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A graph G is (Kq, k) (vertex) stable if it contains a copy of Kq after deleting any subset of k vertices. We show that for q ≥ 6 and k ≤ q 2 + 1 the only (Kq, k) stable graph with minimum size is isomorphic to K q+k .

Introduction

For terms not defined here we refer to [START_REF] Bondy | Graph theory[END_REF]. As usually, the order of a graph G is the number of its vertices (it is denoted by |G|) and the size of G is the number of its edges (it is denoted by e(G)). The degree of a vertex v in a graph G is denoted by d G (v), or simply by d(v) if no confusion is possible. For any set S of vertices, we denote by G -S the subgraph induced by V (G) -S. If S = {v} we write Gv for G -{v}. When e is an edge of G we denote by Ge the spanning subgraph (V (G), E -{e}). The disjoint union of two graphs G 1 and G 2 is denoted by G 1 +G 2 . The union of p mutually disjoint copies of a graph G is denoted by pG. A complete subgraph of order q of G is called a q-clique of G. The complete graph of order q is denoted by K q . When a graph G contains a q-clique as subgraph, we say "G contains a K q ". The following notion was introduced by Dudek et al. in [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF]. Definition 1.1. Let H be a graph and k be a natural number. A graph G of order at least k is said to be a (H, k) stable graph if for any set S of k vertices the subgraph G -S contains a graph isomorphic to H.

By Q(H, k) we denote the size of a minimum (H, k) stable graph. It is clear that if G is an (H, k) stable graph with minimum size then the graph obtained from G by addition or deletion of some isolated vertices is also minimum (H, k) stable. Hence we shall asume that all the graphs considered in the paper have no isolated vertices. A (H, k) stable graph with minimum size shall be called a minimum (H, k) stable graph.

Lemma 1.2. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] Let q and k be integers, q ≥ 2, k ≥ 1. If G is (H, k) stable then, for every vertex v of G, the graph Gv is (H, k -1) stable.

Proposition 1.3. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] If G is a (H, k) stable graph with minimum size then every vertex as well as every edge is contained in a subgraph isomorphic to H.

Proof.

Let e be an edge of G which is not contained in any subgraph of G isomorphic to H, then Ge would be a (H, k) stable graph with less edges than G, a contradiction. Let x be a vertex of G and e be an edge of G incident with x, since e is an edge of some subgraph isomorphic to H, say H 0 , the vertex x is a vertex of H 0 .

Preliminary results

We are interested by minimum (K q , k) stable graphs (where q and k are integers such that q ≥ 2 and k ≥ 0). As a corollary to Proposition 1.3, every edge and every vertex of a minimum (K q , k) stable graph is contained in a K q (thus the minimum degree is at least q -1). Note that, for q ≥ 2 and k ≥ 0, the graph

K q+k is (K q , k) stable, hence Q(K q , k) ≤ q+k 2 . Definition 2.1.
Let H be a non complete graph on q + t vertices (t ≥ 1). We shall say that H is a near complete graph when it has a vertex v such that

• H -v is complete. • d H (v) = q + r with -1 ≤ r ≤ t -2.
The previous definition generalizes Definition 1.5 in [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] initially given for r ∈ {-1, 0, 1} and the following lemma generalizes Proposition 2.1 in [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF].

Lemma 2.2. Every minimum (K q , k) stable graph G, where q ≥ 3 and k ≥ 1, has no component H isomorphic to a near complete graph.

Proof. Suppose, contrary to our claim, that G has such a component H and let v be the vertex of

H such that H -v is a clique of G. Then, H has q + t vertices with q -1 ≤ d(v) ≤ q + t -2 and d(v) = q + r. Since G is minimum (K q , k) stable, G -v is (K q , k -1)
stable and is not (K q , k) stable. Then, Gv contains a set S with at most k vertices intersecting every subgraph of Gv isomorphic to a K q . The graph G -S contains some K q (at least one) and clearly every subgraph of G -S isomorphic to a K q contains v. Since N (v) is a K q+r and N (v) -S contains no K q , |N (v) -S| ≤ q -1. Since there exists a K q containing v in H -S,

|N (v) -S| = q -1 (and hence |S ∩ N (v)| = r + 1). Since H -v -S contains no K q , H -v -S = N (v) -S.
Let a be a vertex of Hv not adjacent to v and let b be a vertex in N (v) -S, and consider S ′ = S -{a} + {b}. We have | S ′ |≤ k and G -S ′ contains no K q , a contradiction.

It is clear that Q(K q , 0) = q 2 and the only minimum (K q , 0) stable graph is K q . It is an easy exercise to see that Q(K 2 , k) = k + 1 and that the matching (k + 1)K 2 is the unique minimum (K 2 , k) stable graph.

Theorem 2.3. [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] Let G be a minimum (K 3 , k) stable graph, with k ≥ 0. Then G is isomorphic to sK 4 + tK 3 , for any choice of s and t such that 2s + t = k + 1.

In [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] it was proved that if q ≥ 4 and k ∈ {1, 2} then Q(K q , k) = q+k 2 and the only minimum (K q , k) stable graph is K q+k . We have proved also that if q ≥ 5 then Q(K q , 3) = q+3 2 and the only minimum (K q , 3) stable graph is K q+3 . Dudek, Szymański and Zwonek proved the following result.

Theorem 2.4. [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] For every q ≥ 4, there exists an integer k(q) such that

Q(K q , k) ≤ (2q -3)(k + 1) for k ≥ k(q).
As a consequence of this last result, they have deduced that for every k ≥k(q) K q+k is not minimum (K q , k) stable.

Remark 2.5. From now on, throughout this section we assume that q and k are integers such that q ≥ 4, k ≥ 1 and for every r such that 0 ≤ r < k we have Q(K q , r) = q+r 2 and the only minimum (K q , r) stable graph is K q+r .

In view of Theorem 2.4, k is bounded from above and we are interested to obtain the greatest possible value of k.

Lemma 2.6. Let G be a (K q , k) stable graph such that e(G) ≤ q+k 2 . Then either for every vertex v we have d

(v) ≤ q + k -2 or G is isomorphic to K q+k .
Proof. Suppose that some vertex v has degree at least

q + k -1. By Lemma 1.2 the graph G -v is (K q , k -1) stable, hence Q(K q , k -1) ≤ e(G -v) = e(G) -d(v). Since Q(K q , k -1) = q+k-1 2 , we have q+k-1 2 ≤ e(G) -d(v) ≤ q+k 2 -(q + k -1) = q+k-1 2 . It follows that e(G-v) = q+k-1 2 , G-v is isomorphic to K q+k-1 and d(v) = q+k-1. Hence, G is isomorphic to K q+k . Lemma 2.7. Let G be a minimum (K q , k) stable graph. Then one of the following statements is true • G has no component isomorphic to K q • Q(K q , k -1) + q 2 ≤ Q(K q , k) Proof. Suppose that some component H of G is isomorphic to a K q . If G -H is not (K q , k -1)
stable, then there is a set S with at most k -1 vertices intersecting each K q of G -H. Then, for any vertex a of H, S + a intersects each K q of G while S has at most k -1 vertices, a contradiction. Hence G -H is (K q , k -1) stable and we have

Q(K q , k -1) ≤ e(G -H) = Q(K q , k) -q 2 .
Lemma 2.8. [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF] Let G be a minimum (K q , k) stable graph and let u be a vertex of degree q -1. Then one of the following statements is true

• ∀v ∈ N (u) d(v) ≥ q + 1 • Q(K q , k -1) + 3(q -2) ≤ Q(K q , k) Proof.
By Proposition 1.3, since d(u) = q -1, {u} + N (u) induces a complete graph on q vertices. Assume that some vertex w ∈ N (u) has degree q + r where r = -1 or r = 0, and let v be a neighbour of u distinct from w. Since the degree of u in Gv is q -2, no edge incident with u can be contained in a

K q of G -v. Since G -v is (K q , k -1) stable, we can delete the q -2 edges incident with u in G -v and the resulting graph G ′ is still (K q , k -1) stable. By deleting v, we have e(G -v) ≤ e(G) -(q -1) and hence e(G ′ ) ≤ e(G) -(q -1) -(q -2) .
In G ′ , the degree of w is now q + r -2. Hence, no edge incident with w in G ′ can be contained in a K q . Deleting these q + r -2 edges from G ′ leads to a graph G " which remains to be (K q , k -1) stable. We get thus

Q(K q , k -1) ≤ e(G ′′ ) ≤ e(G) -(q -1) -(q -2) -(q + r -2) .
Since e(G) ≤ Q(K q , k), the result follows.

Lemma 2.9. Let G be a minimum (K q , k) stable graph, where 1 ≤ k ≤ 2q -6, and let v be a vertex of degree q -1. Then for every vertex w ∈ N (v) we have d(w) ≥ q + 1.

Proof. Suppose, contrary to the assertion of the lemma, that d(w) ≤ q for some vertex w ∈ N (v). By Lemma 2.8, we have

Q(K q , k -1)+ 3(q -2) ≤ Q(K q , k). Since Q(K q , k -1) = q+k-1 2 and Q(K q , k) ≤ q+k 2 we have q+k-1 2 + 3q -6 ≤ q+k 2 .
Then we obtain k ≥ 2q -5, a contradiction. Lemma 2.10. Let G be a minimum (K q , k) stable graph, where q ≥ 5 and 1 ≤ k ≤ q -1. Then the minimum degree of G is at least q.

Proof. Suppose that there is a vertex v of degree q -1 and let w be a neighbour of v. Since q -1 ≤ 2q -6, by Lemma 2.9, w has degree at least q + 1. By Lemma 1.2 the graph Gw is (K q , k -1) stable. In that graph v is not contained in any K q since its degree is q -2. Hence G -{w, v} is still (K q , k -1) stable. We have

e(G-{w, v}) = e(G)-(d(v)+d(w)-1) ≤ e(G)-2q+1. Since Q(K q , k-1) = q+k-1 2 and Q(K q , k) ≤ q+k 2 we have q+k-1 2 ≤ e(G) -2q + 1 ≤ q+k 2 -2q + 1. It follows that k ≥ q, a contradiction.
Lemma 2.11. Let G be a minimum (K q , k) stable graph, where q ≥ 5 and 1 ≤ k ≤ q -1, and let v be a vertex of degree q. Then N (v) is complete.

Proof.

Assume, by contradiction, that v is a vertex of degree q and N (v) contains two non adjacent vertices a and b. Let w ∈ N (v) distinct from a and b (w must exist since q ≥ 4). By Lemma 1.2 the graph Gw is (K q , k -1) stable. In that graph v is not contained in a K q since its two neighbours a and b are not adjacent. Hence G -{w, v} is still (K q , k -1) stable. By Lemma 2.10, d(w) ≥ q and hence e(G -{w, v}) = e(G) -(d(v) + d(w) -1) ≤ e(G) -2q + 1. We have, as in the proof of Lemma 2.10, q+k-1 2 ≤ e(G) -2q + 1 ≤ q+k 2 -2q + 1, and we obtain k ≥ q, a contradiction. Lemma 2.12. Let G be a minimum (K q , k) stable graph, where q ≥ 4 and 2 ≤ k ≤ q 2 + 1, and let v be a vertex of degree at least q + 1. Then either N (v) induces a complete graph or there exists an ordering v 1 , . . . , v d(v) of the vertices of N (v) such that {v 1 , . . . , v q-1 } induces a complete graph and

v d(v)-1 v d(v) is not in E(G).
Moreover, there exists a vertex w in {v 1 , . . . , v q-1 } adjacent to v d(v)-1 and v d(v) .

Proof.

Suppose that the subgraph induced by N (v) is not complete and let a and b be two non adjacent neighbours of v. Assume that every complete graph on q -1 vertices contained in N (v) intersects {a, b}. The graph G -{a, b} is (K q , k -2) stable. In that graph, v is not contained in a K q , hence G -{a, b, v} is still (K q , k -2) stable. We have e(G -{a, b, v}

) = e(G) -(d(v) + d(a) + d(b) -2) ≤ e(G) -3q -1. Since Q(K q , k -2) = q+k-2 2 and Q(K q , k) ≤ q+k 2 , we have q+k-2 2 ≤ e(G -{a, b, v}) ≤ e(G) -3q -1 ≤ q+k 2 -3q -1 and hence q 2 + 2 ≤ k, a contradiction with k ≤ q 2 + 1.
Thus, N (v) -{a, b} contains a K q-1 and we can order the vertices of N (v) in such a way that the q -1 first ones v 1 , . . . , v q-1 induce a complete graph and the two last vertices v d(v)-1 and v d(v) are not adjacent, as claimed. Set d(v) = q + r with r ≥ 1. By Proposition 1.3, the edges vv q+r-1 and vv q+r are contained in two distinct q-cliques, say Q 1 and Q 2 . Since v q+r-1 and v q+r are not adjacent, each Q i contains at most r vertices in N (v) -{v 1 , . . . , v q-1 }. Hence, each Q i must have at least qr -1 vertices in {v 1 . . . v q-1 }. Since N (v) is not complete and e(G) ≤ q+k 2 , by Lemma 2.6 we have r ≤ k -2. Since k ≤ q 2 + 1, Q 1 (as well as Q 2 ) has at least qr -1 ≥ qk + 1 ≥ q 2 vertices in {v 1 . . . v q-1 }. Hence Q 1 and Q 2 have at least one common vertex w in N (v), and the lemma follows.

Lemma 2.13. Let G be a minimum (K q , k) stable graph, where q ≥ 5 and 2 ≤ k ≤ q 2 + 1, and let H be a component of G. Assume that v is a vertex of maximum degree in H. Then either H is complete or the subgraph induced by N (v) contains no complete subgraph on d(v) -1 vertices.

Proof.

Assume that H is not complete. First, we prove that the maximum degree in H is at least q + 1. If the minimum degree in H is at least q + 1, we are done. If there exists a vertex u of degree q -1 in H then, by Lemma 2.9, the degree of any vertex of N (u) is at least q + 1. If there exists a vertex u of degree q then, by Lemma 2.11, N (u) ∪ {u} induces a K q+1 , and hence, since H is connected, there exists a vertex in H -(N (u) ∪ {u}) having at least one neighbour w in N (u) and d(w) ≥ q + 1. Thus, the maximum degree in H is q + r with r ≥ 1. Since H is not complete and v is a vertex of maximum degree in H, the subgraph induced on N (v) is not complete. By Lemma 2.12, there exists an ordering {v 1 . . . v q+r } of the vertices of N (v) such that {v 1 . . . v q-1 } induces a complete graph and v q+r-1 v q+r is not an edge of G. If the subgraph induced by N (v) contains a complete subgraph on q + r -1 vertices then without loss of generality we may suppose that it contains the vertex v q+r-1 . Assume that {v 1 , . . . , v q+r-2 , v q+r-1 } induces a complete graph. Since G is a minimum (K q , k) stable graph, by Proposition 1.3, the edge vv q+r must be contained in a K q . Hence v q+r has at least q -2 neighbours in {v 1 , . . . , v q+r-2 }. Let us denote by A this set of neighbours. Since the subgraph induced by (N (v) -{v q+r }) is complete, every vertex in A has degree q + r in G (let us say that these vertices are saturated). Henceforth, every vertex in A has no neighbour outside N (v) ∪ {v}. By Lemma 2.2, the (q + r)-clique (N (v) -{v q+r }) ∪ {v} is a proper subgraph of H -{v q+r }. Since H is connected, there exists a vertex w outside N (v) ∪ {v} adjacent to a vertex u in N (v). Clearly, the vertex u has also degree q + r and it has no other neighbour outside N (v) ∪ {v} than w. The edge uw being contained in a K q by Proposition 1.3, w must have at least q -2 common neighbours with u in N (v). Let us denote by B the set of neighbours of w in N (v). It is easy to see that every vertex in B is saturated. Since A and B are disjoint, we have 2q -3 ≤ |A ∪ B| ≤ |N (v)| = q + r and hence q ≤ r + 3. Since r ≤ k -2 by Lemma 2.6, we have q ≤ k + 1. Thus, we obtain q ≤ q 2 + 2, which implies q ≤ 4, a contradiction. Hence the subgraph induced by the vertices {v 1 , . . . , v q+r-2 , v q+r-1 } is not complete, and the lemma follows.

Proposition 2.14. Let G be a minimum (K q , k) stable graph, where q ≥ 6 and 2 ≤ k ≤ q 2 + 1. Then every component of G is a complete graph. Proof. Let H be a component of G and v be a vertex of maximum degree in H. If the subgraph induced on N (v) is complete then H is obviously complete. We can thus suppose that N (v) is not a clique. By Lemmas 2.10 and 2.11, the minimum degree is at least q + 1, and hence d(v) = q + r with r ≥ 1.

Claim 2.14.1. The graph G -(N (v) ∪ {v}) is (K q , k -r) stable.
Proof By Lemma 2.12, we can consider an ordering v 1 , . . . , v q+r of N (v) such that the set {v 1 , . . . , v q-1 } induces a K q-1 , v q+r-1 v q+r ∈ E(G) and there is a vertex w ∈ {v 1 , . . . , v q-1 } adjacent to v q+r-1 and v q+r . By Lemma 2.13, we can find two non adjacent vertices a and b in N (v) -{v q+r } and two non adjacent vertices c and d in N (v) -{v q+r-1 }. Let us note that since the set {v 1 , . . . , v q-1 } induces a complete graph, it contains at most one vertex of the set {a, b} and at most one vertex of {c, d}. Then, |{v 1 , . . . , v q-1 } ∩ {w, a, b, c, d}| ≤ 3. Since H is not complete, the graph G is not complete and by Lemma 2.6 we have r ≤ k -2. Since k ≤ q 2 + 1 and q ≥ 6, there exists a subset A ⊆ {v 1 . . . v q-1 } such that

• |A| = r • w ∈ A • A ∩ {a, b, c, d} = ∅ By repeated applications of Lemma 1.2, the graph G 1 obtained from G by deleting A is (K q , k -r) stable. In G 1 , the degree of v is equal to q.
Without loss of generality, suppose that a is distinct from v q+r-1 and c is distinct from v q+r . If there exists a q-clique in G 1 containing the edge vv q+r-1 then {v 1 , . . . , v q+r-2 } -A is a (q -2)-clique containing a. Since ab is not an edge, we must have b = v q+r-1 , a contradiction to the fact that av q+r-1 is an edge. Thus, there is no q-clique in G 1 containing vv q+r-1 . Analogously, we prove that there is no q-clique in G 1 containing vv q+r . Hence, the graph G 2 obtained from G 1 by deletion of the edges vv q+r-1 and vv q+r is still (K q , kr) stable. In G 2 , v has degree q -2, so it is not contained in any K q . We can thus delete v and we get a (K q , kr) stable graph G 3 . Since the maximum degree in G is q + r, the degree of w in G 3 is at most q -1. Recall that w is adjacent to the two non adjacent vertices v q+r-1 and v q+r . Hence w is not contained in any K q of G 3 , which means that G 4 = G 3 -w is still (K q , k-r) stable. Since the degree of each vertex in {v 1 , . . . , v q-1 } -(A ∪ {w}) is at most q -2 in G 4 , none of these vertices can be contained in any K q of G 4 . Hence by deletion of these vertices we get again a (K q , kr) stable graph G 5 . We shall prove that none of the r + 1 vertices v q , . . . , v q+r is contained in a K q of G 5 . Note that G 5 = G-{v, v 1 , ..., v q-1 }. For q ≤ j ≤ q+r, denote by d j the degree of the vertex v j in the subgraph induced by {v q , . . . , v q+r }. Clearly we have 0 ≤ d j ≤ r. In G, by Proposition 1.3, the edge vv j is contained in a K q . Hence v j is adjacent (in G) to at least q-2-d j vertices in {v 1 , . . . , v q-1 }. Since we have deleted the vertex v and the vertices v 1 , . . . , v q-1 , we have thus

d G5 (v j ) ≤ q+r-(q-2-d j )-1 = r+1+d j . If d j ≤ r -1 then d G5 (v j ) ≤ 2r ≤ 2(k -2) ≤ q -2
and there is no K q in G 5 containing v j . The equality d G5 (v j ) = q -1 can only be obtained when d j = r, that is v j has r neighbours in v q . . . v q+r . Since v q+r-1 and v q+r are not adjacent, v j is not contained in any K q of G 5 .

Hence, the graph G 6 = G -(N (v) ∪ {v}) obtained from G 5 by deletion of all the vertices v q , v q+1 . . . , v q+r is still (K q , kr) stable, and the claim follows.

Claim 2.14.2.

(2.1)

q + k -r 2 + q + r + q -1 2 + 1 2 (r + 1)(2q -r -2) + 1 ≤ q + k 2 Proof To get back G from G -(N (v) ∪ {v})
we add, at least

• the q + r edges incident with v,

• the q-1 2 edges of the (q -1)-clique induced by the set {v 1 . . . v q-1 }, • the edges incident with v q , . . . , v q+r and not incident with v.

Let l be the number of edges incident with v q , . . . , v q+r and not incident with v. We have

(2.2) e(G -(N (v) ∪ {v})) + q + r + q -1 2 + l ≤ e(G)
In order to find a lower bound of the number of edges incident with the vertices v q , . . . , v q+r , for each i ∈ {q, . . . , q + r} let us denote by d i the degree of the vertex v i in the subgraph induced by the set {v q , . . . , v q+r }. Then,

l = 1 2 Σ q+r i=q d i + Σ q+r i=q (d G (v i ) -1 -d i ) = Σ q+r i=q d G (v i ) -(r + 1) - 1 2 Σ q+r i=q d i .
Since by Lemma 2.10 the minimum degree in G is at least q, we have l ≥ q(r + 1) -(r + 1) -1 2 Σ q+r i=q d i .

Since for every i in {q, . . . , q + r -2} d i ≤ r, d q+r-1 ≤ r -1 and d q+r ≤ r -1, we obtain l ≥ q(r + 1) -(r + 1) -1 2 r(r -1) -(r -1) , and hence

l ≥ 1 2 (r + 1)(2q -r -2) + 1 .
By the assumption made at the beginning of the section (see Remark 2.5), a minimum (K q , k -r) stable graph has q+k-r 2 edges. Since e(G) ≤ q+k 2 , the inequality (2.1) follows from Claim 2.14.1 and the inequality (2.2).

A simple calculation shows that the inequality q 2 + q + 2 ≤ 2kr can be obtained by starting from the inequality (2.1). Since r ≤ k -2 and k ≤ q 2 + 1, we have q 2 + q + 2 ≤ 2k(k -2) ≤ (q + 2)( q 2 -1), hence q 2 2 + q + 4 ≤ 0, a contradiction. Thus, N (v) is a clique and the proposition follows.

Result

In [START_REF] Fouquet | On (Kq, k) vertex stable graphs with minimum size[END_REF], it is shown that if G is minimum (K q , k) stable and the numbers k and q verify one of the following conditions:

• k = 1 and q ≥ 4 • k = 2 and q ≥ 4 • k = 3 and q ≥ 5 then G is isomorphic to K q+k . Theorem 3.1. Let G be a minimum (K q , k) stable graph, where q ≥ 6 and k ≤ q 2 + 1. Then G is isomorphic to K q+k . Proof.

For 0 ≤ k ≤ 3 the graph G is isomorphic to K q+k . Let k be such that 4 ≤ k ≤ q 2 +1 and suppose that for every r with 0 ≤ r < k the only minimum (K q , r) stable graph is K q+r . By Proposition 2.14, the graph G is the disjoint union of p complete graphs H 1 ≡ K q+k1 , H 2 ≡ K q+k2 , • • • , H p ≡ K q+kp . Suppose, without loss of generality, that k 1 ≥ k 2 ≥ • • • ≥ k p ≥ 0 and that there exist two components H i and H j with i < j such that k ik j ≥ 2. By substituting H ′ i ≡ K q+ki-1 for H i and H ′ j ≡ K q+kj +1 for H j , we obtain a new (K q , k) stable graph G ′ such that e(G ′ ) = e(G) -(k ik j -1) < e(G), which is a contradiction. Thus, for any i and any j, 0 ≤ |k ik j | ≤ 1 (cf [START_REF] Dudek | H, k) stable graphs with minimum size[END_REF] Proposition 7). To conclude that G has a unique component, observe the following facts.

• The graphs 2K q+l and K q+2l+1 are both (K q , 2l + 1) stable, but if 2l + 1 ≤ q 2 + 1 then q+2l+1 2 < 2 q+l

2

• The graphs K q+l ∪ K q+l+1 and K q+2l+2 are both (K q , 2l + 2) stable but if 2l + 2 ≤ q 2 + 1 then q+2l+2 

2 < q+l+1 2 + q+l 2
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