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ON (Kq, k) STABLE GRAPHS WITH SMALL k

J.L. FOUQUET, H. THUILLIER, J.M. VANHERPE AND A.P. WOJDA

Abstract. A graph G is (Kq, k) (vertex) stable if it contains a copy of Kq

after deleting any subset of k vertices. We show that for q ≥ 6 and k ≤
q

2
+ 1

the only (Kq, k) stable graph with minimum size is isomorphic to Kq+k.

January 28, 2011

1. Introduction

For terms not defined here we refer to [1]. As usually, the order of a graph G is the
number of its vertices (it is denoted by |G|) and the size of G is the number of its
edges (it is denoted by e(G)). The degree of a vertex v in a graph G is denoted by
dG(v), or simply by d(v) if no confusion is possible. For any set S of vertices, we
denote by G − S the subgraph induced by V (G) − S. If S = {v} we write G − v

for G − {v}. When e is an edge of G we denote by G − e the spanning subgraph
(V (G), E−{e}). The disjoint union of two graphs G1 and G2 is denoted by G1+G2.
The union of p mutually disjoint copies of a graph G is denoted by pG. A complete
subgraph of order q of G is called a q-clique of G. The complete graph of order
q is denoted by Kq. When a graph G contains a q-clique as subgraph, we say “G

contains a Kq”.

The following notion was introduced by Dudek et al. in [2].

Definition 1.1. Let H be a graph and k be a natural number. A graph G of
order at least k is said to be a (H, k) stable graph if for any set S of k vertices the
subgraph G − S contains a graph isomorphic to H .

By Q(H, k) we denote the size of a minimum (H, k) stable graph. It is clear that if
G is an (H, k) stable graph with minimum size then the graph obtained from G by
addition or deletion of some isolated vertices is also minimum (H, k) stable. Hence
we shall asume that all the graphs considered in the paper have no isolated vertices.
A (H, k) stable graph with minimum size shall be called a minimum (H, k) stable

graph.

Lemma 1.2. [2] Let q and k be integers, q ≥ 2, k ≥ 1. If G is (H, k) stable then,

for every vertex v of G, the graph G − v is (H, k − 1) stable.

Proposition 1.3. [2] If G is a (H, k) stable graph with minimum size then every

vertex as well as every edge is contained in a subgraph isomorphic to H.
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Proof. Let e be an edge of G which is not contained in any subgraph of G

isomorphic to H , then G − e would be a (H, k) stable graph with less edges than
G, a contradiction. Let x be a vertex of G and e be an edge of G incident with
x, since e is an edge of some subgraph isomorphic to H , say H0, the vertex x is a
vertex of H0. �

2. Preliminary results

We are interested by minimum (Kq, k) stable graphs (where q and k are integers
such that q ≥ 2 and k ≥ 0). As a corollary to Proposition 1.3, every edge and every
vertex of a minimum (Kq, k) stable graph is contained in a Kq (thus the minimum
degree is at least q − 1). Note that, for q ≥ 2 and k ≥ 0, the graph Kq+k is (Kq, k)

stable, hence Q(Kq, k) ≤
(

q+k

2

)

.

Definition 2.1. Let H be a non complete graph on q + t vertices (t ≥ 1). We shall
say that H is a near complete graph when it has a vertex v such that

• H − v is complete.
• dH(v) = q + r with −1 ≤ r ≤ t − 2.

The previous definition generalizes Definition 1.5 in [3] initially given for r ∈
{−1, 0, 1} and the following lemma generalizes Proposition 2.1 in [3].

Lemma 2.2. Every minimum (Kq, k) stable graph G, where q ≥ 3 and k ≥ 1, has

no component H isomorphic to a near complete graph.

Proof. Suppose, contrary to our claim, that G has such a component H and let
v be the vertex of H such that H − v is a clique of G. Then, H has q + t vertices
with q − 1 ≤ d(v) ≤ q + t− 2 and d(v) = q + r. Since G is minimum (Kq, k) stable,
G − v is (Kq, k − 1) stable and is not (Kq, k) stable. Then, G − v contains a set S

with at most k vertices intersecting every subgraph of G − v isomorphic to a Kq.
The graph G − S contains some Kq (at least one) and clearly every subgraph of
G − S isomorphic to a Kq contains v. Since N(v) is a Kq+r and N(v) − S con-
tains no Kq, |N(v) − S| ≤ q − 1. Since there exists a Kq containing v in H − S,
|N(v) − S| = q − 1 (and hence |S ∩ N(v)| = r + 1). Since H − v − S contains no
Kq, H − v − S = N(v)− S. Let a be a vertex of H − v not adjacent to v and let b

be a vertex in N(v) − S, and consider S
′

= S − {a} + {b}. We have | S
′

|≤ k and

G − S
′

contains no Kq, a contradiction. �

It is clear that Q(Kq, 0) =
(

q
2

)

and the only minimum (Kq, 0) stable graph is Kq.
It is an easy exercise to see that Q(K2, k) = k +1 and that the matching (k +1)K2

is the unique minimum (K2, k) stable graph.

Theorem 2.3. [3] Let G be a minimum (K3, k) stable graph, with k ≥ 0. Then G

is isomorphic to sK4 + tK3, for any choice of s and t such that 2s + t = k + 1.

In [3] it was proved that if q ≥ 4 and k ∈ {1, 2} then Q(Kq, k) =
(

q+k
2

)

and the only
minimum (Kq, k) stable graph is Kq+k. We have proved also that if q ≥ 5 then

Q(Kq, 3) =
(

q+3
2

)

and the only minimum (Kq, 3) stable graph is Kq+3. Dudek,
Szymański and Zwonek proved the following result.

Theorem 2.4. [2] For every q ≥ 4, there exists an integer k(q) such that Q(Kq, k) ≤
(2q − 3)(k + 1) for k ≥ k(q).
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As a consequence of this last result, they have deduced that for every k ≥k(q)
Kq+k is not minimum (Kq, k) stable.

Remark 2.5. From now on, throughout this section we assume that q and k are
integers such that q ≥ 4, k ≥ 1 and for every r such that 0 ≤ r < k we have
Q(Kq, r) =

(

q+r
2

)

and the only minimum (Kq, r) stable graph is Kq+r.

In view of Theorem 2.4, k is bounded from above and we are interested to obtain
the greatest possible value of k.

Lemma 2.6. Let G be a (Kq, k) stable graph such that e(G) ≤
(

q+k
2

)

. Then either

for every vertex v we have d(v) ≤ q + k − 2 or G is isomorphic to Kq+k.

Proof. Suppose that some vertex v has degree at least q + k− 1. By Lemma 1.2
the graph G− v is (Kq, k− 1) stable, hence Q(Kq, k− 1) ≤ e(G− v) = e(G)− d(v).

Since Q(Kq, k − 1) =
(

q+k−1
2

)

, we have
(

q+k−1
2

)

≤ e(G) − d(v) ≤
(

q+k

2

)

− (q + k − 1) =
(

q+k−1
2

)

.

It follows that e(G−v) =
(

q+k−1
2

)

, G−v is isomorphic to Kq+k−1 and d(v) = q+k−1.
Hence, G is isomorphic to Kq+k. �

Lemma 2.7. Let G be a minimum (Kq, k) stable graph. Then one of the following

statements is true

• G has no component isomorphic to Kq

• Q(Kq, k − 1) +
(

q

2

)

≤ Q(Kq, k)

Proof. Suppose that some component H of G is isomorphic to a Kq. If G−H is
not (Kq, k− 1) stable, then there is a set S with at most k − 1 vertices intersecting
each Kq of G−H . Then, for any vertex a of H , S +a intersects each Kq of G while
S has at most k − 1 vertices, a contradiction. Hence G − H is (Kq, k − 1) stable
and we have Q(Kq, k − 1) ≤ e(G − H) = Q(Kq, k) −

(

q

2

)

. �

Lemma 2.8. [3] Let G be a minimum (Kq, k) stable graph and let u be a vertex of

degree q − 1. Then one of the following statements is true

• ∀v ∈ N(u) d(v) ≥ q + 1
• Q(Kq, k − 1) + 3(q − 2) ≤ Q(Kq, k)

Proof. By Proposition 1.3, since d(u) = q − 1, {u} + N(u) induces a complete
graph on q vertices. Assume that some vertex w ∈ N(u) has degree q + r where
r = −1 or r = 0, and let v be a neighbour of u distinct from w. Since the degree
of u in G − v is q − 2, no edge incident with u can be contained in a Kq of G − v.
Since G − v is (Kq, k − 1) stable, we can delete the q − 2 edges incident with u in
G− v and the resulting graph G′ is still (Kq, k − 1) stable. By deleting v, we have
e(G − v) ≤ e(G) − (q − 1) and hence

e(G
′

) ≤ e(G) − (q − 1) − (q − 2) .

In G′, the degree of w is now q + r − 2. Hence, no edge incident with w in G′ can
be contained in a Kq. Deleting these q + r − 2 edges from G′ leads to a graph G”

which remains to be (Kq, k − 1) stable. We get thus

Q(Kq, k − 1) ≤ e(G
′′

) ≤ e(G) − (q − 1) − (q − 2) − (q + r − 2) .
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Since e(G) ≤ Q(Kq, k), the result follows. �

Lemma 2.9. Let G be a minimum (Kq, k) stable graph, where 1 ≤ k ≤ 2q − 6,
and let v be a vertex of degree q − 1. Then for every vertex w ∈ N(v) we have

d(w) ≥ q + 1.

Proof. Suppose, contrary to the assertion of the lemma, that d(w) ≤ q for some
vertex w ∈ N(v). By Lemma 2.8, we have Q(Kq, k−1)+3(q−2) ≤ Q(Kq, k). Since

Q(Kq, k − 1) =
(

q+k−1
2

)

and Q(Kq, k) ≤
(

q+k
2

)

we have
(

q+k−1
2

)

+ 3q − 6 ≤
(

q+k
2

)

.
Then we obtain k ≥ 2q − 5, a contradiction. �

Lemma 2.10. Let G be a minimum (Kq, k) stable graph, where q ≥ 5 and 1 ≤ k ≤
q − 1. Then the minimum degree of G is at least q.

Proof. Suppose that there is a vertex v of degree q− 1 and let w be a neighbour
of v. Since q − 1 ≤ 2q − 6, by Lemma 2.9, w has degree at least q + 1. By Lemma
1.2 the graph G − w is (Kq, k − 1) stable. In that graph v is not contained in any
Kq since its degree is q − 2. Hence G − {w, v} is still (Kq, k − 1) stable. We have

e(G−{w, v}) = e(G)−(d(v)+d(w)−1) ≤ e(G)−2q+1. Since Q(Kq, k−1) =
(

q+k−1
2

)

and Q(Kq, k) ≤
(

q+k

2

)

we have
(

q+k−1
2

)

≤ e(G)− 2q +1 ≤
(

q+k

2

)

− 2q +1. It follows
that k ≥ q, a contradiction. �

Lemma 2.11. Let G be a minimum (Kq, k) stable graph, where q ≥ 5 and 1 ≤ k ≤
q − 1, and let v be a vertex of degree q. Then N(v) is complete.

Proof. Assume, by contradiction, that v is a vertex of degree q and N(v)
contains two non adjacent vertices a and b. Let w ∈ N(v) distinct from a and b

(w must exist since q ≥ 4). By Lemma 1.2 the graph G − w is (Kq, k − 1) stable.
In that graph v is not contained in a Kq since its two neighbours a and b are not
adjacent. Hence G − {w, v} is still (Kq, k − 1) stable. By Lemma 2.10, d(w) ≥ q

and hence e(G − {w, v}) = e(G) − (d(v) + d(w) − 1) ≤ e(G) − 2q + 1. We have,

as in the proof of Lemma 2.10,
(

q+k−1
2

)

≤ e(G) − 2q + 1 ≤
(

q+k
2

)

− 2q + 1, and we
obtain k ≥ q, a contradiction. �

Lemma 2.12. Let G be a minimum (Kq, k) stable graph, where q ≥ 4 and 2 ≤
k ≤ q

2 + 1, and let v be a vertex of degree at least q + 1. Then either N(v) induces

a complete graph or there exists an ordering v1, . . . , vd(v) of the vertices of N(v)
such that {v1, . . . , vq−1} induces a complete graph and vd(v)−1vd(v) is not in E(G).
Moreover, there exists a vertex w in {v1, . . . , vq−1} adjacent to vd(v)−1 and vd(v).

Proof. Suppose that the subgraph induced by N(v) is not complete and let
a and b be two non adjacent neighbours of v. Assume that every complete graph
on q − 1 vertices contained in N(v) intersects {a, b}. The graph G − {a, b} is
(Kq, k − 2) stable. In that graph, v is not contained in a Kq, hence G− {a, b, v} is
still (Kq, k− 2) stable. We have e(G−{a, b, v}) = e(G)− (d(v)+ d(a)+ d(b)− 2) ≤

e(G) − 3q − 1. Since Q(Kq, k − 2) =
(

q+k−2
2

)

and Q(Kq, k) ≤
(

q+k
2

)

, we have
(

q+k−2
2

)

≤ e(G − {a, b, v}) ≤ e(G) − 3q − 1 ≤
(

q+k

2

)

− 3q − 1 and hence q

2 + 2 ≤ k,
a contradiction with k ≤ q

2 + 1.
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Thus, N(v)−{a, b} contains a Kq−1 and we can order the vertices of N(v) in such
a way that the q − 1 first ones v1, . . . , vq−1 induce a complete graph and the two
last vertices vd(v)−1 and vd(v) are not adjacent, as claimed.
Set d(v) = q + r with r ≥ 1. By Proposition 1.3, the edges vvq+r−1 and vvq+r are
contained in two distinct q-cliques, say Q1 and Q2. Since vq+r−1 and vq+r are not
adjacent, each Qi contains at most r vertices in N(v)−{v1, . . . , vq−1}. Hence, each
Qi must have at least q− r−1 vertices in {v1 . . . vq−1}. Since N(v) is not complete

and e(G) ≤
(

q+k
2

)

, by Lemma 2.6 we have r ≤ k − 2. Since k ≤ q
2 + 1, Q1 (as well

as Q2) has at least q − r − 1 ≥ q − k + 1 ≥ q

2 vertices in {v1 . . . vq−1}. Hence Q1

and Q2 have at least one common vertex w in N(v), and the lemma follows. �

Lemma 2.13. Let G be a minimum (Kq, k) stable graph, where q ≥ 5 and 2 ≤
k ≤ q

2 + 1, and let H be a component of G. Assume that v is a vertex of maximum

degree in H. Then either H is complete or the subgraph induced by N(v) contains

no complete subgraph on d(v) − 1 vertices.

Proof. Assume that H is not complete. First, we prove that the maximum
degree in H is at least q + 1. If the minimum degree in H is at least q + 1, we are
done. If there exists a vertex u of degree q−1 in H then, by Lemma 2.9, the degree
of any vertex of N(u) is at least q +1. If there exists a vertex u of degree q then, by
Lemma 2.11, N(u) ∪ {u} induces a Kq+1, and hence, since H is connected, there
exists a vertex in H − (N(u) ∪ {u}) having at least one neighbour w in N(u) and
d(w) ≥ q + 1. Thus, the maximum degree in H is q + r with r ≥ 1.
Since H is not complete and v is a vertex of maximum degree in H , the sub-
graph induced on N(v) is not complete. By Lemma 2.12, there exists an ordering
{v1 . . . vq+r} of the vertices of N(v) such that {v1 . . . vq−1} induces a complete graph
and vq+r−1vq+r is not an edge of G. If the subgraph induced by N(v) contains a
complete subgraph on q + r − 1 vertices then without loss of generality we may
suppose that it contains the vertex vq+r−1.
Assume that {v1, . . . , vq+r−2, vq+r−1} induces a complete graph. Since G is a mini-
mum (Kq, k) stable graph, by Proposition 1.3, the edge vvq+r must be contained in
a Kq. Hence vq+r has at least q − 2 neighbours in {v1, . . . , vq+r−2}. Let us denote
by A this set of neighbours. Since the subgraph induced by (N(v) − {vq+r}) is
complete, every vertex in A has degree q + r in G (let us say that these vertices
are saturated). Henceforth, every vertex in A has no neighbour outside N(v)∪{v}.
By Lemma 2.2, the (q + r)-clique (N(v) − {vq+r}) ∪ {v} is a proper subgraph of
H − {vq+r}. Since H is connected, there exists a vertex w outside N(v) ∪ {v}
adjacent to a vertex u in N(v). Clearly, the vertex u has also degree q + r and it
has no other neighbour outside N(v) ∪ {v} than w. The edge uw being contained
in a Kq by Proposition 1.3, w must have at least q − 2 common neighbours with
u in N(v). Let us denote by B the set of neighbours of w in N(v). It is easy
to see that every vertex in B is saturated. Since A and B are disjoint, we have
2q − 3 ≤ |A ∪ B| ≤ |N(v)| = q + r and hence q ≤ r + 3. Since r ≤ k − 2 by
Lemma 2.6, we have q ≤ k + 1. Thus, we obtain q ≤ q

2 + 2, which implies q ≤ 4, a
contradiction.
Hence the subgraph induced by the vertices {v1, . . . , vq+r−2, vq+r−1} is not com-
plete, and the lemma follows. �
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Proposition 2.14. Let G be a minimum (Kq, k) stable graph, where q ≥ 6 and

2 ≤ k ≤ q
2 + 1. Then every component of G is a complete graph.

Proof. Let H be a component of G and v be a vertex of maximum degree in H .
If the subgraph induced on N(v) is complete then H is obviously complete. We can
thus suppose that N(v) is not a clique. By Lemmas 2.10 and 2.11, the minimum
degree is at least q + 1, and hence d(v) = q + r with r ≥ 1.

Claim 2.14.1. The graph G − (N(v) ∪ {v}) is (Kq, k − r) stable.

Proof By Lemma 2.12, we can consider an ordering v1, . . . , vq+r of N(v) such
that the set {v1, . . . , vq−1} induces a Kq−1, vq+r−1vq+r 6∈ E(G) and there is a vertex
w ∈ {v1, . . . , vq−1} adjacent to vq+r−1 and vq+r . By Lemma 2.13, we can find two
non adjacent vertices a and b in N(v) − {vq+r} and two non adjacent vertices c

and d in N(v) − {vq+r−1}. Let us note that since the set {v1, . . . , vq−1} induces a
complete graph, it contains at most one vertex of the set {a, b} and at most one
vertex of {c, d}. Then, |{v1, . . . , vq−1} ∩ {w, a, b, c, d}| ≤ 3.
Since H is not complete, the graph G is not complete and by Lemma 2.6 we have
r ≤ k − 2. Since k ≤ q

2 + 1 and q ≥ 6, there exists a subset A ⊆ {v1 . . . vq−1} such
that

• |A| = r

• w 6∈ A

• A ∩ {a, b, c, d} = ∅

By repeated applications of Lemma 1.2, the graph G1 obtained from G by deleting
A is (Kq, k − r) stable. In G1, the degree of v is equal to q.
Without loss of generality, suppose that a is distinct from vq+r−1 and c is dis-
tinct from vq+r . If there exists a q-clique in G1 containing the edge vvq+r−1 then
{v1, . . . , vq+r−2} − A is a (q − 2)-clique containing a. Since ab is not an edge, we
must have b = vq+r−1, a contradiction to the fact that avq+r−1 is an edge. Thus,
there is no q-clique in G1 containing vvq+r−1. Analogously, we prove that there is
no q-clique in G1 containing vvq+r .
Hence, the graph G2 obtained from G1 by deletion of the edges vvq+r−1 and vvq+r

is still (Kq, k − r) stable. In G2, v has degree q − 2, so it is not contained in any
Kq. We can thus delete v and we get a (Kq, k − r) stable graph G3.
Since the maximum degree in G is q + r, the degree of w in G3 is at most q − 1.
Recall that w is adjacent to the two non adjacent vertices vq+r−1 and vq+r . Hence
w is not contained in any Kq of G3, which means that G4 = G3−w is still (Kq, k−r)
stable. Since the degree of each vertex in {v1, . . . , vq−1}− (A∪{w}) is at most q−2
in G4, none of these vertices can be contained in any Kq of G4. Hence by deletion
of these vertices we get again a (Kq, k − r) stable graph G5. We shall prove that
none of the r + 1 vertices vq, . . . , vq+r is contained in a Kq of G5.
Note that G5 = G−{v, v1, ..., vq−1}. For q ≤ j ≤ q+r, denote by dj the degree of the
vertex vj in the subgraph induced by {vq, . . . , vq+r}. Clearly we have 0 ≤ dj ≤ r. In
G, by Proposition 1.3, the edge vvj is contained in a Kq. Hence vj is adjacent (in G)
to at least q−2−dj vertices in {v1, . . . , vq−1}. Since we have deleted the vertex v and
the vertices v1, . . . , vq−1, we have thus dG5

(vj) ≤ q+r−(q−2−dj)−1 = r+1+dj . If
dj ≤ r−1 then dG5

(vj) ≤ 2r ≤ 2(k−2) ≤ q−2 and there is no Kq in G5 containing
vj . The equality dG5

(vj) = q − 1 can only be obtained when dj = r, that is vj

has r neighbours in vq . . . vq+r . Since vq+r−1 and vq+r are not adjacent, vj is not
contained in any Kq of G5.
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Hence, the graph G6 = G − (N(v) ∪ {v}) obtained from G5 by deletion of all the
vertices vq, vq+1 . . . , vq+r is still (Kq, k − r) stable, and the claim follows. �

Claim 2.14.2.

(2.1)

(

q + k − r

2

)

+ q + r +

(

q − 1

2

)

+
1

2
(r + 1)(2q − r − 2) + 1 ≤

(

q + k

2

)

Proof To get back G from G − (N(v) ∪ {v}) we add, at least

• the q + r edges incident with v,
• the

(

q−1
2

)

edges of the (q − 1)-clique induced by the set {v1 . . . vq−1},
• the edges incident with vq, . . . , vq+r and not incident with v.

Let l be the number of edges incident with vq, . . . , vq+r and not incident with v.
We have

(2.2) e(G − (N(v) ∪ {v})) + q + r +

(

q − 1

2

)

+ l ≤ e(G)

In order to find a lower bound of the number of edges incident with the vertices
vq, . . . , vq+r, for each i ∈ {q, . . . , q + r} let us denote by di the degree of the vertex
vi in the subgraph induced by the set {vq, . . . , vq+r}. Then,

l =
1

2
Σq+r

i=q di + Σq+r
i=q (dG(vi) − 1 − di) = Σq+r

i=q dG(vi) − (r + 1) −
1

2
Σq+r

i=q di .

Since by Lemma 2.10 the minimum degree in G is at least q, we have

l ≥ q(r + 1) − (r + 1) −
1

2
Σq+r

i=q di .

Since for every i in {q, . . . , q + r − 2} di ≤ r, dq+r−1 ≤ r − 1 and dq+r ≤ r − 1, we
obtain

l ≥ q(r + 1) − (r + 1) −
1

2
r(r − 1) − (r − 1) ,

and hence

l ≥
1

2
(r + 1)(2q − r − 2) + 1 .

By the assumption made at the beginning of the section (see Remark 2.5), a mini-

mum (Kq, k−r) stable graph has
(

q+k−r

2

)

edges. Since e(G) ≤
(

q+k

2

)

, the inequality
(2.1) follows from Claim 2.14.1 and the inequality (2.2). �

A simple calculation shows that the inequality

q2 + q + 2 ≤ 2kr

can be obtained by starting from the inequality (2.1).
Since r ≤ k − 2 and k ≤ q

2 + 1, we have q2 + q + 2 ≤ 2k(k − 2) ≤ (q + 2)( q

2 − 1),

hence q2

2 + q + 4 ≤ 0, a contradiction. Thus, N(v) is a clique and the proposition
follows.

�
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3. Result

In [3], it is shown that if G is minimum (Kq, k) stable and the numbers k and q

verify one of the following conditions:

• k = 1 and q ≥ 4
• k = 2 and q ≥ 4
• k = 3 and q ≥ 5

then G is isomorphic to Kq+k.

Theorem 3.1. Let G be a minimum (Kq, k) stable graph, where q ≥ 6 and k ≤
q
2 + 1. Then G is isomorphic to Kq+k.

Proof. For 0 ≤ k ≤ 3 the graph G is isomorphic to Kq+k. Let k be such that
4 ≤ k ≤ q

2 +1 and suppose that for every r with 0 ≤ r < k the only minimum (Kq, r)
stable graph is Kq+r. By Proposition 2.14, the graph G is the disjoint union of p

complete graphs H1 ≡ Kq+k1
, H2 ≡ Kq+k2

, · · · , Hp ≡ Kq+kp
. Suppose, without

loss of generality, that k1 ≥ k2 ≥ · · · ≥ kp ≥ 0 and that there exist two components
Hi and Hj with i < j such that ki − kj ≥ 2. By substituting H ′

i ≡ Kq+ki−1 for
Hi and H ′

j ≡ Kq+kj+1 for Hj , we obtain a new (Kq, k) stable graph G′ such that
e(G′) = e(G) − (ki − kj − 1) < e(G), which is a contradiction. Thus, for any i and
any j, 0 ≤ |ki − kj | ≤ 1 (cf [2] Proposition 7).
To conclude that G has a unique component, observe the following facts.

• The graphs 2Kq+l and Kq+2l+1 are both (Kq, 2l + 1) stable, but if 2l + 1 ≤
q

2 + 1 then
(

q+2l+1
2

)

< 2
(

q+l

2

)

• The graphs Kq+l ∪ Kq+l+1 and Kq+2l+2 are both (Kq, 2l + 2) stable but if

2l + 2 ≤ q

2 + 1 then
(

q+2l+2
2

)

<
(

q+l+1
2

)

+
(

q+l

2

)

�
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