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Diffusion approximation of a multilocus model

with assortative mating

A. M. Etheridge∗ S. Lemaire†

Abstract

To understand the effect of non-random mating on the genetic evolution of a population,

we consider a finite population in which each individual is defined by a sequence of n diallelic

loci. We assume that the population evolves according to a Moran model with assortative

mating, recombination and mutation. Under weak assortative mating, loose linkage and

low mutation rates, we obtain a class of diffusion approximations for allelic frequencies.

We present some features of the limiting diffusions (in particular their boundary behaviour

and conditions under which the allelic frequencies at different loci evolve independently).

If mutation rates are strictly positive then the limiting diffusions are reversible and, under

some assumptions, the critical points of the stationary density can be characterised.
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1 Introduction

The aim of this paper is to construct and analyse a diffusion approximation for a diallelic

multilocus reproduction model with assortative mating, recombination and mutation. Our

starting point is a Moran model of reproduction for a monoecious (every individual has both

male and female sexual organs) and haploid (each cell has one copy of each chromosome)

population of size N . This will be an overlapping generation model in which reproduction

takes place at discrete times 1, 2, . . . Although it would be more usual in a Moran model to

take exponentially distributed time intervals, this will not affect the diffusion approximation.

In each time step, a mating event occurs between two individuals I1 and I2; I1 is replaced by

an offspring, so that the size of the population is kept constant. The genotype of the offspring

is obtained from those of I1 and I2 through a process of recombination followed by mutation.

In a random mating model, the two individuals I1 and I2 would be chosen at random from the

population. To study the effects of non-random (assortative) mating on the genetic evolution

of the population, we assume that the first individual, I1, is still chosen at random, but the

second individual, I2, is sampled with a probability that depends on its genotype and on the

genotype of the first selected individual. The genotype of an individual is composed of a finite

number, n, of loci with two alleles per locus denoted by 0 and 1. To characterise the assortative

mating, we introduce a real parameter si,j for every pair of genotypes (i, j). In the draw of I2

from the population, an individual with genotype j has a probability proportional to 1+ 1
N si,j

of being selected if i is the genotype of I1.

Diffusion approximations for different selection-mutation models have been studied exten-

sively in the one-locus case (see, for example, Ethier & Kurtz 1986, Chapter 10). The coef-

ficients 1 + 1
N si,j of our model play the same rôle as the (viability) selection coefficients in a

Wright-Fisher model for a diploid population. Since they depend on the types of both par-

ents they result in nonlinear (frequency dependent) selection (see §4.4). Ethier & Nagylaki

(1989) study two-locus Wright-Fisher models for a panmictic, monoecious, diploid population

of constant size under various assumptions on selection and recombination. Depending on the

strength of the linkage between the two loci, they obtain different types of diffusion approxima-

tion: limiting diffusions for gametic frequencies if the recombination fraction multiplied by the

population size tends to a constant as the size tends to +∞ (so-called tight linkage) and limit-

ing diffusions for allelic frequencies if the recombination fraction multiplied by the population

size tends to +∞ (so-called loose linkage). To our knowledge, this work has not been extended
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to more general multilocus models with recombination and assortative mating. Nevertheless,

there is a large body of work on multilocus genetic systems. Most theoretical investigations as-

sume that the size of the population is infinite, so that the random genetic drift can be ignored;

the evolution of genotypic frequencies is then described by recursive equations or by differential

equations (see Christiansen 2000 and references within). A comparison between infinite and

finite population models with random mating is presented in Baake & Herms (2008). A re-

view of several simulation studies can be found in the introduction of Devaux & Lande (2008).

Among these, the ‘species formation model’, introduced by Higgs & Derrida (1992) inspired

our work. In their model, mating is only possible between individuals with sufficiently similar

genotypes, so that from the point of view of reproduction the population is split into isolated

subgroups. Their simulations display a succession of divisions and extinctions of subgroups. In

this paper we generalise their assortative mating criterion to one defined through the family of

parameters si,j and provide a general theoretical treatment.

To give an overview of our results, we first consider a particular pattern of assortative

mating. Let us assume that the frequency of matings between two individuals of types i

and j depends only on the number of loci at which their allelic types differ (and not on the

positions of those loci along the genome). We then have a model with n + 1 assortment

parameters, denoted by s0, . . . , sn, obtained by setting si,j = sk if the genotypes i, j are

different at exactly k loci (regardless of their positions). This mating criterion will be called

the Hamming criterion in what follows. A decreasing sequence s0 ≥ s1 ≥ . . . ≥ sn will

describe a positive assortative mating (individuals mate preferentially with individuals that

are similar). An increasing sequence s0 ≤ s1 ≤ . . . ≤ sn will describe a negative assortative

mating (individuals mate preferentially with individuals that are dissimilar).

We establish a weak convergence of the Markov chain describing the genetic evolution of the

population as its size tends to +∞, under a hypothesis on the recombination distribution that

corresponds to loose linkage and under the assumption that mutations occur independently at

each locus with the same rates: at each locus, the rate of mutation of a type 0 allele to a type

1 allele is µ0

N and the rate of mutation of a type 1 to a type 0 is µ1

N . In the limit, we obtain a

multi-dimensional diffusion for the allelic frequencies.

Let us describe some features of the limiting diffusion. If s1−s0 = s2−s1 = . . . = sn−sn−1

then the frequencies of the 0-allele at each locus evolve according to independent Wright-Fisher

diffusions with mutation rates µ0 and µ1 and symmetric balancing selection with strength
1
2(s1 − s0); that is they solve the following stochastic differential equation:
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dxt =
√
xt(1− xt)dWt +

(
µ1(1 − xt) − µ0xt + (s1 − s0)(1/2 − xt)xt(1 − xt)

)
dt

where (Wt)t≥0 is a standard Brownian motion. In all other cases, the allelic frequencies

at different loci no longer evolve independently. Instead the vector of 0-allelic frequencies

(xt(1), . . . , xt(n)) is governed by the stochastic differential equation:

dxt(i) =

n∑

i=1

√
xt(i)(1 − xt(i))dWt(i)

+
(
µ1(1− xt(i))− µ0xt(i) + (1/2 − xt(i))xt(i)(1 − xt(i))P (x̂t

(i))
)
dt, (1.1)

where (Wt(1))t≥0,. . . , (Wt(n))t≥0 denote n independent standard Brownian motions and P (x̂(i))

is a symmetric polynomial function of the n − 1 variables x(j)(1 − x(j)), j ∈ {1, . . . , n} \ {i}
whose coefficients depend only on the parameters s1−s0, . . . , sn−sn−1. More precisely, P (x̂(i))

is an increasing function of each parameter s1 − s0, . . . , sn − sn−1. When the mutation rates

µ0 and µ1 are strictly positive, the limiting diffusion has a reversible stationary measure, the

density of which is explicit. When the two mutation rates are equal to µ > 0, we describe

the properties of the critical points of the density of the stationary measure. In particular, we

find sufficient conditions on µ and s1 − s0, . . . , sn − sn−1 for the state where the frequencies of

the two alleles are equal to 1/2 at each locus to be a global maximum and for the stationary

measure to have 2n modes. These sufficient conditions generalise the independent case. For

example, when µ > 1/2 they imply the following results:

1. if sℓ − sℓ−1 ≥ −(8µ− 4) for every ℓ ∈ {1, . . . , n}, then (1/2, . . . , 1/2) is the only mode of

the stationary measure;

2. if sn − sn−1 ≤ . . . ≤ s1 − s0 < −(8µ− 4) then the stationary measure has 2n modes.

These results can be extended to other patterns of non-randommating. In fact, we need only

make the following assumption on the parameters si,j: the value of the assortment parameter

si,j between two genotypes i and j is assumed to be the same as the value of sj,i and to

depend only on the loci at which i and j differ. In particular this implies that the value of

si,i is the same for every genotype i. This generalises the Hamming criterion and allows us

to consider more realistic situations in which the influence on mating choice differs between

loci. It transpires that, under these assumptions, the limiting diffusion does not depend on

the whole family of assortment parameters, but only on one coefficient per subgroup of loci

L. We denote this coefficient mL(s). It is the mean of the assortment parameters for pairs of
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genotypes that carry different alleles on each locus in L and identical alleles on all other loci.

The stochastic differential equation followed by the limiting diffusion can still be described by

equation (1.1) if the symmetric polynomial term P (x̂(i)) in the drift of the i-th coordinate is

replaced by a non-symmetric polynomial term Pi(x̂
(i)) in the coefficients of which the quantities

mL∪{i}(s)−mL(s) for L ⊂ {1, . . . , n} replace s1 − s0,. . . , sn − sn−1.

The rest of the paper is organized as follows. In §2, we present our multilocus Moran model.

In §3, we describe the diffusion approximation for the one-locus model and compare it with a

diffusion approximation for a population undergoing mutation and ‘balancing selection’. We

recall some well-known properties of this diffusion, in particular the boundary behaviour and

the form of the stationary measure, for later comparison with the multilocus case. In §4, we
state our main result concerning convergence to a diffusion approximation in the multilocus

case (Theorem 4.1) and give two equivalent expressions for the limiting diffusion. We then

compare with the two-locus diffusion approximation obtained in Ethier & Nagylaki (1989).

The proof of Theorem 4.1 is postponed until §7. In §5, we derive some general properties of

the limiting diffusion. §6 is devoted to the study of the density of the stationary measure. An

appendix collects some technical results used in the description of the limiting diffusion.

2 The discrete model

This section is devoted to a detailed presentation of the individual based model. The as-

sumptions on assortative mating, recombination and mutation that we will require to establish

a diffusion approximation for the allelic frequencies are discussed at the end of the section.

2.1 Description of the model

We consider a monoecious and haploid population of size N where the type of each in-

dividual is described by a sequence of n diallelic loci. For the sake of brevity, let the set

of loci be identified with the set of integers J1 ;nK := {1, . . . , n} and let the two alleles at

each locus be labelled 0 and 1. The type of an individual is then identified by an n-tuple

k := (k1, ..., kn) ∈ {0, 1}n. Let A = {0, 1}n be the set of possible types. The proportion

of individuals of type k at time t ∈ IN will be denoted by Z
(N)
t (k) so that the composition

of the population is described by the set Z
(N)
t = {Z(N)

t (k),k ∈ A}. At each unit of time

the population evolves under the effect of assortative mating, recombination and mutation as

follows.
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Assortative mating: at each time t, two individuals are sampled from the population in

such a way that:

1. the first individual has probability Z
(N)
t (i) of being of type i;

2. given that the first individual chosen is of type i, the probability that the second individual

is of type j is (
1 + s

(N)
i,j

)
Z

(N)
t (j)

∑
k∈A

(
1 + s

(N)
i,k

)
Z

(N)
t (k)

,

where the assortment parameters {s(N)
i,j , i, j ∈ A} are fixed nonnegative real numbers.

The population at time t+1 is obtained by replacing the first chosen individual with an offspring

whose type is the result of the following process of recombination followed by mutation.

Recombination: for each subset L of J1 ;nK, let rL denote the probability that the offspring

inherits the genes of the first chosen parent at loci ℓ ∈ L and the genes of the second parent

at loci ℓ 6∈ L. The family of parameters {rL, L ⊂ J1 ;nK} defines a probability distribution,

called the recombination distribution, on the power set P(J1 ;nK) (it was first introduced in this

manner by Geiringer (1944) to describe the recombination-segregation of gametes in a diploid

population). It is natural to assume that the two parents contribute symmetrically to the

offspring genotype, that is:

Assumption H1: for each subset L of J1 ;nK, rL = rL̄ where L̄ denotes the complementary

set of loci, J1 ;nK \ L.
With this notation, the probability that, before mutation, the offspring of a pair of individ-

uals of types (i, j) is of type k is

q((i, j);k) =
∑

L⊂J1;nK

rL 1I{k=(i|L,j|L̄)}
.

Let us express some classical examples of recombination distributions in this notation:

Examples 2.1.

1. r∅ = rJ1;nK =
1
2 (no recombination, also called absolute linkage)

2. rI = 2−n for each I ∈ P(J1 ;nK) (free recombination)
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3. rJ1;xK = rJx+1;nK = r
2(n−1) for 1 ≤ x ≤ n − 1 and r∅ = rJ1;nK = 1/2(1 − r) (at most

one exchange between the sequence of loci which occurs with equal probability at each

position).

Finally we superpose mutation.

Mutation: we assume that mutations occur independently and at the same rate at each

locus: µ
(N)
1 will denote the probability that an allele 1 at a given locus of the offspring changes

into allele 0 and µ
(N)
0 the probability of the reverse mutation. The probability that the mutation

process changes a type k into a type ℓ is:

µ(N)(k, ℓ) :=
n∏

i=1

(µ
(N)
ki

)|ℓi−ki|(1− µ
(N)
ki

)1−|ℓi−ki|.

2.2 Expression for the transition probabilities

It is now elementary to write down an expression for the transition probabilities of our

model. In the notation above, if z = {z(k),k ∈ A} describes the proportion of individuals of

each type in the population at a given time, then the probability that, in the next time step,

the number of individuals of type j increases by one and the number of individuals of type i

decreases by one is

fN (z, i, j) :=
∑

k,ℓ∈A

z(i)z(k)w(N)(z, i,k)q((i,k); ℓ)µ(N)(ℓ, j)

where

w(N)(z, i,k) =
1 + s

(N)
i,k∑

ℓ∈A(1 + s
(N)
i,ℓ )z(ℓ)

.

2.3 Assumptions on assortative mating, recombination and mutation

In order to obtain a diffusion approximation for a large population, we assume that mutation

and assortment parameters are both O(N−1), so we set

Assumption H2: µ
(N)
ǫ = µǫ

N for ǫ ∈ {0, 1} and s
(N)
i,j =

si,j
N for i, j ∈ A.

Just as in the two-locus case studied by Ethier & Nagylaki (1989), we can expect diffusion

approximations to exist under two quite different assumptions on recombination, correspond-

ing to tight and loose linkage. Here we focus on loose linkage. More precisely, we assume

that the recombination distribution does not depend on the size of the population and that

recombination can occur between any pair of loci:
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Assumption H3: For every I ∈ P(J1 ;nK), rI does not depend on N and for any distinct

integers h, k ∈ J1 ;nK, there exists a subset I ∈ P(J1 ;nK) such that h ∈ I, k 6∈ I and rI > 0.

This assumption is satisfied for the last two examples of recombination distribution pre-

sented in Example 2.1, but not in the absolute linkage case. In infinite population size multilo-

cus models with random mating, and without selection, this condition is known to ensure that

in time the genotype frequencies will converge to linkage equilibrium, where they are products

of their respective marginal allelic frequencies (see Geiringer 1944 and Nagylaki 1993 for a

study of the evolution of multilocus linkage disequilibria under weak selection).

In order that the generator of the limiting diffusion has a tractable form, we shall make

two further assumptions on the family of assortment coefficients s = {si,j, (i, j) ∈ A2}:
Assumption H4: for every (i, j) ∈ A2,

1. si,j = sj,i

2. the value of si,j depends only on the set of loci k at which ik = 0 and jk = 1 and on the

set of loci ℓ at which iℓ = 1 and jℓ = 0.

These conditions mean that the probability of mating between two individuals at a fixed

time depends only on the difference between their types. In particular, two individuals of

the same type will have a probability of mating that does not depend on their common type:

si,i = sj,j for every i, j ∈ A. In the one-locus case, this assumption means that the model

distinguishes only two classes of pairs of individuals since s0,1 = s1,0 and s0,0 = s1,1.

In the two-locus case, this assumption leads to a model with five assortment parameters:

• one parameter, s00,00 = s11,11 = s10,10 = s01,01, for pairs of individuals having the same

genotype,

• one parameter s00,10 = s10,00 = s11,01 = s01,11 for pairs of individuals whose genotypes

only differ on the first locus,

• one parameter, s00,01 = s01,00 = s11,10 = s10,11, for pairs of individuals whose genotypes

only differ on the second locus,

• two parameters s01,10 = s10,01 and s00,11 = s11,00 for pairs of individuals whose genotypes

differ on the two loci.
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To describe positive or negative assortative mating we have to choose how to quantify

similarities between two types. Let us present two criteria that provide assortment parameters

for which assumption H4 is fulfilled:

1. Hamming Criterion. One simple measure to quantify similarities between two types is

the number of loci with distinct alleles: si,j will be defined as nonnegative reals depending

only on the Hamming distance between i and j denoted by dh(i, j) :=
n∑

ℓ=1

|iℓ − jℓ|. A

positive assortative mating will be described by a sequence of n + 1 nonnegative reals

s0 ≥ s1 ≥ . . . ≥ sn by setting si,j = sdh(i,j) for every i, j ∈ A. This criterion will be

called Hamming criterion.

2. Additive Criterion. If we assume that the assortment is based on a phenotypic trait

which is determined by the n genes whose effects are similar and additive, then a conve-

nient measure of the difference between individuals of type i and j is

da(i, j) := |
n∑

ℓ=1

(iℓ − jℓ)|. A positive assortative mating will be described by a sequence

of n+ 1 nonnegative reals s0 ≥ s1 ≥ . . . ≥ sn by setting si,j = sda(i,j) for every i, j ∈ A.

This criterion will be called additive criterion.

The assortative mating in the species formation model of Higgs & Derrida (1992) is a special

case of the Hamming criterion. The additive criterion is widely used in models in which

assortative mating is determined by an additive genetic trait. For example, Devaux & Lande

(2008) use it to investigate speciation in flowering plants due to assortative mating determined

by flowering time. Flowers can only be pollinated by other flowers that are open at the same

time. Modelling flowering time as an additive trait, they observe an effect that is qualitatively

similar to that observed in the simulations of Higgs & Derrida (1992) for the Hamming criterion,

namely continuous creation of reproductively isolated subgroups.

With the Hamming and additive criteria, every locus is assumed to have an identical posi-

tive or negative influence on the assortment. As we have defined a general family of assortment

parameters, it is possible to consider more complex situations. For instance, we can take into

account that some loci have a greater influence on the mating choice than others by dividing the

set of loci into two disjoint subgroups G1 and G2; we introduce two sets of assortment parame-

ters s(1) and s(2) that satisfy assumption H4 for the subgroups of loci G1 and G2 respectively. If

we assume that the effects of the two subgroups are additive we set si,j = s
(1)
i|G1

,j|G1

+ s
(2)
i|G2

,j|G2

for every i, j ∈ A. This defines a set of assortment parameters that satisfies assumption H4.
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More generally, any set of assortment parameters defined as a function of s(1) and s(2) satisfies

assumption H4.

3 The one-locus diffusion approximation

Before studying the multilocus case, for later comparison, in this section we record some

properties of the one-locus model.

3.1 The generator of the one-locus diffusion

In the case of one locus (n = 1), under assumption H2, the frequency of 0-alleles satisfies:

IEz[Z
(N)
1 (0) − z] =

1

N2

(
(1− z)µ1 − zµ0

+
1

2
z(1− z)((s1,0 − s1,1)(1 − z)− (s0,1 − s0,0)z)

)
+O(1/N3)

IEz[(Z
(N)
1 (0)− z)2] =

1

N2
z(1− z) +O(1/N3)

IEz[(Z
(N)
1 (0)− z)4] =O(1/N4).

Therefore the distribution of the frequency of 0-alleles at time [N2t] is approximately governed,

when N is large, by a diffusion with generator:

G1,s =
1

2
x(1− x)

d2

dx2
+
(
(1− x)µ1 − xµ0+

1/2x(1 − x)((s1,0 − s1,1)(1− x)− (s0,1 − s0,0)x)
) d
dx
. (3.1)

If we assume that s satisfies assumption H4, that is s0,0 = s1,1 and s0,1 = s1,0, and if we denote

their common values by s0 and s1 respectively, then the drift has a simpler form and we obtain

G1,s =
1

2
x(1− x)

d2

dx2
+
(
(1− x)µ1 − xµ0 + (s1 − s0)(1/2 − x)x(1− x)

) d
dx
.

Remark 3.1. This diffusion can also be obtained as an approximation of a diploid model with

random mating, mutation and weak selection in favour of homozygosity (when s0 − s1 > 0) or

in favour of heterozygosity (when s0−s1 < 0) (see, for example, Ethier & Kurtz 1986, Chapter

10).
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3.2 Properties of the one-locus diffusion

Stationary measure. If µ0 and µ1 are strictly positive, this diffusion has a reversible sta-

tionary measure with density

gµ,s(x) = Cµ,sx
2µ1−1(1− x)2µ0−1 exp

(
− 1/2((s1,0 − s1,1)(1− x)2 + (s0,1 − s0,0)x

2)
)

with respect to Lebesgue measure on [0, 1] where the constant Cµ,s is chosen so that∫ 1

0
gµ,s(x)dx = 1. This is plotted, for various parameter values, in Fig. 1 under the assumptions

µ1 = µ0 = µ, s0,0 = s1,1 = s0 and s0,1 = s1,0 = s1.
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Figure 1: Representation of the invariant density gµ,s for the one-locus diffusion when the two

mutations rates µ1 = µ0 = µ, s0,0 = s1,1 = s0 and s0,1 = s1,0 = s1. In the figure on the left,

µ > 1/2 and matings between individuals of the same allelic type are favoured. The density is

bimodal if and only if s0 − s1 > 8µ − 4. In the figure on the right, 0 < µ < 1/2 and matings

between individuals of different allelic types are favoured. The density tends to +∞ at the

boundaries and has a global minimum at 1/2 if and only if s1 − s0 ≤ 4− 8µ.

Boundary behaviour. According to the Feller boundary classification for one-dimensional

diffusions (see e.g. Ethier & Kurtz 1986):

(i) if µ1 = 0 then 0 is an absorbing state and the diffusion exits from ]0, 1[ in a finite time

almost surely;

(ii) if µ1 ≥ 1/2 then 0 is an entrance boundary (started from a point in ]0, 1[ the diffusion

will not reach 0 in finite time, but the process started from 0 is well-defined);
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(iii) if 0 < µ1 < 1/2 then 0 is a regular boundary (starting from a point z0 ∈]0, 1[ the diffusion
has a positive probability of reaching 0 before any point b ∈]z0, 1] in a finite time and the

diffusion started from 0 is well-defined);

with the obvious symmetric definitions at 1.

4 Convergence to a diffusion in the multilocus case

In the case of several loci, under assumptions H2 and H3, a Taylor expansion shows that

the drift IE[Z
(N)
t+1 (i) − Z

(N)
t (i)|Z(N)

t = z] is of order 1
N2 only inside a manifold Wn called the

Wright manifold or the linkage-equilibrium manifold :

Wn :=

{
z ∈ [0, 1]2

n

:
∑

i∈A

z(i) = 1 and z(i) = z1(i1) · · · zn(in) ∀i ∈ A
}

where zj(x) =
∑

k∈{0,1}n−1 z(k1, . . . , kj−1, x, kj+1, . . . , kn) denotes the frequency of individuals

having the allele x at the j-th locus. Outside this manifold, the drift pushes the process towards

the Wright manifold at an exponential speed and so one can obtain a diffusion approximation

for the allelic frequencies at each locus by applying Theorem 3.3 of Ethier & Nagylaki (1980).

Before giving a precise statement of the convergence result (Theorem 4.1), let us introduce

some notation in which to express the parameters of the limiting diffusion.

4.1 Mean assortment parameters

For a subset L of loci, consider the set of pairs of genotypes that differ at each locus ℓ ∈ L
and are equal at each locus ℓ /∈ L:

FL =
{
(i, j) ∈ A2 : iu = 1− ju ∀u ∈ L and iu = ju ∀u ∈ L̄

}
.

Let mL(s) denote the mean value of the assortment parameters for all pairs in this set FL:

mL(s) = 2−n
∑

(i,j)∈FL

si,j.

Examples 4.1.

1. In the two-locus case,

m∅(s) =
1

4
(s00,00 + s01,01 + s10,10 + s11,11),

m{1}(s) =
1

4
(s00,10 + s10,00 + s01,11 + s11,01),
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m{2}(s) =
1

4
(s00,01 + s01,00 + s11,10 + s10,11).

In each of these expressions the four coefficients are equal by assumption H4.

m{1,2}(s) =
1

4
(s00,11 + s11,00 + s01,10 + s10,01).

In this expression the first (resp. last) two coefficients are equal by H4.

2. With the Hamming criterion, mL(s) = s|L| for every L ⊂ J1 ;nK, where |L| denotes the

number of loci in L.

3. With the additive criterion, m∅(s) = s0, m{ℓ}(s) = s1 ∀ℓ ∈ J1 ;nK and more generally

mL(s) = 2−|L|
∑|L|

k=0

(|L|
k

)
s|2k−|L|| for every L ⊂ J1 ;nK.

4.2 Convergence to a diffusion

The following theorem provides convergence to a diffusion in the n-locus case. The proof

is postponed to §7.

Theorem 4.1. For a nonempty subset L of {1, . . . , n},

(i) let X
(N)
t (L) =

∑
j∈A, jL≡0 Z

(N)
t (j) denote the proportion of individuals having the allele

0 on the i-th locus for all i ∈ L at time t;

(ii) let Y
(N)
t (L) =

∏
i∈LX

(N)
t ({i}) −X

(N)
t (L) for |L| ≥ 2 describe the linkage disequilibrium

between the loci in L at time t.

Let us define X(N) and Y (N) as processes on E = [0, 1]n and F = [−1, 1]2
n−n−1 respectively by

setting

X
(N)
t =

(
X

(N)
t ({1}), ...,X(N)

t ({n})
)
,

and

Y
(N)
t =

{
Y

(N)
t (L), L ⊂ J1 ;nK such that |L| ≥ 2

}
for t ≥ 0.

Assume that hypotheses H1, H2, H3 and H4 hold:

(a) For i ∈ J1 ;nK let Pi,s(x) denote a polynomial function in the n − 1 variables xk(1 − xk)

for k ∈ J1 ;nK \ {i}. The operator

Gn,s =
1

2

n∑

i=1

xi(1− xi)
∂2

∂xi
∂xi

+
n∑

i=1

(
(1− xi)µ1 − xiµ0 + (1/2 − xi)xi(1− xi)Pi,s(x)

) ∂

∂xi

(4.1)
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with domain D(Gn) = C2(E) is closable in C(E) and its closure is the generator of a

strongly continuous semigroup of contractions.

(b) If X
(N)
0 converges in distribution in E, then (X

(N)
[N2t]

)t converges in distribution to a dif-

fusion process X in DE([0,∞)) with generator Gn where the polynomial function Pi,s(x)

has the following expression:

Pi,s(x) =
∑

A∈P(J1;nK\{i})

(
mA∪{i}(s)−mA(s)

)

∏

k∈A

(2xk(1− xk))
∏

ℓ∈J1;nK\{A∪{i}}

(1− 2xℓ(1− xℓ)). (4.2)

(c) For every positive sequence (tN )N that converges to +∞, Y
(N)
[NtN ] converges in distribution

to 0.

Remark 4.1.

1. The recombination distribution (rI)I⊂J1;nK does not appear in the expression for the lim-

iting diffusion. Nevertheless, the proof of Theorem 4.1 will show that it has an influence

on the speed of convergence of the linkage disequilibrium to 0.

2. The limiting diffusion depends on the assortment parameters only via the quantities

mA(s) for every A ⊂ J1 ;nK. A set of assortment parameters for which

mA∪{i}(s)−mA(s) < 0 for every i ∈ J1 ;nK and A ⊂ J1 ;nK \ {i}

favours homozygous mating with respect to the genotype at the i-th locus. It is therefore

no surprise that by increasing the value of mA∪{i}(s) −mA(s) for a fixed subset A, we

increase the value of the i-th coordinate of the drift at a point x for which xi < 1/2 and

decrease it at a point x for which xi > 1/2.

4.3 Another expression for the polynomial term Pi,s(x) of the drift

An expansion of the polynomial function Pi,s(x) in terms of the variables xk(1 − xk),

k ∈ J1 ;nK \ {i} yields the following expression:

Pi,s(x) =
∑

L∈P(J1;nK\{i})

αi,L(s)
∏

ℓ∈L

xℓ(1− xℓ) (4.3)

with

αi,L(s) = 2|L|
∑

A⊂L

(−1)|L|−|A|(mA∪{i}(s)−mA(s)). (4.4)
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The details of the proof are provided in §7.2.
The coefficients αi,L(s) can be compactly expressed using difference operators. Let us

introduce some notation: for a function f defined on the subsets of a finite set E and for an

element i of E, we denote by δi[f ] the function on P(E) defined by

δi[f ](A) = f(A ∪ {i})− f(A), ∀A ∈ P(E).

Since δi ◦ δj = δj ◦ δi for every i, j ∈ E, we can, more generally, introduce a difference operator

δB for each subset B ∈ P(E) by setting δ∅ = Id, and δB = δb1 ◦ · · · ◦ δbr if B = {b1, . . . , br}. A
proof by induction on |B| provides the following formula for δB :

δB [f ](A) =
∑

J⊂B

(−1)|B|−|J |f(A ∪ J) ∀A ⊂ E. (4.5)

In this notation, for every A ⊂ J1 ;nK \ {i},

mA∪{i}(s)−mA(s) = δi[m(s)](A) and αi,A(s) = 2|A|δA∪{i}[m(s)](∅). (4.6)

If, for each subset A of loci, the coefficient mA(s) depends only on the number of loci in

A, then it follows from expression (4.3) that Pi,s(x) is a symmetric polynomial function, the

coefficients of which do not depend on i. This is the case for instance with the Hamming and

additive criteria (see Example 4.1 for the corresponding expressions for mA(s)). Let us give

the expanded form of Pi,s(x) for the Hamming criterion:

Pi,s(x) =
n−1∑

ℓ=0

α̃ℓ

∑

L⊂J1;nK\{i}, |L|=ℓ

∏

ℓ∈L

xℓ(1− xℓ). (4.7)

where α̃k(s) = 2k
∑k

ℓ=0(−1)ℓ
(k
ℓ

)
(sk−ℓ+1 − sk−ℓ).

As in the general case, the coefficient α̃k(s) has a compact expression in terms of difference

operators. Let δ(1) denote the forward difference operators: δ(1)[s](i) = si+1 − si for ev-

ery i ∈ J0 ;n− 1K. The forward difference operators of higher orders are defined iteratively:

δ(k+1)[s] = δ(k)◦δ(1)[s] for k ∈ IN∗. With this notation, α̃k(s) = 2kδ(k+1)[s](0) for k ∈ J0 ;n − 1K.

4.4 Comparison with the two-locus Wright-Fisher diffusion

Ethier & Nagylaki (1989) established convergence results for a general multiallelic two-locus

Wright-Fisher model of a panmictic, monoecious, diploid population of N individuals under-

going mutation and selection. The diploid population is identified with a haploid population

of size 2N in which diploids are formed by fusing the haploids into pairs at random. In their
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model, a gamete is described by a pair i = (i1, i2) ∈ J1 ; r1K× J1 ; r2K where r1 is the number of

alleles in the first locus and r2 is the number of alleles in the second locus. The parameters of

their model are:

1. the viability of a pair of gametes (i, j) denoted by wN,i,j = 1−σN,i,j with the assumption

σN,i,j = σN,j,i and σN,i,i = 0 for every i, j ∈ J1 ; r1K × J1 ; r2K;

2. the recombination fraction cN ;

3. the probability (2N)−1ν
(i)
j,k that the j-th allele in the i-th locus mutates to the k-th allele.

They studied the diffusion approximation under several assumptions on selection and recombi-

nation coefficients. In the case of weak selection (2NσN,i,j converges to a real number denoted

by σi,j for every i, j) and loose linkage (cN converges to a finite limit and NcN tends to +∞)

they obtained a limiting diffusion for the allelic frequencies (p1, . . . , pr1−1, q1, . . . , qr2−1) of the

alleles 1, . . . , r1 − 1 in the first locus and the alleles 1, . . . , r2 − 1 in the second locus. In the

case of two alleles at each locus (r1 = r2 = 2), the generator of the limiting diffusion is

L =
1

2
p1(1− p1)∂

2
p1,p1 +

1

2
q1(1− q1)∂

2
q1,q1 + b1(p1, q1)∂p1 + b2(p1, q1)∂q1

with

b1(p1, q1) =ν
(1)
2,1(1− p1)− ν

(1)
1,2p1

− p1(1− p1)(1− 2p1)
(
(σ12,21 + σ11,22)q1(1− q1) + σ11,21q

2
1 + σ12,22(1− q1)

2
)

− 2p1(1− p1)q1(1− q1)
(
σ11,12p1 − σ21,22(1− p1)

)
.

b2(p1, q1) =ν
(2)
2,1(1− q1)− ν

(2)
1,2q1

− q1(1− q1)(1− 2q1)
(
(σ12,21 + σ11,22)p1(1− p1) + σ11,12p

2
1 + σ21,22(1− p1)

2
)

− 2q1(1− q1)p1(1− p1)
(
σ11,21q1 − σ12,22(1− q1)

)
.

Accordingly, the generator L coincides with G2,s if we assume

(a) that the mutation rates ν
(i)
j,k do not depend on the locus i and set ν

(i)
1,2 = µ0 and ν

(i)
2,1 = µ1,

(b) that the coefficients of selection satisfy σ11,21 = σ12,22 and σ11,12 = σ21,22 (second condi-

tion of assumption H4)

and set σi,j = −1
2si−1,j−1, for every i, j ∈ {1, 2}2 (with the notation 1 = (1, . . . , 1)).

This comparison shows that the assortment parameters in our model play the same rôle as the

viability coefficients in a diploid Wright-Fisher model with weak selection.
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5 Description of the limiting diffusion

This section collects some properties that can be deduced from the form of the generator,

Gn,s, of the limiting diffusion.

5.1 The set of generators arising from the model

Lemma 5.1. Any generator on C2([0, 1]n) of the form

1

2

n∑

i=1

xi(1− xi)
∂2

∂xi
∂xi

+

n∑

i=1

(
(1− xi)µ1 − xiµ0 + (1/2 − xi)xi(1− xi)

∑

L∈P(J1;nK\{i})

αL∪{i}

∏

k∈L

xk(1− xk)
) ∂

∂xi

,

where {αA, A ⊂ J1 ;nK, A 6= ∅} is a family of real numbers, can be interpreted as the generator

of the diffusion approximation of an n-locus Moran model as defined in §2.

Proof. We may, for instance, take the following set of assortment parameters {si,j , i, j ∈ A}:

• si,i = 0 for every i ∈ A.

• si,j =
∑

B⊂L, |B|≥1 2
−|B|+1αB for every (i, j) ∈ FL and for every nonempty subset L of

J1 ;nK.

Let us check that this family satisfies 2|L|−1δL[m(s)](∅) = αL for every nonempty subset L of

J1 ;nK. First, mL(s) =
∑

B⊂L, |B|≥1 2
−|B|+1αB . For every i ∈ J1 ;nK and L ⊂ J1 ;nK \ {i}

δL∪{i}[m(s)](∅) =
∑

A⊂L

(−1)|L|−|A|(mA∪{i}(s)−mA(s)) =
∑

A⊂L

(−1)|L|−|A|
∑

B⊂A

2−|B|αB∪{i}.

We invert the double sum and use the formula
∑

A⊂L, s. t. B⊂A

(−1)|L|−|A| = 1I{L=B} to obtain:

δL∪{i}[m(s)](∅) =
∑

B⊂L

2−|B|αB∪{i} 1I{L=B} = 2−|L|αL∪{i}.

In particular, the n-locus Moran model with assortative mating based on the Hamming

criterion allows us to obtain, through diffusion approximation, any generator on C2([0, 1]n) of
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the form:

1

2

n∑

i=1

xi(1− xi)
∂2

∂xi
∂xi

+

n∑

i=1

(
(1− xi)µ1 − xiµ0 + (1/2 − xi)xi(1− xi)

n−1∑

ℓ=0

αℓ

∑

L⊂J1;nK\{i}
s.t.|L|=ℓ

∏

k∈L

xk(1− xk)
) ∂

∂xi

.

To see this, given any sequence α0, . . . , αn−1 of n reals, we have to find n + 1 real numbers

s0, . . . , sn such that αℓ = 2ℓδ(ℓ+1)[s](0). These are given by the inversion formula (A.3) in the

Appendix, from which we see that we may set s0 = 0 and sk =
∑k

ℓ=1 2
1−ℓ
(k
ℓ

)
αℓ−1 for k ∈ J1 ;nK.

5.2 The generator for two groups of loci

Let us consider a partition of the set of loci into two subgroups, G1 = J1 ; kK and

G2 = Jk + 1 ;nK, say. We introduce two sets of assortment parameters s(1) and s(2) depend-

ing on subgroups of loci from G1 and from G2 respectively and satisfying assumption H4.

If we assume that the assortment parameter between two individuals of type i and j is

si,j = s
(1)
i|G1

,j|G1

+ s
(2)
i|G2

,j|G2

for every i, j ∈ A, then mL(s) = mL∩G1
(s(1)) + mL∩G2

(s(2)) for

every subset L of J1 ;nK. This implies that the first k coordinates of diffusion limit evolve

independently of the last n− k coordinates and that the generator of the diffusion limit is:

Gn,s = Gk,s1 ⊗ Gn−k,s2 .

Therefore, with these choices we can reduce our study to subgroups of loci having the same

influence on assortment.

5.3 Conditions for independent coordinates

For some patterns of assortment, the allelic frequencies at each locus in a large population

evolve approximately as independent diffusions:

Proposition 5.1. Assume that the assortment parameters s = {si,j , i, j ∈ A} satisfy the

assumption H4.

1. The n coordinates of the diffusion associated with the generator Gn,s are independent if

and only if the following condition holds:

(H5) for every i ∈ J1 ;nK, mL∪{i}(s)−mL(s) does not depend on the choice of the subset

L of J1 ;nK \ {i}.
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2. If condition (H5) holds, the i-th coordinate behaves as the one-locus diffusion with as-

sortment coefficients s0 = s1,1 and s1 = sui,1 where ui = (0{i},1J1;nK\{i}) denotes the

genotype which differs from the genotype 1 only on the locus i; its generator is

1

2
x(1− x)

d2

dx2
+
(
(1− x)µ1 − xµ0 + (sui,1 − s1,1)(1/2 − x)x(1− x)

) d
dx
.

3. In particular,

(a) with the Hamming criterion, Gn,s is the generator of n independent one-dimensional

diffusions if and only if the value of sℓ+1 − sℓ does not depend on ℓ;

(b) with the additive criterion, Gn,s is the generator of n independent one-dimensional

diffusions if and only if there exists a constant c such that sℓ+1 − sℓ = c(2ℓ+ 1) for

every ℓ ∈ J0 ;n − 1K.

Proof. First note that Gn,s is the generator of n independent diffusions if and only if the

polynomial term Pi,s(x) is a constant function for every i ∈ J1 ;nK.

1. According to the formula (4.2), the polynomial term Pi,s(x) is a constant function for

every i ∈ J1 ;nK whenever condition H5 holds. Conversely, assume that the polynomial

term Pi,s(x) is a constant function for every i ∈ J1 ;nK. By formulae (4.3) and (4.6),

δL[m(s)](∅) = 0 for every subset L of J1 ;nK having at least two elements. We derive, from

the inversion formula (A.2) stated in the Appendix, that for every subset A ∈ P(J1 ;nK),

δi[m(s)](A) =
∑

B⊂A

δB∪{i}[m(s)](∅) = δi[m(s)](∅).

Therefore, condition H5 is satisfied.

2. With the Hamming criterion, mA(s) = s|A| and condition H5 is equivalent to sk+1− sk =

s1 − s0 for every k ∈ J1 ;n − 1K.

3. With the additive criterion, for a subset L with ℓ elements mL(s) = 2−ℓ
∑ℓ

j=0

(ℓ
j

)
s|2j−ℓ|.

After some computation, we obtain for i 6∈ L,

mL∪{i}(s)−mL(s) = 2−ℓ
ℓ∑

j=0

(
ℓ

j

)
(s|2j−ℓ+1| − s|2j−ℓ|)

=





2−ℓ

ℓ+1

2∑
j=1

( ℓ
ℓ+1

2
−j

)
δ(2)[s](2j − 2) if ℓ is odd,

2−ℓ
( ℓ

2∑
j=1

( ℓ
ℓ
2
−j

)
δ(2)[s](2j − 1) +

( ℓ
ℓ
2

)
δ(1)[s](0)

)
if ℓ is even.

(5.1)



A. Etheridge and S. Lemaire 20

It follows from (5.1) that for every c ∈ IR, the system defined by

mL∪{i}(s)−mL(s) = c for every i ∈ J1 ;nK and L ⊂ J1 ;nK \ {i}

has a unique solution which is δ(1)[s](k) = c(2k + 1) for every k ∈ J0 ;n − 1K.

5.4 Behaviour at the boundaries

In this section the trajectories of the coordinates of the limiting diffusion are compared

with those of one-dimensional diffusions in order to investigate whether an allele can be (in-

stantaneously) fixed at one of the loci.

Consider the stochastic differential equation associated with the generator Gn,s:

dxt(i) =

n∑

i=1

√
xt(i)(1 − xt(i))dWt(i) + bi(xt)dt ∀i ∈ J1 ;nK, (5.2)

where (Wt(1))t≥0,. . . , (Wt(n))t≥0 denote n independent standard Brownian motions, and

bi(x) = µ1(1− x(i)) − µ0x(i) + (1/2 − x(i))x(i)(1 − x(i))Pi,s(x) for i ∈ J1 ;nK.

Theorem 1 of Yamada & Watanabe (1971) ensures pathwise uniqueness for the stochastic

differential equation (5.2), since the drift is Lipschitz and the diffusion matrix is a diagonal

matrix of the form

σ(x) = diag(σ1(x(1)), . . . , σn(x(n))),

where the functions σi are 1/2-Hölder continuous functions.

The following proposition shows that, just as for the one-locus case, the boundary behaviour

of the solution to (5.2) depends only on the values of the mutation rates µ0 and µ1.

Proposition 5.2. Let (xt)t≥0 denote a solution of the stochastic differential equation (5.2)

starting from a point x0 ∈]0, 1[n.

(i) If µ1 = µ0 = 0 then the diffusion process (xt)t exits from ]0, 1[n in a finite time almost

surely.

(ii) If µ1 = 0 and µ0 > 0 then each coordinate of (xt)t reaches the point 0 in a finite time

almost surely.
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(iii) If 0 < µ1 < 1/2 then 0 is attainable for each coordinate of the diffusion process:

IP[∃t > 0, xt(i) = 0] > 0 ∀i ∈ J1 ;nK.

(iv) If µ1 ≥ 1/2 then 0 is inaccessible for each coordinate of the diffusion process:

IP[∃t > 0, xt(i) = 0] = 0 and IP[ lim
t→+∞

xt(i) = 0] = 0 for every i ∈ J1 ;nK.

Similar statements to (ii), (iii) and (iv) hold for the point 1 on exchanging the rôles of µ1 and

µ0.

Proof. Let i ∈ J1 ;nK. On [0, 1]n the polynomial function Pi,s is bounded above by

M+
i =

∑

A⊂J1;nK\{i}

2−|A|max
{
mA∪{i}(s)−mA(s), 0

}

and is bounded below by

M−
i = −

∑

A⊂J1;nK\{i}

2−|A|max
{
− (mA∪{i}(s)−mA(s)), 0

}
.

Let b+i and b−i denote the functions defined on [0, 1] by

b+i (u) = µ1(1− u)− µ0u+ (1/2 − u)u(1− u)(M+
i 1I{u<1/2} +M

−
i 1I{u>1/2}),

b−i (u) = µ1(1− u)− µ0u+ (1/2 − u)u(1− u)(M+
i 1I{u>1/2} +M

−
i 1I{u<1/2}),

for every u ∈ [0, 1]. For every i ∈ J1 ;nK, pathwise uniqueness holds for the following two

stochastic differential equations:

dut =
√
ut(1− ut)dWt(i) + b+i (ut)dt (5.3)

and

dut =
√
ut(1− ut)dWt(i) + b−i (ut)dt. (5.4)

Let ξ+t (i) and ξ
−
t (i) be the solution starting from x0(i) of the stochastic differential equations

(5.3) and (5.4) respectively. As the i-th coordinate of the drift is bounded above by b+i and is

bounded below by b−i , the comparison theorem of Ikeda & Watanabe (1977) ensures that the

following inequalities hold with probability one:

ξ−t (i) ≤ xt(i) ≤ ξ+t (i) ∀t ≥ 0, ∀i ∈ J1 ;nK. (5.5)
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The nature of the points 0 and 1 as described by the Feller classification is the same for (ξ−t (i))t

and (ξ+t (i))t and depends only on µ1 and µ0. Let us introduce some notation to describe the

behaviour of (ξ+t (i))t and (ξ−t (i))t near 0. For 0 ≤ a < z < b ≤ 1, let τ±,i
z (a, b) denote the first

time the process (ξ±t (i))t, starting from z, exits (a, b) and let

ψ±
i (z) =

∫ z

1/2
exp

(
−
∫ x

1/2

2b±i (u)

u(1− u)
du
)
dx

be a scale function for (ξ±t (i))t.

1. If µ1 = µ0 = 0 then 0 and 1 are absorbing points; (ξ±t (i))t reaches 0 or 1 in a finite time

with probability one and

IP

[
lim

t→τ±,i
z (0,1)

ξ±t (i) = 0

]
=
ψ±
i (1)− ψ±

i (z)

ψ±
i (1) − ψ±

i (0)
.

2. If µ1 = 0 and µ0 > 0 then 0 is the only absorbing point and (ξ±t (i))t reaches 0 in a finite

time with probability one.

3. If 0 < µ1 < 1/2 and µ0 > 0 then 0 is attainable: for every 0 < z < b < 1,

IP
[
τ±,i
z (0, b) < +∞ and lim

t→τ±,i
z (0,b)

ξ±t (i) = 0
]
> 0.

4. If µ1 ≥ 1/2 and µ0 > 0 then 0 is inaccessible: for every 0 < z < 1,

IPz[∃t > 0, ξ±t (i) = 0] = 0 and IPz

[
lim

t→+∞
ξ±t (i) = 0

]
= 0.

These properties are sufficient to prove the boundary behaviour claimed for (xt)t. Since

xt(i) ≤ ξ+t (i) for every t ≥ 0, if (ξ+t (i))t reaches 0 in a finite time then so must (xt(i))t.

Similarly, if 0 is attainable for (ξ+t (i))t then 0 is also attainable for (xt(i))t. In the same way,

since xt(i) ≥ ξ−t (i) for every t ≥ 0, if 0 is inaccessible for (ξ−t (i))t then 0 is also inaccessible for

(xt(i))t.

It remains to prove that (xt)t exits from ]0, 1[ in a finite time with probability one if

µ1 = µ0 = 0. Let ǫ > 0 be small enough that x0 ∈ [ǫ, 1 − ǫ]n. The diffusion xt exits

from the compact [ǫ, 1 − ǫ]n in a finite time with probability one. Let xǫ be a point on the

boundary of [ǫ, 1 − ǫ]n. There exists i ∈ J1 ;nK such that xǫ(i) ∈ {ǫ, 1 − ǫ}. For z ∈]0, 1[,
set φ±i (z) := IPz[limt→τ±,i(0,1) ξ

±
t (i) = 0]. By the comparison theorem applied to the solutions

of the stochastic differential equations (5.2), (5.3) and (5.4) starting from xǫ, the probability
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that the solution of (5.2) starting at xǫ reaches the boundary of [0, 1]n in a finite time is

greater than φ+i (ǫ) if xǫi = ǫ and is greater than 1 − φ−i (1 − ǫ) if xǫi = 1 − ǫ. By the strong

Markov property, the probability that (xt) reaches the boundary in a finite time is greater

than min{min(φ+i (ǫ), 1 − φ−i (1 − ǫ)), i ∈ J1 ;nK} for every ǫ > 0. Therefore (xt)t reaches the

boundary in a finite time with probability one.

6 The stationary measure of the limiting diffusion

6.1 Existence of a stationary distribution and an expression for its density

As in the one-locus case, when the mutation rates are strictly positive, the diffusion has a

reversible stationary distribution:

Proposition 6.1. Assume that the hypothesis H4 holds and that the mutation rates µ0 and µ1

are strictly positive. Set s̃i,j = si,j − s1,1 for every pair of types i, j ∈ A. The diffusion with

generator Gn,s has a unique reversible stationary distribution which has the following density

with respect to the Lebesgue measure on [0, 1]n:

gn,µ,s(x) = Cn,µ,s

n∏

i=1

x2µ1−1
i (1− xi)

2µ0−1 exp(Hn,s(x))

where

• Hn,s(x) =
1

2

∑

L⊂J1;nK, |L|≥1

mL(s̃)
∏

ℓ∈L

(2xℓ(1− xℓ))
∏

k∈J1;nK\L

(1− 2xk(1− xk));

• Cn,µ,s is chosen so that

∫

[0,1]n
gn,µ,s(x1, . . . , xn)dx1 · · · dxn = 1.

Remark 6.1. An expansion of the polynomial function Hn,s yields:

Hn,s(x) =
∑

L⊂J1;nK, |L|≥1

2|L|−1δL[m(s)](∅)
∏

ℓ∈L

xℓ(1− xℓ).

Proof of Proposition 6.1. Let Gn,0 denote the generator of the limiting diffusion in the random

mating case (si,j = 0 for every i, j ∈ A). The diffusion associated with this generator is ergodic

and has a reversible stationary distribution mµ,0 which is the product of Beta distributions:

mµ,0 := (Beta(2µ0, 2µ1))
⊗n. In the general case, the generator Gn,s can be decomposed as

Gn,s = Gn,0 +
1

2

n∑

i=1

xi(1− xi)∂ih(x)∂i
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where

h(x) =
∑

L⊂J1;nK, |L|≥1

2|L|−1δL[m(s)](∅)
∏

ℓ∈L

xℓ(1− xℓ).

Therefore, as explained in Ethier & Nagylaki (1989), we can apply a result of Fukushima

& Stroock (1986) to deduce that the diffusion associated with Gn,s has a unique reversible

stationary distribution mµ,s given by

mµ,s(dx) = C exp(h(x))mµ,0(dx),

where C is chosen so that mµ,s is a probability distribution.

6.2 Description of the density of the stationary measure

We analyse the density of the stationary measure under two supplementary asumptions:

Assumption H6: The two mutation rates µ0 and µ1 are assumed to be equal to a strictly

positive real number µ.

Assumption H7: For every L ∈ P(J1 ;nK), mL(s) depends only on |L|. We write m(ℓ) for

the common value of mL(s) for L ∈ P(J1 ;nK) such that |L| = ℓ.

Assumption H7 holds if the assortment parameters satisfy the Hamming criterion or the

additive criterion.

Under the hypotheses H1, H2, H3, H4, H6 and H7, the density of the invariant measure

can be written as gn,µ,s(x) = C exp(hnµ,s(x)) with

hn,µ,s(x) = (2µ − 1)

n∑

i=1

ln(ρ(xi)) +

n−1∑

ℓ=0

αℓ

∑

L⊂J1;nK, |L|=ℓ+1

∏

k∈L

ρ(xk),

where ρ(xi) = xi(1− xi) and αℓ = 2ℓδ(ℓ+1)[m](0).

The study of the invariant measure in the one-locus case already provides a precise image

of the graph of gn,µ,s when the n coordinates of the diffusion are independent, that is when the

assortment coefficients are chosen so that

for every ℓ ∈ {0, . . . , n− 1}, m(ℓ+ 1)−m(ℓ) = m(1)−m(0).

There are then at least four different types of graph depending on the respective contributions to

allelic diversity of mutations (µ > 1/2 or 0 < µ < 1/2) and assortment parameters (m(1)−m(0)

smaller than |8µ − 4| or not) as shown in Fig. 1.



6.2 Description of the density of the stationary measure 25

Proposition 6.2 gives conditions on the assortment parameters under which (1/2, . . . , 1/2)

is the only critical point of the density, as in the random mating case. Proposition 6.3 deals

with situations far from the random mating case (the proofs are postponed to §6.4).

Proposition 6.2. We assume that the hypotheses H1, H2, H3, H4, H6 and H7 hold. Set

Vn = 2µ − 1 + 2−(n+1)
∑n−1

k=0

(n−1
k

)
δ(1)[m](k).

1. If Vn > 0, then (1/2, . . . , 1/2) is a local maximum of gn,µ,s.

2. If Vn < 0, then (1/2, . . . , 1/2) is a local minimum of gn,µ,s.

3. If µ > 1/2 and if δ(1)[m](ℓ) ≥ −(8µ − 4) ∀ℓ ∈ J0 ;n − 1K, then (1/2, . . . , 1/2) is a global

maximum and is the only critical point of gn,µ,s.

4. If 0 < µ < 1/2 and if δ(1)[m](ℓ) ≤ −(8µ − 4) ∀ℓ ∈ J0 ;n − 1K, then (1/2, . . . , 1/2) is a

global minimum and is the only critical point of gn,µ,s.

Example 6.1. Let us consider the additive criterion with the assortment sequence sℓ = bℓ for

ℓ ∈ J0 ;nK. Then δ(1)[m](ℓ) = 2−ℓ
(

ℓ
ℓ/2

)
b 1I{ℓ is even}. As 2

−ℓ
(

ℓ
ℓ/2

)
is a strictly decreasing sequence

smaller than 1, b < 0 implies Vn > 2µ − 1 + 1
8b. Thus, it follows from Proposition 6.2 that

if µ > 1/2 and b ≥ −8(2µ − 1), the point (1/2, . . . , 1/2) is a local maximum of gn,s,µ. Let us

note that if we consider the same sequence sℓ = bℓ but with the Hamming criterion, then for

µ > 1/2 and b < −4(2µ − 1), (1/2, . . . , 1/2) is a local minimum of gn,s,µ.

Remark 6.2. The statement of Proposition 6.2 can be easily extended to a family of assortment

parameters for which H7 does not hold: Vn must be replaced by

Vn,i = 2µ − 1 + 2−(n+1)
∑

B⊂J1;nK\{i}

δi[m(s)](B)

for every i ∈ J1 ;nK and the conditions on δ[m](ℓ) in assertions 3 and 4 are replaced by a

condition on δi[m(s)](A) for every i ∈ J1 ;nK and A ∈ P(J1 ;nK \ {i}).

The following proposition describes the properties of the critical points of the density in

two cases, (1) µ > 1/2 and a condition on the assortment parameters which strongly favours

mating between individuals carrying similar types:

δ(1)[m](n− 1) ≤ δ(1)[m](n − 2) ≤ . . . ≤ δ(1)[m](0) ≤ 0 and δ(1)[m](n− 2) < 0,
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and (2) 0 < µ < 1/2 and a condition on the assortment parameters which strongly favours

mating between individuals with dissimilar types:

δ(1)[m](n− 1) ≥ δ(1)[m](n − 2) ≥ . . . ≥ δ(1)[m](0) ≥ 0 and δ(1)[m](n− 2) > 0.

To simplify the statement, the description is limited to the hypercube [0, 1/2]n. The description

on the whole space [0, 1]n can be deduced from this since gn,µ,s(x) is invariant if we replace any

coordinate xi with 1− xi.

Proposition 6.3. Assume that conditions H1, H2, H3, H4, H6 and H7 hold. Set

Vn = 2µ − 1 + 2−(n+1)
n−1∑

k=0

(
n− 1

k

)
δ(1)[m](k).

1. Case µ > 1/2. Assume furthermore that:

δ(1)[m](n − 1) ≤ δ(1)[m](n− 2) ≤ . . . ≤ δ(1)[m](0) ≤ 0 and δ(1)[m](n − 2) < 0.

(a) If Vn > 0 then (1/2, . . . , 1/2) is a global maximum and is the only critical point of

the density gn,µ,s.

(b) If Vn < 0 then

i. gn,µ,s has a local minimum at (1/2, . . . , 1/2).

ii. In [0, 1/2]n, gn,µ,s takes its maximum value at a unique point of the form

(ξ0, . . . , ξ0).

iii. The other critical points of gn,µ,s in [0, 1/2]n are saddle points: for every

ℓ ∈ J1 ;n − 1K, gn,µ,s has
(
n
ℓ

)
saddle points of index n−ℓ in [0, 1/2]n. The saddle

points of index n − ℓ have ℓ coordinates equal to 1/2 and the other coordinates

have the same value denoted by ξℓ.

iv. The relative positions of the coordinates of the critical points in [0, 1/2]n satisfy

0 < ξn−1 < · · · < ξ0 < 1/2.

v. The value of gn,µ,s is the same at any saddle point of index n− ℓ and decreases

as ℓ increases.

2. Case 0 < µ < 1/2. Assume furthermore that:

δ(1)[m](n − 1) ≥ δ(1)[m](n− 2) ≥ . . . ≥ δ(1)[m](0) ≥ 0 and δ(1)[m](n − 2) > 0.

(a) If Vn < 0 then (1/2, . . . , 1/2) is a global minimum and is the only critical point of

the density gn,µ,s.
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(b) If Vn > 0 then

i. gn,µ,s has a local maximum at (1/2, . . . , 1/2).

ii. In [0, 1/2]n, gn,µ,s takes its minimum value at a unique point of the form

(ξ0, . . . , ξ0).

iii. The other critical points of gn,µ,s in [0, 1/2]n are saddle points: for every

ℓ ∈ J1 ;n − 1K, gn,µ,s has
(
n
ℓ

)
saddle points of index ℓ in [0, 1/2]n. The sad-

dle points of index ℓ have ℓ coordinates equal to 1/2 and the other coordinates

have the same value denoted by ξℓ.

iv. The relative positions of the coordinates of the critical points in [0, 1/2]n satisfy

0 < ξn−1 < · · · < ξ0 < 1/2.

v. The value of gn,µ,s is the same at any saddle point of index n− ℓ and increases

as ℓ increases.

Remark 6.3.

1. ξ0 = 1/2− 1/2
√
1− 4λ0 where λ0 is the unique solution in ]0, 1/4[ of the equation:

2µ− 1 + x
n−1∑

i=0

δ(1)[m](i)

(
n− 1

i

)
(2x)i(1− 2x)n−1−i = 0 (E0)

More generally, for every ℓ ∈ J0 ;n − 1K, ξℓ = 1/2 − 1/2
√
1− 4λℓ where λℓ is the unique

solution in ]0, 1/4[ of the equation:

2µ − 1 + x
n−1∑

i=0

Bn−1,ℓ,i(2x)δ
(1)[m](i) = 0 (Eℓ)

and Bn,ℓ,i(x) = 2−ℓ

min(i,ℓ)∑

j=max(0,i−n+ℓ)

(
ℓ

j

)(
n− ℓ

i− j

)
xi−j(1− x)n−ℓ−(i−j).

Let us note that (Bn,ℓ,i(x))i=0,...,n are positive on ]0, 1[ and their sum is equal to 1.

The assumption that δ(1)[m](i) is a decreasing function of i cannot be removed since

one can find examples of assortment parameters satisfying δ(1)[m](i) < 0 for every

i ∈ J0 ;n − 1K and such that:

(a) µ > 1/2, Vn > 0, but (1/2, . . . , 1/2) is not the only local maximum,

(b) Vn < 0 and gn,µ,s has more than 2n local maxima.
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2. If xi is the proportion of the population with allele 0 at the i-th locus, 2xi(1− xi) is the

probability that two individuals sampled at random from the population carry different

alleles at the ith locus. The density function of the reversible measure takes its maximum

value at a point x such that for each i ∈ J1 ;nK, xi(1− xi) = λ0.

Example 6.2. Let us consider a quadratic sequence of parameters sℓ = s0 − (bℓ + cℓ2)

∀ℓ ∈ J0 ;nK and let us define the assortment with this sequence by means of the Hamming crite-

rion. If c > 0, b+c ≥ 0 and µ > 1/2 then gn,µ,s has 3
n critical points if and only if b+nc > 8µ−4.

In this case, λ0 = n−1/2
√

2µ−1
4c + O(n−1). If hn,k denotes the value of the function hn,µ,s at a

critical point of index n−k then hn,0−hn,n ∼
n→+∞

c
8n

2 and hn,0−hn,1 ∼
n→+∞

n1/21/2
√
c(2µ − 1)

(see Appendix A.2 for more details).

6.3 Graphs of the density and simulations of trajectories in the two and

three locus cases

Figures 2 to 4 show graphs of the density of the reversible stationary measure in the two-

locus case for µ = 0.6 and for several values of s1−s0 and s2−s1, the assortative mating being

defined by the Hamming distance. Figures 2 and 3 illustrate the two situations considered in

Proposition 6.3 when µ > 1/2. When s1− s0 = 0, the density may have a continuum of critical

points as in Fig. 4; this corresponds to a case in which the assumption δ(1)[m](n − 2) < 0 of

Proposition 6.3 is not satisfied.

To illustrate the evolution of the 0-allelic frequency when µ > 1/2 and the assortative mat-

ing strongly favours pairing between similar types, simulations were run in a population of size

N = 103 with the two-locus model (Fig. 5) and with the three-locus model (Fig. 6). For these

simulations, every individual initially carries the allele 0 at every locus, recombination occurs

independently at each locus and the assortative mating is defined by the Hamming criterion.

The trajectory is plotted at intervals of size N between the iterations N2 and 33N2. To help

to visualize the evolution, the colour of the plot changes every 1
2N

2 iterations. The form of

the density of the stationary measure here is highly reminiscent of that of the fitness land-

scapes studied in the adaptive evolution literature in modelling additive traits under frequency

dependent intraspecific competition, see e.g. Schneider (2007) and references therein. In the

deterministic setting the existence of multiple ‘long term equilibria’ renders the behaviour of

the system very sensitive to assumptions about the initial conditions. In our setting, the pres-

ence of genetic drift is sufficient for the population to (eventually) explore the neighbourhoods

of all the maxima, irrespective of its starting point. The time spent by the population in the

neighbourhood of a maximum depends on the assortment parameters (Fig. 6a and 6b).
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Figure 2: Graph of g2,µ,s when µ = 0.6,

s1 − s0 = −0.4 and s2 − s1 = −0.6 so that

the point (1/2, 1/2) is the only critical point

of the density g2,s,µ.
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Figure 3: Graph of g2,µ,s when µ = 0.6,

s1 − s0 = −2 and s2 − s1 = −6 so that

λ0 ≃ 0.0766. A black dot marks the posi-

tion of each extremum and a cross is plotted

at each saddle point.
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Figure 4: Graph of g2,µ,s when µ = 0.6,

s1 − s0 = 0 and s2 − s1 = −12; there is a

continuum of critical points.
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Figure 5: Simulation of the evolution of the

0-allelic frequency in the two-locus model.

The population size is N = 103, µ = 1,

s1− s0 = −15, s2− s1 = −210. A black dot

marks the position of each extremum and a

cross is plotted at each saddle point. In this

example, λ0 ≃ 0.034 and λ1 ≃ 0.008.
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(a)

Assortment parameters: s1 − s0 = −20,

s2 − s1 = −40 and s3 − s2 = −60.

Characteristics of the stationary density:

λ0 ≃ 0.043, λ1 ≃ 0.031 and λ2 ≃ 0.025.

h0 − h1 = 7.9, h0 − h2 ≃ 24.3 and

h0 − h3 ≃ 49.8.
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(b)

Assortment parameters: s1 − s0 = −30,

s2 − s1 = −60 and s3 − s2 = −90.

Characteristics of the stationary density:

λ0 ≃ 0.030, λ1 ≃ 0.021 and λ2 ≃ 0.017.

h0 − h1 = 12.6, h0 − h2 ≃ 38.6 and

h0 − h3 ≃ 78.7.

Figure 6: Simulations of the evolution of the 0-allelic frequency with the three-locus model

for two different sets of assortment parameters. The assortative mating favours more strongly

pairing between similar types in Fig. 6b. The size of the population is N = 103 and the

mutation rate is µ = 1. A black dot marks the position of each global maximum of the

stationary density, a cross the position of each saddle point of index 2 and a diamond the

position of each saddle point of index 1. Some numerical characteristics of the stationary

density are presented to the right of each figure: for i ∈ {1, 2, 3}, the value of λi = ξi(1 − ξi)

provides the position of the critical points of index 3 − i (see Proposition 6.3) and hi is the

value of the log-density hn,µ,s at a critical point of index 3− i.
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6.4 Proofs of Propositions 6.2 and 6.3

Proof of Proposition 6.2 Let us introduce some notation in order to shorten the expres-

sions. We set ν = 2µ− 1, ρ(u) = u(1− u) for u ∈ [0, 1], ρ(x) = (ρ(x1), . . . , ρ(xn)),

h̄(x) = ν
n∑

i=1

log(xi) +
1

2

n∑

ℓ=1

(m(ℓ)−m(0))
∑

L⊂J1;nK, |L|=ℓ

∏

j∈L

(2xj)
∏

k∈J1;nK\L

(1− 2xk)

and h(x) = h̄(ρ(x)) for x = (x1, . . . , xn) ∈]0, 1[n. With this notation, gn,µ,s(x) = Cn,µ,s exp(h(x)).

1. For every x ∈]0, 1[n and i ∈ J1 ;nK, ∂ih(x) = (1− 2xi)∂ih̄(ρ(x)) where

∂ih̄(x) =
ν

xi
+

n−1∑

ℓ=0

δ(1)[m](ℓ)
∑

L⊂J1;nK\{i},|L|=ℓ

∏

j∈L

(2xj)
∏

k∈J1;nK\(L∪{i})

(1− 2xk).

First, the point un = (1/2, . . . , 1/2) is a critical point of hn,µ,s and the Hessian matrix at

this point is the diagonal matrix −2∆In where

∆ = 4ν + 2−(n−1)
n−1∑

i=0

(
n− 1

i

)
δ(1)[m](i) = 4Vn.

This proves the first two assertions of the proposition.

2. The last two assertions follow from the fact that ∂ih̄(x) and ∆ are increasing functions

of δ(1)[m](ℓ) for every ℓ. Let us prove assertion 3 to illustrate the method. First, if

δ(1)[m(s)](ℓ) = −(8µ− 4) for every ℓ ∈ J0 ;n − 1K then the n coordinates of the diffusion

are independent. In this case, ∆ = 0 and the stationary density has only one critical

point at (1/2, . . . , 1/2) which is a maximum. If {si,j, (i, j) ∈ A2} is a family of assortment

parameters such that ∂ih̄(x) is nonnegative for every x ∈]0, 1/4]n and the density gn,s,µ has

a unique critical point at (1/2, . . . , 1/2) which is a maximum, then the same is true for any

family of assortment parameters {ŝi,j, (i, j) ∈ A2} such that δ(1)[m(ŝ)](ℓ) ≥ δ(1)[m(s)](ℓ)

for every ℓ ∈ J0 ;n − 1K.

Proof of Proposition 6.3 We retain the notation introduced in the proof of Proposition 6.2.

For k ∈ J1 ;nK, we set αk = 2kδ(k+1)[m](0) and denote by en,k the elementary symmetric

polynomial function in n variables of degree k:

en,0(x) = 1 and en,k(x) =
∑

L⊂J1;nK,
|L|=k

∏

ℓ∈L

xℓ for k ∈ J1 ;nK.



A. Etheridge and S. Lemaire 32

For instance, en,1(x) = x1 + . . .+ xn, en,2(x) =
∑

1≤i<j≤n xixj .

With this notation

h̄(x) = ν

n∑

i=1

ln(xi) +

n−1∑

ℓ=0

αℓen,ℓ+1(x).

In the proof we shall use (several times) the following identity for elementary symmetric poly-

nomial functions:

Lemma 6.1. Let n be an integer greater than 1 and let k ∈ J0 ;n − 2K. For every x ∈ IRn and

i, j ∈ J1 ;nK, set x̂(i) = (x1, . . . , xi−1, xi+1, . . . , xn) and x̂
(i,j) = ̂̂x(i)

(j)
. Then,

xien−1,k(x̂
(i))− xjen−1,k(x̂

(j)) = (xi − xj)en−2,k(x̂
(i,j)). (6.1)

We shall also use the following alternative expression for symmetric polynomial functions

that are similar to the polynomial term in h:

Lemma 6.2. Let n ∈ IN∗ and let a0, . . . , an be real numbers. Then for every x ∈ IRn,

n∑

k=0

2kδ(k)[a](0)en,k(x) =
n∑

i=0

ai
∑

I⊂J1;nK, |I|=i

∏

i∈I

2xi
∏

j 6∈I

(1− 2xj).

In particular, for every y ∈ IR and ℓ ∈ J0 ;nK,

n∑

k=0

2kδ(k)[a](0)en,k((1/4)
⊗ℓ, y⊗(n−ℓ)) =

n∑

i=0

aiBn,ℓ,i(2y)

where Bn,ℓ,i(y) = 2−ℓ

min(i,ℓ)∑

j=max(0,i−n+ℓ)

(
ℓ

j

)(
n− ℓ

i− j

)
yi−j(1− y)n−ℓ−(i−j).

Proof. See Corollary A.2.

1. Let us assume that x = (x1, . . . , xn) is a critical point of gn,µ,s different from un. Let

ℓ denote the number of coordinates equal to 1/2 (ℓ ∈ J0 ;n − 1K). Every coordinate xi

different from 1/2 has to satisfy: ∂ihn,µ,s(ρ(x)) = 0, that is

ν + ρ(xi)
n−1∑

k=0

αken−1,k(ρ̂(x)
(i)
) = 0.

In particular, it follows from Lemma 6.1 that if xi and xj are two coordinates of the

critical point x not equal to 1/2 then

ρ(xi) = ρ(xj) or

n−2∑

k=0

αken−2,k(ρ̂(x)
(i,j)

) = 0.



6.4 Proofs of Propositions 6.2 and 6.3 33

By Lemma 6.2,
n−2∑

k=0

αken−2,k(x) =

n−2∑

ℓ=0

δ(1)[a](ℓ)Qℓ(x),

where Qℓ denotes a polynomial function which is positive on x ∈]0, 1/4[n−2 for every

ℓ ∈ J0 ;n − 2K. Thus this sum cannot vanish in ]0, 1/4[n−2 under the assumption that all

coefficients δ(1)[m](i) have the same sign and that for at least one i ≤ n − 2, δ(1)[m](i)

is non-zero. Therefore, such a critical point exists only if there exists a solution in the

interval ]0, 1/4[ of

ν + y

n−1∑

k=0

αken−1,k

(
(
1

4
)⊗ℓ, y⊗(n−ℓ−1)

)
= 0. (E ′

ℓ)

In order to study the solutions of (E ′

ℓ), let φℓ(y) denote the left-hand side of (E ′

ℓ):

φℓ(y) = ν + y

n−1∑

k=0

αken−1,k((
1

4
)⊗ℓ, y⊗(n−ℓ−1)) (6.2)

By Lemma 6.2,

φℓ(y) = ν + y

n−1∑

i=0

Bn−1,ℓ,i(2y)δ
(1)[m](i). (6.3)

Therefore, (E ′

ℓ) coincides with (Eℓ) of Remark 6.3. The derivative of φℓ is equal to:

φ
′

ℓ(y) =

n−1∑

i=0

Bn−1,ℓ,i(2y)δ
(1) [m](i)

+ 2y(n− 1− ℓ)

n−2∑

i=0

Bn−2,ℓ,i(2y)(δ
(1)[m](i+ 1)− δ(1)[m](i)).

If δ(1)[m](n−1) ≤ · · · ≤ δ(1)[m](0) ≤ 0 (respectively δ(1)[m](n−1) ≥ · · · ≥ δ(1)[m](0) ≥ 0),

φℓ is a decreasing function on the interval [0, 1/2] (resp. an increasing function on the

interval [0, 1/2]). The value of φℓ at 0 is ν and the value at 1/4 is Vn. Therefore, under

the assumptions of 1 or 2 of the proposition, for every ℓ ∈ {0, . . . , n − 1} (E ′

ℓ) has no

solution in ]0, 1/4[ if Vn and ν have the same sign and has exactly one solution in ]0, 1/4[

denoted by λℓ if Vn and ν have opposite signs. This proves assertions 1.(a) and 2.(a).

For every pair of disjoint subsets I and J of J1 ;nK, let us introduce the following point:

uI,J = (x1, . . . , xn) with

xi =





1/2 if i ∈ I,

1/2 + 1/2
√

1− 4λ|I| if i ∈ J,

1/2 − 1/2
√

1− 4λ|I| if i ∈ J1 ;nK \ (I ∪ J).
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We have shown that if Vn and ν have opposite signs, then every point uI,J is a critical

point and any critical point is one of these points uI,J .

So that we may use our conclusions above, from now on, we assume that the hypotheses stated

in point 1 of the proposition are satisfied. However, the computations that follow do not depend

on these hypotheses, and so our proof is easily modified to the setting of point 2.

2. Let us study the Hessian matrix of hn,µ,s at a critical point uI,J such that |I| ≤ n − 1.

For that, set ℓ = |I|, ℓ+ = |J | and ℓ− = n − ℓ − ℓ+ and let us introduce the following

notations:

aℓ = ∂1h̄((
1

4
)⊗ℓ, (λℓ)

⊗(n−ℓ)), bℓ = −(1− 4λℓ)
ν

λ2ℓ
,

cℓ = (1− 4λℓ)∂
2
n,n−1h̄((

1

4
)⊗ℓ, (λℓ)

⊗(n−ℓ)).

The Hessian matrix of hn,µ,s at uI,J is permutation-similar to the following block matrix:

HI,J =



Aℓ 0 0

0 Bℓ,ℓ+ Cℓ

0 Cℓ Bℓ,ℓ−




where

• Aℓ denotes the scalar matrix −2aℓIℓ with aℓ = ∂1h̄((
1
4 )

⊗ℓ, (λℓ)
⊗(n−ℓ)),

• Bℓ,k denotes the following k-by-k matrix : Bℓ,k =




bℓ cℓ · · · cℓ

cℓ
. . .

. . .
...

...
. . .

. . . cℓ

cℓ · · · cℓ bℓ



,

• Cℓ denotes the ℓ
+-by-ℓ− matrix all the elements of which are equal to −cℓ.

By assumption on µ, bℓ < 0. To complete the proof of assertions (i) and (ii) of 1-(b),

we shall prove that aℓ < 0 and that bℓ < cℓ < 0. That will imply that the submatrix(
Bℓ,ℓ+ Cℓ

Cℓ Bℓ,ℓ−

)
is negative definite (for more details, see Lemma A.2) hence that the

Hessian matrix of hn,µ,s at a point uI,J has |I| positive eigenvalues and n − |I| negative
eigenvalues.

First, let us study the sign of aℓ = 4ν+
∑n−1

i=0 αien−1,i((
1
4 )

⊗(ℓ−1), λ
⊗(n−ℓ)
ℓ ). As φℓ(λℓ) = 0,
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an application of Lemma 6.1 yields:

aℓ = (1− 4λℓ)

n−2∑

i=0

αien−2,i((
1

4
)⊗(ℓ−1), λ

⊗(n−1−ℓ)
ℓ ).

The right-hand side can be rewritten using Lemma 6.2:

aℓ = (1− 4λℓ)

n−2∑

i=0

δ(1)[m](i)Bn−2,ℓ−1,i(2λℓ).

The conditions on δ(1)[m](i) imply that aℓ is negative.

Let us now study the coefficients b̃ℓ = (1 − 4λℓ)
−1bℓ and c̃ℓ = (1 − 4λℓ)

−1cℓ. As in the

study of aℓ we use that φℓ(λℓ) = 0 and Lemma 6.2 to write b̃ℓ and c̃ℓ in terms of the

coefficients δ(1)[m](s)(i):

b̃ℓ =
1

λℓ

n−1∑

i=0

δ(1)[m](i)Bn−1,ℓ,i(2λℓ),

c̃ℓ = 2

n−2∑

i=0

(δ(1)[m](i + 1)− δ(1)[m](i))Bn−2,ℓ,i(2λℓ).

As δ(1)[m(s)](i) is assumed to be a decreasing sequence, c̃ℓ < 0. After some computations,

we obtain:

λℓ(c̃ℓ − b̃ℓ) = −
n−2∑

i=0

δ(1)[m](i)Bn−2,ℓ,i(2λℓ).

The conditions on δ(1)[m](i) imply that c̃ℓ > b̃ℓ.

3. Let us prove that 0 < λn−1 < · · · < λ0 < 1/4 , which gives the relative positions of the

coordinates of the critical points.

Let ℓ ∈ J0 ;n − 2K. If we return to the expression (6.2) of φℓ, use Lemma 6.1 and then

Lemma 6.2, we obtain:

φℓ+1(y)− φℓ(y) = y(1/4 − y)
n−2∑

i=0

αi+1en−2,i((1/4)
⊗ℓ, y⊗(n−2−ℓ))

= 2y(1/4 − y)

n−2∑

i=0

δ(2)[m](i)Bn−2,ℓ,i(2y).

By assumption, δ(2)[m](i) ≤ 0 for every i ∈ J0 ;n − 2K hence φℓ+1(y) ≤ φℓ(y) for every

y ∈ [0, 1/4]. As the functions φℓ are decreasing on [0, 1/4], we deduce that λℓ+1 ≤ λℓ for

every ℓ ∈ J0 ;n − 2K. As the two critical points uJ1;ℓK,∅ and uJ1;ℓ+1K,∅ have not the same

properties, they cannot coincide and thus λℓ+1 < λℓ for every ℓ ∈ J0 ;n− 2K.
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4. Proof of assertion 1.(b).v: let hℓ denote the value of hn,µ,s at a saddle point of index n−ℓ:
pℓ = ((1/2)⊗ℓ, (ξℓ)

⊗(n−ℓ)). To prove that hℓ > hℓ+1 for every ℓ ∈ J0 ;n − 2K, we shall use

the properties of the gradient dynamical system dx(t)
dt = −∇h̃(x) with h̃ = −hn,µ,s. Fix

a positive value M large enough so that UM = h̃−1([−M,M ]) contains all critical points

of h (such an M exists since h̃(x) tends to infinity as x tends to the boundary of [0, 1]n).

The function h̃ decreases along trajectories and a trajectory of a point x ∈M converges

to a critical point of h̃ as t tends towards +∞, since h̃ has only isolated critical points.

For k ∈ {0, . . . , n− 1}, let U (k)
M denote the subset:

U
(k)
M = {x ∈ UM , x1 = · · · = xk = 1/2 and xi < 1/2 ∀i > k}.

Every subset U
(k)
M contains exactly one critical point, the saddle point pk. As ∂ih̃(x) = 0

at points x such that xi = 1/2, the subset U
(k)
M is positively invariant by the gradient flow.

Therefore, to prove that hk > hk+1, it is enough to show that there exists 0 < y0 < 1/2

such that for y ∈]y0, 1/2[, h̃((1/2)⊗k , y, ξ⊗n−k−1
k+1 ) < h̃(pk+1).

As h̃((1/2)⊗k , y, ξ⊗n−k−1
k+1 ) = −h̄n,µ,s((1/4)⊗k , y(1 − y), λ⊗n−k−1

k+1 ), it is enough to show

that ∂k+1h̄n,µ,s((1/4)
⊗(k+1), λ

⊗(n−k−1)
k+1 ) < 0. Using that λk+1 is solution of the equation

(Ek+1), we obtain

∂k+1h̄n,µ,s((1/4)
⊗(k+1), λ

⊗(n−k−1)
k+1 ) = (1− 4λk+1)

n−2∑

i=0

δ(1)[m](i)Bn−2,k,i(2y) < 0.

7 Proof of convergence to the diffusion

In this section, we prove convergence to the diffusion approximation in the n-locus case

(Theorem 4.1). We also establish the two simple expressions for the drift presented in §4.
First, the properties of the generator Gn,s stated in assertion (a) of Theorem 4.1 can be

obtained by applying the following theorem established by Cerrai and Clément:

Theorem 7.1 (Cerrai & Clément 2004). Let S+(IRn) be the space of symmetric, non-negative

definite, n × n matrices. Let A : [0, 1]n → S+(IRn) and b : [0, 1]n → IRn be mappings of class

C2. For i ∈ {1, . . . , n} and ǫ ∈ {0, 1}, let νiǫ denote the unit inward normal vector of the

hypercube Ci
ǫ = {x ∈ [0, 1]n, xi = ǫ}. Let us assume the following two conditions:

• for every i ∈ {1, . . . , n}, ǫ ∈ {0, 1} and x ∈ Ci
ǫ, A(x)ν

i
ǫ(x) = 0 and 〈b(x), νiǫ(x)〉 ≥ 0;

• for every i, j ∈ {1, . . . , n}, Ai,j(x) depends only on xi and xj .
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Then the operator

L =
1

2

n∑

i=1

n∑

j=1

Ai,j(x)
∂2

∂xi
∂xj

+

n∑

i=1

bi(x)
∂2

∂xi

is closable in C([0, 1]n) and its closure is the generator of a strongly continuous semigroup of

contractions.

To prove the convergence result, we use the following theorem, due to Ethier and Nagylaki,

on diffusion approximations for Markov chains with two time scales.

Theorem 7.2 (Ethier & Nagylaki 1980, Theorem 3.3). For N ∈ IN∗, let {ZN
k , k ∈ IN} be a

homogeneous Markov chain in a metric space EN with Feller transition function. Let F1 and

F2 be compact convex subsets of IRn and IRm respectively, having non-empty interiors. Assume

further that 0 ∈
◦
F 2. Let ΦN : EN → F1 and ΨN : EN → F2 be continuous functions. Define

XN
k = ΦN (ZN

k ) and Y N
k = ΨN(ZN

k ) for each k ∈ IN. Let (ǫN )N and (δN )N be two positive

sequences such that δN → 0 and ǫN/δN → 0.

Assume that there exist continuous functions a : F1× IRm → IRn⊗ IRn, b : F1× IRm → IRn and

c : F1 × IRm → IRm such that for i, j ∈ J1 ;nK and ℓ ∈ J1 ;mK the following properties (a)-(e)

hold as N → +∞ uniformly in z ∈ EN where x = ΦN (z) and y = ΨN (z):

(a) ǫ−1
N IEz[X

N
1 (i)− x(i)] = bi(x, y) + o(1),

(b) ǫ−1
N IEz

[
(XN

1 (i)− x(i))(XN
1 (j)− x(j))

]
= ai,j(x, y) + o(1),

(c) ǫ−1
N IEz[(X

N
1 (i) − x(i))4] = o(1),

(d) δ−1
N IEz[Y

N
1 (ℓ)− y(ℓ)] = cℓ(x, y) + o(1),

(e) δ−1
N IEz[(Y

N
1 (ℓ)− y(ℓ))2] = o(1).

Assume further that

(f) c is of class C2, c(x, 0) = 0 for all x ∈ IRm and the solution of the differential equation

d

dt
u(t, x, y) = c(x, u(t, x, y)), u(0, x, y) = y.

exists for all (t, x, y) ∈ [0,+∞[×F1 × F2 and satisfies

lim
t→+∞

sup
(x,y)∈F1×F2

|u(t, x, y)| = 0.
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(g) The closure of the following operator

L =
1

2

n∑

i,j=1

ai,j(x, 0)
∂2

∂xi
∂xj

+
n∑

i=1

bi(x, 0)
∂

∂xi

, D(L) = C2(F1),

generates a strongly continuous semigroup on C(F1) corresponding to a diffusion process

X in F1.

Then the following conclusions in which the symbol ⇒ denotes convergence in distribution,

hold:

(i) If XN
0 ⇒ X(0) then {XN

[t/ǫN ], t ≥ 0} ⇒ X(·) in DF1
([0,+∞[),

(ii) For every positive sequence (tN )N that converges to +∞, Y N
[tN/δN ] ⇒ 0.

Remark 7.1. We have only stated the part of Ethier and Nagylaki’s theorem that we need.

The full statement also gives a convergence result when the sequence (δN )N converges to a

positive real number.

To apply this theorem, we consider the two sequences ǫN = N−2 and δN = N−1, we set

EN = {z ∈ (N−1 IN)A,
∑

i∈A z(i) = 1}, and we define by (ΦN ,ΨN ) a change of coordinates

such that Ψ−1
N ({0}) is the linkage equilibrium manifold:

ΦN : EN → [0, 1]n and ΨN : EN → [−1, 1]2
n−n−1

z 7→ (u1, . . . , un) z 7→ (uI , I ⊂ J1 ;nK s. t. |I| ≥ 2)

where ui =
∑

ℓ,ℓi=0 z(ℓ) for i ∈ J1 ;nK and uI =
∏

i∈I ui −
∑

ℓ,ℓ|I≡0 z(ℓ) for each I ⊂ J1 ;nK

having at least two elements.

First (in §7.1), we shall check that X
(N)
1 = ΦN (Z

(N)
1 ) and Y

(N)
1 = ΨN (Z

(N)
1 ) satisfy the

conditions (a)-(f) of Ethier and Nagylaki’s theorem with the following expressions for the

functions ai,j(x, 0) and bi(x, 0):

ai,j(x, 0) = x(i)(1 − x(i)) 1I{i=j}, (7.1)

bi(x, 0) = (1− x(i))µ1 − x(i)µ0 + (1/2 − x(i))x(i)(1 − x(i))Pi,s(x), (7.2)

where

Pi,s(x) =
∑

J⊂J1;nK\{i}

∑

H⊂J1;nK\{i}

(sJ∪{i},H − sJ,H)

∏

j∈J

x(j)
∏

h∈H

x(h)
∏

j∈J1;nK,
j 6∈J∪{i}

(1− x(j))
∏

h∈J1;nK,
h6∈H∪{i}

(1− x(h)),
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and, for two subsets I and J of J1 ;nK, sI,J denotes the assortment parameter si,j for the types

i = (0I ,1Ī) and j = (0J ,1J̄).

In §7.2 we shall show that Pi,s has the following two equivalent expressions:

Pi,s(x) =
∑

A⊂J1;nK\{i}

2|A|δA∪{i}[m(s)](∅)
∏

ℓ∈A

x(ℓ)(1− x(ℓ))

=
∑

A⊂J1;nK\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1 − x(k))
∏

ℓ 6∈A∪{i}

(1− 2x(ℓ)(1 − x(ℓ))).

7.1 Verification of the conditions (a)-(f) of Ethier and Nagylaki’s theorem

As the proportion of individuals of a given type i can only change by ±1/N in one step:

• If r ∈ IN∗ and i ∈ A, then

IEz

[
(Z

(N)
1 (i)− z(i))r

]
= N−r

∑

j∈A\{i}

(
fN (z, j, i) + (−1)rfN (z, i, j)

)
(7.3)

• if r, u ∈ IN∗, i, j ∈ A so that i 6= j, then

IEz

[
(Z

(N)
1 (i)− z(i))r(Z

(N)
1 (j)− z(j))u

]

= N−(r+u)
(
(−1)rfN(z, i, j) + (−1)ufN (z, j, i)

)
(7.4)

• if r ≥ 3 and i(1),. . . ,i(r) ∈ A so that at least three of them are distinct, then

IEz

[ r∏

u=1

(
Z

(N)
1 (i(u))− z(i(u))

)]
= 0. (7.5)

Condition (a). To show that condition (a) of Theorem 7.2 holds, we first examine the drift

of Z(N). A Taylor expansion of the transition probabilities of the Markov chain (ZN
t )t∈IN using

assumption H2 yields the following formula:

Lemma 7.1. For every i ∈ A,

N2 IEz[Z
(N)
1 (i)− z(i)] = NB

(0)
i (z) +B

(1)
i (z) +O(N−1), uniformly on z ∈ EN ,
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where

B
(0)
i (z) =

∑

k∈A

∑

j∈A

z(j)z(k)q((j,k); i)− z(i)

B
(1)
i (z) =

∑

k∈A

∑

j∈A

z(j)z(k)
( n∑

u=1

q((j,k); (1 − iu, iJ1;nK\{u}))µ1−iu − q((j,k); i)

n∑

u=1

µiu

)

+
∑

k∈A

∑

j∈A

sj,kz(j)z(k)q((j,k); i)− z(i)
∑

k∈A

si,kz(k)

−
∑

k∈A

∑

j∈A

∑

h∈A

sj,hz(j)z(h)z(k)q((j,k); i) + z(i)
∑

h∈A

∑

k∈A

si,hz(k)z(h)

Proof. By assumption H2,

fN (z, i, j) :=
∑

k,ℓ∈A

z(i)z(k)w(N)(z, i,k)q((i,k); ℓ)µ(N)(ℓ, j).

where w(N)(z, i,k) = 1 + 1
N

(
si,k −∑h∈A si,hz(h)

)
+O(N−2) and

µ(N)(ℓ, j) =





1− 1
N

∑n
u=1 µju +O(N−2) if dh(ℓ, j) = 0

1
N µ1−ji +O(N−2) if dh(ℓ, j) = 1 and ℓi = 1− ji

O(N−2) if dh(ℓ, j) ≥ 2

To prove Lemma 7.1, it suffices to use these expansions in

IEz

[
Z

(N)
1 (i)− z(i)

]
= N−1

∑

j 6=i

(
fN (z, j, i)− fN (z, i, j)

)

and to simplify.

Let u ∈ J1 ;nK. To establish an expression for the drift of X(N)(u), we must compute
∑

i∈A,iu=0B
(0)
i (z) and

∑
i∈A,iu=0B

(1)
i (z). Direct computations yield:

Lemma 7.2. For every u ∈ J1 ;nK and z ∈ EN ,

∑

i∈A, iu=0

B
(0)
i (z) = 0, (7.6)

∑

i∈A, iu=0

B
(1)
i (z) = (1− x(u))µ1 − x(u)µ0 +

1

2
Gu(z), (7.7)

where

x(u) =
∑

i∈A, iu=0

z(i) and Gu(z) =
∑

j∈A

∑

h∈A

z(j)z(h)sj,h(1I{ju=0}−x(u)).
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Proof. For ǫ ∈ {0, 1} and i ∈ A, let σ
(ǫ)
u (i) denote the type i modified by setting the allele ǫ at

the locus u. We shall use the following formula several times:

∑

i∈A, iu=0

q((j,k);σ(ǫ)u (i)) = 1I{ju=ǫ}+r̄(u)(1I{ku=ǫ}− 1I{ju=ǫ}) (7.8)

with r̄(u) =
∑

I⊂J1;nK\{u} rI =
1
2 by assumption H1.

First, formula (7.8) with ǫ = 0 provides

∑

i∈A, iu=0

B
(0)
i (z) =

∑

j∈A, ju=0

z(j) + r̄(u)
∑

j∈A

∑

k∈A

(1I{ku=ǫ}− 1I{ju=ǫ})−
∑

i∈A, iu=0

z(i) = 0.

Let B
(1,j)
i (z) denote the j-th line of the expression of B

(1)
i (z) for j ∈ {1, 2, 3}.

As
∑

i∈A, iu=0,ix=a
q((j, k);σǫx(i)) does not depend on the value of a if u 6= x:

∑

i∈A, iu=0

B
(1,1)
i (z) =

∑

k∈A

∑

j∈A

z(j)z(k)
∑

i∈A, iu=0

(
q((j,k);σ(1)u (i))µ1 − q((j,k);σ(0)u (i))µ0

)
.

Applying (7.8) again, we obtain:

∑

i∈A, iu=0

B
(1,1)
i (z) = (1− x(u))µ1 − x(u)µ0.

Due to the symmetry of the parameters: si,j = sj,i for i, j ∈ A, we have:

∑

i∈A, iu=0

B
(1,2)
i (z) = 0.

Finally, computations using (7.8) yet again yield:

∑

i∈A, iu=0

B
(1,3)
i (z) =

1

2
Gu(z).

To obtain condition (a), it remains to express Gu(z) in the new coordinates. The following

lemma describes the inverse of the change of coordinates (ΦN ,ΨN ):

Lemma 7.3. For z ∈ EN and L ⊂ J1 ;nK, set x(L) =
∑

i, iL≡0 z(i) with the convention

x(∅) = 1 and y(L) =
∏

ℓ∈L x(ℓ)− x(L) if |L| ≥ 2. Then for every J ⊂ J1 ;nK,

z(0J ,1J̄) =
∏

i∈J

x(i)
∏

i∈J̄

(1− x(i))−
∑

I⊂J1;nK s. t. J⊂I, |I|≥2

(−1)|I|−|J |y(I) (7.9)
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Proof. First, by induction on n− |J |, we show that

z(0J ,1J̄) =
∑

I⊂J1;nK s. t. J⊂I

(−1)|I|−|J |x(I). (7.10)

Since z(0) = x(J1 ;nK), the equality (7.10) holds for J = J1 ;nK.

Let m ∈ J1 ;nK. Assume that the formula (7.10) holds for every subset J of J1 ;nK such that

|J | ≥ m. Let K be a subset of J1 ;nK with m− 1 elements.

z(0K ,1K̄) = x(K)−
∑

L⊂J1;nK s. t. K(L

z(0L,1L̄)

We apply the formula (7.10) to every term in the sum and we invert the double sum we have

obtained:

z(0K ,1K̄) = x(K)−
∑

H⊂J1;nK s. t. K(H

x(H)
( ∑

L⊂J1;nK s. t. K(L⊂H

(−1)|H|−|L|
)
.

The sum between parentheses is equal to

|H|−|K|∑

v=1

(−1)|H|−|K|−v

(|H| − |K|
v

)
= −(−1)|H|−|K|.

Thus the formula (7.10) is also satisfied for the subset K which completes the induction.

To complete the proof, we replace x(I) in (7.10) with
∏

i∈I x(i)−y(I) for every subset I having

at least two elements and use the following equality:

∑

I⊂J1;nK, J⊂I

(−1)|I|−|J |
∏

i∈I

x(i) =
∏

j∈J

x(j)
( ∑

L⊂J1;nK\J

(−1)|L|
∏

ℓ∈L

x(ℓ)
)
=
∏

j∈J

x(j)
∏

i∈J1;nK\J

(1− x(i)).

To shorten the notation, set

• Λu = P(J1 ;nK \ {u}) for u ∈ J1 ;nK

• ΠJ(v) =
∏

j∈J v(j) for v ∈ [0, 1]n and J ∈ P(J1 ;nK) with the usual convention Π∅ = 1,

• sI,J = si,j for i = (0I ,1Ī) and j = (0J ,1J̄).

With this notation, for every J ⊂ Λu,

• z(0J ,1J̄) = (1− x(u))ΠJ (x)ΠΛu\J(1− x)−RJ(y),
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• z(0J∪{u},1J∪{u}) = x(u)ΠJ (x)ΠΛu\J(1− x)−RJ∪{u}(y),

where RJ(y) and RJ∪{u}(y) denote polynomial functions that vanish at y ≡ 0. Therefore,

Gu(z) = x(u)(1− x(u))
∑

J∈Λu

∑

H∈Λu

ΠJ (x)ΠH(x)ΠΛu\J (1− x)ΠΛu\H(1− x)×
(
x(u)(sJ∪{u},H∪{u} − sJ,H∪{u}) + (1− x(u))(sJ∪{u},H − sJ,H)

)
+Ru(x, y),

where Ru(x, y) is a polynomial function in the variables x(1), . . . , x(n) and y(I) for I ⊂ J1 ;nK

such that |I| ≥ 2, that vanishes in the equilibrium manifold: Ru(x, 0) = 0.

The expression for Gu(z) can be simplified by using the two assumptions H4 on the assortment

parameters, that is sJ,H = sH,J for every J,H ∈ P(J1 ;nK) and sJ∪{u},H∪{u} = sJ,H for every

u ∈ J1 ;nK and J,H ∈ Λu:

Gu(z) = (1− 2x(u))x(u)(1 − x(u))×
∑

J∈Λu

∑

H∈Λu

ΠJ(x)ΠH(x)ΠΛu\J(1− x)ΠΛu\H(1− x)(sJ∪{u},H − sJ,H) +Ru(x, y).

In summary, we have established the following expansion of the drift of X(N):

Lemma 7.4. Assume that hypotheses H1, H2, H3 and H4 hold. For every i ∈ J1 ;nK,

N2 IEz[X
(N)(i)− x(i)] = (1− x(i))µ1 − x(i)µ0

+ (
1

2
− x(i))x(i)(1 − x(i))Pi,s(x) +Ri(x, y) +O(N−1) (7.11)

uniformly on z ∈ EN where

Pi,s(x) =
∑

J∈Λu

∑

H∈Λu

ΠJ (x)ΠH(x)ΠΛu\J (1− x)ΠΛu\H(1− x)(sJ∪{u},H − sJ,H)

and Ri(x, y) is a polynomial function in the variables x(1), . . . , x(n) and y(I) for I ∈ P(J1 ;nK)

with at least two elements such that Ri(x,0) = 0.

Condition (b). Computations similar to those used to obtain (7.6) lead to the following

expansion of the second moments of X
(N)
1 − x, showing that condition (b) holds:

Lemma 7.5. N2 IEz

[
(X

(N)
1 (i)− x(i))(X

(N)
1 (j) − x(j))

]
= ai,j(x, y) +O(N−1), with





ai,i(x, y) = x(i)(1 − x(i)) +O(N−1)

ai,j(x, y) = −2
( ∑
I⊂J1;nK\{i,j}

rI

)
y({i, j}) +O(N−1) if i 6= j

uniformly on z ∈ EN .
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Proof. Let i, j ∈ J1 ;nK and z ∈ EN . By definition of X(N),

N2 IEz

[
(X

(N)
1 (i) − x(i))(X

(N)
1 (j)− x(j))

]

= N2
∑

k∈A, ki=0

∑

ℓ∈A, ℓj=0

IEz

[
(Z

(N)
1 (k)− z(k))(Z

(N)
1 (ℓ)− z(ℓ))

]

Using formulae (7.3) and (7.4) and assumption H2, we obtain

N2 IEz

[
(X

(N)
1 (i) − x(i))(X

(N)
1 (j)− x(j))

]

=
∑

k∈A

∑

ℓ∈A

(fN (z, ℓ,k) + fN(z,k, ℓ))(1I{ki=0,kj=0} − 1I{ki=0,ℓj=0})

= T
(1)
i,j + T

(2)
i,j − T

(3)
i,j − T

(3)
j,i +O(N−1),

where

T
(1)
i,j =

∑

t∈A

z(t)
∑

ℓ∈A

z(ℓ)
∑

k∈A, ki=kj=0

q((ℓ, t);k),

T
(2)
i,j =

∑

t∈A

z(t)
∑

k∈A, ki=kj=0

z(k)
∑

ℓ∈A

q((k, t); ℓ),

T
(3)
i,j =

∑

t∈A

z(t)
∑

ℓ∈A, ℓj=0

z(ℓ)
∑

k∈A, ki=0

q((ℓ, t);k).

With the convention x({i, j}) = x(i) if i = j, we have T
(2)
i,j = x({i, j}) and it follows from

assumption H1 (rI = rĪ for every I ⊂ J1 ;nK) that

T
(1)
i,j = x(i)x(j) +

∑

I⊂J1;nK

rI
(
1I{i∈I,j∈I}+1I{i 6∈I,j 6∈I}

)(
x({i, j}) − x(i)x(j)

)

= x(i)x(j) + 2
( ∑

I⊂J1;nK\{i,j}

rI

)(
x({i, j}) − x(i)x(j)

)
,

T
(3)
i,j = x({i, j}) +

( ∑

I⊂J1;nK\{i}

rI

)(
x(i)x(j) − x({i, j})

)
=

1

2

(
x(i)x(j) + x({i, j})

)
.

Therefore, for every i, j ∈ J1 ;nK,

N2 IEz

[
(X

(N)
1 (i) − x(i))(X

(N)
1 (j)− x(j))

]

= 2
( ∑

I⊂J1;nK\{i,j}

rI

)(
x({i, j}) − x(i)x(j)

)
+O(N−1).

If i = j then x({i, j}) − x(i)x(j) = x(i)(1 − x(i)) and
∑

I⊂J1;nK\{i,j}

rI =
1

2
.
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Condition (d). Let I be a subset of J1 ;nK with at least two elements. To compute the

drift of Y (N)(I), we use the following lemma and formulae (7.3), (7.4) and (7.5) describing the

moments of Z
(N)
1 − z.

Lemma 7.6. Let J be a finite set. Consider two families of reals {aj , j ∈ J} and {bj , j ∈ J}.
The following identity holds:

∏

j∈J

aj −
∏

j∈J

bj =
∑

K⊂J, K 6=∅

∏

k∈K

(ak − bk)
∏

ℓ∈J\K

bℓ. (7.12)

Computations yield:

N IEz[Y
(N)
1 (I)− y(I)] =

∑

i∈I

(∏

ℓ 6=i

x(ℓ)
∑

j∈A, ji=0

B
(0)
j (z)

)

−
∑

j∈A, jI≡0

B
(0)
j (z) +O(N−1). (7.13)

uniformly on z ∈ EN . As we have shown that
∑

j∈A, ji=0B
(0)
j (z) = 0 for every i ∈ J1 ;nK

(equation (7.6)),

N IEz[Y
(N)
1 (I)− y(I)] = −

∑

j∈A, jI≡0

B
(0)
j (z) +O(N−1) (7.14)

uniformly on z ∈ EN .

Direct computations provide the following expression of the sum on the right-hand side of

(7.14) using the variables x(L) =
∑

j∈A, jL≡0 for L ∈ P(J1 ;nK):
∑

j∈A, jI≡0

B
(0)
j (z) =

∑

L⊂J1;nK s. t. I∩L 6=∅, I∩L̄ 6=∅

rL

(
x(I ∩ L)x(I ∩ L̄)− x(I)

)
(7.15)

To obtain an expression for IEz[Y
(N)
1 (I) − y(I)] in the new coordinates, it remains to replace

each term x(L) for |L| ≥ 2 with
∏

ℓ∈L x(ℓ)− y(L) in (7.15). This leads to the following lemma

and shows that condition (d) holds.

Lemma 7.7. For a subset I of J1 ;nK having at least two elements,

N IEz[Y
(N)
1 (I)− y(I)] = cn,I(x, y) +O(N−1) (7.16)

where

cn,I(x, y) = −
( ∑

L⊂J1;nK,

L∩I 6=∅, L̄∩I 6=∅

rL

)
y(I)− 1I{|I|≥4}

∑

L⊂J1;nK,

|I∩L|≥2,|I∩L̄|≥2

rLy(I ∩ L)y(I ∩ L̄)

+ 1I{|I|≥3}

∑

L⊂J1;nK,

|I∩L|≥2,|I∩L̄|≥1

(rL + rL̄)y(L ∩ I)
∏

ℓ∈I∩L̄

x(ℓ).
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Condition (f). The following lemma shows that the condition (f) holds under the assump-

tion H3:

Lemma 7.8. For two distinct loci k, ℓ, let rk,ℓ denote the probability that the offspring does

not inherit the genes at the loci k and ℓ from the same parent,

rk,ℓ =
∑

I⊂J1;nK, k∈I and ℓ 6∈I

(rI + rĪ),

and set r(n) = min(rk,ℓ k, h ∈ J1 ;nK and h 6= k).

If r(n) > 0 then the following system of differential equations

(Sn,I)

{
dvn,I

dt (t, x, y) = cn,I(x, vn,I(t, x, y))

vn,I(0, x, y) = y(I)
∀I ⊂ J1 ;nK s. t. |I| ≥ 2

has a unique solution vn = {vn,I , I ⊂ J1 ;nK and |I| ≥ 2} which is of the form:

vn,I(t, x, y) = exp(−r(n)t)fn,I(t, x, y),

where fn,I is a continuous and bounded function on IR×[0, 1]n× [−1, 1]2
n−n−1 so that the value

of fn,I(t, x, y) depends on x and y only via the coordinates x(i) for i ∈ I and y(J) for J ⊂ I

such that |J | ≥ 2.

Remark 7.2. For every subset I ⊂ J1 ;nK with two elements say k and ℓ,

dvn,I
dt

(t, x, y) = −rk,ℓ y(I).

Therefore if r(n) = 0 then there exists a subset I of J1 ;nK with two elements such that

vn,I(t, x, y) = y(I). Thus the assumption r(n) > 0 is a necessary condition for the solution of

(Sn,I) to converge to 0 as t tends to +∞ for any initial values.

Proof. Let n ≥ 2 and let I ⊂ J1 ;nK be such that |I| ≥ 2. As cn,I(x, y) depends only on the

coordinates x(ℓ) for ℓ ∈ I and y(L) for L ⊂ I such that |L| ≥ 2, we shall prove by induction

on the number of elements of I that for any J ⊂ I, (Sn,J) has a unique solution of the form

vn,J(t, x, y) = exp(−r(n)t)fn,J(t, x, y), where fn,J is a continuous and bounded function on

IR×[0, 1]n × [−1, 1]2
n−n−1 such that the value of fn,J(t, x, y) depends on x and y only through

the values of the coordinates x(j) for j ∈ J and y(L) for L ⊂ J such that |L| ≥ 2.

• If I has two elements say k and ℓ, then (Sn,I) is the following differential equation:

{
dvn,I

dt (t, x, y) = −rk,ℓ y(I)
vn,I(0, x, y) = y(I)
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It has a unique solution vn,I(t, x, y) = y(I)e−r(2)tfn,I(t, x, y) where

fn,I(t, x, y) = e−(rk,ℓ−r(2))ty(I).

By assumption r(k, ℓ) ≥ r(2) > 0, hence the result holds.

• Let 2 ≤ m < n. Assume that the inductive hypothesis holds for any subsets J with m

elements. Let I be a subset of J1 ;nK with m+ 1 elements. Then

dvn,I
dt

(t, x, y) = −r̄Ivn,I(t, x, y) + e−tr(n)g(t, x, y)

where r̄I =
∑

L⊂J1;nK s. t.

L∩I 6=∅, L̄∩I 6=∅

rL and

g(t, x, y) = − 1I{|I|≥4}

∑

L⊂J1;nK s. t.

|I∩L|≥2,|I∩L̄|≥2

rLe
−tr(n)fn,I∩L(t, x, y)fn,I∩L̄(t, x, y)

+ 1I{|I|≥3}

∑

L⊂J1;nK s. t.

|I∩L|≥2,|I∩L̄|≥1

(rL + rL̄)fn,L∩I(t, x, y)
∏

ℓ∈I∩L̄

x(ℓ).

As r̄I is the probability that the offspring does not inherit all the genes at loci i ∈ I

from the same parent, r̄I ≥ r(n). Therefore the differential equation (Sn,I) has a unique

solution:

vn,I(t, x, y) = y(I)e−r̄I t + e−r̄I t

∫ t

0
g(s, x, y)e(r̄I−r(n))sds.

By our assumptions on the functions fn,J for J ( I, g is a bounded continuous function

on IR+×[0, 1]n × [−1, 1]2
n−n−1 such that the value of g(t, x, y) depends on x and y only

through the coordinates x(i) for i ∈ I and y(L) for L ⊂ I such that |L| ≥ 2. Therefore,

the function fn,I(t, x, y) = er(n)tvn,I(t, x, y) has the asserted properties.

Conditions (c) and (e). Condition (c) is easy to verify using formulae (7.3), (7.4), (7.5)

describing the moments of Z
(N)
1 − z. This leads to:

N2 IEz[(X
(N)
1 (i) − x(i))4] = O(N−2) ∀i ∈ J1 ;nK, uniformly on z ∈ EN .

Similarly, using Lemma 7.6, we obtain

N IEz[(Y
(N)
1 (I)− y(I))2] = O(N−1) ∀I ⊂ J1 ;nK, s.t. |I| ≥ 2, uniformly on z ∈ EN .
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7.2 Expressions for the drift

We have shown that the i-th coordinate of the drift of the limiting diffusion is

(1− x(i))µ1 − x(i)µ0 + (1/2 − x(i))x(i)(1 − x(i))Pi,s(x)

where

Pi,s(x) =
∑

J⊂J1;nK\{i}

∑

H⊂J1;nK\{i}

(sJ∪{i},H − sJ,H)×

∏

j∈J

x(j)
∏

h∈H

x(h)
∏

j∈J1;nK,
j 6∈J∪{i}

(1− x(j))
∏

h∈J1;nK,
h6∈H∪{i}

(1− x(h)),

and, for two subsets I and J of J1 ;nK, sI,J denotes the assortment parameter si,j for the types

i = (0I ,1Ī) and j = (0J ,1J̄). The following lemma states that Pi,s(x) is actually a polynomial

function in the variables x(i)(1 − x(i)) for i ∈ J1 ;nK \ {u}:

Lemma 7.9. Let Λ be a finite subset of IN. Consider a family of reals β = {βI,J , I, J ⊂ Λ}
such that βI,J = βI\J,J\I for every I, J ⊂ Λ. Then,

∑

J⊂Λ

∑

H⊂Λ


βJ,H

∏

j∈J

x(j)
∏

h∈H

x(h)
∏

j∈Λ\J

(1− x(j))
∏

h∈Λ\H

(1− x(h))




=
∑

L⊂Λ

CL(β)
∏

ℓ∈L

x(ℓ)(1− x(ℓ)) (7.17)

where

CL(β) =
∑

T⊂L

(−2)|T |−|L|
∑

A⊂T

βA,T\A.

Proof. Let PΛ(β) denote the polynomial function on the right-hand side. The proof is by

induction on |Λ|. First, P∅(β)(x) = β∅,∅ = C∅(β).

Let n ∈ IN. Assume that the equality (7.17) holds for every subset Λ of IN with at most n

elements and every family of reals β satisfying the assumptions of the lemma.

Let Λ be a subset of IN with n+1 elements, let j be an element of Λ and let η = {ηI,J , I, J ⊂ Λ}
be a family of reals such that ηI,J = ηI\J,J\I for every I, J ⊂ Λ. We split PΛ(η) into a sum

over the subsets of Λ containing j and a sum over the subsets of Λ\{j} to obtain the following

expression:

PΛ(η)(x) =
∑

K⊂Λ\{j}

∑

L⊂Λ\{j}

∏

k∈K

x(k)
∏

ℓ∈L

x(ℓ)
∏

k∈Λ\K

(1− x(k))
∏

h∈Λ\L

(1− x(h))×

(
x(j)2ηK∪{j},L∪{j} + (1 − x(j))2ηK,L + x(j)(1 − x(j))(ηK∪{j},L + ηK,L∪{j})

)
.
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This expression can be simplified by using that ηK∪{j},L∪{j} = ηK,L:

PΛ(η)(x) = PΛ\{j}(η
(0))(x)

+ x(j)(1 − x(j))
(
PΛ\{j}(η

(1))(x) + PΛ\{j}(η
(2))(x)− 2PΛ\{j}(η

(0))(x)
)
,

where η(0), η(1) and η(2) are the following three families of reals indexed by the pairs of subsets

of Λ \ {j}:

η
(0)
A,B = ηA,B, η

(1)
A,B = ηA∪{j},B and η

(2)
A,B = ηA,B∪{j} for every A,B ⊂ Λ \ {j}.

The inductive hypothesis applies to Λ \ {j} and the three families of reals η(0), η(1) and η(2):

PΛ(η)(x) =
∑

L⊂Λ\{j}

CL(η)
∏

ℓ∈L

x(ℓ)(1− x(ℓ)) +
∑

L⊂Λ, j∈L

C̃L

∏

ℓ∈L

x(ℓ)(1− x(ℓ)),

where

C̃L =
∑

T⊂L\{j}

(−2)|L|−1−|T |
∑

A⊂T

(ηA∪{j},T\A + ηA,(T∪{j})\A − 2ηA,T\A).

The double sum of the terms ηA∪{j},T\A + ηA,(T∪{j})\A is equal to:

∑

T⊂L, j∈T

(−2)|L|−|T |
∑

A⊂T

ηA,T\A.

Therefore, C̃L = CL(η) and PΛ(η)(x) =
∑

L⊂ΛCL(η)
∏

ℓ∈L x(ℓ)(1− x(ℓ)) which completes the

proof by induction.

By Lemma 7.9, the expanded form of Pi,s as a polynomial function of the n − 1 variables

x(j)(1 − x(j)), j 6= i is:

Pi,s(x) =
∑

L⊂J1;nK\{i}

αi,L(s)
∏

ℓ∈L

x(ℓ)(1 − x(ℓ)) (7.18)

where

αi,L(s) =
∑

T⊂L

(−2)|L|−|T |
∑

A⊂T

(sA∪{i},T\A − sA,T\A).

The coefficient αi,L(s) can be rewritten in terms of the mean values of the assortment param-

eters mT (s) for T ⊂ L:

αi,L(s) = 2|L|
∑

T⊂L

(−1)|L|−|T |(mT∪{i}(s)−mT (s)) = 2|L|
∑

T⊂L

(−1)|L|−|T |δi[m(s)](T ).
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Indeed, it follows from the assumption H4 that for every i ∈ J1 ;nK and T ⊂ J1 ;nK \ {i},

mT (s) = 2−|T |
∑

A⊂T

sA,T\A and mT∪{i}(s) = 2−|T |
∑

A⊂T

sA∪{i},T\A.

Using formula (4.5), we obtain αi,L(s) = 2|L|δL∪{i}[m(s)](∅).
The following factorised form of the polynomial function Pi,s can be derived from a general

identity stated in Lemma A.1:

Pi,s(x) =
∑

A⊂J1;nK\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1 − x(k))
∏

ℓ 6∈A∪{i}

(
1− 2x(ℓ)(1 − x(ℓ))

)
.

A Appendix

A.1 Combinatorial formulae for difference operators

This section collects some combinatorial formulae used to study the limiting diffusion. Let

E be a finite set and t be a real. For a function f defined on P(E), we set

St(f)(A) =
∑

B⊂A

t|A|−|B|f(B) for every A ∈ P(E)

(with the usual convention a0 = 1 for every a ∈ IR). Most of the combinatorial formulae used

in the paper can be deduced from this general identity:

Lemma A.1. Let U be a subset of E and let {xu, u ∈ U} be a family of reals.

∑

A⊂U

St(f)(A)
∏

i∈A

xi =
∑

B⊂U

f(B)
∏

i∈B

xi
∏

j∈U\B

(1 + txj). (A.1)

Proof. One way to derive this equality is to interchange the sum on the right-hand side of the

equation with the sum that appears in the definition of St(f)(A), to use the new summation

index C = A \B and to recognize the following expansion of the product of the terms 1 + txi:

∏

i∈U\B

(1 + txi) =
∑

C⊂U\B

t|C|
∏

i∈C

xi.

As S−1(f)(A) is nothing other than δA[f ](∅) by (4.5), if we apply Lemma A.1 with t = −1,

f(A) = δi[m(s)](A) and the family of reals {2x(j)(1 − x(j)), j ∈ J1 ;nK \ {i}}, we obtain the
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following equality

∑

A⊂J1;nK\{i}

2|A|δA∪{i}[m(s)](∅)
∏

ℓ∈A

x(ℓ)(1 − x(ℓ))

=
∑

A⊂J1;nK\{i}

δi[m(s)](A)
∏

k∈A

2x(k)(1 − x(k))
∏

ℓ 6∈A∪{i}

(
1− 2x(ℓ)(1 − x(ℓ))

)
.

This shows the equality between the expanded form (4.3) and factorised form (4.1) of the

polynomial term Pi,s(x) appearing in the drift of the limiting diffusion.

By taking xi = −1/t for every i ∈ U in Lemma A.1, we can deduce the inverse of the

operator St. This gives a useful formula for inverting a relation between two sequences indexed

by the subsets of a finite set.

Corollary A.1. The inverse of the operator St is S−t, that is

f(A) =
∑

B⊂A

(−t)|A|−|B|St(f)(B) for every A ⊂ E.

From Corollary A.1 we can deduce the following identity for the finite difference operator:

f(A) =
∑

B⊂A

δB [f ](∅) for every A ∈ P(E). (A.2)

By considering the operator St for a function f which is constant on subsets having the same

number of elements, we can rewrite the previous relations to obtain useful formulae relating

two sequences indexed by the integers 0, 1, . . . , n.

Corollary A.2. Let t be a real number. Let n ∈ IN∗. For a function f defined on J0 ;nK, let

st(f) be the function defined by:

st(f)(k) =
k∑

ℓ=0

(
k

ℓ

)
tk−ℓf(ℓ) for every k ∈ J1 ;nK.

Then,

1. For every x ∈ IRn

n∑

j=0

st(f)(j)en,j(x) =
n∑

ℓ=0

f(ℓ)
∑

L⊂J1;nK s. t. |L|=ℓ

∏

i∈L

xi
∏

j∈J1;nK\L

(1 + txj)

where en,j denotes the elementary polynomial of degree j in n variables:

en,j(x) =
∑

J⊂J1;nK s. t. |J |=j

∏

i∈J

xi.
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2. The operator s−t is the inverse of the operator st:

f(k) =
k∑

ℓ=0

(
k

ℓ

)
(−t)k−ℓst(f)(ℓ) for every k ∈ J1 ;nK.

This corollary provides identities for the forward finite difference operators of any orders

since s−1(f)(k) = δ(k)[f ](0) for every k ∈ J0 ;nK. In particular, this leads to the following

formula used in the proof of Proposition 5.1:

k∑

ℓ=0

(
k

ℓ

)
δ(ℓ)[f ](0) = f(k) for every k ∈ J1 ;nK (A.3)

and Lemma 6.2 used in the proof of Proposition 6.3.

A.2 Example 6.2

Under the hypotheses of the assertion 1-(b) of Proposition 6.3, the logarithm of the sta-

tionary density hn,s,µ takes its maximum value in [0, 1/2]n at a unique point (ξ0, . . . , ξ0) such

that λ0 = ξ0(1− ξ0) is the unique solution in ]0, 1/4[ of the equation E ′

0:

2µ − 1 +

n−1∑

k=0

2kδ(k+1)[m](0)

(
n− 1

k

)
yk+1 = 0.

In [0, 1/2]n the saddle points of index n − 1 has one coordinate equal to 1/2 and (n − 1)

coordinates equal to ξ1 where λ1 = ξ1(1− ξ1) is the unique solution in ]0, 1/4[ of the equation

E ′

1:

2µ − 1 +

n−2∑

k=0

(
n− 2

k

)(
2k−1δ(k+2)[m](0) + 2kδ(k+1)[m](0)

)
yk+1 = 0.

If we denote by hn,i the value of hn,s,µ at a critical point of index n− i then

hn,0 − hn,n =(2µ+ 1)n ln(4λ0) +

n−1∑

k=0

2kδ(k+1)[m](0)

(
n

k + 1

)
(λk+1

0 − (1/4)k+1),

hn,0 − hn,1 =(2µ+ 1)
(
n ln(

λ0
λ1

) + ln(4λ1)
)

+

n−1∑

k=0

2kδk+1[m](0)

((
n− 1

k + 1

)
(λk+1

0 − λk+1
1 ) 1I{k≤n−2}+

(
n− 1

k

)
(λk+1

0 − 1

4
λk1)

)
.

If we define the assortment by means of the Hamming criterion with the quadratic sequence of

parameters: sk = s0 − (bk + ck2) ∀k ∈ J0 ;nK with c > 0 and b+ c > 0, then

δ(1)[m](k) = −(b+ c+ 2kc) ∀k ∈ J0 ;n − 1K, δ(2)[m](0) = −2c and δ(r)[m](0) = 0 ∀r ≥ 3.
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In this case, λ0 and λ1 are solutions of quadratic functions: 2µ−1−(b+c)λ0−4c(n−1)λ20 = 0 and

2µ−1−(b+2c)λ1−4c(n−2)λ21 = 0. After some computations, we obtain: hn,0−hn,n ∼
n→+∞

c
8n

2

and hn,0 − hn,1 ∼
n→+∞

n1/21/2
√
c(2µ − 1).

A.3 Property of a symmetric matrix

The following lemma is used to determine the nature of the critical points of the density of

the invariant measure (Proposition 6.3).

Lemma A.2. For a real a and two integers k and n so that n ≥ 1 and 0 ≤ k ≤ n, let Mn,k(a)

denote the following symmetric matrix:

Mn,k =

(
Ak Bk,n−k

Bn−k,k An−k

)

where

• Ak denotes the following k-by-k matrix: Ak =




1 a · · · a

a
. . .

. . .
...

...
. . .

. . . a

a · · · a 1




• Bk1,k2 denotes the k1-by-k2 matrix all the elements of which are equal to −a.

If 0 ≤ a < 1 then Mn,k(a) is positive definite.

Proof. Let Qn,k,a denote the quadratic form with matrix Mn,k(a) in the canonical basis. For

every x ∈ IRn, Qn,k,a(x) =
∑n

i=1 x
2
i + 2a

∑
1≤i<j≤n ǫiǫjxixj, where ǫ1 = . . . = ǫk = 1 and

ǫk+1 = . . . = ǫn = −1. This lemma can be established by induction on n by using the following

decomposition of Qn,k,a(x):

Qn,k,a(x) = (xn + aǫn

n−1∑

i=1

ǫixi)
2 + (1− a2)

( n−1∑

i=1

x2i + 2b
∑

1≤i<j≤n−1

ǫiǫjxixj

)
.

where b = a
1+a ∈ [0, 1[.
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