ≤ w ≤ 1, is generated and the atom No. n, 1 ≤ n ≤ N, for s n-1 <w ≤ s n holds, is transferred from the solid to the etchant.Evidently the probability that atom No. n is dissolved in this step equals n started for the new solid-etchant interface, which differs from the previous one, because one atom has been removed in the previous step. Exactly one atom is dissolved in each step. The total number of steps required to entirely dissolve the particle depends on its shape and on e p and e m .
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 35 dark grey lines outline the periphery of such free particles. Animations of simulated etching processes are available for all presently studied particle shapes and for two combinations of normalized binding energies: e p =1.70, e m =2.21 and e p =2.21, e m =1.70[START_REF]Animations of kinematic Monte Carlo simulations of etching processes[END_REF]. The effects of varying the ratio e m /e p of the normalized binding energies, while keeping e m constant, are demonstrated in Fig.7for the spherical particle. Since Eqs. (4) are non-linear the etched profile does not only depend on the ratio e m /e p , but also on the individual values e p and e m ; this is shown in Fig.8for e m /e p ≡ 1.15. Fig.8demonstrates what happens if the temperature T is varied while the non-normalized ( to k B T ) activation energies for dissolution are kept constant: T decreases from Fig.8ato 8f. From Figs.3-8the following results are extracted. Though not all of them can be proved within reasonable times for all combinations of e p and e m in the entire range 1.0 < e p , e m < 3.4 presently studied, all listed results

  3a and b showing the sphere, the traces of the solid-etchant interface are along the [101]-direction, which lies in the intersection of the ( ) 111 -plane with the ( ) 111 -plane, and along the [ 01 1 ]-direction, which lies in the intersection of the ( ) 111 -plane with the ( ) 111 -plane. In the pseudo-three-dimensional presentation of the cubic particle shown in Fig. 6c two families of {111}-planes are visible; families of {111}-planes are in the cut away front half of the matrix-cube. The height of the steps between adjacent {111}-terraces is of atomic dimensions. At constant ratio e m /e p the predominance of {111}-planes is most pronounced if the normalized binding

jSΦΦ 9 leads

 9 , which is the minimum area of all cross-sections with z m <z< ja 0 /2. If the pit narrows continuously as z increases, A is the arithmetic mean cross-section. The limitations 1 is smaller than unity only if the respective atom lies in the surface of the etch-pit. Two alternative values are inserted for the coefficient λ : 0.2 and 1.0. For 0 = λ , the standard results presented in Section 2.3 and Fig.3are recovered. Evidently the effects of a lack of fresh etchant are the more serious the larger the extension of the the particle along the z-direction is. The results for the spherical particle and e p =1.70 and e m =2.21 are shown in Fig.9. becomes small and the advancement of the front of etching slows down. This effect is the stronger the larger λ is. A comparison of Fig.3awith Fig.

3 .

 3 Discussion: Comparison of Monte Carlo Simulation with TEM ResultsMost of the results of the kinetic Monte Carlo simulations of etching have already been discussed in Sections 2.3 and 2.4. However, it remains to relate them to the etching experiments carried out for the plate-shaped precipitates of the γ-phase in Ni 69 Co 9 Al 18 Ti 4[3] ( Section 1 ). AFM-, SEM-, and TEM-images of them are presented in Fig.1. Since the γ-plates dissolve faster than the γ'-matrix, etching produces γ-pits. Hence in Sections 3.1 and 3.2 only the case e m >e p is considered.

  Figs. 5a and 6g: e p =1.70 and e m =2.21, i.e. the plate dissolves faster than the matrix. At the beginning, dissolution of the matrix-layers covering the plate starts at several different spots ( Figs. 11a, b ).

  are very similar to the simulated images in Figs.11d, f, and h, respectively.

  -on γ-platesThe comparison of micrographs of edge-on γ-pits in Ni 69 Co 9 Al 18 Ti 4 with simulated pits is straight forward because the high aspect ratio 7 ≈ α / β of the γ-plates is in favor of edge-on γ-plates: minor deviations of the orientation of the macroscopic surface of the specimen from the nominal (001) one are not of any significance. This contrasts with the in-plane plates discussed in the preceding section. All micrographs presented in Figs.

Section 2 . 3 ,

 23 the straight lines along <011> in Figs.4a and bare in fact traces of {111}-planes. After very long etching, when the particle has dissolved completely, {111}-and (001)-planes are exposed also in the matrix ( Figs.4a, b, e, f, animation[START_REF]Animations of kinematic Monte Carlo simulations of etching processes[END_REF] ). So far the results of the simulations agree very well with the experimental ones[3]. However, no zigzag {111}-slopes of the rims of the edge-on pits were found in the simulations. This contrasts with the experimental results. The reason is probably that the simulated plates were smaller than the actual γ-plates in Ni 69 Co 9 Al 18 Ti 4 by about the factor eight ( Section 2.1 ). If the plates are large, the solid-etchant interface may alternate between two different families of {111}-planes. This alternation may be induced e.g. by local fluctuations of the composition of the solid. There is another process which may lead to zigzag {111}-blunting of the rims of large edge-on γ-pits: in different parts along a rim {111}-blunting may nucleate on two different families of {111}-planes. On the basis of this discussion, it is concluded that the the γ'-matrix in Ni 69 Co 9 Al 18 Ti 4 quite well. Since the ratio e m /e p =2.21/1.92=1.15 is inside the range 1/1.3-1.3, there is some over-etching ( Fig.4f, Section 2.3 ).

Fig. 1 : 1 .Fig. 2 :

 112 Fig. 1: (a, b) Raw data AFM topographs of plate-shaped γ-precipitates ( actually of the γ-pits left behind by the etched away parts of the γ-precipitates ) in Ni 69 Co 9 Al 18 Ti 4 . A marks the same edge-on γ-pit in (a) and (b) and B an in-plane one in (a). At the top right, AFM-line scans of the depth profiles between the two points marked by circles and by the numbers 1 and 2 are shown. The length of the black vertical double arrows corresponds to 100nm depth; the depth scale is the same as that in the x-y-plane. (b) Depth relief of the edge-on γ-pit A; the difference in depth between neighboring contour lines is 15nm. (c, d) Secondary electron SEM-and (e, f) bright field TEM-images printed as negatives. The short white arrows in (c-f) and the dotted white lines in (e, f) are explained in Section 3.1.

Fig. 3 :

 3 Fig. 3: Successive stages of the simulated etching process of a spherical ( left ) and a cubic ( right ) particle; the original particle shape is shaded. The curves indicate the solid-etchant interface. The image plane is the plane 0 ≡ y , i.e. a cross-section through the center of the particle is shown. The whole vertical extensions of both particles amounts to

Fig. 4 : 0 (

 40 Fig. 4: Analogous to Fig. 3 for the edge-on orientation of the plate-shaped particle, (a, b, e, f) e p < e m ;(c, d, g, h) e p >e m . Etching is along a longer axis α

Fig. 5 : 0 (Fig. 6 :Fig. 7 : 2 αFig. 8 :

 506728 Fig. 5: Analogous to Fig. 4 for the in-plane orientation of the plate-shaped particle, e p and e m are indicated, (a, b) e p < e m , (c, d) e p >e m . Etching is along the shorter axis β

Fig. 9 :

 9 Fig. 9: Effects of lacking fresh etchant at the bottom of the etch-pit. The particle is of spherical shape. The presentation is analogous to Fig. 3a. e p =1.70 and e m =2.21. The coefficient λ appearing in

Fig. 10 :

 10 Fig. 10: Analogous to Fig. 3(b), but the interactions with atoms in µ <3 coordination shells are allowed for. e p =1.92 and e m =2.21. The grey line shows the results for µ =1. The subscripts of ω in the small tables indicate µ . (a) µ =2, i.e. first and second nearest neighbor interactions and (b) µ =3, i.e. first, second, and third nearest neighbor interactions.

Fig. 11 :

 11 Fig. 11: Successive stages of the growth of an in-plane pit by etching. (a-i) Simulated top views along [001]. The solid-etchant interface is shown; golden: particle atoms, blue: matrix atoms. Before the start of etching the top of the plate-like particle is covered by four atomic layers of matrix. Normalized binding energies: e p =1.70 and e m =2.21. The dashed white line in (a) outlines the extension of the particle in the plane z ≡ 0 before the start of the simulation; length of the longer axis
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	{001}-interface, whereas ν of a two dimensional simple square lattice varies only between one and
	three. Evidently, realistic results can only be derived from simulations of three-dimensional crystals.
	The range of e p and e m covered in the present kinetic Monte Carlo simulations is 1.0-3.4 and
	the ratio e m /e p is between 1/1.3 and 1.3. This range of e p and e m is close to the one covered by Strobel
	et al. [14] in their kinetic Monte Carlo simulations of Ostwald ripening. Moreover the present highest
	value 3.4 is close to one half of the actual, normalized ( to k B T, T=300K ) bulk first nearest neighbor
	pair-interaction energies Cu 1 ε	and Ni 1 ε of copper and nickel, respectively. In Table 1 the values of
	Cu j from the pair potential functions published by Mishin et al. ε and Ni j ε , 1<j<3, of the first three coordination shells are listed. Cu j ε F r o	and Ni j ε were derived
	P
		e
		e r
		R
		e
	Since the coefficients e p and e m are related to the energies required for breaking one first nearest neighbor bond in the particle or in the matrix, respectively, for simplicity in the following e p and e m v i e
	will be referred to as first nearest neighbor bond or binding energies. Of course, in the case of metals the term "bond" is not quite appropriate. Effects of more distant neighbors will be discussed in w
	Section 2.4.2. All energies are normalized to k B T, where k B is the Boltzmann constant and T the absolute temperature. E p and E m are calculated with Eqs. (3) even if some bonds cut through the particle-matrix phase boundary; i.e. Eqs. (3) are applied irrespective of the fact that some of the O n l
	nearest neighbor atoms may be in the other solid phase. If, however, the fraction of particle atoms y
	which have nearest neighbors in the matrix, is appreciable, bonds crossing the phase boundary must
	be assigned energies which differ from e p and e m . This will be necessary if the extension of the
	particle in one or more directions is very small; i.e. if the particle is very small or if the plate is very
	thin. Phases consisting out of more than one type of atoms are referred to in Section 2.4; for such
	materials e p and e m in Eqs. (3) may be considered as suitable averages.
	The number ν of the present (001)-and (010)-solid-etchant interfaces of the three
	dimensional f. c. c. crystal ranges from four for an add-on atom to eight for an atom in a perfect

  with second and third nearest neighbor atoms So far only the interactions with first nearest neighbor atoms have been taken into consideration in the kinetic Monte Carlo simulations. In this section the effects of second and third nearest neighbor interactions are analyzed. Besides the normalized first nearest neighbor bond energies e p and e m , the respective second nearest neighbor energies

					* p e and * m e and the third nearest
	neighbor energies	** p e and ** m e are allowed for. Eqs. (3a) and (3b) for the activation energies E p and
	E m for dissolution are replaced by Eqs. (8a) and (8b), respectively:	
			E p =	p ν e + * * p ν e + ** ** p ν e		(8a)
	and		E m =	m ν e + * * m ν e + ** ** m ν e	,	(8b)
	where ν ,	* ν , and *		
				e / * p e = p1 ρ , m e / * m e = m1 ρ , p e / ** p e = p2 ρ , and m e / ** m e = m2 ρ
	into Eqs. 8(a) and 8(b) yields		

*

ν are the numbers of first, second, and third nearest neighbor atoms, respectively. Introducing the ratios p

  Allowing for second and third nearest neighbor interactions has the effect of amplifying the difference in the dissolution probabilities brought about by the first nearest neighbor interactions.

							ρ , m1 ρ , p2 ρ , and m2 ρ are related to the normalized pair
	interaction energies Cu j ε , 1<j<3, of copper introduced in Section 2.2 and listed in Table 1:
	p1 ρ = m1 ρ = Cu 1 Cu 2 = 3.36 / ε ε	and p2 ρ = m2 ρ = Cu 1 Cu 3 = 24.9 / ε ε	. Evidently, allowing for the
	interactions with second and third nearest neighbors is equivalent to raising the effective number of
	first nearest neighbors. The additional terms may seem small. p i , which governs the probability of
	dissolving an atom ( Eqs. (3) and (4) ), is, however, lowered by the factors
	exp[ -e p (	ν	* / 3.36	+	ν	** / 24.9	)] and exp[ -e m (	ν	* / 3.36	+	ν	** / 24.9	)] , respectively. For a
	perfect {001}-plane and e p =1.70, this factor amounts to 1/28.5 and for e m =2.21 it is 1/77.8 .

Table 1 :

 1 Radius r j of the j th coordination shell, number c j of neighbors in the j th coordination shell of an atom in a perfect {001}-, {111}-, and {011}-surface, and normalized ( to k B T, T=300K ) pair-interaction energies Cu j

	ε and Ni j ε , 1<j<3, of Cu

http://mc.manuscriptcentral.com/pm-pml Philosophical Magazine & Philosophical Magazine Letters

Acknowledgements

The authors are highly indebted to Drs. S. Divinskiy, Münster, and D. Rönnpagel, Templin, for discussions, to Dr. J. Pesicka, Prague, for taking the TEM images, and to Prof. Dr. L. Chi, Münster, for making her AFM available to them. Financial support by the Deutsche Forschungsgemeinschaft under the contract No. RE 782/12-1 is gratefully acknowledged.