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Abstract

In this paper, we generalize the simple Euclidean 1-center approximation
algorithm of Bădoiu and Clarkson (2003) to Riemannian geometries and
study accordingly the convergence rate. We then show how to instantiate
this generic algorithm to two particular cases: (1) hyperbolic geometry, and
(2) Riemannian manifold of symmetric positive definite matrices.

Keywords: 1-center; minimax ; circumcenter ; Riemannian geometry ;
core-set ; approximation

1. Introduction and prior work

Finding the unique smallest enclosing ball (SEB) of a finite Euclidean
point set P = {p1, ..., pn} is a fundamental problem that has been thor-
oughly investigated by the computational geometry community Welzl (1991);
Nielsen and Nock (2009). This problem is also known in the literature as
the minimum enclosing ball (MEB), the 1-center problem, or the minimax
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optimization problem in operations research. In practice, since computing
exactly the SEB is intractable in high dimensions, efficient approximation
algorithms have been proposed. An algorithmic breakthrough was recently
achieved by Bădoiu and Clarkson (2008) that proved the existence of a core-
set C ⊆ P of optimal size ⌈1

ǫ
⌉ so that r(C) ≤ (1+ǫ)r(P ) (for arbitrary ǫ > 0),

where r(S) denote the radius of the SEB of S. Let c(S) denote the ball cen-
ter, ie. the circumcenter. Since the size of the core-set depends only on the
approximation precision ǫ and is independent of the dimension, core-sets have
become popular in high-dimensional applications such as supervised classifi-
cation in machine learning (eg., core vector machines Tsang et al. (2007)).
In Bădoiu and Clarkson (2003), a fast and simple approximation algorithm
is designed as follows:

BC-ALG:
Starts with c1 ∈ P and iteratively update the current center
using the rule ci+1 = ci +

fi−ci
i+1

, where fi denotes the farthest
point of P to ci.

It can be proved that a (1+ǫ)-approximation of the SEB is obtained after
⌈ 1
ǫ2
⌉ iterations, thereby showing the existence of a core-set C = {f1, f2, ...} of

a size at most ⌈ 1
ǫ2
⌉: r(C) ≤ (1 + ǫ)r(P ). This simple algorithm run in time

O(dn
ǫ2
), and has been generalized to Bregman divergences Nock and Nielsen

(2005) that includes the (squared) Euclidean distance, and are the canonical
distances of flat spaces including the particular case of Euclidean geometry.
(Note that if we start from the optimal center c1 = c(S), the first iteration
yields a center c2 away from c(S).)

Many data-sets arising in medical imaging Pennec (2008) or in computer
vision Turaga and Chellappa (2010) cannot be considered as emanating from
vectorial spaces but rather as lying on curved manifolds. For example, the
space of rotations or the space of invertible matrices are not flat as the
arithmetic average of two elements does not necessarily lie inside the space.

In this work, we extend the Euclidean BC-ALG algorithm to Riemannian
geometries. In the remainder, we assume the Reader familiar to basic no-
tions of Riemmanian geometries (refer to Berger (2003) for an introductory
textbook) in order not to burden the paper with technical Riemannian def-
initions. However in appendix 6 we recall some specific notions which play
a key role in the paper as geodesics, sectional curvature, injectivity radius,
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Alexandrov and Toponogov theorems, and cosine laws for triangles. Further-
more, we consider probability measures instead of finite points sets2 so as to
study the most general setting.

Let M be a complete Riemannian manifold and ν a probability measure
on M . Denote by ρ(x, y) the Riemannian metric distance from x to y on M .
Assume the measure support supp(ν) is included in a geodesic ball B(o, R).
Let

Rα,p =

{

1
2
min

{

inj(M), π
2α

}

if 1 ≤ p < 2
1
2
min

{

inj(M), π
α

}

if 2 ≤ p ≤ ∞ (1)

where inj(M) is the injectivity radius (see appendix 6).
For p ∈ [1,∞], under the assumption that

R < Rα,p (2)

Afsari proved Afsari (2011) that there exists a unique point cp which mini-
mizes the following cost function

Hp : M → [0,∞]

x 7→ ‖ρ(x, ·)‖Lp(ν) (3)

with cp ∈ B(o, R) (in fact, lying inside the closure of the convex hull of the
masses). Recall that if p ∈ [1,∞) then

‖ρ(x, ·)‖Lp(ν) =

(
∫

M

ρ(x, y) ν(dy)

)1/p

and

‖ρ(x, ·)‖L∞(ν) = min {a > 0, ν ({y ∈ M, ρ(x, y) > a}) = 0} .

For discrete uniform measure viewed as a “point cloud” and p ∈ [1,∞)

the map Hp translates as
(

1
n

∑n
i=1 ‖pi − x‖pp

)1/p
, with ‖ · ‖p denoting the Lp

norm, and H∞(x) is the distance from x to its farthest point in the cloud.
The point cp that realizes the minimum represents a notion of centrality of

2We view finite point sets as discrete uniform probability measures.
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the measure (eg., median for p = 1, mean for p = 2, and circumcenter for
p → ∞). This center is a global minimizer (not only in B(o, R)), and this
explains why a bound for the sectional curvature is required on the whole
manifold M (in fact B(o, 2R) is sufficient, see Afsari (2011)).

Deterministic algorithms (subgradient algorithms) for finding cp have
been considered in Yang (2009) for the median case (p = 1). Stochastic
algorithms have been investigated in Arnaudon et al. (2010) for the case
p ∈ [1,∞), and a central limit theorem (CLT) is derived (in fact a kind of
invariance principle).

In this work, we consider the case p = ∞, with c∞ denoting the circum-
center. In this case there is no canonical deterministic algorithm which gen-
eralizes the gradient descent algorithms considered for p ∈ [1,∞). Following
Eq. 3, H∞(x) denotes the farthest distance of x to the measure (L∞-norm).

To give an example of a Riemannian manifold, consider for example the
space of symmetric positive definite matrices with associated Riemannian
distance (see Section 4)

ρ(P,Q) = ‖ log(P−1Q)‖F =

√

∑

i

log2 λi (4)

where λi are the eigenvalues of matrix P−1Q. This is a non-compact Rieman-
nian symmetric space of nonpositive curvature (Cartan-Hadamard manifold,
see Lang (1999), chapter 12). In this context any measure ν with bounded
support satisfies assumption Eq. 2 (since we can take α > 0 as small as one
likes), and consequently the minimizer c∞ of H∞ exists and is unique. We
call it the 1-center or minimax center of ν.

We generalized the BC-ALG by noticing that the iterative update is a
rewriting barycenter rule of the current circumcenter with the current far-
thest point. Thus the new position of the circumcenter falls along the straight
line joining these two points in Euclidean geometry. In Riemannian geome-
try, the shortest path linking two points is called a geodesic (eg., great arc
for spherical geometry). Instead of walking on the straight line, we rather
then walk on the geodesic to the furthest point as follows:
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GEO-ALG:
Starts with c1 ∈ P and iteratively update the current cir-
cumcenter as follows: ci+1 = Geodesic(ci, fi,

1
i+1

), where fi
denotes the farthest point of P to ci, and Geodesic(p, q, t)
denotes the intermediate point m on the geodesic passing
through p and q such that ρ(p,m) = t× ρ(p, q).

Note that GEO-ALG generalized BC-ALG by taking the Euclidean dis-
tance ρ(p, q) = ‖p− q‖.

The paper is organized as follows: Section 2 proves technically a crucial
lemma. It is followed by the description and convergence rate analysis of
our generic Riemannian algorithm in Section 3. Section 4 instantiates the
algorithm for the particular cases of the hyperbolic manifold and the manifold
of symmetric positive definite matrices. Section 5 concludes the paper and
hints at further perspectives. To make the paper self-contained, Section 6
recalls the fundamental notions of Riemannian geometry used throughout
the paper.

2. A key lemma

In this section, we assume3 that supp(ν) ⊂ B(o, R) and

R < Rα,∞ =
1

2
min

{

inj(M),
π

α

}

The following lemma is essential for proving the convergence of the algorithm
determining the minimax of ν.

Lemma 1. There exists τ > 0 such that for all x ∈ B(o, R),

H∞(x)−H∞(c∞) ≥ τρ2(x, c∞). (5)

Proof:
The point c∞ is the center of the smallest ball which contains supp(ν) and
the radius of this ball is exactly r∗ := H∞(c∞) (see Afsari (2009)). Denoting
by S(c∞, r∗) the boundary of this ball and by Sc∞M the set of unitary vectors
in Tc∞M , for all v ∈ Sc∞M there exists y ∈ S(c∞, r∗) ∩ supp(ν) such that

〈γ̇0(c∞, y), v〉 ≤ 0 (6)

3Any bounded measure on a Cartan-Hadamard manifold satisfies this assumption.
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where t 7→ γt(c∞, y) is the geodesic from c∞ to y in time one and γ̇t(c∞, y)
denotes derivative with respect to t. Indeed, if this was not true it would
contradict the minimality of S(c∞, r∗) (Afsari (2009)).

Now letting t 7→ γt(v) = expx(tv) the geodesic satisfying γ̇0(v) = v, we
prove Eq. 5 for x = γt(v). We have

H∞(γt(v))−H∞(c∞) ≥ ρ(γt(v), y)− ρ(c∞, y) = ρ(γt(v), y)− r∗ (7)

by definition of H∞.
Then we consider a 2-dimensional sphere S2

α2 with constant curvature α2,
distance function ρ̃, and in S2

α2 a comparison triangle γ̃t(ṽ)ỹc̃∞ such that
ρ̃(ỹ, c̃∞) = r∗, ṽ is a unitary vector in Tc̃∞Mα satisfying

〈

˙̃γ0(c̃∞, ỹ), ṽ
〉

= 〈γ̇0(c∞.y), v〉 (8)

Let us prove that

ρ̃(γ̃t(ṽ), ỹ)− r∗ = ρ̃(γ̃t(ṽ), ỹ)− ρ(c̃∞, ỹ) ≥ ταρ̃
2(γ̃t(ṽ), c̃∞) (9)

for some τα > 0 provided condition Eq. 6 is realized: using the first law of
cosines (Theorem 4 in appendix), we get

0 ≥ cos
(

˙̃γ0(c̃∞, ỹ), ṽ
)

=
cos (αρ̃(γ̃t(v), ỹ))− cos (αr∗) cos(αt)

sin (αr∗) sin(αt)
(10)

which yields
cos (αρ̃(γ̃t(ṽ), ỹ)) ≤ cos (αr∗) cos(αt)

and this in turn implies

sin (α (ρ̃(γ̃t(ṽ), ỹ)− αr∗)) ≥ cotan(αr∗) (cos (α (ρ̃(γ̃t(ṽ), ỹ)− αr∗))− cos(αt))

so

lim inf
tց0

ρ̃(γ̃t(ṽ), ỹ)− r∗

t2
≥ α

2
cotan(αr∗) ≥ α

2
cotan(αRα,∞)

uniformly in ṽ. Consequently Eq. 9 is true in a neighborhood of c̃∞, and by
a compactness argument we prove that it is true in any compact included in
B̄(c̄∞, Rα,∞).

To finish the proof we are left to use Alexandrov comparison theorem
(Theorem 2 in appendix) with triangles γt(v)yc∞ and γ̃t(ṽ)ỹc̃∞ to check that
the right hand side of Eq. 7 in M is larger than the left hand side of Eq. 9.
This proves Eq. 5 in B(c∞, R) ∩ B(o, R), and for proving it in B(o, R) we
just have to notice that H∞ is continuous and positive on the compact set
B̄(o, R)\B(c∞, R), hence it has a positive lower bound. �
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3. Riemannian approximation algorithm

For x ∈ B(o, R), denote by t 7→ γt(v(x, ν)) a unit speed geodesic from
γ0(v(x, ν)) = x to one point y = γH∞(x)(v(x, ν)) in supp(ν) which realizes

the maximum of the distance from x to supp(ν). So v =
1

H∞(x)
exp−1

x (y). A

measurable choice is always possible. But note that if ν has finite support,
it is natural to make a random choice.

We consider the following stochastic algorithm.

RIE-ALG:
Fix some δ > 0.
Step 1 Choose a starting point x0 ∈ supp(ν) and let k = 0
Step 2 Choose a step size tk ∈ (0, δ] and let xk+1 =
γtk(v(xk, ν)), then do again step 2 with k = k + 1.

This algorithm generalizes the Euclidean scheme Bădoiu and Clarkson
(2003) (and algorithm GEO-ALG for probability measures). Let a∧b denote
the minimum operator a ∧ b = min(a, b).

Let R0 =
Rα,∞ −R

2
∧ R

2
.

Theorem 1. Assume α, β > 0 are such that −β2 is a lower bound and α2

an upper bound of the sectional curvatures in M .
If the step sizes (tk)k≥1 verify

δ ≤ R0

2
∧ 2

β
arctanh (tanh(βR0/2) cos(αR) tan(αR0/4)) , (11)

lim
k→∞

tk = 0,
∞
∑

k=0

tk = +∞ and
∞
∑

k=0

t2k < ∞. (12)

then the sequence (xk)k≥1 generated by the algorithm satisfies

lim
k→∞

ρ(xk, c∞) = 0. (13)

Proof:

First we prove that for all r ∈ [R0, R], if xk ∈ B(c∞, r) then xk+1 ∈
B(c∞, r): if ρ(xk, c∞) ≤ R0/2 it is clear since δ ≤ R0/2. If ρ(xk, c∞) ≥
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R0/2 we prove that ρ(xk+1, c∞) ≤ ρ(xk, c∞). Let yk+1 = γH∞(xk)(v(xk, ν)):
yk+1 ∈ supp(ν) is such that H∞(xk) = ρ(xk, yk+1); consider the triangle
c∞xkyk+1. Let a = ρ(xk, yk+1), b = ρ(yk+1, c∞) and r = ρ(c∞, xk), x̂k the
angle corresponding to the point xk. By Alexandrov comparison theorem
(in fact Corollary 1 in appendix) x̂k is smaller than the same in constant
curvature α2. This together with the law of cosines in spherical geometry
(Theorem 4 in appendix) yields

cos x̂k ≥
cosαb− cosαr cosαa

sinαr sinαa
.

Now r ≥ R0/2, b ≤ r∗ and a ≥ r∗ so

cos x̂k ≥
cosαr∗(1− cos(αR0/2))

sin(αR0/2)
= cosαr∗ tan(αR0/4) ≥ cosαR tan(αR0/4).

(14)
Consider now the triangle c∞xkxk+1 and let f = ρ(c∞, xk+1). Recall ρ(xk, xk+1) =
tk+1. Now by Toponogov theorem (Theorem 3 in appendix) f is smaller than
the same in constant curvature −β2. This together with first law of cosines
in hyperbolic geometry (Theorem 4 in appendix) yields

cosh βf ≤ cosh βr cosh βtk+1 − cos x̂k sinh βr sinh βtk+1 (15)

which implies by Eq. 14

cosh βf ≤ cosh(βr) coshβtk+1−cosαR tan(αR0/4) sinh(βr) sinh βtk+1 (16)

and we easily check that the condition on δ implies that the right hand side
is smaller than cosh βr. This proves that ρ(c∞, xk+1) ≤ ρ(c∞, xk).

Then we prove that there exists η > 0 such that if xk ∈ B(c∞, R)\B(c∞, R0)
then

cosh (βρ(c∞, xk+1))

cosh (βρ(c∞, xk))
≤ 1− ηtk+1. (17)

From Eq. 16, we obtain

cosh βf

cosh βr
≤ cosh βtk+1 − cosαR tan(αR0/4) tanh(βr) sinhβtk+1

≤ cosh βtk+1 − cosαR tan(αR0/4) tanh(βR0) sinh βtk+1

≤ 1− 2 (cosαR tan(αR0/4) tanh(βR0) cosh(βtk+1/2)
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− sinh(βtk+1/2)) sinh(βtk+1/2)

≤ 1− (cosαR tan(αR0/4) tanh(βR0) cosh(βtk+1/2)− sinh(βtk+1/2))βtk+1

≤ 1− (cosαR tan(αR0/4) tanh(βR0)

− cosαR tan(αR0/4) tanh(βR0/2)) cosh(βtk+1/2)βtk+1

where we used Eq. 11 in the last inequality. So

cosh βρ(c∞, xk+1)

cosh βρ(c∞, xk)
≤ 1− (cosαR tan(αR0/4) tanh(βR0)

− cosαR tan(αR0/4) tanh(βR0/2))βtk+1

(18)

and this gives Eq. 17, using the fact that x 7→ cosh βx has derivative bounded
below by β sinh βR0 on [R0, R].

At this stage, since
∞
∑

k=1

tk = ∞, we can conclude that there exists k0 such

that cosh (βρ(c∞, xk0)) ≤ cosh(βR0) so xk0 ∈ B(c∞, R0), and for all k ≥ k0,
xk ∈ B(c∞, R0).

Now we use the fact that on B(c∞, R0), H∞ is convex and satisfies Eq. 5.
By boundedness of the Hessian of square distance to c∞ (see Yang (2009) for
details), we have for k ≥ k0

ρ2(c∞, xk+1) ≤

ρ2(c∞, xk)− 2tk+1

〈

exp−1
xk

c∞, γ̇0(v(xk, ν))
〉

+ C

(

Rα,∞ +R

2
, β

)

t2k+1

(19)

with
C(r, β) = 2rβcotanh(2βr). (20)

Now letting yk+1 = γH∞(xk)(v(xk, ν)) we haveH∞ ≥ ρ(·, yk+1) since yk+1 ∈
supp(ν). we remark that ρ2(·, yk+1) is convex on B(c∞, R0) by the fact that
for all z ∈ B(c∞, R0) and y ∈ supp(ν), ρ(z, y) < Rα,∞. Moerover we have
H∞(xk) = ρ(xk, yk+1). As a consequence, we get

H∞(c∞)−H∞(xk) ≥ ρ2(c∞, yk+1)− ρ2(xk, yk+1)

≥ −2
〈

exp−1
xk

c∞, γ̇0(v(xk, ν))
〉

9



and this implies by Proposition 1

− 2
〈

exp−1
xk

c∞, γ̇0(v(xk, ν))
〉

≤ −τρ2(c∞, xk). (21)

Plugging into Eq. 19 yields

ρ2(c∞, xk+1) ≤ (1− τtk+1)ρ
2(c∞, xk) + C

(

Rα,∞ +R

2
, β

)

t2k+1. (22)

We recall from here the standard argument to prove that ρ2(c∞, xk) converges
to 0. Let

a = lim sup
k→∞

ρ2(c∞, xk).

Iterating Eq. 22 yields for ℓ ≥ 1

ρ2(c∞, xk+ℓ) ≤
ℓ
∏

j=1

(1− τtk+j)ρ
2(c∞, xk) + C

ℓ
∑

j=1

t2k+j

with C = C
(

Rα,∞+R
2

, β
)

. Letting ℓ → ∞ and using the fact that

∞
∑

j=1

tk+j =

∞, which implies
∞
∏

j=1

(1− τtk+j) = 0,

we get

a ≤ C
∞
∑

j=1

t2k+j.

Finally using
∑∞

j=1 t
2
j < ∞ we obtain that limk→∞

∑∞
j=1 t

2
k+j = 0, so a = 0.

�

For the speed of convergence, taking tk =
r

k + 1
, we proceed as in Propo-

sition 4.10 in Yang (2009). We use the following lemma, borrowed from Nedic
and Bertsekas (2000):

Lemma 2. Let (uk)k≥1 be a sequence of nonnegative real numbers such that

uk+1 ≤
(

1− λ

k + 1

)

uk +
ξ

(k + 1)2

10



where λ and ξ are positive constants. Then

uk+1 ≤















1
(k+1)λ

(

u0 +
2λξ(2−λ)

1−λ

)

if 0 < λ < 1;
ξ(1+ln(k+1))

k+1
if λ = 1;

1
(λ−1)(k+2)

(

ξ + (λ−1)u0−ξ
(k+2)λ−1

)

if λ > 1.

Choosing tk =
r

k + 1
, letting k0 such that for all k ≥ k0, xk ∈ B(c∞, R0),

ρ2(xk0+k, c∞) ≤















1
(k+1)λ

(

R2
0 +

2λξ(2−λ)
1−λ

)

if 0 < λ < 1;
ξ(1+ln(k+1))

k+1
if λ = 1;

1
(λ−1)(k+2)

(

ξ +
(λ−1)R2

0
−ξ

(k+2)λ−1

)

if λ > 1.

where λ = τr (with τ given in proposition 1) and ξ = r2C
(

Rα,∞+R
2

, β
)

.

Proof:
This is a direct consequence of lemma 2 and inequality Eq. 22, valid for
k ≥ k0. �

Remark 1. It is possible to obtain an estimate of η in Eq. 17, and from this
one can get an estimate of k0.

Remark 2. We can choose R0 as small as we want, and as R0 → 0, one
can let τ → α

2
cotan(αRα,∞). Again explicit estimates are possible.

4. Two case studies

In order to implement algorithm GEO-ALG (a specialization of RIE-ALG
for point clouds with step sizes ti =

1
i+1

), we need to describe the geodesics of
the underlying manifold, and find an intermediate pointm = Geodesic(p, q, t)
on the geodesic passing through p and q such that ρ(p,m)=t ρ(p, q).

4.1. Hyperbolic manifold

A hyperbolic manifold is a complete Riemannian d-dimensional manifold
of constant sectional curvature −1 that is isometric to the real hyperbolic
space. There exists several models of hyperbolic geometry. Here, we consider
the planar Klein model where geodesics are straight lines Nielsen and Nock
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(2010). Although there exists no known closed-form formula for the hyper-
bolic centroid (p = 2), Welzl’s minimax algorithm generalizes to the Klein
disk Nielsen and Nock (2010) to compute exactly the hyperbolic circumcen-
ter. The Klein Riemannian distance is

ρ(p, q) = arccosh
1− ptq

√

(1− ptp)(1− qtq)
(23)

where arccosh(x) = log(x +
√
x2 − 1), and the geodesic passing through p

and q is the straight line segment

γt(p, q) = (1− t)p+ tq (24)

Finding m such that ρ(p,m)=t ρ(p, q) cannot be solved in closed-form
solution (except for t = 1

2
, see Nielsen and Nock (2010)), so that we rather

proceed by a bisection search algorithm up to machine precision.

4.2. Manifold of symmetric positive definite matrices

A d × d matrix M with real entries is said symmetric positive definite
(SPD) iff. it is symmetric (M = MT ), and that for all x 6= 0, xTMx > 0.

The set of d× d SPD matrices form a smooth manifold of dimension d(d+1)
2

.
We refer to Lang (1999) (Chapter 12) for a description of the geometry of
SPD matrices. See also Ji (2007) for optimization on matrix manifolds. The
geodesic linking (matrix) point P to point Q is given by

γt(P,Q) = P
1

2

(

P− 1

2QP− 1

2

)t

P
1

2 , (25)

where the matrix function h(M) is computed from the singular value decom-
positionM = UDV T (with U and V unitary matrices andD = diag(λ1, ..., λd)
a diagonal matrix of eigenvalues) as h(M) = Udiag(h(λ1), ..., h(λd))V

T .

For example, the square root function of a matrix is computed as M
1

2 =
Udiag(

√
λ1, ...,

√
λd)V

T .
In this case, finding t such that

‖ log(P−1Q)t‖2F = r‖ logP−1Q‖2F , (26)

where ‖ · ‖F denotes the Fröbenius norm yields to t = r. Indeed, consider
λ1, ..., λd the eigenvalues of P−1Q, then Eq. 26 amounts to find
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d
∑

i=1

log2 λt
i = t2

d
∑

i=1

log2 λi = r2
d

∑

i=1

log2 λi. (27)

That is t = r.

5. Concluding remarks and discussion

We described a generalization of the 1-center algorithm of Bădoiu and
Clarkson (2003) to arbitrary Riemannian geometry, and proved the conver-
gence under mild assumptions. This proves the existence of Riemannian core-
sets for optimization. This 1-center building block can be used for k-center
clustering. Furthermore, the algorithm can be straightforwardly extended to
sets of geodesic balls.

A source code implementation in JAVATM is available at

http://www.informationgeometry.org/RiemannMinimax/
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6. Appendix: Some notions of Riemannian geometry

In this section, we recall some basic notions of Riemannian geometry used
throughout the paper. For a complete presentation, we refer to Cheeger and
Ebin (1975).

We let M be a Riemannian manifold and 〈·, ·〉 the Riemannian metric,
which is a definite positive bilinear form on each tangent space TxM , and
depends smoothly on x. The associated norm in TxM will be denoted by
‖ · ‖: ‖u‖ = 〈u, u〉1/2. We denote by ρ(x, y) the distance between two points
on the manifold M :

ρ(x, y) = inf

{
∫ 1

0

‖ϕ̇(t)‖ dt, ϕ ∈ C1([0, 1],M), ϕ(0) = x, ϕ(1) = y

}

.
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A geodesic in M is a smooth path which locally minimizes the distance
between two points. In general such a curve does not minimize it globally.
However it is true in all the sets we are considering in this paper. Given a
vector v ∈ TM with base point x, there is a unique geodesic started at x with
speed v at time 0. It is denoted by t 7→ expx(tv) or compactly by t 7→ γt(v).
It depends smoothly on v but it has in general finite lifetime. A geodesic
defined on a time interval [a, b] is said to be minimal if it minimizes the
distance from the image of a to the image of b. If the manifold is complete,
taking x, y ∈ M , there exists a minimal geodesic from x to y in time 1. In all
the scenarii we are considering in this paper, the minimal geodesic is unique
and depends smoothly on x and y, and we denote it by γ·(x, y) : [0, 1] → M ,
t 7→ γt(x, y) with the conditions γ0(x, y) = x and γ1(x, y) = y. A subset U
of M is said to be convex if for any x, y ∈ U , there exists a unique minimal
geodesic γ·(x, y) in M from x to y, this geodesic fully lies in U and depends
smoothly on x, y, t.

The injectivity radius of M , denoted by inj(M), is the largest r > 0 such
that for all x ∈ M , the map expx restricted to the open ball in TxM centered
at 0 with radius r is an embedding.

Given x ∈ M , u, v two non collinear vectors in TxM , the sectional curva-
ture Sect(u, v) = K is a number which gives information on how the geodesics
issued from x behave near x. More precisely the image by expx of the circle
centered at 0 of radius r > 0 in Span(u, v) has length

2πSK(r) + o(r3) as r → 0

with

SK(r) =











sin(
√
Kr)√
K

if K > 0,

r if K = 0,
sinh(

√
−Kr)√

−K
if K < 0.

For instance, if K > 0, expx(Span(u, v)) is near x approximatively a 2-

dimensional sphere with radius
1√
K

. In fact, if M is simply connected and

all the sectional curvatures are equal to the same K > 0, then M is a d-

dimensional sphere with radius
1√
K

, where d is the dimension of M . If M

is simply connected and all the sectional curvatures are equal to the same
K < 0, we say that M is a d-dimensional hyperbolic space with curvature K.

An upper bound (resp. lower bound) of sectional curvatures is a number
a such that for all non collinear u, v in the same tangent space, Sect(u, v) ≤ a
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(resp. Sect(u, v) ≥ a). In the paper, we used a positive upper bound α2 and
a negative lower bound −β2, α, β > 0.

The existence of the upper bound α2 for sectional curvatures makes possi-
ble to compare geodesic triangles, by Alexandrov theorem (see Chavel (2003)).

Theorem 2. Let x1, x2, x3 ∈ M satisfy x1 6= x2, x1 6= x3 and

ρ(x1, x2) + ρ(x2, x3) + ρ(x3, x1) < 2min
{

injM,
π

α

}

where α > 0 is such that α2 is an upper bound of sectional curvatures. Let the
minimizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3

make an angle θ at x1. Denoting by S2
α2 the 2-dimensional sphere of constant

curvature α2 (hence of radius 1/α) and ρ̃ the distance in S2
α2, we consider

points x̃1, x̃2, x̃3 ∈ S2
α2 such that ρ(x1, x2) = ρ̃(x̃1, x̃2), ρ(x1, x3) = ρ̃(x̃1, x̃3).

Assume that the minimizing geodesic from x̃1 to x̃2 and the minimizing
geodesic from x̃1 to x̃3 also make an angle θ at x̃1.

Then we have ρ(x2, x3) ≥ ρ̃(x̃2, x̃3).

Instead of prescribing the angle in the comparison triangle in the sphere, it
is possible to prescribe the third distance:

Corollary 1. The assumption are the same as in Theorem 2 except that
we assume that ρ(x2, x3) = ρ̃(x̃2, x̃3) (all the distances are equal), but the
minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic from x̃1 to
x̃3 now make an angle θ̃ at x̃1.

Then we have θ̃ ≥ θ.

There also exists a comparison result in the other direction, called To-
pogonov’s theorem.

Theorem 3. Assume β > 0 is such that −β2 is a lower bound for sectional
curvatures in M . Let x1, x2, x3 ∈ M satisfy x1 6= x2, x1 6= x3. Let the min-
imizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3

make an angle θ at x1. Denoting by H2
−β2 the hyperbolic 2-dimensional space

of constant curvature −β2 and ρ̃ the distance in H2
−β2, we consider points

x̃1, x̃2, x̃3 ∈ H2
−β2 such that ρ(x1, x2) = ρ̃(x̃1, x̃2), ρ(x1, x3) = ρ̃(x̃1, x̃3). As-

sume that the minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic
from x̃1 to x̃3 also make an angle θ at x̃1.

Then we have ρ(x2, x3) ≤ ρ̃(x̃2, x̃3).
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Triangles in the sphere S2
α2 and in the hyperbolic space H2

−β2 have explicit
relations between distance and angles as we will see below. This combined
with Theorems 2 and 3 and Corollary 1 allow to find related bounds in M ,
which are intensively used in our proofs.

In this paper, we only use the first law of cosines in S2
α2 and in H2

−β2 (see
e.g.Ratcliffe (1994) Theorem 2.5.3 and Theorem 3.5.3).

Theorem 4. If θ1, θ2, θ3 are the angles of a triangle in S2
α2 and x1, x2, x3 are

the lengths of the opposite sides, then

cos θ3 =
cos(αx3)− cos(αx1) cos(αx2)

sin(αx1) sin(αx2)
.

If θ1, θ2, θ3 are the angles of a triangle in H2
−β2 and x1, x2, x3 are the lengths

of the opposite sides, then

cos θ3 =
cosh(βx1) cosh(βx2)− cosh(βx3)

sinh(βx1) sinh(βx2)
.
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