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Partial functional quantization and generalized bridges

Sylvain Corlay∗ †

January 27, 2011

Abstract

In this article, we develop a new approach to functional quantization, which consists in discretiz-
ing only the first Karhunen-Loève coordinates of a continuous Gaussian semimartingale X. Using
filtration enlargement techniques, we prove that the conditional distribution of X knowing its first
Karhunen-Loève coordinates is a Gaussian semimartingale with respect to its natural filtration.

This allows to define the partial quantization of a solution of a stochastic differential equation
with respect to X by simply plugging the partial functional quantization of X in the SDE.

Then, we provide an upper bound of the Lp-partial quantization error for the solution of SDE
involving the Lp+ε-partial quantization error for X, for ε > 0. The a.s. convergence is also investi-
gated.

Incidentally, we show that the conditional distribution of a Gaussian semimartingale X knowing
that it stands in some given Voronoi cell of its functional quantization is a (non-Gaussian) semi-
martingale. As a consequence, the functional stratification method developed in [6], amounted in
the case of solutions of SDE to use the Euler scheme of these SDE in each Voronoi cell.
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Introduction

Let (Ω,A,P) be a probability space, and E a reflexive separable Banach space. The norm on E is
denoted | · |. The quantization of a E-valued random variable X consists in its approximation by a
random variable Y taking finitely many values. The resulting error of this discretization is measured by
the Lp norm of |X − Y |. If we settle to a fixed maximum cardinal for Y (Ω), the minimization of the
error comes to the following minimization problem:

min
¶∥∥|X − Y |

∥∥
p
, Y : Ω → E measurable , card(Y (Ω)) ≤ N

©
. (1)

A solution of (1) is an optimal quantizer of X . This problem, initially investigated as a signal discretiza-
tion method [9] has then been introduced in numerical probability, to devise cubature methods [21] or
solving multi-dimensional stochastic control problems [3]. Since the early 2000’s, the infinite dimensional
setting has been extensively investigated from both constructive numerical and theoretical viewpoints
with a special attention paid to functional quantization, especially in the quadratic case [16] but also
in some other Banach spaces [27]. Stochastic processes are viewed as random variables taking values in
their path spaces such as L2

T := L2([0, T ], dt).

We now assume that X is a bi-measurable stochastic process on [0, T ] verifying
∫ T

0
E
[
|Xt|2

]
dt < +∞,

so that this can be viewed as a random variable valued in the separable Hilbert space L2([0, T ]). We
assume that its covariance function ΓX is continuous. In the seminal article on Gaussian functional
quantization [16], it is shown that in the centered Gaussian case, linear subspaces U of L2([0, T ]) spanned
by L2-optimal quantizers correspond to principal components of X , in other words, are spanned by the
first eigenvectors of the covariance operator of X . Thus, the quadratic optimal quantization of Gaussian
processes consists in exploiting its Karhunen-Loève decomposition (eXn , λ

X
n )n≥1.

If Y is a quadratic N -optimal quantizer of the Gaussian process X and dX(N) is the dimension of
the subspace of L2([0, T ]) spanned by Y (Ω), the quadratic quantization error EN (X) verifies

E2
N(X) =

∑

j≥m+1

λXj + E2
N

(
m⊗

j=1

N
(
0, λXj

)
)

for m ≥ dX(N). (2)

E2
N(X) <

∑

j≥m+1

λXj + E2
N

(
m⊗

j=1

N
(
0, λXj

)
)

for 1 ≤ m < dX(N). (3)

To perform optimal quantization, the decomposition is first truncated at a fixed order m and then the
R

m-valued Gaussian vector constituted of the m first coordinates of the process on its Karhunen-Loève
decomposition is quantized. To reach optimality, we have to determine the optimal rank of truncation
dX(N) (the quantization dimension) and the optimal dX(N)-dimensional quantizer corresponding to the

first coordinates
dX(N)⊗
j=1

N
(
0, λXj

)
. Usual examples of such processes are the standard Brownian motion on

[0, T ], the Brownian bridge on [0, T ], Ornstein-Uhlenbeck processes and the fractional Brownian motion.
In Figure 1, we display the quadratic optimal N−quantizer of the fractional Brownian motion on [0, 1]
with Hurst exponent h = 0.25 and N = 20.

Another possibility is to use a product quantization of the distribution
dX(N)⊗
j=1

N (0, λXj ). The product

quantization is the Cartesian product of the optimal quadratic quantizers of the standard one-dimensional
Gaussian distributions N (0, λXi )1≤i≤dX(N). In the case of independent marginals, this yields a stationary
quantizer, i.e. a quantizer Y of X which satisfies E[X |Y ] = Y . This property, shared with optimal
quantizers, makes us reach an order in the convergence rate of cubature rules based on quantization.
One advantage of this setting is that the one-dimensional Gaussian quantization is a fast procedure.
In [22], deterministic optimization methods (as Newton-Raphson) are shown to converge rapidly to the
unique optimal quantizer of the one-dimensional Gaussian distribution. Moreover, a sharply optimized
database of quantizers of standard univariate and multivariate Gaussian distributions is available on the
web site www.quantize.maths-fi.com [24] for download. Still, we have to determine the quantization
size on each direction to obtain optimal product quantization. In this case, the minimization of the
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Figure 1: Quadratic N -optimal quantizer of the fractional Brownian motion on [0, 1] with Hurst’s pa-
rameter h = 0.25 and N = 20. The quantization dimension is 3.

distortion (2) comes to:

min





d∑

j=1

E2
Nj

(
N (0, λXj )

)
+
∑

j≥d+1

λXj , N1 × · · · ×Nd ≤ N, d ≥ 1



 . (4)

In [16], the rate of convergence to zero of the quantization error is investigated. A complete solution
is provided for the case of Gaussian processes under rather general conditions on the eigenvalues of
the covariance operator. Rates of convergence are available for the above cited examples of Gaussian
processes. The asymptotics of the quantization dimension dX(N) is investigated in [17, 19].

From a constructive viewpoint, the numerical computation of the optimal quantization or the op-
timal product quantization requires a numerical evaluation of the Karhunen-Loève eigenfunctions and
eigenvalues, at least the very first terms. (As seen in [16, 17, 19], under rather general conditions on its
eigenvalues, the quantization dimension of a Gaussian process increases asymptotically as the logarithm
of the size of the quantizer. Hence it is most likely that it is small. For instance, the quantization
dimension of the Brownian motion with N = 10000 is 9.) The Karhunen-Loève decomposition of several
usual Gaussian processes have a closed-form expression. It is the case of the standard Brownian motion,
the Brownian bridge and Ornstein-Uhlenbeck processes. (The case of Ornstein-Uhlenbeck processes is
derived in [6], in the general setting of an arbitrary initial variance σ0. A pseudo-algorithm for the
computation of ωλ is also provided. ) Another example of explicit Karhunen-Loève expansion is derived
in [7] by Deheuvels and Martynov.

In the general case, no closed form expression of the Karhunen-Loève expansion is available. For
instance, the Karhunen-Loève expansion of the fractional Brownian motion is not known. To fulfill the
requirement of a numerical evaluation of those functions, it is possible to use numerical methods related
to integral equations to solve the eigenvalue problem that defines the Karhunen-Loève expansion. A
review of these methods is available in [2]. In [5], the so-called ”Nyström method” is used to compute
the first terms of the Karhunen-Loève decomposition of the fractional Brownian motion for its optimal
functional quantization.

An application of the quantization of a Gaussian process X , is to perform a quantization of the
solution of a SDE with respect X , when a stochastic integration with respect to X can be defined. In
the following, we will assume that X is a continuous Gaussian semimartingale on [0, T ]. The Brownian
motion, the Brownian bridge and Ornstein-Uhlenbeck processes are semimartingales, but the fractional
Brownian motion with Hurst exponent h 6= 1

2 is not. We can obtain a stationary quantizer of the
diffusion by inserting the quantizer of the Gaussian process in the diffusion equation written in the
Stratonovich sense. In [25], Pagès and Sellami proved the a.s. convergence of this quantization when the
quantizer size goes to infinity. The rate of convergence is also investigated. This work is mostly specific
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to the Brownian motion but main results remain valid for continuous semimartingales which satisfy the
Kolmogorov criterion as the Brownian bridge and Ornstein-Uhlenbeck processes.

1 Quantization based cubature and related inequalities

The idea of quantization-based cubature method is to approach the probability distribution of the random
variable X by the distribution of a quantizer Y of X . As Y is a discrete random variable, we can write

PY =
N∑
i=1

piδyi . If F : E → R is a Borel functional,

E[F (Y )] =

N∑

i=1

piF (yi). (5)

Hence, if we have access to the weighed discrete distribution (yi, pi)1≤i≤N of Y , we are able to compute
the sum (5). Now, we review some error bounds that can be derived when approaching E[F (X))] by the
quantity (5). See [23] for more details on error bounds.

1. If X ∈ L2, Y a quantizer of X of size N and F is Lipschitz-continuous, then

|E[F (X)]− E[F (Y )]| ≤ [F ]Lip‖X − Y ‖2. (6)

In particular, if (YN )N≥1 is a sequence of quantizers such that lim
N→∞

‖X − YN‖2 = 0, then the

distribution
N∑
i=1

pNi δxN
i

of YN converges weakly to the distribution PX of X as N → ∞.

This first error bound is a straightforward consequence of |F (X)− F (Y )| ≤ [F ]Lip|X − Y |.

2. If Y is a stationary quantizer of X, i.e. Y = E[X |Y ], and F is differentiable with and α-Hölder
differential DF (α ∈ (0, 1]), then

|E[F (X)]− E[F (Y )]| ≤ [DF ]α‖X − Y ‖1+α
2 . (7)

In the particular case where F has a Lipschitz-continuous derivative (α = 1), we have. [DF1] =
DFLip. For example, if F is twice differentiable and D2F is bounded, then DFLip = 1

2‖D2F‖∞.

This particular inequality comes from the Taylor expansion of F around X and the stationarity of Y .

3. If F is a convex functional and Y is a stationary quantizer of X,

E[F (Y )] ≤ E[F (X)]. (8)

This inequality is a straightforward consequence of the stationarity property and Jensen’s inequality.

E[F (Y )] = E[F (E[X |Y ])] ≤ E[E[F (X)|Y ]] = E[F (X)].

2 Functional quantization and generalized bridges

2.1 Generalized bridges

Let (Xt)t∈[0,T ] be a continuous centered Gaussian semimartingale starting from 0 on (Ω,A,P) with

respect to a filtration F = (Ft)t∈[0,T ]. Fernique’s theorem ensures that
∫ T

0
E
[
X2

t

]
dt < +∞ (see Janson

[12]).
We aim here to compute the conditioning with respect to a finite family ZT := (Zi

T )i∈I of Gaussian
random variables, which are measurable with respect to σ(Xt, t ∈ [0, T ]). (I ⊂ N is a finite subset of
N

∗.) As Alili in [1] we settle to the case where (Zi
T )i∈I are the terminal values of processes of the form

Zi
t =

∫ t

0
fi(s)dXs, i ∈ I, for some given finite set f = (fi)i∈I of L2

loc([0, T ]) functions. The generalized
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bridge for (Xt)t∈[0,T ] corresponding to f with end-point z = (zi)i∈I is the process
Ä
Xf,z

ä
t∈[0,T ]

which

has the distribution
Xf,z L∼ L

(
X
∣∣Zi

T = zi, i ∈ I
)
. (9)

For example, in the case where X is a standard Brownian motion with |I| = 1, f = {f} and f ≡ 1, this
is the Brownian bridge on [0, T ]. If X is an Ornstein-Uhlenbeck process this is an Ornstein-Uhlenbeck
bridge.

Let H be the Gaussian Hilbert space spanned by (Xs)s∈[0,T ] and HZT
the closed subspace of H spanned

by (Zi
T )i∈I . We denote H⊥

ZT
its orthogonal complement in H . Any Gaussian random variable G of

H can be orthogonally decomposed in G = ProjZT
(G)

⊥⊥
+Proj⊥

ZT
(G), where ProjZT

and Proj⊥
ZT

are

the orthogonal projections on HZT
and H⊥

ZT
. (Proj⊥

ZT
= IdH − ProjZT

). Within these notations,

E
[
G
∣∣(Zi

T )i∈I

]
= ProjZT

(G).
Other definitions of generalized bridges exist in the literature, see e.g. [20].

2.2 The case of the Karhunen-Loève basis

As X is a continuous Gaussian process, it has a continuous covariance function (See [12, VIII.3]). We
denote (eXi , λ

X
i )i≥1 its Karhunen-Loève eigensystem. Thus, if we define function fX

i as the primitive of

−eXi which vanishes at t = T , i.e. fX
i (t) =

∫ T

t
eXi (s)ds, an integration by parts yields

∫ T

0

Xse
X
i (s)ds =

∫ T

0

fX
i (s)dXs. (10)

In other words, with the notations of Section 2.1, we have Yi :=
∫ T

0
Xse

X
i (s)ds = Zi

T .

For some finite subset I ⊂ N
∗, we denote XI,y and call K-L generalized bridge the generalized bridge

associated with functions (fX
i )i∈I and with end-point y = (yi)i∈I . This process has the distribution

L(X |Yi = yi, i ∈ I).
In this case, the Karhunen-Loève expansion gives the decomposition

X =
∑

i∈I

Yie
X
i

︸ ︷︷ ︸
=Proj

ZT
(X)

⊥⊥
+
∑

i∈N∗\I

»
λXi ξie

X
i

︸ ︷︷ ︸
=Proj⊥

ZT

(X)

, (11)

where (ξi)i∈N∗\I are independent standard Gaussian random variables. This gives us the projections

ProjZT
and Proj⊥

ZT
defined in Section 2.1. It follows from (11) that a K-L generalized bridge is centered

on E [X |Yi = yi, i ∈ I] and has the covariance function

ΓX|Y (s, t) = cov(Xs, Xt)−
∑

i∈I

λXi e
X
i (s)eXi (t). (12)

We have
∫ T

0
ΓX|Y (t, t)dt =

∑
i∈N∗\I

λXi .

Moreover, thanks to decomposition (11), if XI,y is a K-L generalized bridge associated with X with
terminal values y = (yi)i∈I , it has the same probability distribution as the process

∑

i∈I

yie
X
i (t) +Xt −

∑

i∈I

Ç∫ T

0

Xse
X
i (s)ds

å
eXi (t).

This process is then the sum of a semimartingale and a non-adapted finite-variation process.
Let us stress out the fact that the second term in the left-hand side of (11) is the corresponding K-L

generalized bridge with end-point 0, i.e. Proj⊥
ZT

= XI,0.

In [6], an algorithm is proposed to exactly simulate marginals of a K-L generalized bridge with a linear
additional cost to a prior simulation of (Xt0 , · · · , Xtn), for some subdivision 0 = t0 ≤ t1 ≤ · · · tn = T
of [0, T ]. This was used for variance reduction issues. Note that the algorithm is easily extended to the
case of (non-K-L) generalized bridges.
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2.3 Generalized bridges as semimartingales

For a random variable L, we denote P [·|L] the conditional probability knowing L. We keep the notations
and assumptions of previous sections. (X is a continuous Gaussian semimartingale starting from 0.)

We consider a finite set I ⊂ {1, 2, · · · } and (fi)i∈I a set of bounded measurable functions. Let Xf,y be

the generalized bridge associated with X with end-point y = (yi)i∈I . For i ∈ I, Zi
t =

∫ t

0
fi(s)dXs and

Zt = (Zi
t)i∈I .

Jirina’s theorem ensures the existence of a transition kernel

νZT |((Xt)t∈[0,s]) : B(RI)× C0 ([0, s],R) → R+,

corresponding to the conditional distribution L
(
Zt

∣∣((Xt)t∈[0,s]

))
.

We now make the additional assumption (H) that, for every s ∈ [0, T ) and for every (xu)u∈[0,s] ∈
C0 ([0, s],R), the probability measure νZT |((Xt)t∈[0,s])

(
dy, (xu)u∈[0,s]

)
is absolutely continuous with re-

spect to the Lebesgue measure. We denote Π(xu)u∈[0,s],T its density. The covariance matrix of this

Gaussian distribution on R
I writes

Q(s, T ) := E

î(
ZT − E

[
ZT

∣∣(Xu)u∈[0,s]

]) (
ZT − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗∣∣∣(Xu)u∈[0,s]

ó
.

If X is a martingale, we have Q(s, T ) =
ÄÄ∫ T

s
fi(u)fj(u)d〈X〉u

ää
(i,j)∈I2

. We recall in mind that a

continuous centered semimartingale X is Gaussian if and only if 〈X〉 is deterministic (see e.g. [26]).
Hence, this additional hypothesis is equivalent to assume that

Q(s, T ) is invertible for every s ∈ [0, T ). (H)

The following theorem follows from the same approach as the homologue result in the article of Alili [1]
for the Brownian case. It is generalized to the case of a continuous centered Gaussian semimartingale
starting from 0.

Theorem 2.1. Under the (H) hypothesis, for any s ∈ [0, T ), and for PZT
−almost surely y ∈ R

I ,

P
[
·
∣∣ZT = y

]
is equivalent to P on FX

s and its Radon-Nikodym density is given by

dP
[
·
∣∣ZT = y

]

dP |FX
s

=
Π(Xu)u∈[0,s],T (y)

Π0,T (y)
.

Proof: Consider F a real bounded FX
s -measurable random variable and φ : RI → R a bounded Borel

function.

• On one hand, preconditioning by ZT yields

E[Fφ(ZT )] = E
[
E
[
F
∣∣ZT

]
φ(ZT )

]
=

∫

RI

φ(y)E
[
F
∣∣ZT = y

]
Π0,T (y)dy. (13)

• On the other hand, as F is measurable with respect to FX
s , preconditioning with respect to FX

s

yields

E[Fφ(ZT )] = E
[
FE

[
φ(ZT )

∣∣FX
s

]]
= E

ï
F

∫

RI

φ(y)Π(Xt)t∈[0,s],T (y)dy

ò
.

Now, thanks to Fubini’s theorem

E[Fφ(ZT )] =

∫

RI

φ(y)E
î
FΠ(Xt)t∈[0,s],T (y)

ó
dy. (14)
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Identifying equations (13) and (14), we see that for PZT
−almost surely y ∈ R

I and for every real bounded

FX
s -measurable random variable F ,

E
[
F
∣∣ZT = y

]
= E

ñ
F
Π(Xt)t∈[0,s],T (y)

Π0,T (y)

ô
. (15)

Equation (15) characterizes the Radon-Nikodym derivative of the probability P[·|ZT = y] on FX
s . �

We now can use classical filtration enlargement techniques [11, 13, 28].

Proposition 2.2 (Generalized bridges as semimartingales). Let us define the filtration GX by GX
t =

σ
(
ZT ,FX

t

)
, the enlargement of the filtration FX corresponding to the above conditioning. We consider

the stochastic process Dy
s :=

dP[·|ZT ]
dP |FX

s
(y) =

Π(Xt)t∈[0,s],T
(y)

Π0,T (y) for s ∈ [0, T ).

Under the (H) hypothesis, and the assumption that Dy is continuous, Xf,y is a continuous GX-
semimartingale on [0, T ).

Proof: Dy is a strictly positive martingale on [0, T ) which is uniformly integrable on every interval
[0, t] ⊂ [0, T ). Hence, as we assumed that it is continuous, we can write Dy as an exponential martingale

Dy
s = exp

(
Ly
s − 1

2 〈Ly〉s
)
with Ly

t =
∫ t

0

(
Dy

s

)−1
dDy

s (as Dy
0 = 1).

Now, as X is a continuous (FX ,P)-semimartingale, we write X = V +M its canonical decomposition
(under the filtration FX).

• Thanks to Girsanov theorem, M̃y :=M −
〈
M,Ly

〉
is a

(
FX ,P[·|ZT = y]

)
-martingale. As a conse-

quence, it is a
(
GX ,P[·|ZT = y]

)
-martingale and thus a

(
GX ,P

)
-martingale.

• Moreover, conditionally to ZT = y, V is still a finite variation process V , and is adapted to GX .�

Remark (Continuous modification). In Proposition 2.2, if one only assumes that Dy has a continu-
ous modification Dy, and for each one of its continuous modifications is associated a continuous GX-

semimartingale on [0, T ), Xf,Dy

and all these semimartingales are modifications of each other.

Proposition 2.3 (Continuity of Dy). If FX is a standard Brownian filtration, then Dy has a continuous
modification.

Proof: Consider s ∈ [0, T ). Under the (H) hypothesis, the density Π(Xu)u∈[0,s],T writes

Π(Xu)u∈[0,s],T
(y) = (2π detQ(s, T ))−

|I|
2 exp

((
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])
Q(s, T )−1

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗)
. (16)

The continuity of s → detQ(s, T ) and s → Q(s, T )−1 follows from the definition of Q(s, T ). The point
now is to establish the continuity of the stochastic process H defined by Hs := E

[
ZT

∣∣(Xu)u∈[0,s]

]
.

The so-defined process H is a FX local martingale. Thus, thanks the Brownian representation
theorem, H has a Brownian representation and has a continuous modification and so does Dy. �

Remark. • The measurability assumption with respect to a Brownian filtration is verified in the
cases of the Brownian bridge and Ornstein-Uhlenbeck processes.

• This hypothesis is not necessary so long as the continuity of the martingale Hs = E
[
ZT

∣∣(Xu)u∈[0,s]

]

can be proved by any means.

2.3.1 On the canonical decomposition

Observing that 〈M,Ly〉 = 〈X,Ly〉 we can compute the canonical decomposition of Xf,y. We have

Ly
t =

∫ t

0

dΠ(Xu)u∈[0,s],T (y)

Π(Xu)u∈[0,s],T (y)
,
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and

ln
Ä
Π(Xu)u∈[0,s],T (y)

ä
= −|I|

2
ln (2π detQ(s, T ))

− 1

2

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])
Q(s, T )−1

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗
.

Using that for a semimartingale S, d lnS = dS
S − 1

2d
〈
1
S · S

〉
, we obtain

dΠ(Xu)u∈[0,s],T
(y)

Π(Xu)u∈[0,s],T
(y) = d ln

Ä
Π(Xu)u∈[0,s],T (y)

ä
+

Å
finite variation

process

ã

= − 1
2d
Ä(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])
Q−1(s, T )

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗ä
+ (f. v. p.)

=
(
dE
[
ZT

∣∣(Xu)u∈[0,s]

])
Q−1(s, T )

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗
+ (f. v. p.) .

Hence,

d
¨
X,Ly

∂
s
= d

〈
X,E

[
ZT

∣∣(Xu)u∈[0,·]
]〉

s
Q−1(s, T )

(
y − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗
.

There exists a continuous linear map ΛT
s : C0([0, s],R) → R

I such that for every (xu)u∈[0,s] ∈ C0([0, s],R),

E
[
ZT

∣∣(Xu)u∈[0,s] = (xu)u∈[0,s]

]
= ΛT

s

(
(xu)u∈[0,s]

)
. Riesz-Markov theorem ensures that there exists a

set of (signed) σ-finite Borel measures µs = (µi
s)i∈I such that for every i ∈ I, ΛT

s (f)i =
∫ s

0
fdµi

s. Hence,

in this setting, d〈X,E
[
ZT

∣∣(Xu)u∈[0,·]
]
〉 = µs({s})d〈X〉. Denoting a(s) = µs({s}), we get

d〈X,Ly〉s =
(
a(s)Q−1(s, T )

(
y − E

î
Zj
T

∣∣∣(Xu)u∈[0,s]

ó)∗)
d〈X〉s

=
∑
i∈I

ai(s)
∑
j∈I

(
Q(s, T )−1

)
ij
(yj − E

î
Zj
T

∣∣∣(Xu)u∈[0,s]

ó
)d〈X〉s.

(17)

As a consequence, M −∑
i∈I

ai(s)
∑
j∈I

(
Q(s, T )−1

)
ij
(yj −E

î
Zj
T

∣∣∣(Xu)u∈[0,s]

ó
)d〈X〉s is a

(
GX ,P

[
·
∣∣Zt = y

])
-

martingale.
In the case where X is a standard Brownian motion, a simple computation shows that ∀i ∈ I, ai(s) =

fi(s) and E

î
Zj
T

∣∣∣(Xu)u∈[0,s]

ó
=
∫ s

0
fj(u)dXu. We recover Alili’s result on the generalized Brownian bridge

[1].

2.3.2 Generalized bridges and functional stratification

Within the same set of notations, we set Y = ZT and “Y Γ = ProjΓ(Y ) =
N∑
i=1

γi1Ci(Y ) a stationary

quantizer of Y (where Γ = {γ1, · · · , γN} and C = {C1, · · · , CN} are respectively the associated codebook
and Voronoi partition).

Proposition 2.4 (Stratification). Under the (H) hypothesis, for any s ∈ [0, T ), for any k ∈ {1, · · · , N},
P

î“Y Γ = γk
ó
> 0 and the conditional probability P

î
·
∣∣∣“Y Γ = γk

ó
is equivalent to P on FX

s .

Proof: Obviously, if A ∈ FX
s is such that P[A] = 0, we have P

î
A
∣∣∣“Y Γ = γk

ó
= 0. Conversely, B ∈ FX

s

satisfies P

î
B
∣∣∣“Y Γ = γk

ó
= 0, then pre-conditioning by Y , we get E

î
E [1B|Y ]

∣∣∣“Y Γ = γk
ó
= 0. Thus,∫

y∈Ck
P [B|Y = y] dPY (y) = 0. Hence P [B|Y = y] = 0 for PY −almost every y ∈ Ck.

Since PY (Ck) > 0, there exists at least an y ∈ Ck such that P [B|Y = y] = 0. Now thanks to Theorem
2.1, P[B] = 0. �

Proposition 2.5 (Stratification). Let us define the filtration GX by GX
t = σ

Ä
FX

t ,“Y Γ
ä
, the enlargement

of FX corresponding to the conditioning with respect to “Y Γ. For k ∈ {1, · · · , N}, we consider the

stochastic process Dk
s :=

dP
[
·
∣∣Ŷ Γ=γk

]
dP |FX

s
(y) for s ∈ [0, T ).

Under the (H) hypothesis, and the assumption that Dk is continuous, the conditional distribution
L
(
X
∣∣ZT = γk

)
of X knowing that ZT falls in some Voronoi cell Ck is the probability distribution of a

GX-semimartingale on [0, T ).
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Proof: Using that P

î
·
∣∣∣“Y Γ = γk

ó
is equivalent to P on FX

s , thanks to Proposition 2.4, we can mutatis

mutandis use the same arguments as for Proposition 2.2, P
[
·
∣∣ZT = y

]
being replaced by P

î
·
∣∣∣“Y Γ = γk

ó
.

Dk is a strictly positive martingale on [0, T ) uniformly integrable on every [0, t] ⊂ [0, T ). Hence, as
Dk is continuous by hypothesis, it is an exponential martingale Dk = exp

(
Lk
s − 1

2 〈Lk〉s
)
, with Lk

t =∫ t

0

(
Dk

s

)−1
dDk

s (as Dk
0 = 1). Now, as X is a continuous (FX ,P)-semimartingale, we write X = V +M

its canonical decomposition (under the filtration FX).

• Thanks to Girsanov theorem, M̃k := M − 〈M,Lk〉 is a
Ä
FX ,P[·|“Y Γ = γk]

ä
-martingale. As a

consequence, it is a
Ä
GX ,P[·|“Y Γ = γk]

ä
-martingale and thus a

(
GX ,P

)
-martingale.

• Moreover, conditionally to “Y Γ = γk, V is still a finite variation process V , and is adapted to GX .�

Proposition 2.6 (Continuity of Dk). If FX is a Brownian filtration, then Dk has a continuous modi-
fication.

Proof: By definition, Dk is a FX local martingale on [0, T ]. The conclusion is a straightforward
consequence of the Brownian representation theorem. �

Considering the partition of L2([0, T ]) corresponding to the Voronoi cells of a functional quantizer of X ,
the last two propositions show that the conditional distribution of the X in each Voronoi cell (strata)
is a Gaussian semimartingale with respect to its own filtration. This allows to define the corresponding
functional stratification of the solutions of stochastic differential equations driven by X .

In [6], an algorithm is proposed to simulate the conditional distribution of the marginals (Xt0 , · · · , Xtn)
of X for a given subdivision 0 = t0 < t1 < · · · < tn = T of [0, T ] conditionally to a given Voronoi cell
(strata) of a functional quantization of X . The simulation complexity has an additional linear complexity
to an unconditioned simulation of (Xt0 , · · · , Xtn). We refer to [6] for more details.

To deal with solutions of SDE, it was proposed in [6] to simply insert these marginals in the Euler scheme
of the SDE. Proposition 2.5 now shows that this amounts to simulate the Euler scheme of the SDE driven
by the corresponding (non-Gaussian) semimartingale.

2.4 About the (H) hypothesis

2.4.1 The martingale case

In the case where X is a continuous Gaussian martingale, the matrix Q(s, t) defined in Section 2.3 writes

Q(s, t) =
ÄÄ∫ t

s
fi(u)fj(u)d〈X〉u

ää
(i,j)∈I2

.

For 1 ≤ s < t ≤ T , the map (·|·) : (f, g) →
∫ t

s
f(u)g(u)d〈X〉u defines a scalar product on L2([s, t], d〈X〉).

Hence Q(s, t) is the Gram matrix of the vectors of L2([s, t], d〈X〉) defined by the restrictions to [s, t] of
the functions (fi)i∈I . Thus, it is invertible if and only if these restrictions form a linearly independent
family of L2([s, t], d〈X〉). (Another consequence, is that if Q(s, t) is invertible for some 0 ≤ s < t ≤ T ,
then for every (u, v) such that [s, t] ⊂ [u, v], Q(u, v) is invertible).

For instance, if X is a standard Brownian motion on [0, T ], the functions (fX
i )i∈I (associated with the

Karhunen-Loève decomposition) are trigonometric functions with strictly different frequencies. Hence,
they form a linearly independent family of continuous functions on every no-empty interval [s, T ) ⊂ [0, T ).
Moreover, the measure d〈X〉 is proportional to the Lebesgue measure on [0, T ] and thus Q(s, T ) is
invertible for any s ∈ [0, T ). Hence, the (H) hypothesis is fulfilled in the case of K-L generalized bridges
of the standard Brownian motion.

2.4.2 The standard Brownian bridge and Ornstein-Uhlenbeck processes

The Brownian bridge and the Ornstein-Uhlenbeck process are not martingales. Hence, this criteria is
not sufficient and the invertibility of matrix Q(s, T ) has to be proved by other means.
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Following from the definitions of Q(s, T ) and ZT , in the case of the K-L generalized bridge

Q(s, T )ij = E

[ (∫ T

s
fX
i (u)dXu − E

î∫ T

s
fX
i (u)dXu

∣∣∣(Xu)u∈[0,s]

ó)

×
(∫ T

s
fX
j (u)dXu − E

î∫ T

s
fX
j (u)dXu

∣∣∣(Xu)u∈[0,s]

ó)∗ ∣∣∣(Xu)u∈[0,s]

]

= cov
Ä∫ T

s
fX
i (u)dX

(s)
u ,
∫ T

s
fX
j (u)dX

(s)
u

ä
,

where
Ä
X

(s)
u

ä
u∈[s,T ]

has the conditional distribution of X knowing (Xu)u∈[0,s].

• When X is a standard Brownian bridge on [0, T ], X
(s)
u is a Brownian bridge on [s, T ], starting from

Xs and arriving at 0.

It is the sum of an affine function and a standard centered Brownian bridge on [s, T ].

• When X is a centered Ornstein-Uhlenbeck process, X
(s)
u is an Ornstein-Uhlenbeck process on [0, T ]

starting from Xs, with the same mean reversion parameter as X .

It is also the sum of a deterministic function and an Ornstein-Uhlenbeck process starting from 0.

As a consequence, in these two cases, the quantity cov
Ä∫ T

s
fX
i (u)dX

(s)
u ,
∫ T

s
fX
j (u)dX

(s)
u

ä
can be com-

puted by plugging either a centered Brownian bridge on [s, T ] or an Ornstein-Uhlenbeck starting from 0

instead of X(s). This means that Q(s, T ) is the Gram matrix of the random variables
Ä∫ T

s
fX
i (u)dGu

ä
i∈I

,

where the centered Gaussian process (Gu)u∈[s,T ] is either a standard Brownian bridge on [s, T ] or an
Ornstein-Uhlenbeck process starting from 0 at s. Thus it is singular if and only if there exists (αi)i∈I 6= 0
in R

I such that ∫ T

s

(
∑

i∈I

αif
X
i (u)

)

︸ ︷︷ ︸
:=g(u)

dGu = 0 a.s.. (18)

The case of the Brownian bridge

In the case where X is the standard Brownian bridge on [0, T ], functions (fX
i )i∈I are C∞ functions and

G is a standard Brownian bridge on [s, T ]. An integration by parts gives
∫ T

s
Gsg

′(s)ds = 0 a.s. and

thus g′ ≡ 0 on (s, t) and thus g is constant on [0, T ]. The functions (fX
i )i∈I form an linearly independent

set of functions and, as they are trigonometric functions with different frequencies, they clearly not span
constant functions, so that Equation (18) yields α1 = · · · = αn = 0. Hence the (H) hypothesis is fulfilled
in the case of K-L generalized bridges of the standard Brownian bridge.

The case of the Ornstein-Uhlenbeck process

In the case where X is an Ornstein-Uhlenbeck process on [0, T ], G is an Ornstein-Uhlenbeck process
on [s, T ] starting from 0. The injectivity property of the Wiener integral related to the Ornstein-
Uhlenbeck process stated in Proposition 2.7 below, applied on [s, T ], shows that Equation (18) amounts

to g
L2([s,T ],dt)

= 0 and thus ∑

i∈I

αif
X
i

L2([s,T ],dt)
= 0. (19)

Again, as (fX
i )i∈I are linearly independent, we have α1 = · · · = αn = 0. Hence the (H) hypothesis is

fulfilled in the case of K-L generalized bridges of the Ornstein-Uhlenbeck processes.

Proposition 2.7 (Injectivity of the Wiener integral related to centered Ornstein-Uhlenbeck processes
starting from 0). Let G be an Ornstein-Uhlenbeck process starting from 0 on [0, T ] defined by the SDE

dGt = −θGtdt+ σdWt with σ > 0 and θ > 0.

If g ∈ L2([0, T ]), then we have

∫ T

0

g(s)dGs = 0 ⇔ g
L2([0,T ])

= 0.
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Proof: If g ∈ L2([0, T ]) and
∫ T

0
g(s)dGs = 0, then θ

∫ T

0
g(s)Gsds = σ

∫ T

0
g(s)dWs, and thus

θ2
∫ T

0

∫ T

0

g(s)g(t)ΓX(s, t)dsdt = σ2

∫ T

0

g(s)2ds. (20)

Applying Schwarz’s inequality twice, we get

∫ T

0

∫ T

0

g(s)g(t)ΓX(s, t)dsdt ≤
∫ T

0

g(t)2dt

√∫ T

0

∫ T

0

ΓX(s, t)dsdt.

Moreover, provided that √∫ T

0

∫ T

0

ΓX(s, t)dsdt <
σ2

θ2
, (21)

equality (20) implies
∫ T

0
g(s)2ds = 0.

Now, we come to the proof of Inequality (21). The covariance function of the Ornstein-Uhlenbeck process
starting from 0 writes

ΓOU (s, t) =
σ2

2θ
e−θ(s+t)

Ä
e2θmin(s,t) − 1

ä
.

If t ∈ [0, T ], we have

∫ T

0
ΓOU (s, t)ds =

∫ t

0
ΓOU (s, t)ds+

∫ T

t
ΓOU (s, t)ds = σ2

2θ2

(
2− 2e−θt + e−θ(t+T ) − eθ(t−T )

)
,

and thus ∫ T

0

∫ T

0

ΓOU (s, t)dsdt =
σ2

2θ3
(
2Tθ+ 4e−θT − 3− e−2θT

)
.

Consequently, the function φ defined by φ(θ) :=
∫ T

0

∫ T

0
ΓOU (s, t)dsdt− σ2

θ2 writes

φ(θ) =
σ2

2θ3
(
2Tθ+ 4e−θT − 3− e−2θT − 2θ

)
.

We see that φ(0) = 0 and φ′(θ) = σ2

2θ2

(
−4Te−θT + 2T + 2Te−2θT − 2

)
= σ2

2θ2

Ä
2T
(
1− e−θT

)2 − 2
ä
, so

that φ′(θ) < 0 if θ > 0. Finally, if θ > 0, Inequality (21) holds.
The inverse implication is obvious. �

In fact, the injectivity property stated in Proposition 2.7 also holds when dealing with an Ornstein-
Uhlenbeck process with a positive initial variance. This case, of a (strictly) positive initial variance is
proved thanks to a simpler argument.

Proposition 2.8 (Injectivity of the Wiener integral related to centered Ornstein-Uhlenbeck processes
with a (strictly) positive initial variance). Let G be an Ornstein-Uhlenbeck process [0, T ] defined by the
SDE

dGt = −θGtdt+ σdWt with σ > 0 and θ > 0,

where G0
L∼ N (0, σ2

0) is independent from the standard Brownian motion W and σ2
0 > 0.

If g ∈ L2([0, T ]), then we have

∫ T

0

g(s)dGs = 0 ⇔ g
L2([0,T ])

= 0.

Proof: We recall in mind that the solution of the SDE that defines the Ornstein-Uhlenbeck process is

Gt = G0e
−θt +

∫ t

0

σeθ(s−t)dWs

︸ ︷︷ ︸
:=G0

t

.
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If g ∈ L2([0, T ]) and
∫ T

0
g(s)dGs = 0, then

θ

∫ T

0

g(s)Gsds = σ

∫ T

0

g(s)dWs. (22)

Moreover

θ

∫ T

0

g(s)Gsds = θG0

∫ T

0

e−θtg(s)ds

︸ ︷︷ ︸
independent of W

+θ

∫ T

0

g(s)G0
sds.

As a consequence, Equation (22) yields θG0

∫ T

0
e−θtg(s)ds = 0 a.s. and thus g

L2([0,T ])
= 0. (This argument

only holds if σ2
0 > 0.) The inverse implication is obvious. �

The case of a more general Gaussian semimartingale

In Appendix A, we investigate the problem for more general Gaussian processes.

3 K-L generalized bridges and partial functional quantization

We keep the notations and assumptions of Section 2.2. As we have seen, Equation (11) decomposes the
process X as the sum of a linear combination of Y := (Yi)i∈I and an independent remainder term. We

now consider “Y Γ a stationary Voronoi N -quantization of Y . “Y Γ can be written as a nearest neighbor
projection of Y on a finite codebook Γ = (γ1, · · · , γN).

“Y Γ = ProjΓ(Y ), where ProjΓ is a nearest neighbor projection on Γ.

For example, “Y Γ can be a stationary product quantization or an optimal quadratic quantization of Y .
We now define the stochastic process ‹XI,Γ by replacing Y by “Y Γ in the decomposition (11). We denote
‹XI,Γ = ProjI,Γ(X).

‹XI,Γ =
∑

i∈I

“Y Γ
i e

X
i

⊥⊥
+
∑

i∈N∗\I

»
λXi ξie

X
i .

The conditional distribution of ‹XI,Γ given that Y falls in the Voronoi cell of γk is the probability
distribution of the K-L generalized bridge with end-point γk. In other words, we have quantized the
Karhunen-Loève coordinates of X corresponding to i ∈ I, and not the other ones.
The so-defined process ‹XI,Γ is called a partial functional quantization of X .

3.1 Partial functional quantization of stochastic differential equations

Let X be a continuous centered Gaussian semimartingale on [0, T ] with X0 = 0. We consider the SDE

dSt = b(t, St)dt+ σ(t, St)dXt, S0 = x ∈ R, and t ∈ [0, T ], (23)

where b(t, x) and σ(t, x) are Borel functions, Lipschitz-continuous with respect to x uniformly in t, σ
and |b(·, 0)| are bounded. This SDE admits a unique strong solution S.

The conditional distribution given that Yi = yi for i ∈ I of S is the strong solution of the stochastic
differential equation dSt = b(t, St)dt+ σ(t, St)dX

I,y
t , with S0 = x ∈ R, and for t ∈ [0, T ], where XI,y

t is
the corresponding K-L generalized bridge.

Under the (H), this suggests to define the partial quantization of S from a partial quantization ‹XI,Γ

of X by replacing X by ‹XI,Γ in the SDE (23). We define the partial quantization S̃I,Γ as the process
whose conditional distribution given that Y falls in the Voronoi cell of γk is the strong solution of the
same SDE where X is replaced by the K-L generalized bridge with end-point γk. We write

dS̃I,Γ
t = b

Ä
t, S̃I,Γ

t

ä
dt+ σ

Ä
t, S̃I,Γ

t

ä
d‹XI,Γ

t . (24)
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3.2 Convergence of partially quantized SDE

We start by stating some useful inequalities for the sequel. Then, we recall the so-called Zador’s theorem
which will be used in the proof of the a.s. convergence of partially quantized SDE.

Lemma 3.1 (Gronwall inequality for locally finite measures). Consider I an interval of the form [a, b)
or [a, b] with a < b or [a,∞). Let µ be a locally finite measure on the Borel σ-algebra of I. We consider

u a measurable function defined on I such that for all t ∈ I,
∫ t

a
|u(s)|µ(ds) < +∞. We assume that

there exists a Borel function ψ on I such that

u(t) ≤ ψ(t) +

∫

[a,t)

u(s)µ(ds), ∀t ∈ I.

If either ψ is non-negative,

or t→ µ([a, t)) is continuous on I and for all t ∈ I,
∫ t

a
|ψ(s)|µ(ds) <∞,

then u satisfies the Gronwall inequality.

u(t) ≤ ψ(t) +

∫

[a,t)

ψ(s) exp(µ([s, t)))µ(ds).

A proof of this result is available in [8] (Appendix 5.1).

Lemma 3.2 (A Gronwall-like inequality in the non-decreasing case). Consider I an interval of the form
[a, b) or [a, b] with a < b or [a,∞). Let µ be a locally finite measure on the Borel σ-algebra of I. We

consider u a measurable non-decreasing function defined on I such that for all t ∈ I,
∫ t

a
|u(s)|µ(ds) <

+∞. We assume that there exists a Borel function ψ on I, and two non-negative constants (A,B) ∈ R
2
+

such that

u(t) ≤ ψ(t) +A

∫

[a,t)

u(s)µ(ds) +B

�∫
[a,t)

u(s)2µ(ds), ∀t ∈ I. (25)

If either ψ is non-negative,

or t→ µ([a, t)) is continuous on I and for all t ∈ I,
∫ t

a
|ψ(s)|µ(ds) <∞,

then u satisfies the following Gronwall inequality.

u(t) ≤ 2ψ(t) + 2
(
2A+B2

) ∫

[a,t)

ψ(s) exp
((
2A+B2

)
µ([s, t))

)
µ(ds).

Proof: Using that for (x, y) ∈ R
2
+,

√
xy ≤ 1

2

(
x
B +By

)
, we have

Ç∫
[a,t)

u(s)2µ(ds)

å 1
2

≤
Ç
u(t)

∫

[a,t)

u(s)µ(ds)

å 1
2

≤ u(t)

2B
+
B

2

∫

[a,t)

u(s)µ(ds).

Plugging this in the original inequality (25) yields

u(t) ≤ 2ψ(t) +
(
2A+B2

) ∫

[a,t)

u(s)µ(ds).

Applying the regular Gronwall’s inequality (Lemma 3.1) yields the announced result. �

Theorem 3.3 (Zador, Bucklew, Wise, Graf, Luschgy, Pagès).

1. (Sharp rate) Consider r > 0, and X be a R
d-valued random variable such that X ∈ Lr+η for

some η > 0. Let PX(dξ) = φ(ξ)dξ + ν(dξ) be the Radon-Nikodym decomposition of the probability
distribution of X. (ν and the Lebesgue’s measure are singular). Then, if φ 6≡ 0,

EN,r(X) ∼
N→∞

J̃r,d ×
Å∫

Rd

φ
d

d+r (u)du

ã 1
d+

1
r

×N− 1
d ,

where J̃r,d ∈ (0,∞).
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2. (Non asymptotic upper bound) There exists Cd,r,η ∈ (0,∞) such that, for every R
d-valued random

vector X,
∀N ≥ 1, EN,r(X) ≤ Cd,r,η‖X‖r+ηN

− 1
d .

The first statement of the theorem was first established for probability distributions with compact support
by Zador [29], and extended by Bucklew and Wise to general probability distributions on R

d [4]. The
first mathematically rigorous proof can be found in [10]. The proof of the second statement is available
in [18].

The real constant J̃r,d corresponds to the case of the uniform probability distribution over the unit

hypercube [0, 1]d. We have J̃r,1 = 1
2 (r + 1)−

1
r and J̃2,2 =

»
5

18
√
2
. (See [10].)

Proposition 3.4 (Some inequalities related to the Gaussian distribution). Let G be a standard Gaussian
random variable valued in R. We have

E
[
G2

1|G|>M

]
=

2M exp
Ä
−M2

2

ä
√
2π

+ 2N (−M). (26)

Moreover

N (−M) = P(G > M) ≤ 1

2
exp

Å
−M

2

2

ã
. (27)

Thus

E
[
G2

1|G|>M

]
≤
Å
2M√
2π

+ 1

ã
exp

Å
−M

2

2

ã

Under the additional assumption that M > 1, we obtain

E
[
G2

1|G|>M

]
≤M

Å
2√
2π

+ 1

ã
exp

Å
−M

2

2

ã
if M > 1.

Proof: The proof of equality (26) is left to the reader. Inequality (27) comes from

N (−M) = P(G > M) = 1√
2π

∫∞
M
e−

x2

2 dx = 1√
2π

∫∞
0
e−

(x+M)2

2 dx

= 1√
2π
e−

M2

2

∫∞
0
e−txe−

x2

2 dx ≤ 1√
2π
e−

M2

2

∫∞
0
e−

x2

2 dx = 1
2e

−M2

2 .

And the proof of the last claim is straightforward. �

Proposition 3.5 (The non standard case and reverse inequality). If H := σG has a variance of σ2, we
obtain

E
[
H2

1|H|>M

]
= σ2

î
G2

1|G|>M
σ

ó
=

2σM√
2π

exp

Å
−M

2

2σ2

ã
+ 2σ2N

Å
−M
σ

ã
≤
Å
2σM√
2π

+ σ2

ã
exp

Å
−M

2

2σ2

ã
.

And if M > 1, we get E
[
H2

1|H|>M

]
≤
Å

2σ√
2π

+ σ2

ã
M exp

Å
−M

2

2σ2

ã

︸ ︷︷ ︸
:=ηM

. Conversely, for some settled

η > 0, and if M > 1, we have

M ≥

Õ

−LambertW

Ñ
− η2Ä

2σ√
2π

+ σ2
ä2

é

︸ ︷︷ ︸
:=Mη

⇒ ηM ≤ η

where LambertW is the Lambert W function.
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3.2.1 Quadratic convergence of partially quantized SDE

In the following theorem, we restrict to the case where X is a Gaussian martingale starting from 0. Still,
we can easily extend the result to the case of a Gaussian semimartingale (see remark 3.2.3).

Theorem 3.6 (L2 quantization error of partially quantized SDE). Let X be a continuous centered
Gaussian martingale on [0, T ] with X0 = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt+ σ(t, St)dXt, S0 = x,

where b(t, x) and σ(t, x) are Borel functions, Lipschitz-continuous with respect to x uniformly in t, σ and
|b(·, 0)| are bounded.

We consider ‹XI,Γ a stationary partial functional quantization of X and S̃I,Γ the corresponding partial
functional quantization of S, i.e. the strong solutions of

dS̃I,Γ
t = b

Ä
t, S̃I,Γ

t

ä
dt+ σ

Ä
t, S̃I,Γ

t

ä
d‹XI,Γ

t , S̃I,Γ
0 = x.

Then, for every ε > 0 and t ∈ [0, T ), we have

E

ñ
sup

u∈[0,t]

∣∣∣Su − S̃I,Γ
u

∣∣∣
2
ô
= O

Ç
E

ï∣∣∣Y − “Y Γ
∣∣∣
2+ε
ò 2

2+ε

å
, (28)

where Y is defined from X by Equation (11) and “Y Γ is the nearest neighbor projection of Y on Γ.

Proof: As we have seen in Section 2.2, Equation (11) decomposes the process X into

Xt =
∑

i∈I

Yie
X
i (t)

⊥⊥
+XI,0

t ,

and the partial quantization ‹XΓ,I
t of X is decomposed into

‹XΓ,I
t =

∑

i∈I

“Y Γ
i e

X
i (t)

⊥⊥
+XI,0

t ,

where XI,0
t is the associated K-L generalized bridge with end-point 0 and “Y Γ is the nearest neighbor

projection of Y on Γ. Thanks to the Theorem (2.2), it is a Gaussian semimartingale with respect to the
corresponding enlarged filtration.
Pre-conditioning with respect to “Y Γ yields

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃Γ,I
v

∣∣∣
2
ô
= E

ñ
E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃Γ,I
v

∣∣∣
2
∣∣∣∣∣
“Y Γ

ôô
=

N∑

k=1

pkE

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃Γ,I
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
.

(29)

For some k ∈ {1, · · · , N}, conditionally to “Y Γ = γk, we have

St − S̃I,Γ
t =

∫ t

0

Ä
b(u, Su)− b

Ä
u, S̃I,Γ

u

ää
du+

∑

i∈I

∫ t

0

Ä
σ(u, Su)Yi − σ

Ä
u, S̃I,Γ

u

ä“Y Γ
i

ä
deXi (u)

+

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dXI,0

u .

Hence, (conditionally to “Y Γ = γk)

∣∣∣St − S̃I,Γ
t

∣∣∣
2
≤ 3

∣∣∣∣∣

∫ t

0

Ä
b(u, Su)− b

Ä
u, S̃I,Γ

u

ää
du

∣∣∣∣∣

2

+ 3

∣∣∣∣∣
∑

i∈I

∫ t

0

Ä
σ(u, Su)Yi − σ

Ä
u, S̃I,Γ

u

ä“Y Γ
i

ä
deXi (u)

∣∣∣∣∣

2

+ 3

∣∣∣∣∣

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dXI,0

u

∣∣∣∣∣

2

.
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From the canonical decomposition of XI,0 =
¨
X,L0

∂
︸ ︷︷ ︸

:=Ṽ

+X −
¨
X,L0

∂
︸ ︷︷ ︸

:=‹M
, we get, conditionally to “Y Γ = γk,

∣∣∣St − S̃I,Γ
t

∣∣∣
2

≤ 3

∣∣∣∣∣

∫ t

0

Ä
b(u, Su)− b

Ä
u, S̃I,Γ

u

ää
du

∣∣∣∣∣

2

+ 3

∣∣∣∣∣
∑

i∈I

∫ t

0

Ä
σ(u, Su)Yi − σ

Ä
u, S̃I,Γ

u

ä“Y Γ
i

ä
deXi (u)

∣∣∣∣∣

2

+ 6

∣∣∣∣∣

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
d‹Vu

∣∣∣∣∣

2

+ 6

∣∣∣∣∣

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dM̃u

∣∣∣∣∣

2

. (30)

We decompose the second term of the right hand side of Equation (30) into

3

∣∣∣∣∣
∑

i∈I

∫ t

0

Ä
σ(u, Su)Yi − σ

Ä
u, S̃I,Γ

u

ä“Y Γ
i

ä
deXi (u)

∣∣∣∣∣

2

≤ 9

∣∣∣∣∣
∑

i∈I

Ä
Yi − “Y Γ

i

ä ∫ t

0

σ(u, Su)de
X
i (u)

∣∣∣∣∣

2

+ 9

∣∣∣∣∣
∑

i∈I

“Y Γ
i

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
deXi (u)

∣∣∣∣∣

2

.

Moreover, Equation (17) yields

d‹Vs = d
¨
X,L0

∂
s
= −

∑

i∈I

ai(s)
∑

j∈I

(Q(s, T )−1)ijE
[
Zj
T

∣∣∣∣
Ä
XI,0

u

ä
u∈[0,s]

]

︸ ︷︷ ︸
:=Gs

d〈X〉s = Gsd〈X〉s,

where the so-defined process (Gs)s∈[0,T ] is Gaussian. Hence, thanks to Schwarz’s inequality

∣∣∣
∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
d‹Vu

∣∣∣
2

=
∣∣∣
∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gud〈X〉u

∣∣∣
2

≤
Ä∫ t

0
|Gu|2d〈X〉u

äÅ∫ t

0

∣∣∣σ(u, Su)− σ
Ä
u, S̃I,Γ

u

ä∣∣∣2 d〈X〉u
ã
.

Hence, with Doob’s inequality and using that 〈X〉 =
¨
M̃
∂
=
¨
XI,0
∂
,

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
≤ 3tE

ñ
sup

v∈[0,t]

∫ v

0

∣∣∣b(u, Su)− b
Ä
u, S̃I,Γ

u

ä∣∣∣2 du
∣∣∣∣∣
“Y Γ = γk

ô

+ 3E

[
sup

v∈[0,t]

∣∣∣∣∣
∑

i∈I

∫ v

0

Ä
σ(u, Su)Yi − σ

Ä
u, S̃I,Γ

u

ä“Y Γ
i

ä
deXi (u)

∣∣∣∣∣

2
∣∣∣∣∣∣
“Y Γ = γk

]

+ 6E

ñ
sup

v∈[0,t]

∣∣∣∣
∫ v

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
d‹Vu

∣∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô

+ 24

∫ t

0

E

ï∣∣∣σ(u, Su)− σ
Ä
u, S̃I,Γ

u

ä∣∣∣2
∣∣∣∣“Y Γ = γk

ò
d〈X〉u.
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Now, using that b and σ are Lipschitz-continuous, and thanks to

Å∑
i∈I

ai

ã2
≤ |I|∑

i∈I
a2i ,

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
≤ 9[σ]2maxT max

i∈I
u∈[0,T ]

ß∣∣∣(eXi
)′
(u)
∣∣∣
2
™
|I|

︸ ︷︷ ︸
:=AX

I

E

ï∣∣∣Y − “Y Γ
∣∣∣
2
∣∣∣∣“Y Γ = γk

ò

+ 3T [b]2Lip

∫ t

0

E

ñ
sup

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
du

+ 9[σ]2Lip|I|T

Ñ
max
i∈I

u∈[0,T ]

(
eXi
)′
(u)

é2 Å
max
i∈I

Ä“Y Γ
i

ä2ã∫ t

0

E

ñ
sup

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
du

+ 24[σ]2Lip

∫ t

0

E

ñ
sup

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
d〈X〉u

+ 6E

[Ç∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää
Gud〈X〉u

å2∣∣∣∣∣
“Y Γ = γk

]
. (31)

Now, for some M > 1, we decompose the expectation in the last term of Equation (31) on {|Gu| > M}
and {|Gu| ≤M}.

E

[Ä∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää
Gud〈X〉u

ä2∣∣∣∣“Y Γ = γk

]

≤ 〈X〉t
∫ t

0
E

[
G2

u

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää2∣∣∣∣“Y Γ = γk

]
d〈X〉u

= 〈X〉t
∫ t

0
E

[
1|Gu|≥MG

2
u

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää2∣∣∣∣“Y Γ = γk

]
d〈X〉u

+〈X〉t
∫ t

0
E

[
1|Gu|≤MG

2
u

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää2∣∣∣∣“Y Γ = γk

]
d〈X〉u

≤ 4[σ]2max〈X〉t
∫ t

0
E
[
1|Gu|≤MG

2
u

]
d〈X〉u + 〈X〉tM2[σ]2Lip

∫ t

0
E

ï∣∣∣Su − S̃I,Γ
u

∣∣∣
2
∣∣∣∣“Y Γ = γk

ò
d〈X〉u.

We obtain, thanks to Proposition 3.4

E

[Ä∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃u

ää
Gud〈X〉u

ä2∣∣∣∣“Y Γ = γk

]

≤ 4[σ]2max〈X〉2t
Å

2vt√
2π

+ v2t

ã
M exp

Å
−M

2

2v2t

ã

︸ ︷︷ ︸
:=ηM

+〈X〉tM2[σ]2Lip
∫ t

0
E

ï∣∣∣Su − S̃I,Γ
u

∣∣∣
2
∣∣∣∣“Y Γ = γk

ò
d〈X〉u,

where v2t = max
u∈[0,t]

(Var (Gu)). Plugging this last inequality into Equation (31), we get

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
≤ AX

I E

ï∣∣∣Y − “Y Γ
∣∣∣
2
∣∣∣∣“Y Γ = γk

ò
+ 6ηM

+BX,γk

I

∫ t

0
E

ñ
sup

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
du

+CX,M
∫ t

0
E

ñ
sup

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
d〈X〉u,

where BX,γk

I is an affine function of max
i∈I

|γki| and CX,M = 24[σ]2Lip+6[σ]2LipM
2. We can then apply the

Gronwall lemma 3.1 for locally finite measures to the function

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣∣
“Y Γ = γk

ô
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with the locally finite measure µ defined by µ(du) = du+ d〈X〉u, and we obtain

E

ï
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
∣∣∣∣Ŷ Γ = γk

ò
≤

Å
AX

I E

[∣∣∣Y − Ŷ Γ
∣∣∣
2
∣∣∣∣Ŷ Γ = γk

]
+ 6ηM

ã
exp
((

E
X,γk
I + CX,M

)
µ([0, t))

)
Å
AX

I E

[∣∣∣Y − Ŷ Γ
∣∣∣
2
∣∣∣∣Ŷ Γ = γk

]
+ 6ηM

ã
exp
(
E

X,γk
I µ([0, t))

)
︸ ︷︷ ︸

:=φ(γk)

exp
(
CX,Mµ([0, t))

)
,

where EX,Γk

I is an affine function of max
i∈I

|γk|i. Plugging it in Equation (29) yields

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
ô
≤ exp

(
CX,Mµ([0, t))

)
E

ï
φ
Ä“Y Γ
äÅ

AX
I E

ï∣∣∣Y − “Y Γ
∣∣∣
2
∣∣∣∣“Y Γ

ò
+ 6ηM

ãò
. (32)

Now, for ε > 0 and p̃ = 1 + ε
2 and q̃ = p̃

p̃−1 = 1 + 2
ε the conjugate exponent of p̃, we have, thanks to

Hölder’s inequality

E

ï
φ
Ä“Y Γ
äÅ

AX
I E

ï∣∣∣Y − “Y Γ
∣∣∣
2
∣∣∣∣“Y Γ

ò
+ 6ηM

ãò
≤
∥∥∥φ
Ä“Y Γ
ä∥∥∥

q̃

∥∥∥∥AX
I E

ï∣∣∣Y − “Y Γ
∣∣∣
2
∣∣∣∣“Y Γ

ò
+ 6ηM

∥∥∥∥
p̃

≤
∥∥∥φ
Ä“Y Γ
ä∥∥∥

q̃

Ç
AX

I E

ï∣∣∣Y − “Y Γ
∣∣∣
2p̃
ò1/p̃

+ 6ηM

å
.

Now, as the so-defined function φ is convex and as “Y Γ is a stationary quantizer of Y , we have thanks to

Equation (8),
∥∥∥φ
Ä“Y Γ
ä∥∥∥

q̃
≤ ‖φ (Y ) ‖q̃. Hence

E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
2
ô
≤ exp

(
CX,Mµ([0, t))

)
‖φ (Y )‖q̃

Ç
AX

I E

ï∣∣∣Y − “Y Γ
∣∣∣
2+ε
ò 2

2+ε

+ 6ηM

å
. (33)

Now, thanks to Proposition 3.5, we can ensure that ηM ≤ η := E

ï∣∣∣Y − “Y Γ
∣∣∣
2+ε
ò 2

2+ε

by taking M =
…
−LambertW

(
− η2

C2
t

)
, with Ct = 4〈X〉2t [σ]2max

Ä
2vt√
2π

+ v2t
ä
. We finaly have the following error bound

E

ï
sup

v∈[0,t]

∣∣Sv − S̃
I,Γ
v

∣∣2
ò
≤ ‖φ (Y ) ‖q̃ exp

Ü

24[σ]2Lip − 4[σLip]
2 LambertW

Ü

−

Å
E

î∣∣Y − Ŷ Γ
∣∣2+ε
ó 2

2+ε

ã2

C2
t

êê

×
(
AX

I + 6
)Å

E

î∣∣Y − Ŷ Γ
∣∣2+ε
ó 2

2+ε

ã
. (34)

Finally, we can conclude by observing that LambertW(u) →
u→0

0. �

Remark (On the time-dependence). Considering Equation (17), we can see that Var(Gu) →
u→T

∞, and

so does v2t = max
u∈[0,t]

Var(Gu). As a consequence, the constant Ct involved in Inequality (34) also goes to

infinity. This means that Theorem 3.6 cannot be extended to t = T .

Corollary 3.7 (Quadratic convergence). Within the same notations and hypothesis as in Theorem 3.6,

consider
Ä‹XI,Γn

ä
n∈N

a sequence of stationary partial functional quantizers of X and
Ä
S̃I,Γn

ä
n∈N

the

corresponding sequence of partial quantizers of S.

If we make the additional assumption that the associated sequence of quantizers
Ä“Y Γn

ä
n∈N

is rate optimal

for the L2+ε convergence for some ε > 0, then for every t ∈ [0, T ) we have

E

ñ
sup

u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣
2
ô
= O

(
n− 2+ε

|I|

)
.

Proof: This is a straightforward consequence of Theorem 3.6 and Zador’s theorem 3.3, which defines
the optimal convergence rate of a sequence of quantizers. �
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3.2.2 Lp convergence of partially quantized SDE

We now focus on the general Lp framework, following the same steps except that the Doob’s inequality
for continuous (local) martingale is replaced by the Burkholder-Davis-Gundy inequality which holds for
every p > 0.

Lemma 3.8 (Generalized Minkowski inequality for locally finite measures). Consider I an interval of
the form [a, b) or [a, b] with a < b or [a,∞). Let µ be a locally finite measure on the Borel σ-algebra of
I. Then for any non-negative bi-measurable process X = (Xt)t∈I and every p ∈ [1,∞),

∥∥∥∥
∫

I
Xtµ(dt)

∥∥∥∥
p

≤
∫

I
‖Xt‖pµ(dt).

Proposition 3.9 (Burkholder-Davis-Gundy inequality). For every p ∈ (0,∞), there exists two positive
real constants cBDG

p and CBDG
p such that for every continuous local martingale (Xt)t∈[0,T ] null at 0,

cBDG
p

∥∥∥
»
〈X〉T

∥∥∥
p
≤
∥∥∥∥∥ sup
s∈[0,T ]

|Xs|
∥∥∥∥∥
p

≤ CBDG
p

∥∥∥
»
〈X〉T

∥∥∥
p
.

We refer to [26] for a detailed proof.

Proposition 3.10 (Lp inequality). Let G be a standard Gaussian random variable valued in R. There
exists a constant Cp > 0 such that for every M > 1

E
[
Gp

1|G|>M

]
≤ Cp

pM
p−1 exp

Å
−M

2

2

ã
.

Consequently
∥∥G1|G|>M

∥∥
p
≤ CpM

1
q exp

Å
−M

2

2p

ã
,

where q is the conjugate exponent of p.

Proposition 3.11 (The non standard case and Lp reverse inequality). If H := σG has a variance of
σ2, we obtain ∥∥H1|H|>M

∥∥
p

≤ σ
∥∥∥G1|G|>M

σ

∥∥∥
p
= σCp

(
M
σ

) 1
q exp

Ä
− M2

2pσ2

ä
,

= σ
1
pCpM

1
q exp

Å
− M2

2pσ2

ã

︸ ︷︷ ︸
:=ηM

. (35)

Conversely, for some settled η > 0, and if M > 1, we have

M ≥

Õ

−σ2(p− 1) LambertW

Ñ
− qη2q

pσ2
Ä
C2q

p σ2q/p
ä
é

︸ ︷︷ ︸
:=Mη

⇒ ηM ≤ η (36)

where LambertW is the Lambert W function.

Theorem 3.12 (Lp quantization of partially quantized SDE). Let X be a continuous centered Gaussian
martingale on [0, T ] with X0 = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt+ σ(t, St)dXt, S0 = x,

where b(t, x) and σ(t, x) are Borel functions, Lipschitz-continuous with respect to x uniformly in t, σ and
|b(·, 0)| are bounded.

We consider ‹XI,Γ a stationary partial functional quantization of X and S̃I,Γ the corresponding partial
functional quantization of S, i.e. the strong solutions of

dS̃I,Γ
t = b

Ä
t, S̃I,Γ

t

ä
dt+ σ

Ä
t, S̃I,Γ

t

ä
d‹XI,Γ

t , S̃I,Γ
0 = x.
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Then, for every p ∈ (0,∞), ε > 0 and t ∈ [0, T ), we have

∥∥∥∥∥ sup
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥∥
p

= O

Å∥∥∥Y − “Y Γ
∥∥∥
p+ε

ã
, (37)

where Y is defined from X by Equation (11) and “Y Γ is the nearest neighbor projection on Γ.

Proof: As in the proof of Theorem 3.6, we decompose the process X into Xt =
∑
i∈I

Yie
X
i (t) +XI,0

t and

‹XI,Γ into ‹XI,Γ
t =

∑
i∈I

“Y Γ
i e

X
i (t) +XI,0

t , where “Y Γ is the nearest neighbor projection of Y on Γ.

For some k ∈ {1, · · · , N}, conditionally to “Y Γ = γk, we have

St − S̃I,Γ
t =

∫ t

0

Ä
b(u, Su)− b

Ä
u, S̃I,Γ

t

ää
du+

∑

i∈I

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää“Y Γ
i de

X
i (u)

+
∑

i∈I

∫ t

0

Ä
Yi − “Y Γ

i

ä
σ(u, Su)de

X
i (u) +

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gud〈X〉u

+

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dM̃u.

This gives (conditionally to “Y Γ = γk)

∣∣∣St − S̃I,Γ
t

∣∣∣ ≤ [b]Lip

∫ t

0

∣∣∣Su − S̃I,Γ
u

∣∣∣ du+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
∫ t

0

∣∣∣Su − S̃I,Γ
u

∣∣∣ du

+ [σ]max|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣T
∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣+
∣∣∣∣∣

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gud〈X〉u

∣∣∣∣∣

+

∣∣∣∣∣

∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u )
ää
dM̃u

∣∣∣∣∣ .

As a consequence, conditionally to “Y Γ = γk,

max
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣ ≤ [b]Lip

∫ t

0

max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣ du+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
∫ t

0

max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣ du

+ [σ]max|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣T
∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣+ max
v∈[0,t]

∣∣∣∣
∫ v

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gud〈X〉u

∣∣∣∣

+ max
v∈[0,t]

∣∣∣∣
∫ v

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dM̃u

∣∣∣∣ .

To shorten the notations, we denote, for a random variable V and a non-negligible event A, ‖V ‖p,A :=

E [V p|A]1/p. Hence, using the Minkowski inequality and the generalized Minkowski inequality for locally
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finite measures (Lemma 3.8), we get

∥∥∥∥max
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

≤ [b]Lip

∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
Å
max
i∈I

∣∣∣“Y Γ
i

∣∣∣
ã∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣T
∥∥∥∥∥
∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣
∥∥∥∥∥
p,{Ŷ Γ=γk}

+

∥∥∥∥ max
v∈[0,t]

∣∣∣∣
∫ v

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gud〈X〉u

∣∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

+

∥∥∥∥max
v∈[0,t]

∣∣∣∣
∫ v

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
dM̃u

∣∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

.

Now, from the Burkholder-Davis-Gundy inequality,

∥∥∥∥max
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

≤ [b]Lip

∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
Å
max
i∈I

∣∣∣“Y Γ
i

∣∣∣
ã∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣T
∥∥∥∥∥
∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣
∥∥∥∥∥
p,{Ŷ Γ=γk}

+

∥∥∥∥∥

∫ t

0

∣∣∣σ(u, Su)− σ
Ä
u, S̃I,Γ

u

ä∣∣∣ |Gu|d〈X〉u
∥∥∥∥∥
p,{Ŷ Γ=γk}

+ CBDG
p

∥∥∥∥∥

�∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää2
d〈X〉u

∥∥∥∥∥
p,{Ŷ Γ=γk}

. (38)

Now, from Schwarz’s inequality

∥∥∥∥∥
∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣
∥∥∥∥∥
p,{Ŷ Γ=γk}

≤

∥∥∥∥∥∥

»
|I|
√∑

i∈I

∣∣∣Yi − “Y Γ
i

∣∣∣
2

∥∥∥∥∥∥
p,{Ŷ Γ=γk}

=
»
|I|
∥∥∥Y − “Y Γ

∥∥∥
p,{Ŷ Γ=γk}

.

From the generalized Minkowsky inequality
∥∥∥
∫ t

0

∣∣∣σ(u, Su)− σ
Ä
u, S̃I,Γ

u

ä∣∣∣ |Gu|d〈X〉u
∥∥∥
p,{Ŷ Γ=γk}

≤
∫ t

0

∥∥∥
Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gu

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u
=
∫ t

0

∥∥∥
Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gu1|Gu|≥M +

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gu1|Gu|≤M

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u
≤
∫ t

0

∥∥∥
Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gu1|Gu|≥M

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u
+
∫ t

0

∥∥∥
Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää
Gu1|Gu|≤M

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u
≤ 2[σ]max

∫ t

0

∥∥Gu1|Gu|≥M

∥∥
p,{Ŷ Γ=γk}

d〈X〉u +M [σ]Lip
∫ t

0

∥∥∥Su − S̃I,Γ
u

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u.

We obtain, thanks to Proposition 3.11
∥∥∥
∫ t

0

∣∣∣σ(u, Su)− σ
Ä
u, S̃I,Γ

u

ä∣∣∣ |Gu|d〈X〉u
∥∥∥
p,{Ŷ Γ=γk}

≤ 2[σ]max〈X〉tCpv
1
p

t M
1
q exp

Å
− M2

2pv2t

ã

︸ ︷︷ ︸
:=ηM

+M [σ]Lip
∫ t

0

∥∥∥Su − S̃I,Γ
u

∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u,
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where v2t = max
u∈[0,t]

(Var(Gu)). Moreover

∥∥∥∥∥

�∫ t

0

Ä
σ(u, Su)− σ

Ä
u, S̃I,Γ

u

ää2
d〈X〉u

∥∥∥∥∥
p,{Ŷ Γ=γk}

≤

Œ
∫ t

0

∥∥∥∥∥∥
max
i∈I

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣

∥∥∥∥∥∥

2

p,{Ŷ Γ=γk}

d〈X〉u.

Hence, Equation (38) becomes

∥∥∥∥max
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

≤ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
»
|I|

︸ ︷︷ ︸
:=AX

i

∥∥∥Y − “Y Γ
∥∥∥
p,{Ŷ Γ=γk}

+ ηM

+ [b]Lip

∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ [σ]Lip|I| max
i∈I

u∈[0,T ]

∣∣∣
(
eXi
)′
(u)
∣∣∣
Å
max
i∈I

∣∣∣“Y Γ
i

∣∣∣
ã∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

du

+ CBDG
p

Ö
∫ t

0

2

∥∥∥∥∥∥
max
i∈I

v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣

∥∥∥∥∥∥

2

p,{Ŷ Γ=γk}

d〈X〉u

è1/2

+M [σ]Lip︸ ︷︷ ︸
:=CX,M

∫ t

0

∥∥∥∥ max
v∈[0,u]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

d〈X〉u. (39)

We can then apply the ”Gronwall-like” lemma 3.2 for locally finite measures to the non-decreasing
function ∥∥∥∥∥ sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥∥
p,{Ŷ Γ=γk}

= E

ñ
sup

v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
p
∣∣∣∣∣
“Y Γ = γk

ô1/p

and with the locally finite measure µ defined by µ(du) = du+ d〈X〉u, and we obtain
∥∥∥∥ sup
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥
p,{Ŷ Γ=γk}

≤

Å
AX

I E

[∣∣∣Y − Ŷ Γ
∣∣∣
p∣∣∣Ŷ Γ = γk

]1/p
+ ηM

ã
exp
((

E
X,γk
I + CX,M

)
µ([0, t))

)

≤

Å
AX

I E

[∣∣∣Y − Ŷ Γ
∣∣∣
p∣∣∣Ŷ Γ = γk

]1/p
+ ηM

ã
exp
(
E

X,γk
I µ([0, t))

)
︸ ︷︷ ︸

:=φ(γk)

exp
(
CX,Mµ([0, t))

)
,

where EX,γk

I is an affine function of max
i∈I

|γk|i. This yields
∥∥∥∥∥ sup
v∈[0,t]

∣∣∣Sv − S̃I,Γ
v

∣∣∣
∥∥∥∥∥
p

≤
Ç
AX

I

∥∥∥∥E
[∣∣∣Y − “Y Γ

∣∣∣
p∣∣∣“Y Γ

]1/p
φ
Ä“Y Γ
ä∥∥∥∥

p

+ ηM

∥∥∥φ
Ä“Y Γ
ä∥∥∥

p

å
exp

(
CX,Mµ([0, t))

)
.

Now, for ε > 0 and p̃ = 1 + ε
p and q̃ = p̃

p̃−1 = 1 + p
ε the conjugate exponent of p̃, we have, thanks to

Hölder’s inequality

E

[
φ
Ä“Y Γ
äp

E

[∣∣∣Y − “Y Γ
∣∣∣
p∣∣∣“Y Γ

]]
≤
∥∥∥φ
Ä“Y Γ
äp∥∥∥

q̃

∥∥∥E
[∣∣∣Y − “Y Γ

∣∣∣
p∣∣∣“Y Γ

]∥∥∥
p̃

≤
∥∥∥φ
Ä“Y Γ
äp∥∥∥

q̃
E

ï∣∣∣Y − “Y Γ
∣∣∣
p+ε
ò p

p+ε

.

Hence, ∥∥∥∥E
[∣∣∣Y − “Y Γ

∣∣∣
p∣∣∣“Y Γ

]1/p
φ
Ä“Y Γ
ä∥∥∥∥

p

≤
∥∥∥φ
Ä“Y Γ
äp∥∥∥1/p

q̃
E

ï∣∣∣Y − “Y Γ
∣∣∣
p+ε
ò 1

p+ε

.
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Now, as the so-defined function φ is convex and as “Y Γ is a stationary quantizer of Y , we have thanks to

Equation (8),
∥∥∥φ
Ä“Y Γ
äp∥∥∥

q̃
≤ ‖φ (Y )

p ‖q̃ and
∥∥∥φ
Ä“Y Γ
ä∥∥∥

p
≤ ‖φ (Y ) ‖p.

Now, thanks to Proposition 3.11, we can ensure that ηM ≤ η :=
∥∥∥Y − “Y Γ

∥∥∥
p+ε

by taking M =
√
−vt(p− 1) LambertW

Ç
−

q
∥∥Y−Ŷ Γ

∥∥2q

p+ε

pv2
tC

2q
p v

2q/p
t

å
where q is the conjugate exponent of p. We finaly have the

following error bound

∥∥∥∥ sup
v∈[0,t]

∣∣∣Sv − S̃
I,Γ
v

∣∣∣
∥∥∥∥
p

≤ CX,ε,I exp

Ü

[σ]Lip

Œ

−vt(p− 1) LambertW

Ö
−

q

∥∥∥Y − Ŷ Γ

∥∥∥
2q

p+ε

pv2tC
2q
p v

2q/p
t

èê
∥∥∥Y − Ŷ

Γ
∥∥∥
p+ε

.

Finally, we can conclude by observing that LambertW(u) →
u→0

0. �

Remark (Without the stationarity property). The last step of the demonstration of Theorem 3.12 (the

use of the Jensen’s inequality) relies on the stationarity of the quantizer “Y .
Now, without this stationarity hypothesis and under the additional assumption

Γ ∩B(0, 1) 6= ∅, (A)

we have for every i ∈ I
∣∣∣“Yi
∣∣∣ ≤

∣∣∣Yi − “Yi
∣∣∣+ |Yi| ≤ |Yi|+

∣∣∣Yi − γk0

i

∣∣∣ ≤ 2|Yi|+
∣∣∣γk0

i

∣∣∣ ≤ 2|Yi|+ 1, where γk0 ∈ Γ ∩B(0, 1).

Hence
max
i∈I

∣∣∣“Yi
∣∣∣ ≤ 2max

i∈I
|Yi|+ 1.

Now, we can notice that the function φ(x) defined in the demonstration of Theorem 3.12 writes φ(x) =
ψ(max

i∈I
xi) for some non decreasing function ψ. This implies

φ
Ä“Y
ä
= ψ

Å
max
i∈I

“Yi
ã
≤ ψ

Å
max
i∈I

(2|Yi|+ 1)

ã
= φ(2|Y |+ 1).

Hence, we can obtain the same conclusion as in Theorem 3.12.

Corollary 3.13 (Lp convergence). Within the same notations and hypothesis as in Theorem 3.12,

consider
Ä‹XI,Γn

ä
n∈N

a sequence of partial functional quantizers of X and
Ä
S̃I,Γn

ä
n∈N

the corresponding

sequence of partial quantizers of S.

If we make the additional assumption that the associated sequence of quantizers
Ä“Y Γn

ä
n∈N

is rate optimal

for the Lp+ε convergence for some ε > 0, then for every t ∈ [0, T ) we have

E

ñ
sup

u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣
p
ô
) = O

(
n− p+ε

|I|

)
.

Proof: As
∥∥∥Y − “Y Γn

∥∥∥
p

→
n→∞

0, we have a.s. d
Ä“Y Γn , Y

ä
→

n→∞
0. Hence, the exists N0 ∈ N such

that for every n ≥ N0, Γn verifies hypothesis (A). From this observation, the result is straightforward
consequence of remark 3.2.2 and Zador’s theorem 3.3, which defines the optimal convergence rate of a
sequence of quantizers. �

3.2.3 The a.s. convergence of partially quantized SDE

Theorem 3.14 (Almost sure convergence of partially quantized SDE). Let X be a continuous centered
Gaussian martingale on [0, T ] with X0 = 0. Let S be the strong solution of the SDE

dSt = b(t, St)dt+ σ(t, St)dXt, S0 = x,
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where b(t, x) and σ(t, x) are Borel functions, Lipschitz-continuous with respect to x uniformly in t, σ and
|b(·, 0)| are bounded.

We consider
Ä‹XI,Γk

ä
k∈N

a sequence of partial functional quantizers of X and S̃I,Γn the corresponding

partial functional quantization of S, i.e. the strong solutions of

dS̃I,Γn

t = b
Ä
t, S̃I,Γn

t

ä
dt+ σ

Ä
t, S̃I,Γn

t

ä
d‹XI,Γn

t , S̃I,Γn

0 = x.

We assume that the sequence of partial quantizers of X is rate optimal for some p ≥ 2|I|, i.e. that there
exists a constant C such that

E

[∣∣∣Y − “Y Γn

∣∣∣
p]

≤ Cn− p
|I|

for every n ∈ N
∗, where Y is defined from X by Equation (11) and “Y Γ is the nearest neighbor projection

on Γ. Then for every t ∈ [0, T ), S̃I,Γn

t converges almost surely to St.

Proof: From corollary 3.13, if t ∈ [0, T ), there exists three positive constants KX,ε,I , Ct and Kt and
N0 ∈ N such that for n ≥ N0,

E

ñ
sup

u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣
p−ε
ô
= O

Ä
n− p

|I|

ä
.

Hence, as p
|I| > 2, Beppo-Levi’s theorem for series with non-negative terms implies

E


∑

n≥1

sup
u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣
p−ε


 < +∞.

Thus
∑
n≥1

sup
u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣
p−ε

< +∞ P a.s. so that sup
u∈[0,t]

∣∣∣Su − S̃I,Γn
u

∣∣∣ →
n→∞

0 P a.s.. �

Remark (Extension to semimartingales). In theorems 3.6, 3.12 and 3.14, we limited ourselves to the
case where X is a local martingale. The proofs are easily extended to the case of a semimartingale X
as soon as there exists a locally finite measure ν on [0, T ] such that for every ω ∈ Ω the finite variation
part dV (ω) in the canonical decomposition of X is absolutely continuous with respect to ν. In particular,
it is the case for the Brownian bridge and Ornstein-Uhlenbeck processes whose finite variation parts are
absolutely continuous with respect to the Lebesgue measure on [0, T ].

A Injectivity properties of the Wiener integral

In this appendix, we recall some results on the definition of the Wiener integral with respect to a Gaussian
process. We focus on the injectivity properties. Here, we pay a special attention to the special case of
the Ornstein-Uhlenbeck processes.

The covariance operator and the Cameron-Martin space

Consider X a bi-measurable centered Gaussian process on [0, T ] such that
∫ T

0
E[X2

t ]dt < ∞ and with

a continuous covariance function ΓX on [0, T ] × [0, T ]. We denote H := span {Xt, t ∈ [0, T ]}L
2(P)

the
Gaussian Hilbert space spanned by (Xt)t∈[0,T ]. The covariance operator CX of X is defined by

CX : L2([0, T ]) → L2([0, T ])
y → CXy = E [(y,X)X ] .

We have CXy = E [(y,X)X ] (t) = E

î∫ T

0
Xsy(s)dsXt

ó
=
∫ T

0
ΓX(t, s)y(s)ds where ΓX(t, s) = E[XtXs] is

the covariance function of X .
The Cameron-Martin space of X , (or reproducing Hilbert space of CX), which we denote KX , is the
subspace of L2([0, T ]) defined by KX := {t→ E [ZXt] , Z ∈ H}. KX is equipped with the scalar product
defined by

〈k1, k2〉X = E [Z1Z2] if ki = E [ZiX·] , i = 1, 2,
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so that (KX , 〈·〉X) is a Hilbert space, isometric with the Hilbert space {(y,X) : y ∈ L2([0, T ])}H . KX is
spanned as a Hilbert space by

{
CX(y) : y ∈ L2([0, T ])

}
.

The Wiener integral

Here, we follow the same steps as Lebovits and Lévy-Véhel in [15] and Jost in [14] for the definition of a
general Wiener integral. The difference here is that we use the quotient topology in order to define the
Wiener integral in a more general setting.
We define the map U : H → KX defined by U(Z)(t) = E[ZXt]. By definition of H and KX , U
is a bijection and for any s ∈ [0, T ], we have U(Xs) = ΓX(s, ·). Consequently, KX is spanned by(
ΓX(s, ·)

)
s∈[0,T ]

as a Hilbert space. Now, we linearly map the set of the piecewise constant functions

E([0, T ]) to the Cameron-Martin space KX by

J : E([0, T ]) → KX

1|s,t| → ΓX(t, ·)− ΓX(s, ·),

where |a, b| stands either for the interval [a, b], (a, b), (a, b] or [a, b). We equip E([0, T ]) with the bilinear
form 〈·, ·〉J which is defined by

〈f, g〉J := 〈Jf, Jg〉X .

It is a bilinear symmetric positive semidefinite form.

Remark. The so-called reproducing property shows that
〈
1|0,t|,1|0,s|

〉
J
= ΓX(t, s)+ΓX(0, 0)−ΓX(0, s)−

ΓX(0, t). When X0 = 0 a.s., this gives
〈
1|0,t|,1|0,s|

〉
J
= ΓX(s, t).

Now, we define the equivalence relation ∼
J

on E([0, T ]) by x ∼
J
y if 〈x− y, x− y〉J = 0. On the

quotient space E([0, T ]) := E([0, T ])/ ∼
J
, the bilinear form 〈·, ·〉J is positive definite and thus it is a scalar

product on E([0, T ]). In this context, J defines an (isometric) linear map from E([0, T ]) to KX . Then,
considering the completion F of E([0, T ]) associated with this scalar product, J is extended to F and
U−1 ◦ J : F → H is an (isometric) injective map that we call Wiener integral associated to X .

∫ T

0

f(t)dXt := U−1 ◦ J(f).

Injectivity properties of the Wiener integral

As we have just seen, the Wiener integral is an (isometric) injective map from F to H . Still, for example,
when dealing with a standard Brownian bridge on [0, T ],

∥∥1[0,T ]

∥∥
J
= 0, so that there are functions of

E([0, T ]) which have a non zero L2 norm and a zero ‖ · ‖J norm. Injectivity only holds in the quotient
space E([0, T ]) = E([0, T ])/ ∼

J
and its completion F .

It is classical background that in the particular case of a standard Brownian motion, ‖ · ‖J exactly
coincides with the canonical L2 norm so that F = L2([0, T ]).

Study of the case of Ornstein-Uhlenbeck process

From now, we will assume that X is a centered Ornstein-Uhlenbeck process defined by the SDE

dXt = −θXtdt+ σdWt with σ > 0 and θ > 0,

where W is a standard Brownian motion and X0
L∼ N

(
0, σ2

0

)
is independent of W . The covariance

function writes

ΓX(s, t) =
σ2

2θ
e−θ(s+t)

Ä
e2min(s,t) − 1

ä
+ σ2

0e
−θ(s+t).

Proposition A.1 (Semi-norm equivalence on E([0, T ])). There exists two positive constants c and C
such that for every f ∈ E([0, T ]), c‖f‖2 ≤ ‖f‖J ≤ C‖f‖2.

Proof: Let us consider f ∈ E([0, T ]). We have

‖f‖2J = Var
Ä
−θ
∫ T

0
f(s)Xsds+ σ

∫ T

0
f(s)dWs

ä

≤ 2Var
Ä
θ
∫ T

0
f(s)Xsds

ä
+ 2Var

Ä
σ
∫ T

0
f(s)dWs

ä
.
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The solution of the Ornstein-Uhlenbeck SDE is

Xt = X0e
−θt

︸ ︷︷ ︸
independent of W

+

∫ t

0

σeθ(s−t)dWs

︸ ︷︷ ︸
:=X0

t

. (40)

The so-defined process
(
X0

t

)
t∈[0,T ]

is a centered Ornstein-Uhlenbeck process starting from 0. Hence we

have

‖f‖2J ≤ 2Var
Ä
X0θ

∫ T

0
f(s)e−θsds

ä
+ 2Var

Ä
θ
∫ T

0
f(s)X0

sds
ä
+ 2Var

Ä
σ
∫ T

0
f(s)dWs

ä

≤ 2θ2T Var(X0)
∫ T

0
f(s)2ds+ 2Var

Ä
θ
∫ T

0
f(s)X0

sds
ä
+ 2Var

Ä
σ
∫ T

0
f(s)dWs

ä
.

We have seen in the proof of Proposition 2.7 that Var
Ä
θ
∫ T

0
f(s)X0

sds
ä
≤ Var

Ä
σ
∫ T

0
f(s)dWs

ä
. Hence

‖f‖2J ≤
(
2θ2Tσ2

0 + 4σ2
)

︸ ︷︷ ︸
:=C2

∫ T

0

f(s)2ds.

This is the desired inequality.

Now we write
∫ t

0

f(s)dXs = −θ
∫ T

0

f(s)X0e
−θsds

︸ ︷︷ ︸
:=Gf

0

+

Ç
−θ
∫ T

0

f(s)X0
sds

å

︸ ︷︷ ︸
:=Gf

1

+ σ

∫ T

0

f(s)dWs

︸ ︷︷ ︸
:=Gf

2

,

where
Ä
Gf

0 , G
f
1 , G

f
2

ä
is Gaussian and Gf

0 independent of Gf
1 and Gf

2 . Hence

Var

Ç∫ t

0

f(s)dXs

å
≥ Var

Ä
Gf

1 +Gf
2

ä
= Var

Ä
Gf

1

ä
+Var

Ä
Gf

2

ä
+ 2 cov

Ä
Gf

1 , G
f
2

ä

≥ Var
Ä
Gf

1

ä
+Var

Ä
Gf

2

ä
− 2
√
Var
Ä
Gf

1

ä
Var
Ä
Gf

2

ä
=

Å√
Var
Ä
Gf

2

ä
−
√
Var
Ä
Gf

1

äã2
. (41)

It was proved at the begining of the demonstration of Proposition 2.7 that there exists a constant
K < 1 independent of f such that Var(Gf

1 ) ≤ K Var(Gf
2 ). K was defined by

K =
θ2

σ2

√∫ T

0

∫ T

0

ΓX0(s, t)dsdt,

where ΓX0

is the covariance function of the Ornstein-Uhlenbeck process starting from 0. Plugging this
into Equation (41) yields

Var
Ä∫ t

0
f(s)dXs

ä
≥
Ä
1−

√
K
ä2

Var
Ä
Gf

2

ä

=
Ä
1−

√
K
ä2
σ2

︸ ︷︷ ︸
:=c2

‖f‖22.

This is the wanted inequality. �

A straightforward consequence of Proposition A.1 is that ‖f‖J = 0 ⇔ ‖f‖2 = 0 so that equivalent
classes in E([0, T ]) for the relation ∼

J
are almost surely equal functions. An other consequence is that the

sets of Cauchy sequences and convergent sequences for both norms on E([0, T ]) coincide, and thus the
completions of E([0, T ]) for both norm are the same. In other words, in the case of Ornstein-Uhlenbeck
processes, F = L2([0, T ]).

The author thanks Gilles Pagès for his helpful remarks and comments.
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generated by independent pairs of exponential random variables. Journal of Functional Analysis,
255(9):2363–2394, 2008.

[8] Stewart N. Ethier and Thomas G. Kurtz. Markov processes, characterization and convergence.
Wiley Series in Probability and Statistics, 2005.

[9] Allen Gersho and Robert M. Gray. Vector quantization and signal compression. Kluwer Academic
Publishers, Norwell, MA, USA, 1991.

[10] Siegfried Graf and Harald Luschgy. Foundations of Quantization for Probability Distributions.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2000.

[11] Jean Jacod. Grossissements de filtrations : exemples et applications. Lecture Notes in Mathematics,
1118:15–35, 1985.

[12] Svante Janson. Gaussian Hilbert spaces. Cambridge university press, 1997.

[13] Thierry Jeulin. Semi-martingales et grossissement d’une filtration. Lecture Notes in Mathematics,
833, 1980.
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