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 to arbitrary Riemannian geometries, and study the corresponding convergence rate. We then show how to instantiate this generic algorithm to two particular settings: (1) the hyperbolic geometry, and (2) the Riemannian manifold of symmetric positive definite matrices.

Introduction and prior work

Finding the unique smallest enclosing ball (SEB) of a finite Euclidean point set P = {p 1 , ..., p n } is a fundamental problem that was first allegedly posed by [START_REF] Sylvester | A Question in the Geometry of Situation[END_REF]. This problem has been thoroughly investigated by the computational geometry community [START_REF] Welzl | Smallest enclosing disks (balls and ellipsoids)[END_REF]; [START_REF] Nielsen | Approximating smallest enclosing balls with applications to machine learning[END_REF], where it is also known as the minimum enclosing ball (MEB), the 1-center problem, or the minimax optimization problem in operations research. In practice, since computing the SEB exactly is intractable in high dimensions, efficient approximation algorithms have been proposed. An algorithmic breakthrough was recently achieved by [START_REF] Bȃdoiu | Optimal core-sets for balls[END_REF] that proved the existence of a core-set C ⊆ P of optimal size 1 so that r(C) ≤ (1 + )r(P ) (for any arbitrary > 0), where r(S) denotes the radius of the SEB of S. Let c(S) denote the ball center, i.e. the minimax center. Since the size of the core-set depends only on the approximation precision and is independent of the dimension, core-sets have become popular in highdimensional applications such as supervised classification in machine learning (see for example, core vector machines of [START_REF] Tsang | Simpler core vector machines with enclosing balls[END_REF]). In [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF], a fast and simple approximation algorithm is designed as follows:

BC-ALG:

• Initialize the center c 1 with arbitrary point in P (c 1 ∈ P ), and

• iteratively update the current center using the rule

c i+1 ← c i + f i -c i i + 1 ,
where f i denotes the farthest point of P to c i .

It can be proved that a (1+ )-approximation of the SEB is obtained after 1 2 iterations, thereby showing the existence of a core-set C = {f 1 , f 2 , ...} of a size at most 1 2 : r(C) ≤ (1 + )r(P ). This simple algorithm runs in time O( dn 2 ), and has been generalized to Bregman divergences by [START_REF] Nock | Fitting the smallest enclosing Bregman ball[END_REF] which include the (squared) Euclidean distance, and are the canonical distances of dually flat spaces, including the particular case of Euclidean geometry. (Note that if we start from the optimal center c 1 = c(S), the first iteration yields a center c 2 away from c(S) but it will converge in the long run to c(S).) [START_REF] Bȃdoiu | Optimal core-sets for balls[END_REF] proved the existence of optimal -core-set of size 1 . Since finding tight core-sets requires as a black box primitive the computation of the exact smallest enclosing balls of small point sets, we rather consider the Riemmanian generalization of the BC-ALG, although that even in the Euclidean case it does not deliver optimal size core-sets.

Many data-sets arising in medical imaging [START_REF] Pennec | Statistical computing on manifolds: From Riemannian geometry to computational anatomy[END_REF] or in computer vision [START_REF] Turaga | Statistical computations on Grassmann and Stiefel manifolds for image and video based recognition[END_REF] cannot be considered as emanating from vectorial spaces but rather as lying on curved manifolds. For example, the space of rotations or the space of invertible matrices are not flat, as the arithmetic average of two elements does not necessarily lie inside the space.

In this work, we extend the Euclidean BC-ALG algorithm to Riemannian geometry. In the remainder, we assume the reader familiar with basic notions of Riemannian geometry (refer to [START_REF] Berger | A panoramic view of Riemannian geometry[END_REF] for an introductory textbook) in order not to burden the paper with technical Riemannian definitions. However in the appendix, we recall some specific notions which play a key role in the paper, such as geodesics, sectional curvature, injectivity radius, Alexandrov and Toponogov theorems, and cosine laws for triangles. Furthermore, we consider probability measures instead of finite point sets2 so as to study the most general setting.

Let M be a complete Riemannian manifold and ν a probability measure on M . Denote by ρ(x, y) the Riemannian distance from x to y on M that satisfies the metric axioms. Assume the measure support supp

(ν) is included in a geodesic ball B(o, R). Let R α,p = 1 2 min inj(M ), π 2α if 1 ≤ p < 2, 1 2 min inj(M ), π α if 2 ≤ p ≤ ∞ (1)
where inj(M ) is the injectivity radius (see the appendix) and α > 0 is such that α 2 is an upper bound for the sectional curvatures in M (in fact replacing M by B(o, 2R) is sufficient, so that we can always assume that α > 0).

Recall that if p ∈ [1, ∞) and f : M → R is a measurable function then f L p (ν) = M |f (y)| p ν(dy) 1/p and f L ∞ (ν) = inf {a > 0, ν ({y ∈ M, |f (y)| > a}) = 0} . For p ∈ [1, ∞], under the assumption that R < R α,p (2) 
it has been proved in [START_REF] Afsari | Riemannian L p center of mass: existence, uniqueness, and convexity[END_REF] that there exists a unique point c p which minimizes the following cost function

H p : M → [0, ∞] x → ρ(x, •) L p (ν) (3) 
with c p ∈ B(o, R) (in fact, lying inside the closure of the convex hull of the masses).

For a discrete uniform measure viewed as a "point cloud" in an Euclidean space and p ∈ [1, ∞) we have

H p (x) = 1 n n i=1 p i -x p p 1/p , with • p
denoting the L p norm, and H ∞ (x) is the distance from x to its farthest point in the cloud.

In the general situation the point c p that realizes the minimum represents a notion of centrality of the measure (eg., median for p = 1, mean for p = 2, and minimax center for p = ∞). This center is a global minimizer (not only in B(o, R)), and this explains why a bound for the sectional curvature is required on the whole manifold M (in fact B(o, 2R) is sufficient, see [START_REF] Afsari | Riemannian L p center of mass: existence, uniqueness, and convexity[END_REF]).

Deterministic subgradient algorithms for finding c p have been considered in [START_REF] Yang | Riemannian Median and Its Estimation[END_REF] for the median case (p = 1). Stochastic algorithms have been investigated in [START_REF] Arnaudon | Stochastic algorithms for computing means of probability measures[END_REF] for the case p ∈ [1, ∞), and a central limit theorem (CLT) for the suitably renormalized process is derived (in fact a convergence in law to a diffusion process).

In this work, we consider the case p = ∞, with c ∞ denoting the minimax center. In this case there is no canonical deterministic algorithm which generalizes the gradient descent algorithms considered for p ∈ [1, ∞). Following Eq. 3, H ∞ (x) denotes the farthest distance from x to a point of the support of the measure (L ∞ -norm).

To give an example of a Riemannian manifold, consider for example the space of symmetric positive definite matrices with associated Riemannian distance (see Section 4)

ρ(P, Q) = log(P -1 Q) F = i log 2 λ i (4)
where λ i are the eigenvalues of matrix P -1 Q. This is a non-compact Riemannian symmetric space of nonpositive curvature (Cartan-Hadamard manifold, see [START_REF] Lang | Fundamentals of differential geometry[END_REF], chapter 12). In this context any measure ν with bounded support satisfies. Eq. 2 (since we can take α > 0 as small as we like), and consequently the minimizer c ∞ of H ∞ exists and is unique. We call it the 1-center or minimax center of ν.

We generalized the BC-ALG by noticing that the iterative update is a barycenter of the current minimax center with the current farthest point. Thus the new position of the minimax center falls along the straight line joining these two points in Euclidean geometry. In Riemannian geometry, the shortest path linking two points is called a geodesic (for example, arc of a great circle for spherical geometry). Instead of walking on a straight line, we instead walk on the geodesic to the furthest point as follows:

GEO-ALG:

• Initialize the center with c 1 ∈ P , and

• iteratively update the current minimax center as

c i+1 = Geodesic(c i , f i , 1 i + 1
),

where f i denotes the farthest point of P to c i , and Geodesic(p, q, t) denotes the intermediate point m on the geodesic passing through p and q such that ρ(p, m) = t×ρ(p, q).

Note that GEO-ALG generalized BC-ALG by taking the Euclidean distance ρ(p, q) = p -q .

The paper is organized as follows: Section 2 gives and proves a crucial lemma. It is followed by the description and convergence rate analysis of our generic Riemannian algorithm in Section 3. Section 4 instantiates the algorithm for the particular cases of the hyperbolic manifold and the manifold of symmetric positive definite matrices. Section 5 concludes the paper and hints at further perspectives. To make the paper self-contained, the appendix recalls the fundamental notions of Riemannian geometry used throughout the paper.

A key lemma

In this section, we assume3 that supp(ν) ⊂ B(o, R) and

R < R α,∞ = 1 2 min inj(M ), π α
with α > 0 such that α 2 is an upper bound for the sectional curvatures in M .

The following lemma is essential for proving the convergence of the algorithm determining the minimax of ν.

Lemma 1. There exists τ > 0 such that for all x ∈ B(o, R),

H ∞ (x) -H ∞ (c ∞ ) ≥ τ ρ 2 (x, c ∞ ). (5) 
Proof:

The point c ∞ is the center of the smallest ball which contains supp(ν) and the radius of this ball is exactly r [START_REF] Afsari | Means and averaging on Riemannian manifolds[END_REF]). Denoting by S(c ∞ , r * ) the boundary of this ball and by S c∞ M the set of unitary vectors in

* := H ∞ (c ∞ ) (see
T c∞ M , for all v ∈ S c∞ M there exists y ∈ S(c ∞ , r * ) ∩ supp(ν) such that γ0 (c ∞ , y), v ≤ 0 (6)
where t → γ t (c ∞ , y) is the geodesic from c ∞ to y in time one and γt (c ∞ , y) denotes derivative with respect to t. Indeed, if this was not true it would contradict the minimality of S(c ∞ , r * ) [START_REF] Afsari | Means and averaging on Riemannian manifolds[END_REF]). Now letting t → γ t (v) = exp x (tv) the geodesic satisfying γ0 (v) = v, we prove Eq. 5 for x = γ t (v). We have

H ∞ (γ t (v)) -H ∞ (c ∞ ) ≥ ρ(γ t (v), y) -ρ(c ∞ , y) = ρ(γ t (v), y) -r * (7) by definition of H ∞ .
Then we consider a 2-dimensional sphere S 2 α 2 with constant curvature α 2 , distance function ρ, and in S 2 α 2 a comparison triangle γt (ṽ)ỹc ∞ such that ρ(ỹ, c∞ ) = r * , ṽ is a unitary vector in

T c∞ M α satisfying γ0 (c ∞ , ỹ), ṽ = γ0 (c ∞ .y), v (8) 
Let us prove that

ρ(γ t (ṽ), ỹ) -r * = ρ(γ t (ṽ), ỹ) -ρ(c ∞ , ỹ) ≥ τ α ρ2 (γ t (ṽ), c∞ ) (9) 
for some τ α > 0 provided condition Eq. 6 is realized: using the first law of cosines (Theorem 4 in the appendix), we get

0 ≥ cos γ0 (c ∞ , ỹ), ṽ = cos (αρ(γ t (v), ỹ)) -cos (αr * ) cos(αt) sin (αr * ) sin(αt) (10) 
which yields cos (αρ(γ t (ṽ), ỹ)) ≤ cos (αr * ) cos (αt) and this in turn implies

sin (α (ρ(γ t (ṽ), ỹ) -r * )) ≥ cotan(αr * ) (cos (α (ρ(γ t (ṽ), ỹ) -r * )) -cos(αt)) so lim inf t 0 ρ(γ t (ṽ), ỹ) -r * t 2 ≥ α 2 cotan(αr * ) ≥ α 2 cotan(αR α,∞ )
uniformly in ṽ. Consequently Eq. 9 is true for γt (ṽ) in a neighborhood of c∞ , and since ρ(γ t (ṽ), ỹ) -r * does not vanish outside this neighbourhood, by a compactness argument we prove that Eq. 9 is true in any compact included in B(c ∞ , R α,∞ ).

To finish the proof we are left to use Alexandrov comparison theorem (Theorem 2 in the appendix) with triangles γ t (v)yc ∞ and γt (ṽ)ỹc ∞ to check that the right hand side of Eq. 7 in M is larger than the left hand side of Eq. 9. This proves Eq. 5 in B(c ∞ , R) ∩ B(o, R), and for proving it in B(o, R) we just have to notice that H ∞ is continuous and positive on the compact set B(o, R)\B(c ∞ , R), hence it has a positive lower bound.

Riemannian approximation algorithm

For x ∈ B(o, R), denote by t → γ t (v(x, ν)) a unit speed geodesic from γ 0 (v(x, ν)) = x to one point y = γ H∞(x) (v(x, ν)) in supp(ν) which realizes the maximum of the distance from x to supp(ν). So v = 1 H ∞ (x)
exp -1 x (y). A measurable choice is always possible. Note that if ν has finite support, when there is a finite number of possibilities for y it is natural to make a random uniform choice. However in a generic situation this should never happen, there should be only one choice.

We consider the following stochastic algorithm.

RIE-ALG:

Fix some δ > 0.

Step 1 Choose a starting point x 0 ∈ supp(ν) and let k = 0

Step 2 Choose a step size t k+1 ∈ (0, δ] and let x k+1 = γ t k+1 (v(x k , ν)), then do again step 2 with k ← k + 1.

This algorithm generalizes the Euclidean scheme [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF] and algorithm GEO-ALG for probability measures. Indeed, if GEO-ALG is initialized with c k 0 ∈ P with k 0 the first integer larger than 1/δ. Then it suffices to take

t k = 1/k for k ≥ k 0 in RIE-ALG. Let a ∧ b denote the minimum operator a ∧ b = min(a, b). Let R 0 = R α,∞ -R 2 ∧ R 2 . ( 11 
)
Theorem 1. Assume α, β > 0 are such that -β 2 is a lower bound and α 2 an upper bound of the sectional curvatures in M . If the step sizes

(t k ) k≥1 verify δ ≤ R 0 2 ∧ 2 β arctanh (tanh(βR 0 /2) cos(αR) tan(αR 0 /4)) , (12) 
lim k→∞ t k = 0, ∞ k=1 t k = +∞ and ∞ k=1 t 2 k < ∞. ( 13 
)
then the sequence (x k ) k≥1 generated by the algorithm satisfies

lim k→∞ ρ(x k , c ∞ ) = 0. ( 14 
)
Remark 1. In practice ν is given and one takes any ball B(o, R) which contains its support. We need the condition R < R α,∞ . One should take R as small as possible for R 0 and then δ being not too small. The best choice is o = c ∞ and R = H ∞ (c ∞ ) but they are not known a priori. If ν has a finite support one can take for o a point of the support of ν and for R the maximal distance from this point to another point of the support. It always works in a simply connected manifold of negative curvature since in this case α can be taken as small as we want. This is the case in our two main examples considered in Section 4, namely the hyperbolic space and the set of positive definite symmetric matrices with our specific choice of metric. Note that in this situation R 0 and δ can also be taken as large as we want.

Proof:

First we prove that for all r (15) Consider now the triangle c ∞ x k x k+1 and let f = ρ(c ∞ , x k+1 ). Recall ρ(x k , x k+1 ) = t k+1 . Now by Toponogov theorem (Theorem 3 in the appendix) f is smaller than the same in constant curvature -β 2 . This together with first law of cosines in hyperbolic geometry (Theorem 4 in the appendix) yields cosh βf ≤ cosh βr cosh βt k+1 -cos xk sinh βr sinh βt k+1

∈ [R 0 , R], if x k ∈ B(c ∞ , r) then x k+1 ∈ B(c ∞ , r): if ρ(x k , c ∞ ) ≤ R 0 /2 it is clear since δ ≤ R 0 /2. If ρ(x k , c ∞ ) ≥ R 0 /2 we prove that ρ(x k+1 , c ∞ ) ≤ ρ(x k , c ∞ ). Let y k+1 = γ H∞(x k ) (v(x k , ν)): y k+1 ∈ supp(ν) is such that H ∞ (x k ) = ρ(x k , y k+1 ); consider the triangle c ∞ x k y k+1 . Let a = ρ(x k , y k+1 ), b = ρ(y k+1 , c ∞ ) and r = ρ(c ∞ , x k ),
(16) which implies by Eq. 15 cosh βf ≤ cosh(βr) cosh βt k+1 -cos αR tan(αR 0 /4) sinh(βr) sinh βt k+1 (17)

and we easily check that the condition on δ implies that the right hand side is smaller than cosh βr. This proves that ρ(c

∞ , x k+1 ) ≤ ρ(c ∞ , x k ).
Then we prove that there exists η > 0 such that if

x k ∈ B(c ∞ , R)\B(c ∞ , R 0 ) then cosh (βρ(c ∞ , x k+1 )) cosh (βρ(c ∞ , x k )) ≤ 1 -ηt k+1 . (18) 
From Eq. 17, we obtain cosh βf cosh βr ≤ cosh βt k+1 -cos αR tan(αR 0 /4) tanh(βr) sinh βt k+1

≤ cosh βt k+1 -cos αR tan(αR 0 /4) tanh(βR 0 ) sinh βt k+1 ≤ 1 -2 (cos αR tan(αR 0 /4) tanh(βR 0 ) cosh(βt k+1 /2)

-sinh(βt k+1 /2)) sinh(βt k+1 /2) ≤ 1 -(cos αR tan(αR 0 /4) tanh(βR 0 ) cosh(βt k+1 /2) -sinh(βt k+1 /2)) βt k+1 ≤ 1 -(cos αR tan(αR 0 /4) tanh(βR 0 )
-cos αR tan(αR 0 /4) tanh(βR 0 /2)) cosh(βt k+1 /2)βt k+1

where we used Eq. 12 in the last inequality. So

cosh βρ(c ∞ , x k+1 ) cosh βρ(c ∞ , x k ) ≤ 1 -(cos αR tan(αR 0 /4) tanh(βR 0 ) -cos αR tan(αR 0 /4) tanh(βR 0 /2))βt k+1 (19) 
and this gives Eq. 18.

At this stage, since

∞ k=1
t k = ∞, we can conclude that there exists k 0 such that cosh (βρ(c ∞ , x k 0 )) ≤ cosh(βR 0 ) so x k 0 ∈ B(c ∞ , R 0 ), and for all k ≥ k 0 , x k ∈ B(c ∞ , R 0 ). Now we use the fact that on B(c ∞ , R 0 ), H ∞ is convex and satisfies Eq. 5. By boundedness of the Hessian of square distance to c ∞ (see [START_REF] Yang | Riemannian Median and Its Estimation[END_REF] for details), we have for k

≥ k 0 ρ 2 (c ∞ , x k+1 ) ≤ ρ 2 (c ∞ , x k ) -2t k+1 exp -1 x k c ∞ , γ0 (v(x k , ν)) + C R α,∞ + R 2 , β t 2 k+1 (20) with C(r, β) = 2rβcotanh(2βr). ( 21 
)
Now letting y k+1 = γ H∞(x k ) (v(x k , ν)) we have H ∞ ≥ ρ(•, y k+1 ) since y k+1 ∈ supp(ν). we remark that ρ 2 (•, y k+1 ) is convex on B(c ∞ , R 0 ) by the fact that for all z ∈ B(c ∞ , R 0 ) and y ∈ supp(ν), ρ(z, y) < R α,∞ . Moerover we have H ∞ (x k ) = ρ(x k , y k+1 ). As a consequence, we get

H ∞ (c ∞ ) -H ∞ (x k ) ≥ ρ 2 (c ∞ , y k+1 ) -ρ 2 (x k , y k+1 ) ≥ -2 exp -1 x k c ∞ , γ0 (v(x k , ν))
and this implies by Lemma 1

-2 exp -1 x k c ∞ , γ0 (v(x k , ν)) ≤ -τ ρ 2 (c ∞ , x k ). ( 22 
)
Plugging into Eq. 20 yields

ρ 2 (c ∞ , x k+1 ) ≤ (1 -τ t k+1 )ρ 2 (c ∞ , x k ) + C R α,∞ + R 2 , β t 2 k+1 . (23) 
We recall from here the standard argument to prove that ρ

2 (c ∞ , x k ) converges to 0. Let a = lim sup k→∞ ρ 2 (c ∞ , x k ).
Iterating Eq. 23 yields for ≥ 1

ρ 2 (c ∞ , x k+ ) ≤ j=1 (1 -τ t k+j )ρ 2 (c ∞ , x k ) + C j=1 t 2 k+j with C = C Rα,∞+R 2 
, β . Letting → ∞ and using the fact that

∞ j=1 t k+j = ∞, which implies ∞ j=1 (1 -τ t k+j ) = 0, we get a ≤ C ∞ j=1 t 2 k+j .
Finally using ∞ j=1 t 2 j < ∞ we obtain that lim k→∞ ∞ j=1 t 2 k+j = 0, so a = 0.

Remark 2. In Theorem 1, it looks difficult to find a larger δ. The choice is almost optimal to have ρ(c ∞ , x k+1 ) ≤ ρ(c ∞ , x k ) outside B(c ∞ , R 0 ). On the other hand Eq. 19 yields an explicit value for η in Eq. 18 and this in turn can be used to find an explicit η > 0 such that

ρ 2 (c ∞ , x k+1 ) ≤ (1 -η t k+1 )ρ 2 (c ∞ , x k ), t k+1 ≤ δ ∧ 1/η . ( 24 
)
For the speed of convergence, taking

t k = r k + 1
, we proceed as in Proposition 4.10 in [START_REF] Yang | Riemannian Median and Its Estimation[END_REF]. We use the following lemma, borrowed from [START_REF] Nedic | Convergence rate of incremental subgradient algorithms[END_REF]:

Lemma 2. Let (u k ) k≥1 be a sequence of nonnegative real numbers such that

u k+1 ≤ 1 - λ k + 1 u k + ξ (k + 1) 2
where λ and ξ are positive constants. Then

u k+1 ≤        1 (k+1) λ u 0 + 2 λ ξ(2-λ) 1-λ if 0 < λ < 1; ξ(1+ln(k+1)) k+1 if λ = 1; 1 (λ-1)(k+2) ξ + (λ-1)u 0 -ξ (k+2) λ-1 if λ > 1. Proposition 1. Choosing t k = r k + 1
, letting k 0 such that for all k ≥ k 0 ,

x k ∈ B(c ∞ , R 0 ), ρ 2 (x k 0 +k , c ∞ ) ≤        1 (k+1) λ R 2 0 + 2 λ ξ(2-λ) 1-λ if 0 < λ < 1; ξ(1+ln(k+1)) k+1 if λ = 1; 1 (λ-1)(k+2) ξ + (λ-1)R 2 0 -ξ (k+2) λ-1 if λ > 1.
where λ = τ r (with τ given in Lemma 1) and ξ = r 2 C Rα,∞+R 2 , β .

Proof: This is a direct consequence of lemma 2 and inequality Eq. 23, valid for k ≥ k 0 .

Remark 3. From the estimate of η given by Eq. 19 one can get an estimate of k 0 . Another possibility is to replace τ by τ ∧ η in Eq. 23 with η defined in Eq. 24. Then Proposition 1 is valid for all k ≥ 1 without the condition

x k ∈ B(c ∞ , R 0 ).
Remark 4. The proof of Theorem 1 works for R 0 defined in Eq. 11. It also works for any smaller positive value. It is better to have R 0 large so that x k rapidly enters the ball B(c ∞ , R 0 ). On the other hand when R 0 is small and x k is already in this ball then one can take τ close to α 2 cotan(αR α,∞ ). Again explicit estimates are possible.

Two case studies

In order to implement algorithm GEO-ALG (a specialization of RIE-ALG for point clouds with step sizes t i = 1 i+1 ), we need to describe the geodesics of the underlying manifold, and find an intermediate point m = Geodesic(p, q, t) on the geodesic passing through p and q such that ρ(p, m)=t ρ(p, q).

Hyperbolic manifold

A hyperbolic manifold is a complete Riemannian d-dimensional manifold of constant sectional curvature -1 that is isometric to the real hyperbolic space. There exists several models of hyperbolic geometry. Here, we consider the planar non-conformal Klein model where geodesics are straight lines. See [START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF]. Although there exists no known closedform formula for the hyperbolic centroid (p = 2), Welzl's minimax algorithm generalizes to the Klein disk [START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF] to compute exactly the hyperbolic 1-center. The Klein Riemannian distance on the unit disk is defined by

ρ(p, q) = arccosh 1 -p t q (1 -p t p)(1 -q t q) ( 25 
)
where arccosh(x) = log(x + √ x 2 -1), and the geodesic passing through p and q is the straight line segment

γ t (p, q) = (1 -t)p + tq, t ∈ [0, 1]. ( 26 
)
Finding m such that ρ(p, m)=t ρ(p, q) cannot be solved in closed-form solution (except for t = 1 2 , see [START_REF] Nielsen | Hyperbolic Voronoi diagrams made easy[END_REF]), so that we rather proceed by a bisection search algorithm on parameter t up to machine precision. Figure 1 shows the snapshots of our implementation in Java Processing.4 
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Figure 2: Convergence rate of the GEO-ALG algorithm for the hyperbolic disk for the first 200 iterations. The horizontal axis denotes the number of iterations and the vertical axis (a) the relative Klein distance between the current center and the optimal 1-center (approximated for a large number of iterations), (b) the radius of the smallest enclosing ball anchored at the current center.

Figure 2 plots the convergence rate of the GEO-ALG algorithm. The code is publicly available on-line for reproducible research.

Manifold of symmetric positive definite matrices

A d × d matrix M with real entries is said symmetric positive definite (SPD) iff. it is symmetric (M = M T ), and that for all x = 0, x T M x > 0. The set of d × d SPD matrices form a smooth manifold of dimension d(d+1) 2 . We refer to Lang (1999) (Chapter 12) for a description of the geometry of SPD matrices. See also [START_REF] Ji | Optimization approaches on smooth manifolds[END_REF] for optimization on matrix manifolds. The geodesic linking (matrix) point P to point Q is given by

γ t (P, Q) = P 1 2 P -1 2 QP -1 2 t P 1 2 , (27) 
where the matrix function h(M ) is computed from the singular value decomposition M = U DV T (with U and V unitary matrices and D = diag(λ 1 , ..., λ d ) a diagonal matrix of eigenvalues) as h(M ) = U diag(h(λ 1 ), ..., h(λ d ))V T . For example, the square root function of a matrix is computed as

M 1 2 = U diag( √ λ 1 , ..., √ λ d )V T . In this case, finding t such that log(P -1 Q) t 2 F = r log P -1 Q 2 F , (28) 
where • F denotes the Fröbenius norm yields to t = r. Indeed, consider λ 1 , ..., λ d the eigenvalues of P -1 Q, then Eq. 28 amounts to find

d i=1 log 2 λ t i = t 2 d i=1 log 2 λ i = r 2 d i=1 log 2 λ i . ( 29 
)
That is t = r. Figure 3 displays the plots of the convergence rate of the algorithm for the SPD manifold.

Concluding remarks and discussion

We described a generalization of the 1-center algorithm of [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF] to arbitrary Riemannian geometry, and proved the convergence under mild assumptions. This proves the existence of Riemannian coresets for optimization. This 1-center building block can be used for k-center clustering. Furthermore, the algorithm can be straightforwardly extended to sets of geodesic balls.

An open-source source code implementation in Java TM for reproducible research is available on-line at , where ρ * and r * are approximated for a large number of iterations), (b) the radius r i of the smallest enclosing SPD ball anchored at the current center.

Appendix: Some notions of Riemannian geometry

In this section, we recall some basic notions of Riemannian geometry used throughout the paper. For a complete presentation, we refer to [START_REF] Cheeger | Comparison Theorems in Riemannian Geometry[END_REF].

We let M be a Riemannian manifold and •, • the Riemannian metric, which is a definite positive bilinear form on each tangent space T x M , and depends smoothly on x. The associated norm in T x M will be denoted by

• : u = u, u 1/2 . We denote by ρ(x, y) the distance between two points on the manifold M :

ρ(x, y) = inf 1 0 φ(t) dt, ϕ ∈ C 1 ([0, 1], M ), ϕ(0) = x, ϕ(1) = y .
A geodesic in M is a smooth path which locally minimizes the distance between two points. In general such a curve does not minimize it globally. However it is true in all the sets we are considering in this paper. Given a vector v ∈ T M with base point x, there is a unique geodesic started at x with speed v at time 0. It is denoted by t → exp x (tv) or compactly by t → γ t (v). It depends smoothly on v but it has in general finite lifetime. A geodesic defined on a time interval [a, b] is said to be minimal if it minimizes the distance from the image of a to the image of b. If the manifold is complete, taking x, y ∈ M , there exists a minimal geodesic from x to y in time 1. In all the scenarii we are considering in this paper, the minimal geodesic is unique and depends smoothly on x and y, and we denote it by γ • (x, y) : [0, 1] → M , t → γ t (x, y) with the conditions γ 0 (x, y) = x and γ 1 (x, y) = y. A subset U of M is said to be convex if for any x, y ∈ U , there exists a unique minimal geodesic γ • (x, y) in M from x to y, this geodesic fully lies in U and depends smoothly on x, y, t.

The injectivity radius of M , denoted by inj(M ), is the largest r > 0 such that for all x ∈ M , the map exp x restricted to the open ball in T x M centered at 0 with radius r is an embedding.

Given x ∈ M , u, v two non collinear vectors in T x M , the sectional curvature Sect(u, v) = K is a number which gives information on how the geodesics issued from x behave near x. More precisely the image by exp x of the circle centered at 0 of radius r > 0 in Span(u, v) has length 2πS K (r) + o(r 3 ) as r → 0 with

S K (r) =      sin( √ Kr) √ K if K > 0, r if K = 0, sinh( √ -Kr) √ -K if K < 0.
For instance, if K > 0, exp x (Span(u, v)) is near x approximatively a 2dimensional sphere with radius 1 √ K . In fact, if M is simply connected and all the sectional curvatures are equal to the same K > 0, then M is a ddimensional sphere with radius 1 √ K , where d is the dimension of M . If M is simply connected and all the sectional curvatures are equal to the same K < 0, we say that M is a d-dimensional hyperbolic space with curvature K.

An upper bound (resp. lower bound) of sectional curvatures is a number a such that for all non collinear u, v in the same tangent space, Sect(u, v) ≤ a (resp. Sect(u, v) ≥ a). In the paper, we used a positive upper bound α 2 and a negative lower bound -β 2 , α, β > 0.

The existence of the upper bound α 2 for sectional curvatures makes possible to compare geodesic triangles, by Alexandrov theorem (see Chavel (2003)).

Theorem 2. Let x 1 , x 2 , x 3 ∈ M satisfy x 1 = x 2 , x 1 = x 3 and ρ(x 1 , x 2 ) + ρ(x 2 , x 3 ) + ρ(x 3 , x 1 ) < 2 min injM, π α where α > 0 is such that α 2 is an upper bound of sectional curvatures. Let the minimizing geodesic from x 1 to x 2 and the minimizing geodesic from x 1 to x 3 make an angle θ at x 1 . Denoting by S 2 α 2 the 2-dimensional sphere of constant curvature α 2 (hence of radius 1/α) and ρ the distance in S 2 α 2 , we consider points x1 , x2 , x3 ∈ S 2 α 2 such that ρ(x 1 , x 2 ) = ρ(x 1 , x2 ), ρ(x 1 , x 3 ) = ρ(x 1 , x3 ). Assume that the minimizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3 also make an angle θ at x1 .

Then we have ρ(x 2 , x 3 ) ≥ ρ(x 2 , x3 ).

Instead of prescribing the angle in the comparison triangle in the sphere, it is possible to prescribe the third distance:

Corollary 1. The assumption are the same as in Theorem 2 except that we assume that ρ(x 2 , x 3 ) = ρ(x 2 , x3 ) (all the distances are equal), but the minimizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3 now make an angle θ at x1 . Then we have θ ≥ θ.

There also exists a comparison result in the other direction, called Topogonov's theorem.

Theorem 3. Assume β > 0 is such that -β 2 is a lower bound for sectional curvatures in M . Let x 1 , x 2 , x 3 ∈ M satisfy x 1 = x 2 , x 1 = x 3 . Let the minimizing geodesic from x 1 to x 2 and the minimizing geodesic from x 1 to x 3 make an angle θ at x 1 . Denoting by H 2 -β 2 the hyperbolic 2-dimensional space of constant curvature -β 2 and ρ the distance in H 2 -β 2 , we consider points x1 , x2 , x3 ∈ H 2 -β 2 such that ρ(x 1 , x 2 ) = ρ(x 1 , x2 ), ρ(x 1 , x 3 ) = ρ(x 1 , x3 ). Assume that the minimizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3 also make an angle θ at x1 .

Then we have ρ(x 2 , x 3 ) ≤ ρ(x 2 , x3 ).

Triangles in the sphere S 2 α 2 and in the hyperbolic space H 2 -β 2 have explicit relations between distance and angles as we will see below. This combined with Theorems 2 and 3 and Corollary 1 allow to find related bounds in M , which are intensively used in our proofs.

In this paper, we only use the first law of cosines in S 2 α 2 and in H 2 -β 2 (see e.g. [START_REF] Ratcliffe | Foundations of hyperbolic manifolds[END_REF] Theorem 2.5.3 and Theorem 3.5.3).

Theorem 4. If θ 1 , θ 2 , θ 3 are the angles of a triangle in S 2 α 2 and x 1 , x 2 , x 3 are the lengths of the opposite sides, then cos θ 3 = cos(αx 3 ) -cos(αx 1 ) cos(αx 2 ) sin(αx 1 ) sin(αx 2 ) .

If θ 1 , θ 2 , θ 3 are the angles of a triangle in H 2 -β 2 and x 1 , x 2 , x 3 are the lengths of the opposite sides, then cos θ 3 = cosh(βx 1 ) cosh(βx 2 ) -cosh(βx 3 ) sinh(βx 1 ) sinh(βx 2 ) .

  xk the angle corresponding to the point x k . By Alexandrov comparison theorem (in fact Corollary 1 in the appendix) xk is smaller than the same in constant curvature α 2 . This together with the law of cosines in spherical geometry (Theorem 4 in the appendix) yields cos xk ≥ cos αb -cos αr cos αa sin αr sin αa . Now r ≥ R 0 /2, b ≤ r * and a ≥ r * so cos xk ≥ cos αr * (1 -cos(αR 0 /2)) sin(αR 0 /2) = cos αr * tan(αR 0 /4) ≥ cos αR tan(αR 0 /4).
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 1 Figure 1: Snapshots of the GEO-ALG algorithm implemented for the hyperbolic Klein disk: The large black disk and the white disk denote the current center and farthest point, respectively. The linked path shows the trajectory of the centers as the number of iterations increase. On-line demo available at http://www.informationgeometry.org/ RiemannMinimax/

Figure 3 :

 3 Figure 3: Convergence rate of the GEO-ALG algorithm for the SPD Riemannian manifold (dimension 5) for the first 200 iterations. The horizontal axis denotes the number of iterations i and the vertical axis (a) the relative Riemannian distance between the current center c i and the optimal 1-center c * ( ρ(c * ,ci) r *

We view finite point sets as discrete uniform probability measures.

Any bounded measure on a Cartan-Hadamard manifold satisfies this assumption.
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