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Abstract   28 

17β-hydroxysteroid dehydrogenase 10 (HSD10) is a mitochondrial enzyme involved in 29 

the degradation pathway of isoleucine and branched-chain fatty acids. The gene 30 

encoding HSD10, HSD17B10, has been reported as one of the few genes that escapes 31 

X-inactivation. We previously studied two females with HSD10 deficiency, one of them 32 

was severely affected and the other presented a mild phenotype. To elucidate why these 33 

two carriers were so differently affected, cDNA analyses were performed. The 34 

HSD17B10 cDNA of eight control cell lines, two hemizygous patients and two carriers 35 

was obtained from cultured fibroblasts, amplified by PCR and sequenced by standard 36 

methods. All HSD17B10 cDNAs were quantified by real-time PCR. In the fibroblasts of 37 

the female who presented with the severe phenotype, only the mutant allele was 38 

identified in the cDNA sequence which was further confirmed by Relative 39 

Quantification (RQ) of HSD17B10 cDNA. This is in agreement with an unfavourable 40 

X-inactivation. The other female, with slight clinical affectation, showed the presence of 41 

both mutant and wild-type alleles in the cDNA sequence, which was confirmed by RQ 42 

of HSD17B10 cDNA in fibroblasts. This is in line with normal X-inactivation and the 43 

expression of both alleles in different cells (functional mosaicism). RQ results of 44 

HSD17B10 cDNA did not differ significantly between unaffected males and females, 45 

which indicates that the genetic doses of mRNA of HSD17B10 was the same in both 46 

sexes. In conclusion, these results suggest that the HSD17B10 gene does not escape X-47 

inactivation as has been previously reported. 48 

 49 
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Introduction 52 

17β-hydroxysteroid dehydrogenase 10 (HSD10) is a mitochondrial enzyme involved in 53 

the degradation pathway of isoleucine and branched-chain fatty acids [1]. This enzyme 54 

has also been found to be involved in the metabolism of sex steroid hormones, 55 

neuroactive steroids and in the detoxification of cytotoxic aldehydes [2,3]. HSD10 56 

deficiency (OMIM 300256) is an X-linked defect caused by mutations in the 57 

HSD17B10 gene. Clinically, the great majority of male patients show normal early 58 

development followed by progressive loss of mental and motor skills [1, 4-11]. 59 

However, three patients were identified that presented symptoms in the first days of life 60 

[1,11]. It has recently been demonstrated that symptoms of these patients are unrelated 61 

to accumulation of metabolites in the isoleucine pathway and that the neurological 62 

handicap can be associated with an imbalance in neurosteroid metabolism [12] or to 63 

defects in general mitochondrial function [13]. In addition, the splice variant c.574C>A 64 

of HSD17B10 gene has been associated with a new syndromic form of X-linked mental 65 

retardation, choreoathetosis and abnormal behaviour [14].  66 

The HSD17B10 gene has been mapped to chromosome Xp11.2 [15] and has been 67 

reported as one of the few genes that escapes X-inactivation [16]. To date, 10 female 68 

patients with HSD10 deficiency have been described presenting a variety of symptoms, 69 

from borderline learning difficulties to psychomotor and speech delay [5,9,11].  We 70 

previously studied two of these females. One of them was heterozygous for the p.N247S 71 

mutation and was severely affected, whereas the other was heterozygous for the 72 

p.P210S mutation and presented a slight clinical affectation [11]. To elucidate why 73 

these two females were so differently affected, we performed HSD17B10 cDNA 74 
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quantitative analysis in both females and in control fibroblasts, the results of which are 75 

reported here. 76 

Materials and Methods 77 

Material 78 

Skin biopsies from patients of two unrelated Spanish families with HSD10 deficiency 79 

were obtained. Family 1: a male patient (1IIM) and his carrier sister (1IIF), both with a 80 

severe phenotype (Figure 1A). Family 2: a male patient (2IIM), with a severe phenotype 81 

and his heterozygous mother (2IF) with a slight clinical affectation (Figure 1A). Both 82 

families have been previously described [11]. Eight cell lines (four males and four 83 

females) from our cell bank were used as controls. 84 

All the samples were obtained according to the declaration of Helsinki and informed 85 

consent was signed by all the patients or their parents. 86 

Molecular studies 87 

cDNAs were obtained from cultured fibroblasts, were amplified by PCR and sequenced 88 

using standard protocols and oligonucleotides designed in-house (sequences available 89 

upon request). All HSD17B10 cDNAs were quantified by the StepOnePlus™ real-time 90 

PCR System using the Comparative Ct (ΔΔCt) method from StepOne software v2.0 91 

(Applied Biosystems, Foster City, CA, USA). The Primer Express 3.0 software 92 

(Applied Biosystems) was used to design two sets of primers and probes to differentiate 93 

wild-type (Wt) and mutant (Mut) alleles corresponding to mutations p.N247S 94 

(c.740A>G) and p.P210S (c.628C>T) of the HSD17B10 gene. We used two different 95 

endogenous controls: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, 96 

PN4310884E) and cyclophilin A (PPIA, PN4310883E) (Applied Biosystems). As 97 

additional control, a mixed pool of four healthy male cDNAs was used in each analysis.  98 
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Gene nucleotide numbering was done according to sequence RefSeq NM_004493 with 99 

+1 as A of the ATG start codon. The ATG codon represents +1 for the amino acid 100 

numbering according to the HSD10 protein sequence NP_004484. 101 

X-inactivation studies 102 

The androgen-receptor locus (AR) methylation assay was performed in genomic DNA 103 

of female carriers, as previously described [17]. If the AR locus was uninformative, 104 

skewing was assessed at FMR1 locus [18]. Briefly, genomic DNA (300ng) was digested 105 

with 5U of HpaII (both for the AR and FMR1 assays) in a total volume of 20µL. For 106 

each sample, an undigested control was prepared. We define the pattern of X 107 

chromosome inactivation as skewed when the inactivation percentage was over 80%. 108 

Statistical methods 109 

Statistical studies for the analyses of Relative Quantification (RQ) in male and female 110 

controls were performed using the non parametric two-related sample test, Wilcoxon 111 

test, with the SPSS® software (version 14.0 for Windows®). 112 

Results and discussion  113 

HSD17B10 has been reported as one of the few genes that escapes X-inactivation [16], 114 

which predicts that female carriers would not be affected. However, 10 females with 115 

HSD10 deficiency have been described so far, presenting different degrees of clinical 116 

affectation, which is in agreement with an X-linked inheritance with different degrees of 117 

X-inactivation [11].  118 

To elucidate if HSD17B10 cDNA doses differed between males and females, we 119 

performed RQ of wild-type (Wt) HSD17B10 cDNA alleles in four female and four male 120 

controls (Figure 2). Results of the Wilcoxon statistical test did not show any significant 121 

difference between the doses in both sexes considering the two endogenous controls (p-122 
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value=0.07). Therefore, these results are in favour of an X-linked disease that does not 123 

escape X-inactivation.  124 

We previously studied two unrelated females with different degrees of clinical 125 

affectation [11]. The female of Family 1 (1IIF), like her brother (1IIM), presented a 126 

severe phenotype with psychomotor and speech delay, and a clear deficiency of HSD10 127 

activity in fibroblasts [11]. When we sequenced her HSD17B10 cDNA it seemed that 128 

only the mutant allele was identified (Figure 1A). Results for the RQ of her HSD17B10 129 

cDNA (Figure 3A) showed that amplification levels of the mutant (Mut) probe were 130 

much higher than those of the Wt probe and very similar to those of her brother (1IIM), 131 

independently of the endogenous control used (Figure 3A). To rule out a Turner 132 

Syndrome chromosome analysis was performed, which resulted in a normal karyotype 133 

(46,XX). Skewed X-inactivation was confirmed by methylation studies. Patient 1IIF 134 

was homozygous for AR locus, consequently this study was uninformative, but FMR1 135 

locus showed a skewed X-inactivation pattern (80/20). These results are in agreement 136 

with an unfavourable X-inactivation effect of HSD17B10 gene in the analysed tissue. In 137 

addition, as the girl was severely affected, it could be expected a similar unfavourable 138 

X-inactivation in other tissues.  139 

The other female (2IF) showed a mild clinical affectation, with learning disabilities and 140 

HSD10 activity in fibroblasts within the control range [11]. HSD17B10 cDNA 141 

sequencing showed the presence of both mutant and wild-type alleles (Figure 1B). This 142 

observation was in agreement with the results of the RQ studies showing similar 143 

HSD17B10 cDNA levels of both Wt and Mut probes, while we were only able to 144 

amplify the Mut probe in her severely affected son (2IIM) (Figure 3B). X-inactivation 145 

analysis showed a random X-inactivation pattern for AR locus in patient 2IF. These 146 
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results, suggest the presence of both HSD17B10 alleles in this female, which is in line 147 

with normal X-inactivation and the expression of both alleles in different cells 148 

(functional mosaicism). In addition, the normal enzymatic activity found in this female 149 

[11] might be due to lack of sensitivity of the enzymatic technique, or maybe there was 150 

enough dose of wild type HSD17B10 mRNA to produce enough HSD10 protein to 151 

obtain normal activity.  152 

However, we did observe that the amplification responses were different for each probe 153 

when they were corrected by the two different endogenous controls (Figure 3). This 154 

could be explained by the low specificity of the probes and by the variability of the 155 

endogenous controls. However, in spite of it, the interpretation of the results did not 156 

change. 157 

To summarise, here we present the results of HSD17B10 cDNA analysis in two female 158 

carriers compared with affected males and controls. The hypothesis that HSD17B10 is 159 

inactivated in one of the X-chromosome is supported by the results in controls, which 160 

showed that doses of HSD17B10 cDNA were the same in both sexes (Figure 2). RQ 161 

cDNA results for one of the females (1IIF), together with the enzymatic studies and the 162 

severe clinical presentation were in agreement with an unfavourable X-inactivation 163 

effect. In addition, RQ cDNA results for the other female (2IF) seem to reflect the 164 

presence of a mosaicism in the studied tissue, which could explain the normal 165 

enzymatic activity and her mild phenotype. Although, we cannot exclude that 166 

differences in disease severity between both female carriers is at least partly due to 167 

differences in the effect of the mutations, as the male patient with the p.N247S mutation 168 

died at age two months whilst the patient with p.P210S mutation is alive at four years of 169 

age. 170 
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In conclusion, our results suggest that HSD17B10 gene does not escape X-inactivation 171 

as previously reported [16]. Heterozygous females showed the classical biochemical 172 

and clinical variability of X-linked diseases due to random X-chromosome inactivation 173 

and the severity of the phenotype will depend on the total dose of mutant mRNA in 174 

different tissues as well as on the severity of the mutation. 175 

 176 
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Titles and legends to figures 290 

Figure 1. Pedigree (1A) and cDNA sequence (1B) of Family 1 and Family 2. 291 

Figure 2. RQ of HSD17B10 Wt probes named as p.N247N and p.P210P, with two 292 

distinct endogenous controls (GAPDH and PPIA) in four males and four females. The 293 

bars represent the mean of four controls and the error bars the mean ± SD. 294 

Figure 3. RQ of HSD17B10 Wt and Mut probes with two distinct endogenous controls 295 

(GAPDH and PPIA) in patient and control cDNAs. The bars of controls represent the 296 

mean of eight controls (4 males + 4 females), performed in triplicate. The bars of 297 

patients represent the mean of triplicate measurements. The error bars represent the 298 

mean ± SD. 299 
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